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abstract

In this paper the dynamics of a joint transaction process are investigated. The
transaction process is characterized by four marks: price changes, transaction
volumes, bid–ask spreads and intertrade durations. Based on a copula
approach, a model for their joint density is proposed, which avoids forcing a
priori assumptions on the instantaneous causality relationships between the
four variables as necessary in decomposition models, where the joint density
is decomposed into its conditional and unconditional densities. The price
change process is treated as a discrete process and specified with an integer
count hurdle model and the transaction volumes, bid–ask spreads, and trade
durations processes are modeled along the lines of fractionally integrated
autoregressive conditional models, which are suited very well to capture
the high persistency, empirically observed in these processes. The model is
applied to three stocks traded at the New York Stock Exchange (NYSE) in
May, 2001 and we investigate several market microstructure hypotheses in
the empirical part of this paper.
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1 Introduction

The empirical analysis of market microstructure (MMS) variables allows us to infer
how market participants process information, submit orders with a specific volume
at a specific time, interact with each other, and affect the price process of an asset.
The results from these analyses are of utmost importance for the efficient design
of the institutional setup and the trading systems in financial markets. Moreover,
they are on one hand the basis for the development of theoretical MMS models
and on the other they allow us to verify existing models empirically.

The importance being attributed to empirical MMS research is underpinned by
an enormous amount of very well written papers in this field of research in the last
two decades. Engle (1982), Bollerslev (1986), Hausman, Lo, and MacKinlay (1992),
Hasbrouck and Sofianos (1993), O’Hara (1995), Engle and Russell (1998), Engle
(2000), Dufour and Engle (2000), Ghysels, Gourieroux, and Jasiak (2004) represent
only a tiny part thereof.

However, most of the existing studies do not analyze relationships between
several MMS variables based on a joint model for these variables. Instead, the
relationship between a set of MMS variables, such as price changes, volatility,
transaction volumes, bid–ask spreads and intertrade durations is analyzed in uni-
variate models; see Hausman, Lo, and MacKinlay (1992) and Dufour and Engle
(2000) for example, or in decomposition models, see Russell and Engle (2002), Ryd-
berg and Shephard (2003) and Manganelli (2005). In these models, one of the MMS
variables is treated as the left-hand variable and the rest as covariates assuming an
a priori instantaneous causality relationship between these variables or imposing
a strict exogeneity assumption in the sense of Engle, Hendry, and Richard (1983).
An exception is the study by Renault and Werker (2006), where the instantaneous
causality effect between volatility and trade arrival times is disentangled from the
Granger causality effects between these variables.

In this paper, we pick up the suggestion of Dufour and Engle (2000) and for-
malize a model for the joint system of price changes, transaction volumes, bid–ask
spreads and intertrade durations, which, from our point of view, are four of the
most important MMS variables. We rely on a copula approach to separate instanta-
neous causality effects from Granger causality effects and we avoid decomposing
the joint process into conditional and marginal processes and postulating a par-
ticular instantaneous causality scheme between the four MMS variables a priori.
Moreover, in the specification of the marginal processes, we try to take the most
important MMS characteristics such as discreteness of price changes as well as the
high persistency of transaction volumes, bid–ask spreads and intertrade durations
into account. We use the Liesenfeld, Nolte, and Pohlmeier (2006) dynamic integer
count hurdle (ICH) model for the specification of the discrete price change process,
whereas the processes for transaction volumes, bid–ask spreads, and intertrade
durations are modeled with fractionally integrated autoregressive conditional du-
ration (FIACD) type models proposed by Jasiak (1999). The application of ACD-
type models to transaction volumes and bid–ask spreads is unproblematic since by
definition both variables have a positive outcome space. For transaction volumes,
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NOLTE | Modeling a Multivariate Transaction Process 145

ACD-type models have already been proposed by Manganelli (2005). Since, we are
considering a four-dimensional process in which one component is discrete (price
changes) and the remaining three components are continuous, we rely for the price
change variable on the continuation approach suggested by Stevens (1950), Heinen
and Rengifo (2007) and Denuit and Lambert (2005) during the specification of the
copula function.

The empirical analysis is carried out, using data from the NYSE Trade and
Quote (TAQ2) database, for three stocks: Black & Decker Corporation (BDK), In-
ternational Business Machines (IBM), and Coca-Cola Company (KO), traded at
the NYSE for the period from May 1, 2001 to May 31, 2001. We can show that
the proposed model specification fits the dynamics of the joint process very well
and we apply our model to verify several market microstructure hypotheses. We
find, that the role of trade arrival times in explaining bid–ask spreads (Foster and
Viswanathan (1990)) and price change volatility (Easley and O‘Hara (1992), Dufour
and Engle (2000)) is diminished and ambiguous, when controlling for the informa-
tion conveyed by the transaction volume and the bid–ask spread processes.

The rest of the paper is structured in the following way: Section 2 presents the
model in detail, Section 3 contains the empirical analysis as well as the application
to market microstructure hypotheses, and Section 4 concludes the paper.

2 Multivariate Modeling

Let Pt ∈ ς · Z denote the transaction price at the tth trade, where ς ∈ R
+ denotes

the tick size and t = (0), 1, . . . , T . The associated (standardized) price change from
the (t − 1)th to the tth trade is then given by Ct ≡ (Pt − Pt−1)/ς ∈ Z, the volume
traded at the tth trade is denoted by Vt ∈ R

+, the bid–ask spread at the tth trade
is denoted by St ∈ R

+, and the duration between the (t − 1)th and the tth trade is
denoted by Dt ∈ R

+.
We collect these marks of the transaction process in the vector Mt ∈ Z × R

+3:

Mt ≡ (Ct , Vt , St , Dt)′,

we set Ft ≡ σ (Ms |s ≤ t) and denote θ as the generic overall parameter vector. Our
aim is to model the conditional joint density of Mt denoted by fMt (mt|Ft−1; θ )
within a parametric framework. We want to avoid a specification, where the joint
density is decomposed into a product of sequential conditional densities and a
marginal density, since such a specification imposes a specific form on the instan-
taneous causality relationship of the variables under consideration. Therefore we
decide to rely on a copula approach, which allows for a direct investigation of the
instantaneous relationships in our system, rather than simply choosing that spec-
ification which seems to be the most reasonable according to our current market
microstructure knowledge. Choosing the copula approach, we are, in particular,
able to manage and investigate different instantaneous relationship patterns sepa-
rately from their Granger causality effects between our variables across stocks.
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The joint distribution function of Mt denoted by1 FMt (mt|Ft−1) can be related
to its marginal distributions using the copula function C : [0, 1]4 → [0, 1] as

FMt (mt|Ft−1) = C
(
FCt (ct|Ft−1), FVt (vt|Ft−1), FSt (st|Ft−1), FDt (dt|Ft−1)

)
,

where FCt , FVt , FSt and FDt denote the marginal distribution functions of the price
change, the volume, the bid–ask spread and the duration, respectively. Sklar (1959)
proved the existence of the copula function C and showed its uniqueness on [0, 1]k

for the case where all k variables of the joint distribution function are continuous. In
that case, one can take the derivative of the joint distribution function with respect
to its components to obtain a valid specification for the joint density.

Also, according to Sklar (1959) in the case where certain components of the
joint density are discrete, as Ct in our case, we do not achieve uniqueness of the
copula function, in our case on [0, 1]4, but only on Range(FCt ) × [0, 1]3. The joint
density function can then be obtained either by approximating the derivative of
FMt (mt|Ft−1) with respect to Ct by a finite difference as proposed by Meester and
MacKay (1994) and Cameron, Li, Trivedi, and Zimmer (2004) or by artificially con-
tinuing Ct and computing the usual derivative based on the continued Ct as sugges-
ted by Stevens (1950), Heinen and Rengifo (2007) and Denuit and Lambert (2005).

In this paper, we rely on the latter strategy and we continue the discrete variable
Ct , following Denuit and Lambert (2005) with the help of Ut being independent
uniformly U(0, 1) distributed, by setting

C∗
t ≡ Ct − Ut ,

where C∗
t ∈ R denotes the continued price change variable. With M∗

t be-
ing the vector Mt , where Ct has been replaced by C∗

t , and FC∗
t

being the
distribution function of C∗

t , we can obtain the joint density fM∗
t
(m∗

t |Ft−1) =
(∂4 FM∗

t
(m∗

t |Ft−1))/∂C∗
t , ∂Vt , ∂St , ∂ Dt as

fM∗
t
(m∗

t |Ft−1) = fC∗
t
(c∗

t |Ft−1) · fVt (vt|Ft−1) · fSt (st|Ft−1) · fDt (dt|Ft−1)

c
(
FC∗

t
(c∗

t |Ft−1), FVt (vt|Ft−1), FSt (st|Ft−1), FDt (dt|Ft−1)
)
, (1)

where c denotes the density of the copula function C. Since, we will specify a model
for Ct , we need the relationship between the discrete distribution function of Ct

and the continuous distribution function of C∗
t for the computation of the copula

density. Since C∗
t ≤ Ct a.s. and the integer part �C∗

t 	 of the continuous variable C∗
t

is given by �C∗
t 	 = Ct − 1 we obtain FC∗

t
(c∗

t ) as

FC∗
t
(c∗

t ) = P(C∗
t ≤ c∗

t ) = P(C∗
t ≤ �c∗

t 	) + P(�c∗
t 	 < C∗

t ≤ c∗
t )

= P(C∗
t ≤ ct − 1) + P(ct − 1 < C∗

t ≤ c∗
t )

= P(Ct ≤ ct − 1) + P(ct − 1 < Ct − Ut ≤ ct − ut)

= P(Ct ≤ ct − 1) + P(Ut ≤ ut) · P(Ct = ct)

= FCt (ct − 1) + ut · fCt (ct),

1For the ease of notation we suppress the parameter vector θ .
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NOLTE | Modeling a Multivariate Transaction Process 147

where the last equation follows from the fact that for Ut ∼ U(0, 1), P(Ut ≤ ut) = ut .
Moreover, we used the relationship that P(C∗

t ≤ ct − 1) = P(Ct ≤ ct − 1) since ct is
discrete. Please note, that the specification in Equation (1) is based on a fixed or
unconditional copula C in that sense, that the copula function itself is not assumed
to be time-varying or dependent on Ft. Such an extension, which has been proposed
by Patton (2001 and 2006), would increase the computational burden in our model
considerably.

2.1 Specification of the Marginal Densities and the Copula Function

We now address the specification of the marginal densities of the price change, the
volume, the bid–ask spread, and the duration processes as well as the choice of the
copula function.

2.1.1 Price change process We apply the ICH model of Liesenfeld, Nolte, and
Pohlmeier (2006), to model the discrete density of the price change

fCt (ct|Ft−1).

The idea of the ICH model is to decompose the price change process into two
components: (i) a direction process and (ii) a size or an absolute price change
process given a nonzero price change.

Let π j t , j ∈ {−1, 0, 1} denote the conditional probability of a negative P(Ct <

0|Ft−1), a zero P(Ct = 0|Ft−1) or a positive price change P(Ct > 0|Ft−1) at time t. The
conditional density of a price change is then specified as

fCt (ct|Ft−1) = π−1t
1l {Ct<0} · π0t

1l {Ct=0} · π1t
1l {Ct>0} · f|Ct |(|ct| |Ct �= 0, Ft−1)

(
1−1l {Ct=0}

)
,

where f|Ct |(|ct| |Ct �= 0, Ft−1) denotes the conditional density of an absolute price
change, with support N \ {0}.

To obtain a parsimoniously specified model, we adopt the simplification of
Liesenfeld, Nolte, and Pohlmeier (2006), that the conditional density of an absolute
price change stems from the same distribution irrespective of whether it is an
upward or a downward price change.

2.1.1.1 Direction process In order to model the conditional probabilities of the
direction process, we use the autoregressive conditional multinomial (ACM) model
of Russell and Engle (2002) with a logistic link function, given by

π j t = exp(� j t)∑1
j=−1 exp(� j t)

(2)

with normalizing constraint �0t = 0, ∀t. The resulting vector of log-odds ratios
�t ≡ (�−1t , �1t)′ = (ln[π−1t/π0t], ln[π1t/π0t])′ is specified as a multivariate ARMA-
type model:

(I2 − βp(L))(�t − ζr (L) ln(Zt)) = µ + αq (L)εt + γs(L)|εt|, (3)
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where αq (L), βp(L), and γs(L) denote 2 × 2 matrix valued lag polynomials of or-
der q , p, and s, respectively. Zt = (Vt , St , Dt)′ denotes the vector of explanatory
variables—volume, bid–ask spread, and duration—which are included statically
and in lagged form through the 2 × 3 matrix valued lag polynomial ζr (L) of order
r in this specification. µ denotes the 2 × 1 vector of constants, and the innovation
vector of the ARMA model is specified as martingale differences given by

εt ≡ (ε−1t , ε1t)′, where ε j t ≡ xjt − π j t√
π j t(1 − π j t)

, j ∈ {−1, 1}, (4)

and

xt ≡ (x−1t , x1t)′ =
⎧⎨
⎩

(1, 0)′ if Ct < 0
(0, 0)′ if Ct = 0
(0, 1)′ if Ct > 0,

(5)

denotes the 2 × 1 state vector indicating the direction of the price movement at
time t. Thus, εt represents the standardized state vector xt . Note, that we included
also the absolute innovation term |εt| to capture asymmetries in the news impact
curve for the log odds ratios.

2.1.1.2 Absolute price change process The conditional density of the absolute
price process is modeled with an at-zero-truncated Negative Binomial (NegBin)
distribution, given by

f|Ct |(|ct| |Ct �= 0, Ft−1) ≡ �(κ + |ct|)
�(κ)�(|ct| + 1)

([
κ + ωt

κ

]κ

− 1
)−1(

ωt

ωt + κ

)|ct |
, (6)

where |ct| ∈ N \ {0}, κ > 0 denotes the dispersion parameter and ωt is parameter-
ized using the logarithmic link function with a generalized autoregressive moving
average specification (GLARMA) of Shephard (1995) in the following way:

(1 − β̃p(L))(ln ωt − δ̃′ D̃t − ζ̃r (L) ln(Zt)) = µ̃ + S(ν, τ, K ) + α̃q (L)ε̃t + γ̃s(L)|ε̃t|, (7)

where D̃t ∈ {−1, 1} indicates a negative or a positive price change at time t with cor-
responding coefficient δ̃. Zt = (D̃t , Vt , St , Dt)′ denotes again the vector of further
explanatory variables, with associated 1 × 4 dimensional parameter lag polyno-
mial ζr (L). α̃q (L), β̃p(L), and γ̃s(L) denote scalar lag polynomials, µ̃ the constant
and

S(ν, τ, K ) ≡ ν0τ +
K∑

k=1

ν2k−1 sin(2π(2k − 1)τ ) + ν2k cos(2π(2k)τ ) (8)

a Fourier flexible form to capture intraday seasonality in the absolute prices
changes, which can be considered as a measure for volatility, where τ is the intra-
day trading time standardized to [0, 1] and ν is a 2K + 1 dimensional parameter
vector. In the spirit of Nelson (1991) for GARCH and Dufour and Engle (2000) for
ACD models, we include again an absolute innovation term |ε̃t| to allow for an
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NOLTE | Modeling a Multivariate Transaction Process 149

asymmetric news response of ln ωt . ε̃t constructed as

ε̃t ≡ |Ct| − E(|Ct| |Ct �= 0, Ft−1)
Var(|Ct| |Ct �= 0, Ft−1)1/2 ,

is the innovation term that drives the GLARMA model. For a more elaborate
presentation of the ICH model and its components as well as for some stationarity
considerations we refer the reader to Liesenfeld, Nolte, and Pohlmeier (2006).

2.1.2 Transaction volume, bid–ask spread and trade duration processes
Since we consider transaction volume, bid–ask spread, and trade duration as
variables with a positive real domain, we specify their conditional densities in
a similar way and we decide to present their models in a unified notation with
Yt ∈ {Vt , St , Dt}. Thus, we are concerned with the conditional density

fYt (Yt|Ft−1),

and we specify fYt (Yt|Ft−1) within the autoregressive conditional duration (ACD)
framework introduced by Engle and Russell (1998). Manganelli (2005) already
showed that the transaction volume process can be reasonably modeled using
ACD specifications and we apply this approach to the bid–ask spread process
as well. There are several extensions to the original ACD model, see for example
Bauwens, Giot, Grammig, and Veredas (2004), Lunde (2000), Grammig and Maurer
(2000), and Bauwens and Hautsch (2006). Here, we rely on the FIACD model of
Jasiak (1999), which we augment by a multiplicative function to capture intraday
seasonality.

Thus, we assume that the variable Yt consists multiplicatively of a seasonality
function s(ν, τ, K ), a conditional mean function ϕt(θY|Ft−1), and an error term εt :

Yt = s(ν, τ, K ) · ϕt(θY|Ft−1) · εt , εt ∼ i.i.d . f̃Yt (·),

where f̃Yt (·) is an error term density with unit mean. Assuming f̃Yt (·) to be in-
dependent of the conditioning information Ft−1 facilitates modeling, since we do
not need to be concerned with higher conditional moments. An extension that
allows for separate dynamics in the conditional variance is presented by Ghysels,
Gourieroux, and Jasiak (2004). Applying the transformation theorem2 yields

Yt ∼ 1
sϕt

f̃Yt

(
yt

sϕt

)
, (9)

where s ≡ s(ν, τ, K ) and ϕt ≡ ϕt(θY|Ft−1). To ensure a positive seasonality function
we assume s(ν, τ, K ) = exp(S(ν, τ, K )) where S(ν, τ, K ) follows a Fourier flexible
form as stated in Equation (8). We specify f̃Yt (·) as an exponential density with unit
mean, i.e., f̃Yt (·) ∼ Exp(1) and the dynamics of the conditional mean function are

2See, e.g., Rohatgi (1976), p. 135, Theorem 6.
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modeled according to Jasiak (1999) as

(1 − βp(L))ϕt = µ + γ∞(L)Yt , (10)

with a constant µ and an infinite-dimensional scalar lag polynomial γ∞(L), given
by

γ∞(L) = [1 − βp(L) − [1 − αq (L) − βp(L)](1 − L)d ],

where αq (L) and βp(L) denote scalar lag polynomials and (1 − L)d , 0 < d < 1 the
fractional differencing operator given by

(1 − L)d =
∞∑

k=0

�k Lk ,

with

�k = �(k − d)
�(k + 1)�(−d)

=
∏

0< j≤k

j − 1 − d
j

, k = 0, 1, 2, . . .

and �(·) the gamma function defined as

�(x) ≡

⎧⎪⎪⎨
⎪⎪⎩

∞∫
0

tx−1 exp(−t)dt if x > 0,

∞ if x = 0,
x−1�(1 + x) if x < 0.

All coefficients in βp(L) and αq (L) as well as µ have to be nonnegative to ensure
positivity of the conditional mean function (out-of-sample). Jasiak (1999) shows
that the FIACD(p, d , q ) model is strictly stationary and ergodic for 0 ≤ d ≤ 1, but
not weakly stationary, since the first unconditional moment of Yt is infinite, due
to the fact that the fractional differencing operator evaluated at lag L = 1 is 0.
The FIACD(p, d , q ) class nests the classes of ACD(p, q ) models for d = 0 and their
integrated counterparts for d = 1.

An important point in the estimation is, that we have only a finite sample of
data and therefore the “∞” in (1 − L)d = ∑∞

k=0 �k Lk needs to be approximated
and the preceding data points for the initialization need to be set. We set “∞ =
1000” and initiated the foregoing 1000 lags of Yt with the unconditional mean of
Yt . Applying this approximation, we can consider the FIACD(p, d , q ) models as
ACD(p,1000+max(p,q )) models, with parameter restrictions of a specific functional
form depending on d .

2.1.3 Copula function Let us recall Equation (1), which states the joint condi-
tional density of the trading marks vector M∗

t :

fM∗
t
(m∗

t |Ft−1) = fC∗
t
(c∗

t |Ft−1) · fVt (vt|Ft−1) · fSt (st|Ft−1) · fDt (dt|Ft−1)

c
(
FC∗

t
(c∗

t |Ft−1), FVt (vt|Ft−1), FSt (st|Ft−1), FDt (dt|Ft−1)
)
.
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In this equation, the copula density c is specified as a four-dimensional Gaussian
copula density, given by:

c(y1t , y2t , y3t , y4t ; �) = det(�)−0.5 exp
(

1
2

q ′
t(I4 − �−1)qt

)
, (11)

where � = (ρi j ) denotes the 4 × 4 correlation matrix of q = (q1t , q2t , q3t , q4t)′ with
qit = �−1(yit), i = 1, . . . , 4. Thus, for example, the argument y1t of the copula func-
tion c is the probability mass in the left tail of the conditional price change distribu-
tion FC∗

t
(·|Ft−1) up to the observed (continued) price change c∗

t at time t; and q1t is
the quantile of the standard normal distribution associated with that left tail proba-
bility. In that sense q1t represents a kind of “normalized” price change observation
c∗

t where the ordering of the observations is not interchanged since FC∗
t
(·|Ft−1) as

well as �(·) are strictly monotonically increasing. The observations vt , st , and dt are
“normalized” to q2t , q3t , and q4t analogously and the correlation matrix � repre-
sents the correlation between these “normalized” variables. We redefine � in the
following way:

� = (ρi j ) =

⎛
⎜⎜⎝

1 ρCV ρC S ρC D

ρCV 1 ρVS ρVD

ρC S ρVS 1 ρSD

ρC D ρVD ρSD 1

⎞
⎟⎟⎠ , i, j = C, V, S, D, (12)

to facilitate an intuitive interpretation of the parameters in � with respect to the
relations between price changes (C), transaction volumes (V), bid–ask spreads (S),
and intertrade durations (D).

3 Empirical Analysis

3.1 Database

In the empirical analysis we use tick-by-tick data from May 1, 2001 to May 31,
2001 of three stocks traded at the NYSE: BDK, IBM, and KO. The data stems from
the Trade and Quote (TAQ2) database, which is separated into two files: the trade
database and the quote database.

The trade database contains all transaction prices and volumes and the quote
database consists of all bid and ask quotes and depths, timestamped to the second.
To determine, which bid and ask quotes (bid–ask spread) were valid at a certain
trade observation and whether this trade was a buy or a sell, one has to merge
the two databases. The common algorithm that has been applied predominantly
in the literature is the Lee and Ready (1991) procedure, which relies on a so-called
“five-seconds rule,” which means that each trade is assigned to the quotes posted
at least 5 seconds before. The identification of a buy or sell is done in the following
way: If the transaction price is above (below) the midquote, the trade is defined as
a buy (sell); for transaction prices at the midquote, the tick rule applies, i.e., if the
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transaction takes place at a higher (lower) price than the price of the most recent
trade with a different price, the trade is characterized as a buy (sell).

In the last few years this algorithm has been criticized, e.g., by Boehmer,
Grammig, and Theissen (2007) and Vergote (2005) concerning the time span of
5 seconds, which does not seem to be appropriate anymore, due to advances in
computer technology. Therefore, we check for which lag value in seconds (between
0 and 5) the number of the transaction prices corresponding exactly to previous
quotes is maximized and it turns out that for all three stocks, this occurs at 1
second. Thus, we apply the Lee and Ready (1991) algorithm in a modified way
using a delay of 1, instead of 5 seconds only.

A further problem arises due to the fact that in some cases there are several
trades at exactly the same timestamp. This can happen due to an automatic match-
ing of different orders on one side of the specialist’s book against a larger order
on the other side (split-transaction). Moreover, such transactions can also result
from different market participants, who posted their orders (electronically) within
1 second or, as pointed out by Veredas, Rodriguez-Poo, and Espasa (2002), by
limit orders of different market participants with exactly the same limit, e.g., at
round prices. Unfortunately, these differences cannot be identified with the TAQ2
database. We have treated all trades as split transactions, which were recorded
at the same second. In this case, we have simply aggregated their volume to one
transaction and assigned the last price in the sequence to the aggregated transac-
tion. Furthermore, we have removed all trades outside the regular trading hours
as well as each day’s first trade, to circumvent contamination due to the opening
call auction at the NYSE.

3.2 Descriptive Statistics

In Figure 1 we have plotted the histograms and the autocorrelograms up to lag 50
for the tick-by-tick price changes of BDK, KO, and IBM. With a mean duration of
53.1, 14.8, and 6.9 seconds, respectively, a lag of 50 corresponds approximately to
44, 12, and 6 minutes.

The histograms show a fairly large support; most of the mass is concentrated
between −7 and 7 ticks, but for BDK and IBM even the classes ±8, ±9, and ±10
still possess a mass of around 1% each. The 0 tick classes have frequencies between
40% and 50% and ±1 tick classes take frequencies between 10% and 15%. The large
support in combination with the high concentration at the 0 tick class, justifies
the application of the discrete ICH model. An alternative approach to model the
discrete price change process would be the decomposition model of Rydberg and
Shephard (2003), which is also capable of modeling discrete outcomes with a fairly
large support. The ordered probit model of Hausman, Lo, and MacKinlay (1992)
or the multinomial model of Russell and Engle (2002), however, suffer from the
drawback that they can only model reliably discrete outcomes with a bounded
support. The autocorrelograms of IBM and KO exhibit the usual negative first-
order autocorrelation coefficient, which can be explained by the bid–ask bounce
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Figure 1 Histograms (first row) and autocorrelograms (second row) of BDK, IBM, and KO price
changes. Confidence bands: asymptotic 95%.

effect examined by Roll (1984). For BDK, however, such an effect cannot be observed
and all autocorrelation coefficients are basically insignificant.

Figure 2 depicts the autocorrelograms, again up to lag 50, of transaction vol-
umes, bid–ask spreads, and intertrade durations for all three stocks. Except the
transaction volume of BDK, all autocorrelation functions have in common that
even the autocorrelation coefficient at lag 50 is still significantly different from
zero. The decay of the empirical autocorrelation functions for transaction volumes
and intertrade durations is very slow, whereas for the bid–ask spread it is quite fast
until, say, lag 10, but from thereon again very slow. Because of these observations,
we do not consider the decay of these empirical autocorrelation functions to be
exponential and therefore we rely on the fractionally integrated specification for
the dynamics of the mean function of transaction volume, bid–ask spread, and
duration.

3.3 Estimation Results

All estimation results are obtained by jointly maximizing the log-likelihood im-
plied by Equation (1). After a careful model selection procedure, we decide to
model the conditional mean functions for all four variables of all three stocks
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Figure 2 Autocorrelograms of BDK, IBM, and KO transaction volumes (first row), bid–ask spreads
(second row), and intertrade durations (third row). Confidence bands: asymptotic 95%.

with specifications that possess a lag length of 1 for the autoregressive and the
innovation variables. We allow the explanatory variables to be lagged up to lag 3.

In detail, we specify the conditional mean function in the ACM model for the
price change direction (see Equation (3)) as:

(I2 − β1(L))(�t − ζ3(L) ln(Zt)) = µ + α1(L)εt + γ1(L)|εt|, (13)

where µ, α1, β1, γ1, and ζi for i = 1, 2, 3 are assumed to be symmetric. We impose
these symmetry constraints on the parameters to ensure a parsimonious model
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specification. Zt = (Vt , St , Dt)′ denotes the vector of explanatory variables. To clar-
ify the notation and to ease the interpretation of ζi with respect to the explanatory
variables, we denote the components of ζi in the following way:

ζi =
(

ζ V
i1 ζ S

i1 ζ D
i1

ζ V
i2 ζ S

i2 ζ D
i2

)
. (14)

The conditional mean function in the GLARMA model, see Equation (7), for the
size of the price change is specified as:

(1 − β̃1(L))(ln ωt − δ̃ D̃t − ζ̃3(L) ln(Zt)) = µ̃ + S(ν, τ, K ) + α̃1(L)ε̃t + γ̃1(L)|ε̃t|, (15)

where D̃t ∈ {−1, 1} indicates the direction of the contemporaneous price change
at time t, and Zt = (D̃t , Vt , St , Dt)′ denotes again the vector of further explanatory
variables. The components of the parameter vector ζi are now denoted as ζ̃i =
(ζ̃ D̃

i , ζ̃ V
i , ζ̃ S

i , ζ̃ D
i ) and K is set to 2 in the specification of the Fourier flexible form.

In the fractionally integrated models, the conditional mean function (see Equa-
tion (10)) is specified as

(1 − β1(L))(ϕt − ζ3(L) ln(Zt)) = µ + γ∞(L)Yt , (16)

with

γ∞(L) = [1 − β1(L) − [1 − α1(L) − β1(L)](1 − L)d ],

where i) for transaction volume, i.e. Yt = Vt , the vector of further explanatory
variables is specified as Zt = (Ct , St , Dt)′ with parameter vector ζi = (ζ C

i , ζ S
i , ζ D

i ),
ii) for the bid–ask spread, i.e., Yt = St , the vector of further explanatory variables
is specified as Zt = (Vt , Ct , Dt)′ with parameter vector ζi = (ζ V

i , ζ C
i , ζ D

i ), and iii)
for intertrade duration, i.e., Yt = Dt , the vector of further explanatory variables is
specified as Zt = (Vt , St , Ct)′ with parameter vector ζi = (ζ V

i , ζ S
i , ζ C

i ). The parameter
K in the exponential Fourier flexible form s(ν, τ, K ) in Equation (9) is set to 2, again.

In Tables 1–3 we report the estimation results of our model for BDK, IBM, and
KO, respectively. Before interpreting the results in Section 3.4 in the light of market
microstructure applications, we first consider the general pattern of the parameter
estimates and the goodness of fit of our models across stocks.

For all three stocks, we find a clear diurnal seasonality pattern (represented by
the joint significance of ν) in the duration, the spread, the volume, and the price
changes size processes. Since, these patterns coincide with the usual U- and J-shape
patterns, see, e.g., Bauwens and Giot (2001), for financial tick-by-tick variables, we
do not present their graphs here.

The ACM models responsible for the price change direction process are char-
acterized by a moderate degree of persistence: the parameter estimates for the
components of β1 lie between 0.3 and 0.6; and, they reflect the bid–ask bounce
effect observed for IBM and KO (Figure 1) as well as the absence of it for
BDK, through the parameter matrices α1 and γ1, which represent the effect of a
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Table 1 Estimation results for Black & Decker (BDK)

Parameter Model

Price change: Direction
ACM model

# Parameters: 16 Estimates Robust t-statistics

µ

(−0.9526
−0.9526

) (−0.6790
−0.6790

)

β1

(
0.4269 0.5003
0.5003 0.4269

) (
1.9655 2.3050
2.3050 1.9655

)

α1

(
0.1182 −0.0132

−0.0132 0.1182

) (
2.4149 −0.2674

−0.2674 2.4149

)

γ1

(−0.1643 0.2215
0.2215 −0.1643

) (−1.3556 1.8504
1.8504 −1.3556

)

ζ1 =
(
ζ V

1 |ζ S
1 |ζ D

1

) (−0.0172 0.2287 0.0143
−0.0172 0.2287 0.0143

) (−0.8534 6.9484 0.8897
−0.8534 6.9484 0.8897

)

ζ2 =
(
ζ V

2 |ζ S
2 |ζ D

2

) (
0.0033 0.0297 0.0151
0.0033 0.0297 0.0151

) (
0.1627 0.7875 0.9349
0.1627 0.7875 0.9349

)

ζ3 =
(
ζ V

3 |ζ S
3 |ζ D

3

) (−0.0511 −0.0227 −0.0127
−0.0511 −0.0227 −0.0127

) (−2.5023 −0.6815 −0.7880
−2.5023 −0.6815 −0.7880

)

Price change: Size
GLARMA model

# Parameters: 23 Estimates Robust t-statistics
µ̃ −0.0060 −0.8899
β̃1 0.9821 176.20
α̃1 0.0133 3.4380
γ̃1 −0.0003 −0.0677
ν0 0.0392 6.0416
ν1 0.0018 1.8374
ν2 0.0022 1.7509
ν3 0.0118 5.0956
ν4 0.0068 3.5527
δ̃ −0.0285 −0.9614

ζ̃1 =
(
ζ̃ D̃

1 , ζ̃ V
1 , ζ̃ S

1 , ζ̃ D
1

) (
0.0668 0.0959 0.3993 0.0062

) (
2.3134 4.9202 11.375 0.3627

)
ζ̃2 =

(
ζ̃ D̃

2 , ζ̃ V
2 , ζ̃ S

2 , ζ̃ D
2

) (
0.0314 0.0257 −0.0056 −0.0117

) (
1.1459 1.2446 −0.1413 −0.7212

)
ζ̃3 =

(
ζ̃ D̃

3 , ζ̃ V
3 , ζ̃ S

3 , ζ̃ D
3

) (−0.0215 −0.0134 0.0710 −0.0502
) (−0.7391 −0.7072 2.2129 −2.8998

)
κ−0.5 1.5510 20.835

Transaction volume
FIACV model

# Parameters: 18 Estimates Robust t-statistics
µ 0.1474 16.197
β1 0.4920 26.892
α1 0.1055 14.731
ν0 0.2992 16.728
ν1 0.0122 3.1381
ν2 0.0195 5.5857
ν3 0.0628 10.463
ν4 0.0476 9.4162
d 0.0290 5.1464

ζ1 =
(
ζC

1 , ζ S
1 , ζ D

1

) (
0.0072 −0.0255 −0.0337

) (
5.0719 −2.9003 −11.678

)
ζ2 =

(
ζC

2 , ζ S
2 , ζ D

2

) (
0.0010 −0.0216 −0.0027

) (
0.8519 −2.1163 −0.7827

)
ζ3 =

(
ζC

3 , ζ S
3 , ζ D

3

) (−0.0006 0.0298 −0.0298
) (−0.4027 4.9261 −9.0408

)
(Continued)
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Table 1 (Continued)

Parameter Model

Bid–ask spread
FIACS model

# Parameters: 18 Estimates Robust t-statistics
µ 0.1288 4.3317
β1 0.0602 0.8634
α1 0.3487 6.1900
ν0 −0.0737 −0.9020
ν1 0.0131 0.5493
ν2 0.0040 0.1828
ν3 −0.0061 −0.1796
ν4 −0.0220 −0.8267
d 0.3090 4.0275

ζ1 =
(
ζ V

1 , ζC
1 , ζ D

1

) (
0.0746 0.0052 −0.0176

) (
8.1029 1.8138 −3.0696

)
ζ2 =

(
ζ V

2 , ζC
2 , ζ D

2

) (
0.0125 −0.0009 0.0029

) (
1.4603 −0.2711 0.4417

)
ζ3 =

(
ζ V

3 , ζC
3 , ζ D

3

) (−0.0043 −0.0020 −0.0078
) (−0.5314 −0.5778 −1.1885

)
Intertrade duration

FIACD model
# Parameters: 18 Estimates Robust t-statistics
µ 0.0988 7.3331
β1 0.6097 19.707
α1 −0.1967 −8.0732
ν0 −0.0550 −2.3109
ν1 −0.0649 −8.2725
ν2 −0.0046 −0.9933
ν3 −0.0017 −0.1860
ν4 −0.0287 −4.3971
d 0.2954 11.536

ζ1 =
(
ζ V

1 , ζ S
1 , ζC

1

) (−0.0321 0.1452 −0.0036
) (−4.9485 13.878 −1.5489

)
ζ2 =

(
ζ V

2 , ζ S
2 , ζC

2

) (−0.0182 0.0090 −0.0034
) (−2.8899 0.7428 −1.6379

)
ζ3 =

(
ζ V

3 , ζ S
3 , ζC

3

) (−0.0131 0.0011 0.0032
) (−2.0157 0.1090 1.3560

)
Copula function

4-Dimensional Gaussian
# Parameters: 6 Estimates Robust t-statistics

� = (ρi j ), i, j = C, V, S, D

⎛
⎜⎜⎝

1 0.0469 −0.0273 −0.0134
0.0469 1 0.0519 −0.0398

−0.0273 0.0519 1 −0.1160
−0.0134 −0.0398 −0.1160 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 5.0394 −1.7924 −1.3200
5.0394 1 3.4278 −4.1950

−1.7924 3.4278 1 −7.4671
−1.3200 −4.1950 −7.4671 1

⎞
⎟⎟⎠

previous positive or negative price change on the current value of the log odds
ratio vector �t .

In the GLARMA specifications for the size of the price change process, κ−0.5

is significantly different from zero for all three stocks, so that we observe a clearly
overdispersed size process and thus have to reject the null of an at-zero truncated
Poisson in favor of an at-zero truncated NegBin distribution. Furthermore, the
price change size process is characterized by a high degree of persistence and for
IBM we observe a significantly negative parameter δ̃, which measures the current
influence of the price change direction process on the size process. Thus, we observe
that a negative price change implies a higher volatility (size) of the price change
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Table 2 Estimation results for International Business Machines (IBM)

Parameter Model

Price change: Direction
ACM model

# Parameters: 16 Estimates Robust t-statistics

µ

(
1.5786
1.5786

) (
6.1901
6.1901

)

β1

(
0.3747 0.4030
0.4030 0.3747

) (
22.530 24.559
24.559 22.530

)

α1

(
0.0262 0.3504
0.3504 0.0262

) (
1.6420 23.901
23.901 1.6420

)

γ1

(−0.0694 −0.3506
−0.3506 −0.0694

) (−1.8401 −9.8543
−9.8543 −1.8401

)

ζ1 =
(
ζ V

1

∣∣∣ζ S
1

∣∣∣ζ D
1

) (−0.0834 0.2329 0.0150
−0.0834 0.2329 0.0150

) (−13.017 18.776 1.5663
−13.017 18.776 1.5663

)

ζ2 =
(
ζ V

2

∣∣∣ζ S
2

∣∣∣ζ D
2

) (
0.0030 −0.0190 −0.0226
0.0030 −0.0190 −0.0226

) (
0.4725 −1.3422 −2.3538
0.4725 −1.3422 −2.3538

)

ζ3 =
(
ζ V

3

∣∣∣ζ S
3

∣∣∣ζ D
3

) (−0.0103 0.0206 −0.0169
−0.0103 0.0206 −0.0169

) (−1.7026 1.6886 −1.7790
−1.7026 1.6886 −1.7790

)

Price change: Size
GLARMA model

# Parameters: 23 Estimates Robust t-statistics
µ̃ 0.0294 7.4077
β̃1 0.9714 327.80
α̃1 0.0193 14.484
γ̃1 0.0074 5.9731
ν0 0.0010 0.8097
ν1 0.0017 4.4310
ν2 0.0006 1.8417
ν3 0.0012 2.3565
ν4 0.0013 3.1661
δ̃ −0.0598 −9.8300

ζ̃1 =
(
ζ̃ D̃

1 , ζ̃ V
1 , ζ̃ S

1 , ζ̃ D
1

) (
0.0838 0.0438 0.5392 0.0093

) (
12.782 9.7196 64.339 1.5731

)
ζ̃2 =

(
ζ̃ D̃

2 , ζ̃ V
2 , ζ̃ S

2 , ζ̃ D
2

) (
0.0440 0.0186 0.0399 −0.0195

) (
6.5811 4.1366 4.8163 −2.7538

)
ζ̃3 =

(
ζ̃ D̃

3 , ζ̃ V
3 , ζ̃ S

3 , ζ̃ D
3

) (
0.0053 0.0088 0.0249 −0.0119

) (
0.7817 2.0849 3.5276 −1.6628

)
κ−0.5 1.0330 113.81

Transaction volume
FIACV model

# Parameters: 18 Estimates Robust t-statistics
µ 0.1083 37.093
β1 0.5308 37.656
α1 0.0548 18.899
ν0 0.0770 10.141
ν1 0.0364 19.884
ν2 0.0317 18.594
ν3 0.0141 5.6875
ν4 0.0095 5.9042
d 0.1349 44.670

ζ1 =
(
ζC

1 , ζ S
1 , ζ D

1

) (
0.0053 0.0717 0.0691

) (
14.152 35.266 45.263

)
ζ2 =

(
ζC

2 , ζ S
2 , ζ D

2

) (−0.0019 −0.0476 0.0208
) (−4.4966 −17.888 14.258

)
ζ3 =

(
ζC

3 , ζ S
3 , ζ D

3

) (−0.0026 −0.0363 0.0180
) (−6.3633 −15.523 12.508

)
(Continued)
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Table 2 (Continued)

Parameter Model

Bid–ask spread
FIACS model

# Parameters: 18 Estimates Robust t-statistics
µ 0.0959 10.660
β1 0.0972 5.3372
α1 0.3389 17.998
ν0 −0.0371 −1.3525
ν1 −0.0206 −2.6091
ν2 0.0008 0.1096
ν3 −0.0131 −1.2203
ν4 −0.0027 −0.3176
d 0.3105 11.941

ζ1 =
(
ζ V

1 , ζC
1 , ζ D

1

) (
0.0210 0.0026 0.0085

) (
8.9077 7.0798 2.5481

)
ζ2 =

(
ζ V

2 , ζC
2 , ζ D

2

) (
0.0130 0.0012 −0.0107

) (
5.3322 1.2668 −3.2167

)
ζ3 =

(
ζ V

3 , ζC
3 , ζ D

3

) (−0.0013 −0.0016 −0.0071
) (−0.5581 −1.7400 −2.1539

)
Intertrade duration

FIACD model
# Parameters: 18 Estimates Robust t-statistics
µ 0.1224 12.447
β1 0.5160 26.561
α1 −0.1843 −19.234
ν0 0.0175 1.3051
ν1 −0.0399 −10.558
ν2 0.0104 3.6792
ν3 0.0091 1.7568
ν4 −0.0002 −0.0586
d 0.2172 23.362

ζ1 =
(
ζ V

1 , ζ S
1 , ζC

1

) (
0.0087 0.0716 −0.0010

) (
3.2677 12.366 −1.1771

)
ζ2 =

(
ζ V

2 , ζ S
2 , ζC

2

) (
0.0054 0.0097 0.0007

) (
1.9157 1.5207 0.7586

)
ζ3 =

(
ζ V

3 , ζ S
3 , ζC

3

) (−0.0059 0.0038 0.0000
) (−2.1155 0.7453 0.0000

)
Copula function

4-Dimensional Gaussian
# Parameters: 6 Estimates Robust t-statistics

� = (ρi j ), i, j = C, V, S, D

⎛
⎜⎜⎝

1 0.0409 0.0555 −0.0074
0.0409 1 0.1148 0.1484
0.0555 0.1148 1 0.4168

−0.0074 0.1484 0.4168 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 18.426 11.486 −1.5160
18.426 1 23.156 33.835
11.486 23.156 1 94.097

−1.5160 33.835 94.097 1

⎞
⎟⎟⎠

process, which is in line with the well-known leverage effect. For BDK and KO δ̃

is insignificant.
Comparing the (multivariate) Ljung–Box (LB) statistics of the raw with the

residual series for the price change direction and the price change size processes
in Table 4, shows that both the ACM and the GLARMA models are able to explain
a large part of the underlying dynamics very well. However, for IBM, which is the
most liquidly traded stock in our sample, the simple ACM(1,1) specification seems
unable to capture the dynamic structure completely. A similar picture emerges by
comparing the (multivariate) autocorrelograms for the raw with the residual direc-
tion and size series. Since there is no new information in these autocorrelograms
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Table 3 Estimation results for Coca Cola (KO)

Parameter Model

Price change: Direction
ACM model

# Parameters: 16 Estimates Robust t-statistics

µ

(
1.1789
1.1789

) (
2.2977
2.2977

)

β1

(
0.3413 0.5600
0.5600 0.3413

) (
17.653 30.449
30.449 17.653

)

α1

(−0.2755 0.5357
0.5357 −0.2755

) (−11.916 28.100
28.100 −11.916

)

γ1

(
0.4799 −0.6922

−0.6922 0.4799

) (
10.641 −17.414

−17.414 10.641

)

ζ1 =
(
ζ V

1

∣∣∣ζ S
1

∣∣∣ζ D
1

) (−0.0738 0.0796 0.0085
−0.0738 0.0796 0.0085

) (−9.0091 4.0511 0.9074
−9.0091 4.0511 0.9074

)

ζ2 =
(
ζ V

2

∣∣∣ζ S
2

∣∣∣ζ D
2

) (−0.0139 0.0098 0.0116
−0.0139 0.0098 0.0116

) (−1.6861 0.4229 1.2382
−1.6861 0.4229 1.2382

)

ζ3 =
(
ζ V

3

∣∣∣ζ S
3

∣∣∣ζ D
3

) (−0.0146 0.0100 0.0184
−0.0146 0.0100 0.0184

) (−1.8126 0.5236 1.9950
−1.8126 0.5236 1.9950

)
Price change: Size
GLARMA model

# Parameters: 23 Estimates Robust t-statistics
µ̃ −0.0072 −6.6569
β̃1 0.9981 1638.3
α̃1 0.0055 6.4415
γ̃1 0.0055 4.9863
ν0 0.0095 9.3744
ν1 0.0003 2.0814
ν2 0.0003 1.7109
ν3 0.0027 7.4451
ν4 0.0014 5.1365
δ̃ 0.0248 1.4426

ζ̃1 =
(
ζ̃ D̃

1 , ζ̃ V
1 , ζ̃ S

1 , ζ̃ D
1

) (
0.0433 0.0594 0.6496 0.0805

) (
2.5143 5.8216 30.577 7.0254

)
ζ̃2 =

(
ζ̃ D̃

2 , ζ̃ V
2 , ζ̃ S

2 , ζ̃ D
2

) (
0.0208 −0.0012 0.0108 −0.0076

) (
1.1733 −0.1189 0.4502 −0.6170

)
ζ̃3 =

(
ζ̃ D̃

3 , ζ̃ V
3 , ζ̃ S

3 , ζ̃ D
3

) (
0.0242 0.0009 0.0502 −0.0295

) (
1.3506 0.0944 2.4628 −2.5389

)
κ−0.5 1.5158 28.958

Transaction volume
FIACV model

# Parameters: 18 Estimates Robust t-statistics
µ 0.0423 31.715
β1 0.7985 153.60
α1 −0.0153 −8.0018
ν0 0.1013 31.889
ν1 0.0173 22.651
ν2 0.0095 15.473
ν3 0.0245 25.928
ν4 0.0173 23.381
d 0.1159 51.378

ζ1 =
(
ζC

1 , ζ S
1 , ζ D

1

) (−0.0001 0.0757 0.0625
) (−0.0794 21.665 46.251

)
ζ2 =

(
ζC

2 , ζ S
2 , ζ D

2

) (
0.0067 −0.0414 0.0198

) (
9.4855 −10.426 13.356

)
ζ3 =

(
ζC

3 , ζ S
3 , ζ D

3

) (
0.0008 −0.0378 −0.0107

) (
0.8064 −12.762 −6.9014

)
(Continued)
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Table 3 (Continued)

Parameter Model

Bid–ask spread
FIACS model

# Parameters: 18 Estimates Robust t-statistics
µ 0.1330 8.9947
β1 0.1179 3.3698
α1 0.3948 10.792
ν0 −0.1358 −3.7532
ν1 0.0073 0.6593
ν2 0.0020 0.1869
ν3 −0.0378 −2.4447
ν4 −0.0150 −1.1720
d 0.3157 6.4453

ζ1 =
(
ζ V

1 , ζC
1 , ζ D

1

) (
0.0296 0.0034 0.0102

) (
7.7483 1.2044 2.3167

)
ζ2 =

(
ζ V

2 , ζC
2 , ζ D

2

) (−0.0014 0.0034 −0.0001
) (−0.3614 1.1775 −0.0321

)
ζ3 =

(
ζ V

3 , ζC
3 , ζ D

3

) (−0.0001 0.0020 −0.0058
) (−0.0268 0.5581 −1.3161

)
Intertrade duration

FIACD model
# Parameters: 18 Estimates Robust t-statistics
µ 0.2772 14.195
β1 0.4041 15.222
α1 −0.1706 −18.214
ν0 −0.0019 −0.1098
ν1 −0.0550 −10.655
ν2 0.0110 2.7698
ν3 0.0102 1.4867
ν4 −0.0022 −0.4405
d 0.1677 18.804

ζ1 =
(
ζ V

1 , ζ S
1 , ζC

1

) (−0.0430 0.1114 0.0025
) (−12.458 13.251 1.2250

)
ζ2 =

(
ζ V

2 , ζ S
2 , ζC

2

) (
0.0113 0.0503 0.0027

) (
3.0341 4.8096 1.6251

)
ζ3 =

(
ζ V

3 , ζ S
3 , ζC

3

) (
0.0143 −0.0368 −0.0019

) (
4.0697 −4.2543 −0.7112

)
Copula function

4-Dimensional Gaussian
# Parameters: 6 Estimates Robust t-statistics

� = (ρi j ), i, j = C, V, S, D

⎛
⎜⎜⎝

1 0.0295 −0.1456 0.0334
0.0295 1 0.0577 0.1574

−0.1456 0.0577 1 −0.1727
0.0334 0.1574 −0.1727 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 6.8352 −18.063 5.6428
6.8352 1 7.4651 35.529

−18.063 7.4651 1 −16.996
5.6428 35.529 −16.996 1

⎞
⎟⎟⎠

in addition to the Ljung–Box statistics, we do not present them here for the price
change subprocesses (direction and size); instead we only present the residual au-
tocorrelogram of the complete price change process in the first row of Figure 3.
Comparing these autocorrelograms with those of the raw series in Figure 1 for all
three stocks, demonstrates that the bid–ask bounce effects have been explained by
the proposed model specifications.

Let us consider Tables 1–3 again and address the fractionally integrated spec-
ifications for the transaction volume, the bid–ask spread, and the intertrade dura-
tions. For all three stocks, the fractionally differencing parameter d is smallest for
the volume, second smallest for the duration, and largest for the spread process.
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Table 4 Model evaluation for Black & Decker (BDK) upper panel, International
Business Machines (IBM) middle panel, Coca Cola (KO) lower panel

BDK

Price change

Direction Size Change

Raw Residuals Raw Residuals Raw Residuals

LB(10) 218.46 60.058 296.22 11.381 15.955 28.520
LB(20) 300.04 99.909 348.38 20.823 30.484 38.570
LB(30) 342.02 132.81 368.70 27.446 34.907 41.658
LB(40) 380.08 173.49 380.03 34.940 41.947 52.311
LB(50) 420.30 213.35 387.31 42.427 46.786 58.275

Mean
(

0.2963
0.3030

) (−0.0027
0.0082

)
3.1235 −0.0003 0.0042 0.0044

Variance
(

0.2085 −0.0897
−0.0897 0.2112

) (
0.8104 0.0646
0.0646 1.2533

)
11.021 1.3137 12.449 1.1718

Transaction volume Bid–ask spread Intertrade duration

Raw Residuals Raw Residuals Raw Residuals

LB(10) 363.64 17.055 9575.2 5.8768 909.24 10.625
LB(20) 425.44 21.400 10882 19.647 1429.6 16.066
LB(30) 464.27 30.668 11471 24.359 1758.1 20.788
LB(40) 472.62 35.249 11710 30.361 2054.7 27.799
LB(50) 477.07 44.947 11867 37.145 2256.9 33.918
Mean 710.03 1.0064 0.0670 1.0072 53.077 0.9813
Variance 2537815 3.9570 0.0029 0.5480 5525.6 1.5751

IBM

Price change

Direction Size Change

Raw Residuals Raw Residuals Raw Residuals

LB(10) 3260.0 617.19 4280.4 50.870 954.47 57.414
LB(20) 3379.3 681.53 5418.7 58.781 977.38 62.454
LB(30) 3464.4 755.82 6137.6 65.356 1009.8 74.402
LB(40) 3513.2 790.01 6647.8 76.419 1017.4 81.319
LB(50) 3567.5 840.42 7038.7 82.239 1028.2 90.472

Mean
(

0.3072
0.3277

) (−0.0089
0.0295

)
3.5603 0.0015 −0.0052 0.0309

Variance
(

0.2128 −0.1007
−0.1007 0.2203

) (
0.7803 0.0829
0.0829 1.2980

)
14.987 1.6244 17.580 1.2620

Transaction volume Bid–ask spread Intertrade duration

Raw Residuals Raw Residuals Raw Residuals

LB(10) 3599.5 38.732 91591.5 21.322 5016.6 40.528
LB(20) 4896.8 58.703 102299 52.631 8417.3 56.191
LB(30) 5807.5 66.184 109206 66.393 11485 76.715
LB(40) 6419.2 74.193 114782 73.519 14192 86.081
LB(50) 6926.6 82.433 119813 91.328 16728 103.82
Mean 1744.9 1.0263 0.0710 1.0026 6.8712 1.0257
Variance 222993 4.6370 0.0030 0.4456 42.716 0.8251

(Continued)
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Table 4 (Continued)

KO

Price change

Direction Size Change

Raw Residuals Raw Residuals Raw Residuals

LB(10) 1792.0 168.72 2145.2 50.497 467.32 47.373
LB(20) 1955.5 210.67 2309.4 56.986 474.61 52.915
LB(30) 2034.7 255.95 2415.1 62.715 489.16 65.152
LB(40) 2094.6 300.41 2492.5 72.452 495.40 71.206
LB(50) 2181.9 348.52 2599.1 84.397 502.76 81.091

Mean
(

0.2558
0.2638

) (−0.0100
0.0091

)
2.1369 −0.0029 0.0033 0.0002

Variance
(

0.1904 −0.0675
−0.0675 0.1942

) (
0.8678 0.0344
0.0344 1.1463

)
4.2193 1.4900 4.5672 1.1628

Transaction volume Bid–ask spread Intertrade duration

Raw Residuals Raw Residuals Raw Residuals

LB(10) 636.54 12.040 48575 16.208 505.85 8.5313
LB(20) 837.67 17.154 54208 24.113 756.74 29.092
LB(30) 936.63 24.574 57453 33.122 960.70 38.590
LB(40) 1046.1 30.875 59495 46.422 1148.0 51.200
LB(50) 1130.4 39.117 60681 61.834 1305.7 59.327
Mean 1996.0 1.0037 0.0398 1.0064 14.754 0.9216
Variance 37479314 7.3450 0.0012 0.4880 367.30 1.4014

∗LB denotes the (multivariate) Ljung Box statistic.

This pattern reflects the different degrees of persistency already depicted by the
autocorrelograms in Figure 2. Analyzing the Ljung–Box statistics of the raw and the
residual series for these three processes for all three stocks in Table 4 and consider-
ing the autocorrelograms of the residual series in Figure 3 (second to fourth row),
lead to the conclusion that the fractional integrated model specifications capture
the underlying dynamic behavior extremely well.

3.4 Market Microstructure Implications

Market microstructure research analyzes how market participants interact with
each other, process information, place orders of a specific size at a certain time and
affect the price process within a given institutional framework. Although, theoreti-
cal market microstructure models have been available for almost 40 years, Demsetz
(1968), Bagehot (1971), and Smidt (1971), for example, attempt to model how mar-
ket makers set bid and ask quotes and therefore determine the price process, the
availability of high-frequency data sets, and the advances in computer technology
have spurred the theoretical and especially the empirical market microstructure
research within the last decade. The proposed modeling framework in this paper is
not based on an explicit theoretical market microstructure model and the estimated
relationships should therefore not be interpreted as structural economic relations.
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Figure 3 Residual autocorrelograms of BDK, IBM, and KO price changes (first row), transac-
tion volumes (second row), bid-ask spreads (third row) and intertrade durations (fourth row).
Confidence Bands: Asymptotic 95%.
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Nevertheless, our model tries to explain the joint process of four of the most rele-
vant market microstructure variables: price changes, transaction volumes, bid–ask
spreads, and intertrade durations, and therefore it allows us to investigate how
these variables interact with each other and to test well-known implications of
theoretical market microstructure models. The use of the copula functions makes
the model particularly attractive, since it enables us to analyze the instantaneous
relations between our four variables directly and separately from the effects of
the lagged explanatory variables (Granger causality relations). This distinction be-
tween contemporaneous and lagged effects is often diluted, when implications of
market microstructure models are tested with aggregated data. The time scale in
our model is defined through the arrival of trades, therefore “instantaneous” refers
exactly to the time of a specific trade, which is the highest possible disaggregation
level for our data.

The instantaneous causality relations between different market microstructure
variables have attracted a lot of attention. Diamond and Verrecchia (1987), Easley
and O‘Hara (1992), Dufour and Engle (2000), and Renault and Werker (2006) ex-
amine how intertrade duration and return volatilities interact. Whereas, the first
three papers postulate an a priori causality relationship from duration to volatil-
ity, Renault and Werker (2006) take a structural approach to identify and quantify
instantaneous effects in addition to Granger causality effects. Diamond and Ver-
recchia (1987) hypothesize, assuming that short selling is prohibited, that bad news
are reflected by longer durations which should cause negative price reactions and
increasing volatility. Contrarily, Easley and O‘Hara (1992) and Dufour and Engle
(2000) consider smaller durations as a sign for a larger share of informed investors
being active in the market, which is anticipated by less informed traders and thus
causes more uncertainty and therefore higher volatility. The latter point of view
has also been confirmed by Engle (2000) as well as by Renault and Werker (2006)
for the instantaneous relation between durations and volatility.

Another strand of the literature focuses on the relationship between trading
volume and the bid–ask spread. In the early inventory models, see Demsetz (1968)
for example, the market maker is seen as providing a service for which he has to be
compensated by letting him earn the bid–ask spread. Smidt (1971), Garman (1976),
Stoll (1978), Ho and Stoll (1981), Hasbrouck and Sofianos (1993), and Madhavan
and Smidt (1993), however, assume that the market maker, who might be allowed
to trade actively in the market on his own account, holds an optimal inventory
and deviations from this optimal inventory, induced by large trades, cause an
inventory risk which is mirrored into the bid–ask spread. A different explanation
for the connection between transaction volumes and bid–ask spreads is given by
asymmetric information based models, see Bagehot (1971), Copeland and Galai
(1983), Glosten and Milgrom (1985), or Easley and O’Hara (1987). In these models
the market maker is assumed to make profits when trading with uninformed
investors and assumed to make losses when trading with informed investors. Thus,
based on historical order flow, which includes trading speed and trading volume,
the market maker tries to figure out whether he faces an informed investor, which
would force him to increase the bid–ask spread.

 at L
ancaster U

niversity on July 11, 2013
http://jfec.oxfordjournals.org/

D
ow

nloaded from
 

http://jfec.oxfordjournals.org/


166 Journal of Financial Econometrics

Let us consider Tables 1–3 again and examine the instantaneous effects among
our variables captured by the copula parameters ρi j , i, j = {C, V, S, D}, as well as
the Granger causality effects represented by the parameters of the lagged explana-
tory variables ζi . For all three stocks, the copula parameter ρVS is significantly
positive, representing a positive instantaneous relationship between transaction
volume and bid–ask spread. Moreover, within the FIACS model, we observe for
all three stocks only significant positive parameters ζ V

i , i = 1, . . . , 3, reflecting that
higher trading volumes Granger cause higher bid–ask spreads. These observations
are clearly in line with the findings from the inventory and asymmetric information
models cited above.

The effect of time on the bid–ask spread and on the price change volatility,
which is modeled by the GLARMA specification is not that clear-cut but shows an
interesting pattern. First of all, the instantaneous effect between intertrade duration
and the bid–ask spread, ρSD, is negative for BDK and KO but positive for IBM,
which means that a higher trading intensity (smaller durations) is accompanied by
a higher bid–ask spread for BDK and KO, but by a smaller one for IBM. Moreover,
in the FIACS model, ζ D

1 is also significantly negative for BDK strengthening the
instantaneous effect, positive for KO compensating the instantaneous effect and
positive for IBM supporting the instantaneous effect, which is then weakened by
ζ D

2 and ζ D
3 , which are significantly negative.

These ambiguous effects (especially the instantaneous ones) between dura-
tions and the bid–ask spread can be interpreted in the light of the theoretical mod-
els of Admati and Pfleiderer (1988) and Foster and Viswanathan (1990). Whereas,
in the model of Admati and Pfleiderer (1988) both informed and uninformed in-
vestors have a high incentive to trade and therefore a high trading intensity when
trading costs are low, Foster and Viswanathan (1990) assume that high trading
intensity is only caused by informed investors, preventing uninformed investors
from trading at these times and causing higher bid–ask spreads being set by the
market maker. Our results do not allow us to favor one of these models when the
instantaneous effect between duration and bid–ask spread is examined. However,
the Granger causality effects of the bid–ask spread on durations (ζ S

i i = 1, . . . , 3
in the FIACS model) show that for all three stocks a higher bid–ask spread at the
previous trades leads to increasing intertrade durations and thus to lower trading
activity. This observation supports the Admati and Pfleiderer (1988) model. Inter-
preting the Foster and Viswanathan (1990) model in the Granger causality sense,
we can still not find support for this model since, as mentioned above, also the
lagged effects of durations on the bid–ask spread are indistinct and seem to be
dominated by the effects of trading volume.

The ambiguity of the effect from durations on the bid–ask spreads can be
combined with the observation that for all three stocks, price change volatil-
ity (GLARMA model) is significantly increasing in lagged trading volumes (ζ̃ V

i ,
i = 1, . . . , 3) and lagged bid–ask spreads (ζ̃ S

i , i = 1, . . . , 3), but again there is no
clear influence of lagged durations on volatility. Furthermore, we also observe
no clear effect of instantaneous (ρVD) and lagged durations (ζ D

i , i = 1, . . . , 3) on
transaction volume (FIACV model) for all three stocks. Taking these observations
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together an explanation for this finding is, that information on potential asymmetric
information and informed trading is better conveyed by the bid–ask spread pro-
cess and the transaction volume process than by the duration process. This finding
does not contradict the conclusions of Diamond and Verrecchia (1987), Easley and
O‘Hara (1992), Engle (2000), and Renault and Werker (2006) where only the bivari-
ate link between durations and volatility is examined, but it shows that through
the correlation between the spread, the volume and the duration processes, the
information content of the duration process is diminished and dominated by the
information contained in the bid–ask spread and the transaction volume processes.
A similar observation is made by Dufour and Engle (2000), who also observe that
taking bid–ask spreads and trading volumes into account reduces and sometimes
reverses the effect of intertrade durations on price change volatility. The advantage
of our model specification is that we consider the interactions within a joint system
and we do not have to impose their exogeneity assumptions.

4 Conclusion

In this paper, we propose a model for the joint process of price changes, transaction
volumes, bid–ask spreads, and intertrade durations on the tick-by-tick time scale.
We rely on a copula approach in specifying the joint density of our four-dimensional
system, which enables us to avoid a decomposition framework, where an instan-
taneous causality scheme between the four variables has to be imposed a priori.
In our model specification, we regard discrete price changes and high persistency
patterns in the empirical autocorrelation functions of bid–ask spreads, transac-
tion volumes, and intertrade durations, through the application of the ICH model
of Liesenfeld, Nolte, and Pohlmeier (2006) and the FIACD-type models of Jasiak
(1999), respectively. Since, the price change process is discrete whereas the remain-
ing three processes are continuous, we rely on continued price change variables in
the specification of the copula function as proposed by Denuit and Lambert (2005).

We apply our model to tick-by-tick data from three stocks: BDK, IBM, and KO
for a period of 1 month (May, 2001). Although the proposed model specifications
are able to account for the dynamics of the underlying series very well, some need
for fine tuning arises in the specification of the ICH model for the very frequently
traded IBM stock. The ad hoc choice of the four-dimensional Gaussian copula is
mainly driven by the fact that its six correlation parameters can be easily interpreted
and allow for a very flexible model specification. Dynamic extensions of the copula
function as suggested by Patton (2006) are not considered here, since they would
increase the computational burden in the model estimation considerably.

The model is used to verify several market microstructure theories. Whereas,
we observe the usual relationships between bid–ask spreads and transaction vol-
umes, as postulated by inventory and asymmetric information models, as well as
their clear positive influence on price volatility and trade arrival times, we find
ambiguous effects for the influence of intertrade durations on price volatility and
bid–ask spreads. This observation shows that the information captured by the
transaction volume and the bid–ask spread processes dominates the information
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captured by the trade arrival process, when not being used as a stand-alone re-
gressor. This finding does not invalidate the role of trade arrival times in reflecting
order flow information, but the direction of its influence might need a deeper in-
vestigation using models in which the processes of several market microstructure
variables are specified jointly.

Received November 30, 2004; revised March 15, 2007; accepted September 28, 2007.
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