Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives

Da Ronch, Andrea and McCracken, Andrew and Badcock, Ken and Widhalm, Markus and Campobasso, Sergio (2013) Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives. Journal of Aircraft, 50 (3). pp. 694-707. ISSN 0021-8669

Full text not available from this repository.


Dynamic derivatives are used to represent the influence of the aircraft motion rates on the aerodynamic forces and moments needed for studies of flight dynamics. The use of computational fluid dynamics has potential to supplement costly wind-tunnel testing. The paper considers the problem of the fast computation of forced periodic motions using the Euler equations. Three methods are evaluated. The first is computation in the time domain, which provides the benchmark solution in the sense that the time-accurate solution is obtained. Two acceleration techniques in the frequency domain are compared. The first uses a harmonic solution of the linearized problem, referred to as the linear frequency-domain approach. The second uses the harmonic balance method, which approximates the nonlinear problem using a number of Fourier modes. These approaches are compared for the ability to predict dynamic derivatives and for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind-tunnel model are the test cases. Compared to time-domain simulations, an order of magnitude reduction in computational costs is achieved and satisfactory predictions are obtained for cases with a narrow frequency spectrum and moderate amplitudes using the frequency-domain methods.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Aircraft
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
16 May 2013 13:15
Last Modified:
16 Sep 2023 00:55