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ABSTRACT

This paper presents the numerical models underlying théeimgntation of a novel harmonic balance compressible Navie
Stokes solver with low-speed preconditioning for wind ielunsteady aerodynamics. The numerical integration eftr-
monic balance equations is based on a multigrid iteratiorg or the first time, a numerical instability associatedhvhe use
of such an explicit approach in this context is discussedraadlved. The harmonic balance solver with low-speed prdieo
tioning is well suited for the analyses of several unsteaatioglic low-speed flows, such as those encountered in hadraxis
wind turbines. The computational performance and the aaxyiof the technology being developed are assessed by dagput
the flow field past two sections of a wind turbine blade in yawied with both the time- and frequency-domain solvers. Resu
highlight that the harmonic balance solver can computeghasriodic flows more than 10 times faster than its time-damai

counterpart, and with an accuracy comparable to that of theetdomain solver.

INTRODUCTION
The aeromechanical design of horizontal axis wind turb{ire®NT’s) is a complex multidisciplinary task that requiresnsid-
eration of a very large number of operating regimes due toeteeme variability of the environmental conditions on girscales

*Address all correspondence to this author.
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ranging from secondse(gwind gusts) to monthse(gseasonal wind variations). Modern industrial design stilies on low-fidelity
and/or semi-empirical computational tools such as bladmeht momentum theory (BEMT), stall and dynamic inflow med#]. The
main advantage of these techniques is their high computdtapeed. Their main drawback is that they heavily rely @nexistence
and availability of high-quality airfoil data. Thus, new MAT configurations cannot be assessed with confidence by noéahese
methods. Conversely, the use of high-fidelity computafi@eaodynamics tools such as Navier-Stokes (NS) solvers iimtegrated
aeromechanical analysis and design system has the pbt#raisercoming the aforementioned constraint. These sslerable one to
analyze the unsteady aerodynamic and aeroelastic respbpsaspective new turbine configurations to challangirfedefsign condi-
tions. Several outstanding examples of the predictive lwéipas of NS solvers for HAWT aerodynamics have been mh#d [2—4].
The main drawback of NS solvers is their computational agkich is substantially higher than that of low-fidelity syists even when
massive parallel computing is adopted. Accurate time-déget simulations of HAWT flows may still take several daybeveas the

same engineering problem could be solved within a few hosirgUBBEMT-based systems.

Several fundamental HAWT unsteady aerodynamic problemé&eaiewed as periodic. This is the case of stall-inducerhtitins
and the yawed wind regime, which occurs when the freestresr velocity is not orthogonal to the turbine rotor. The yaweind
problem is one for which the underlying assumptions of BEb&iBed systems are particularly weak, and a more reliablgsssmaf
which would therefore benefit from the use of unsteady NSesslvA time-resolved time-domain (TD) NS simulation of thisblem
requires a long wallclock time due to the fact that severtdrroevolutions have to be simulated before a periodic sgasehieved,
and a time-resolved solution requires about 1000 physioal $teps per revolution [5]. Fortunately, the wallcloakéirequired by the
TD NS prediction of unsteady periodic flows can be dramdsicadduced by using a frequency-domain (FD) formulation saoldition
of the governing unsteady equations. The harmonic balaiB® NS technology for the solution of unsteady periodic fld@kis
one of the most promising FD NS methods. The HB NS technolagylteen applied to the prediction of the periodic flow assedia
with flutter and forced response of turbomachinery blade8]éand various vibratory motion modes of aircraft confagions [9-11].
For this type of application, it has been observed that tieeaigthe HB NS approach for the calculation of periodic flown tzad
to a reduction of the wallclock time varying between one amd orders of magnitude with respect to conventional TD NSyees.
Another successful and computationally effective FD apphoto the solution of unsteady periodic flows is the nonlifesgquency-
domain (NLFD) method [12-14]. The NLFD technology has alserbapplied to the simulation of the periodic flow past rataitc
blades [15]. Several other FD methods have been developtxtipast years, among which a one-harmonic FD techniquéhéor t
calculation of periodic turbomachinery flows [16], whichaloe some resemblance to the HB approach of [6], but differs it in that
the calculation of the zeroth harmonic (mean state) is dgledurom that of the first harmonic representing the sougisteady flow
component. Numerous examples of the application of the HBNHIFD technologies to periodic flows of engineering intégegst, but

a thorough review of all existing FD methods and their agtian is beyond the scope of this report.

This paper focuses on the development and application dfiBi&lS technology for the analysis of periodic wind turbinenfio

such as that caused by the yawed wind condition. One of the difierences between HAWT flows and the other aerodynami
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problems for which the HB NS method has been used thus faaistlie flow speeds observed in wind turbine flows are typically
in the incompressible range (Mach number well below 0.3)ughh future large off-shore turbines are likely to operattha border
between the incompressible and compressible regimes. AoN8rdor HAWT aerodynamics could therefore be based eitimethe
incompressible formulation or the compressible formolataugmented withow-speed preconditioning_.SP) [17,18]. One of the
advantages of choosing the compressible formulation w&R [s the capability of this approach to perform aeroacoasialyses.

This paper presents the mathematical and numerical thedrinth the implementation of a time- and frequency-domaittigrid
(MG) compressible NS solver based on the HB technology aatlifimg an optimized LSP method. It also discusses an irapbrt
numerical stability problem that may be encountered whérirgpthe HB NS equations with explicit solvers such as the MgBation
based on the Runge-Kutta smoother, and it proposes a robdigi@gant solution for suppressing such an instabilityerilla simple
kinematic model enabling one to determine the two-dimeradi¢2D) time-dependent freestream conditions observethéyblade
sections of a HAWT in yawed wind is presented. Finally, tfeefveness of the HB NS solver with LSP is demonstrated lmymaing
the periodic unsteady flow past two sections of a HAWT bladgaiwed wind using both the TD and the HB solvers. The TD and HE
results are compared in terms of accuracy and wallclock teqaired for their calculation. To the best of the authorsdwledge, this

is the first reported development of the NS HB technology Wi and its application to wind turbine unsteady aerodynami

GOVERNING EQUATIONS
Time-domain formulation

Internal and external viscous flows can be computed by spliie NS equations, which are a systemNgfe nonlinear partial
differential equations (PDE’s) obtained by imposing thesmrvation of mass, momentum and energy over a control wallar 2D
laminar flowsNpge = 4 because the momentum equation has only two scalar comisorigimen a control volume with boundaryS,

the Arbitrary Lagrangian-Eulerian (ALE) integral form ¢fe 2D TD NS equation is:

0
9 Ude +7§ ® —P,)-dS=0 1
ot </c(t) ) sit) (© =) ds 1)
The arrayU of conservative flow variables is defined as:
U=[p pu pv pe/

where the superscripidenotes the transpose operator, and, v ande are respectively the flow density, tRe andy—component of
the flow velocity vector yand the total energy per unit mass. The definition of thd @stargy ise = e+ (u®+v?)/2, wheree denotes

the internal energy per unit mass. The generalized invifwidvectord; is:

@ =Eji+Fij —v,U (2)
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whereE; andF; are respectively the— andy—components of;, and are given by:
Ei = [pu pu’+p puv puH]', Fi=[pv puv pv’+p pvH|

The vector y is the velocity of the boundarg, and the flux term-v,, U is its contribution to the overall flux balance, which is nerz
only in the case of unsteady problems with moving boundafibe symbolp denotes the static pressure and the syribdenotes the

total enthalpy per unit mass, the expression of whidH is €+ p/p. The generalized viscous flux veciy is:
®, = Eyi+Fyj (3

whereE, andF, are respectively the— andy—components ofp,,, and are given by:

0 0
Txx Txy
EV - ) l:V =
Txy Tyy
UTXX + ery — qX u.[xy + Vryy — qy

The scalarsjx andgy are the Cartesian components of the heat flux vegpter—kUT, wherek is the thermal conductivity, anfl is the
static temperature. The scalagg, Txy andtyy are the Cartesian components of the stress tansuch tensor depends on the divergence
of the flow velocity vector yand the strain tensgr= (Ov + OvT)/2. For a Newtonian fluid one has= 2y[s—1/3(0-v)l], wherepis

the dynamic viscosity.

Harmonic balance formulation
The HB formulation of the NS equations assumes that the fmedéal frequency of the sought periodic flow field is known.
Denoting byu andh respectively the volume and surface integral of Egn. (1 o&an approximate both variables by means of the

following truncated Fourier series, in which the retainedner of harmonicbly is a user-given parameter:

=z
I

ut) =~ 0o+ Y (O _1coglut) + Oy sin(lat)) 4)

>
—~
—
~—
%
£
s

ho+S (ha-1coglat) + hy sin(lat)) (5)
1

Inserting expansions (4) and (5) into Eqn. (1), and 'balagicdr matching harmonics of the same order results in a BystgNpge x

(2Ny + 1)] PDE’s, the matrix-vector form of which is:

wAl+h=0 (6)
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Hered = [0f 0} ... 0%, ', h = [Ag 1y ... ALy, ], and matrixA is defined as:

00O0--0
01
0J3q O0--0 I = INegs @
-10
A= 00%L--0 (7
|:1725" 7NH
0 0 O0...Jy

where the symbok detones the Kronecker tensor produgt, denotes the identity matrix of siz(edeqs)z, Negs= Npde and blocks],
have size(Zdie)z. Writing explicitly the equations of system (6), one findattthe unknown harmonic componefitare coupled by
the harmonic residuafs whereas no coupling occurs through the first term of the imuasince matrixA is block diagonal. As pointed
out in [6], however, the computational cost of the HB systéngrows cubically with the number of retained harmorig and the
analytical derivation of the equations becomes extrematypiex when dealing with the turbulence models requiredhigih Reynolds
number flows.

To alleviate these problems, it has been noted that an atteerformulation of the HB equations is obtained by recanding the
Fourier coefficients of the volume integitabf the conservation variables and the surface intdytdlthe fluxes from the knowledge of

the temporal behavior af(t) andh(t) at 2N + 1 equally spaced points over one period. Such points areedilfiy:

n 2n
tn—maa n=0,1,---,2Ny (8)
Let @i = [l @ ... U4y, ) = [u(to)' u(ta)’... u(tan, )"} @andh = [Ag ;... A5y 1" = [h(to)’ h(ta)’...h(tan, )')'. In view of these definitions,
expansions (4) and (5) yield:
R PN R T
d=FR,"0 and h=F;"h 9)
with Fy = Ex ® Idie and the Fourier matriE,]1 given by:
1 coqwtg) sin(wtg) --- cogNpwly) sSin(Nywio)
1 coqwt;) sin(wt;) --- cogNpowt;)  sin(Nyotz)

1 COS((JLIZNH ) sin(thNH ) --- COYNy wWiong ) Sin(Ny wWiong )

Computing the inverse of relationships (9), inserting ghlegter into Eqn. (6), and premultiplying Eqn. (6) Eyl yields the system:

wDli+h=0 (10)
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in which
D=F;'ARy (11)

Inserting the integral definitions afandh into Eqn. (10) leads to the so calladjh-dimensional harmonic balance formulatif®] of

the NS equations:

wD (/ UHdCH>+7{ (Pip—Pyy) dS§; =0 (12)
cH(t) SH(t) '

whereUy = [U(to)" U(t)" ... U(tng )]s @iy = [Piv(to)” Pijv(ts)’ ... @i(tn, )], and similar expressions hold fop; andSy. Moving
from the time- to the frequency-domain, the number of PDB&g@ases fronNpge t0 [Npde X (2NH + 1)]. Despite the fact that the
number of PDE’s to be solved has increased, the HB approémhkisabne to compute unsteady periodic flows at a substaptadler

computational cost with respect to the time-domain apgroac

CFD SOLVER
Space discretization

The structured multi-block finite volume cell-centeredgll®l CFD codeCOSA[18, 20, 21] solves the integral form of both the
TD conservation laws (system (1)) and the HB conservatiass Igsystem (12)) making use of a second order upwind scherne. T
discretization of the convective fluxes is based on Van Isddt) SCL extrapolations and Roe’s flux-difference splitting. Dengtby
n the normal of the face of a grid cell, amtSthe area of such face, the numerical approximation to théraoous convective flux

componentp; 1 = (P; - n)dSthrough such face is:

1 0D,
= | D s (UL) + i (UR) — =Lt

=5 U 5U] (13)

Here the superscrigt the subscript, and the subscripts andr denote numerical approximation, face value, and valueapgtated
from the left and from the right, respectively. The numdritiasipation depends on the generalized flux Jacodian /0U and the flow
state discontinuity across the cell face, definedby= (Ug — U, ).

The discretization of the viscous fluxes is based on secater @entered finite-differences. The Cartesian derivaibfiehe flow
velocity components are computed with the chain rule, usiegderivatives of such components with respect to the lpeaéralized

curvilinear coordinates associated with the grid linesl, #ne grid metrics.

Integration of time-domain equations
The physical time-derivative of system (1) is discretizeithva second-order backward finite-difference. The set aflinear

algebraic equations resulting from the space- and timerelization of system (1) is then solved with an explicit eggrh based on
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the use of a fictitiuos time-derivative (Jameson’s duaktistepping [22]). The discretization of the physical tinderivative of the
unknown flow state by means of a second order backward firfterelnce, and the introduction of the derivative with regpge the
fictitious timet yield the equation:

n+1
vaQ

e Rg(Q™) =0 (14)

where

3Qn+1 _ 4Qn 4 anl

o V +Ro(Q™Y) (15)

Rg(Q™) =

The entries of the arra@ are the unknown flow variables at tiNge cells discretizing the computational domain. The ai@agan
be viewed as made up dfe subarrays, each of which stores tge flow unknowns at a particular physical time. The lengthQof
is therefore(Npge x Neent). The arrayRo stores the cell residuals, and its structure is the sameaa®tlQ). For each cell, théNpge
residuals are obtained by adding the convective fldxgsand the viscous fluxe®j ; through all the faces of the cell. The symliy
denotes instead a residual vector which also includes theesderms associated with the discretization of physica-tderivative
dU/ot contained in Eqn. (1). The diagonal matuxstores the volumes of the grid cells. It can be viewed as &hkdimgonal matrix of
size Neel X Neen) with each block being the identity matrix of sizWgye x Npge) multiplied by the volume of the cell the block refers
to. Note thatV is independent of the physical time-level (denoted by thgesscriptsn + 1,n andn — 1) because in this report only
rigid-body grid motion is considered. The symi#il indicates the user-given physical time-step. Equation ¢k thus be viewed
as a system ofNpge < Neeii) ordinary differential equations (ODE’s) in which the unkois Q"1 the flow state at time-level+ 1.
The calculation o™ is performed iteratively by discretizing the fictitious #aderivative(dQ"/dt) of Eqn. (14) with a four-stage
Runge-Kutta (RK) scheme, and marching the equations induséme until a steady state is achieved. Such steady stdbeiflow
solution for the physical time being considered. The cogwece rate is then greatly enhanced by means of local tieppistg (LTS),
variable-coefficient centréinplicit residual smoothinglRS) and &ull-approximation schemmultigrid (MG) algorithm.

This solution procedure may become unstable when the pdysite-stepit is significantly smaller than the pseudo-time-step
This instability was reported in [23],and thoroughly intigated by Melsoret al. [24]. The latter study elegantly solved the stability
problem by treating implicitly th&"** term of the physical time-derivative within the RK intedoat process. This strategy has also
been implemented in COSA, as summarized below. The resiRiya split into the contribution depending on tE 1 term of the
physical time- derivative, and a terRy equal to the difference &g and the aforesai@™t! term:

VvV [3

Re(Q™™) = & |5Q" ! +9(Q"Q" )| +Ra(Q™™)

whereg(Q",Q"1) = —2Q" 4 0.5Q"~L. This equation can also be written as:

Ry(Q") = Ry(Q"" 1) + > Q" (16)
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Discretising the fictitious time-derivative of Eqn. (14)tlwva multi-stage RK scheme, introducing the decompositidRgoprovided by

Eqn. (16), and considering ti@"! term at stagé rather than at stagé — 1) yields the following modified RK algorithm:

wo =Q
(I + o B)WK = WO — ATV 1R (WK 1) (17)
Qi1 = WNS

wherek varies between 1 and the number of RK staly&say is thek™ RK coefficient, = 1.5At/At, | is the RK cycle counter, and
Q) is shorthand foQ[‘*l. The stability analysis of [24] shows that the stability @fa@ithm (17) no longer depends on the rafio/At.
However this formulation is still unsuitable when IRS and Mf& also used, because both acceleration techniques hbeeafiplied
to a residual term that vanishes at convergence, and thi ihe case oRy. The solution is to introduce the residugy which does

vanish at convergence. Given that:
ATRG(W) = —BVW + ATtRg(W)
the IRS-MG-tailored counterpart of algorithm (17) is:
wo =Q
(I + aB)WH = WO+ e pw

—GkATV71L|Rs[Rg(Wk71) =+ fMG]
Qi1 = WNS

(18)

whereLrs denotes the IRS operator, afigs is the MG forcing function, which is nonzero when the smoo(fi8) is used on a coarse
level after a restriction step [25]. Note that the matrix tiplying WK at the second line of algorithm (18) is diagonal, and thisliesp

that for each grid cell thdlyge unknowns can be updated without an actual matrix inversion.

Integration of harmonic balance equations
At the differential level, the only difference between gyst(1) and system (12) is that the physical time-derivatithe former
system is replaced by a volumetric source term proportitmal in the latter. The set of nonlinear algebraic equationsltiegurom
the space-discretization of system (12) is thus solved thitlsame technique used for steady problems [20], namefptinestage RK
smoother accelerated by LTS, IRS and MG. The introductigh@ferivative with respect to the fictitious timegields the equation:
dQn

Vh—4; +Ran (Qu)=0 (19)
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where

RgH(QH) = WWHDQH +RoH(QH) (20)

The arrayQy is made up of(2Ny + 1) flow states referring to the physical times defined by Eqn. (Bjerefore, one haQy =
[Qp Q7 --- Qi) = [Q(to) Q(ta)"... Q(tan,)']', and each subarray @ has lengt{Npge x Neeir). The arrayRgn andRo H have the
same structure d@y. The subarrayRe)n (n=0,1,---,2Ny) denotes the grid-residuals associated with the conveatideviscous
fluxes at timet,. The subarrayRg)n denotes instead a residual vector which also includes theesdermwVDQy. The diagonal
matrix Vi is given byVy = Ion,+1 ® V. Matrix D is defined by Eqgn. (11), and the matAxappearing herein is defined by Eqn. (7)
whereNegs= Npde X Neel-

Equation (19) can thus be viewed as a systerfNgfie x Ncell X (2Nn + 1)] ODE’s in the unknowrQy. The calculation oRy is
performed iteratively by discretizing the fictitious tinderivative(dQn /dt) of Eqn. (19) with a four-stage RK scheme, and marching
the equations in pseudo-time until a steady state is adthieMee IRS and the MG acceleration techniques are also usadeas for
steady and TD problems.

Although no rigorous stability analysis has been carrieidyet, the authors have found that this explicit MG solutioagedure of
the HB equations may become numerically unstable for cetygie of aerodynamic problems. More specifically, a nuna¢iicstability
of the HB MG iteration has been encountered in the solutich@transonic flow problems with the COSA solver reported®in [t is
the authors’ view that this instability is the FD countetyrthe TD one, discussed in the preceding subsection. IfEh&amework,
the instability may occur when the physical time-sti#ps significantly smaller than the pseudo-time stap With transonic flows,
for example, this may occur in the supersonic region upstreba shock. In the HB context, the equivalent physical tstepAt is
given byAt = 21/w/(2Ny +1). In order to stabilize the RK-IRS-MG iteration used to satlre HB equations for all flow regimes, a
stabilization procedure similar to that proposed by [24] haen successfully implemented and tested in the COSArsdledhe best
of the authors’ knowledge, this is the first reported studytenuse of this method for the solution of the HB Euler and N&agiqns.
The stability problem is removed by treating implicitly theurce term of Eqn. (20) within the RK integration processcEetising the
fictitious time-derivative of Eqn. (19) with a multi-stagé&KRcheme, and considering the source term of Eqn. (20) a¢ ktesgher than

at staggk — 1) yields the following modified RK algorithm:

W = (Qn)i
(I + akBaD)WEK, = W, — AtV Ro i (WD) (21)
Qi1 =Wp®

wherefy = wAT and the other symbols have been defined in the precedingdidrseThis formulation is still unsuitable when IRS
and MG are also used, because both acceleration techniguesdbe applied to a residual term that vanishes at corveegand this

is not the case oRe H. The solution is to introduce the residu&} 4 which instead vanishes at convergence. The IRS-MG-tallore
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counterpart of algorithm (21) is:

W = (Qn)i
(I + akBrD)WE = WP, +aBaDWS ™

— ATV, LirsH [RgH (WE ) + fume H]
(Qr)i+1 = Wgs

(22)

where the HB MG forcing function is defined gc 1 = [fuc(to)’ fme(t1) ... fma(ton, )] with the (2Ny + 1) values oft, defined by
Eqn. (8), and the HB IRS operatbrrsy can be viewed as f2Ny + 1) x (2Ny + 1)] block-diagonal matrix, the nonzero blocks of
which are the(2Ny + 1) Lirs(tn) operators. Note that the matrix muItipIyiNgﬁ at the second line of algorithm (22) is not diagonal.
For each grid cell, the update of tiieyge x (2NH + 1)] unknowns requires the inversion of of{Ny + 1) x (2Ny + 1)]-sub-block of

(I + akBuD). Such overhead results in the computational cost of the Hidyais growing in a moderately superlinear fashion with
respect td\Ny . Despite this feature, however, the computational cogt@fHB analysis remains competitive with that of the TD analys
As an example, the transonic flow studies performed with tB&& solver based on algorithm (22) and reported in [9] shaat the
HB analysis can predict the periodic body forces acting oiching airfoil with extremely small errors with respectttee TD analysis,
but requiring a CPU-time about one order of magnitude smallleese HB transonic flow analyses failed to converge whesténdard

rather than the stabilized RK algorithm (22) was used.

It has been observed that the use of an explicit approachegrate the HB NS equations requires the introduction oftaliti@nal
constraint on the size of the local time-step used to pse¢inag®-march the solution for stability reasons [8]. Suchstoaint depends on
the fundamental frequeney and the number of complex harmonidg, and becomes more stringent as either parameter incrdases.
this circumstance, the number of MG iterations requireccimvergence would increase ldg increases. The use of the stabilization
presented herein, on the other hand, removes this additonatraint, thus making the convergence rate more incig@nfNy .
When using an explicit integration method, however, theveogence rate of explicit HB solvers may still show a cer@égree of
dependence oNy for flow problems with significant nonlinearities. This isda@se one of the factors on which the convergence rate ¢
iterative solvers depends is the features of the overabhlan €.gcondition number, degree of non-normality and diagonalidamce)
of the HB NS equations, made up of the sum of the standard flcobidan of the steady NS equations and the teWqD. The last
term is an antisymmetric matrix, the size and magnitude atlwigrow with Ny andw respectively. Its main effect is to reduce the
diagonal dominance and increase the non-normality of thel&t®bian with respect to that of the Jacobian of the steadigtions. A
reduction of the diagonal dominance impairs the convergeaie of iterative stationary linear smoothers such as thes& Seidel and
the symmetric successive over-relaxation iterations. &ffext of Ny andw on the diagonal dominance of the HB Jacobian of the HB
equations is analyzed in reference [7], which also usesastqiveconditioned Krylov subspace solver to greatly redhe dependence
of the computational cost of an implicit HB solver on these prarameters. A significant level of non-normality of the HBdbian may

result in numerical transients during which significantuetibns of the convergence properties of linear smoothectuding the RK
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iteration) with respect to the theoretical expectationex@erienced [26]. These observations refer to the caseirhwine standard non-
stabilized integration of the HB equations is used. Whenrsthbilized integration is used, however, the non-normaliaracteristics
of the linear operator corresonding to the iteration (22y uhéer from those of the standard HB Jacobian. This math&mleaspect is
still under investigation. For these reasons, it is expktitat the convergence rate of the presented MG HB solvebwifhirly close
to that of the associated steady problem, and independéit ér problems with low level of flow nonlinearity. For problemvith
significant nonlinearities, however, the convergenceaftie HB solver may worsen with respect to that of the steaale svhenNy
is increased because of the significant contribution of thkedr harmonics to the non-normality of the overall HB Jaanb

When solving the HB equations with an implicit approach,tizsource term has to be treated implicitly for stabilitygeas [10,
11]. This constraint may require substantial code extersdidhe HB solver is built around an existing code. It mayaleld very large
memory usage for storing the Jacobian associated wit@&l] + 1) flow states if a Krylov-subspace method with approximateblam-
based preconditioning is used for the solution of the lisyatems arising at each step of Newton’s method. One pessdhition is to
use an iterative stationary linear block-solver such asksltacobi to solve the linear systems, as this allows oneta separately the
Jacobians associated with each flow snapshot during thgratien [10]. An alternative solution to simplify the degpment of the HB

technology around an existing implicit solver is the treattof the HB source term presented in [27].

LOW-SPEED PRECONDITIONING

In the case of low-speed flows, a large disparity between oineexctive and acoustic eigenvalues of the flux Jacod /0U
exists. This results in unbalanced amounts of numericalghsion, and this occurrence spoils the accuracy of theisol When using
explicit time-marching methods, the local time-step alsp&hds on the eigenvalues of the flux Jacobian, and a langariysbetween
convective and acoustic speeds substantially impairs dheecgence rate of the solver. These problems are circuewdry using
low-speed preconditioning [17].

In the case of time-dependent problems, the pseudo-tinetiee of Eqn. (14) is premultiplied by a preconditioningtrix (I¢) 2.
This results in a rescaling of the eigenvalues of the flux B@cowhich restores the correct levels of numerical dig&paand allows
one to maintain high convergence rates even with low-spesltlgms. The precondition€r, used by COSA is that proposed in [17],
where its expression can be found. The maliixdepends on a parametel,. The choiceM, = 1 yields no preconditioning. For

low-speed flows, the parametdr, is:

Mp = min(max(M, Mpg, Myis, Muns, €) , 1) (23)

whereM is the actual local Mach numbe¥l g is a cut-off value based on the local pressure gradient @18 Ms is a cut-off value
based on the cell Reynolds number (also called Peclet nyrf88§r Myns is a cut-off value based on the physical time-sé¢@nd the
characteristic lengths of the domain [17], anid a small cut-off parameter that prevents the precondititnrom becoming singular at

stagnation points.
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The introduction of preconditioning modifies the artifiaiigsipation term of the numerical flux provided by Eqn. (18jalows:

0P
e i, f

L 1 -
=3 P ¢ (UL) +Pi g (Ur) — Tt 3U

5u] (24)

For steady problems, the choice of Eqn. (23) wihns= 0 to buildI'; and its inverse guarantees both the balance of the numeric
dissipation and an optimal convergence rate. For time-udga problems, however, the use of Eqn. (23) Withsdefined as proposed
in [17] usually yields a high convergence rate, but does m@argntee an optimal scaling of the artificial dissipatiotisThas been
observed by the same developers of this preconditioneiirfar-tlependent problems with motionless grids [31], andemecently
confirmed by the authors of this paper for the case of timesddent problems with moving grids [18]. The latter articlgogpre-
sented anixed preconditioningtrategy to overcome this problem, and demonstrated gst@feness with a number of time-dependent
problems with motionless and moving grids. In essence, dnpxeconditioning consists of using the steady preconitigp parameter
(i.ethe value oM, obtained from Eqn. (23) after settimdns = 0) to construct the preconditioner required to calculagertamerical
dissipation, and the unsteady preconditioningthe complete form of Eqn. (23)) to construct the precond#imeeded to compute the
preconditioned eigenvalues used in the calculation ofdballtime-step. The modified numerical flux is thus:

oP; ¢

rCS—

@i ¢ (UL) + i s (Ur) — Mot U

6u] (25)

NI =

o
i,f —

where the subscriptg andc, respectively denote the use of the steady and unsteadyrati#ioning parameters to build the precondi-
tionerle.

The general form of the standard TD RK-IRS-MG iteration fieigig LSP, obtained by premultiplying the fictitious timert/ative
of Eqn.(14) by i, and discretizing this derivative with the multistage RKchbice, is:

wo =Q
Wk =woO
(26)
—GkATV71L|Rs|_cu[Rg(kal) + fMG]
Q41 = WNS
The use of the stabilization process of the RK cycle disalissthe previous subsections yields the following stabdizeration:
wo =Q
(1 + o Bri;Hwk = WO 4 o Bk, twk-1 -

—a ATV LRI R (WK ) 4 fug]
Qi1 = WNs
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The matrix premultiplying/V¥ is block-diagonal, but its blocks are not diagonal becatigeegreconditionef ¢, which is not a diagonal
operator. Therefore the update process requires the iomevban (Npgde < Npde)-matrix for each cell of the computational domain. The
interested reader is referred to [18] for further detailgl@nL SP implementation of the COSA solver.

In the case of frequency-domain problems, the pseudo-temieative of Eqn. (19) is premultiplied by [§2Ny + 1) x (2N + 1)]-
block-matrix I';,ﬂ, and the nonzero bIocklég% with n = 0,1,---,2Ny are simply instantiations of the preconditioning matfix*
discussed above at the times defined by Eqgn. (8). In all thertdB/aes reported in the remainder of this paper, the steatppditioner
set up {.e.a value ofM, obtained by settingluns = 0 in Eqn. (23)) has been used for the calculation of both theerical dissipation

and the local time-step. The general form of the standard HBRS-MG iteration featuring LSP is:

W = (Qn)
WE = WY
H H (28)
— AtV MLirsHT e H[RgH (W) + fug ]
(Qr)ipr = Wi®
The use of the stabilization process of the RK cycle disalisséhe previous subsections yields the following stabdizeration:
Wy = (Qn)i
(I + ouBrI D)WY = WP + aiBr MK IDWIT ! — gty 29)

LirsH r‘é’ﬁl[Rg,H (Wﬁil) + fMG,H]
(QH)i+1 =W}S

The matrix premultiplyingNﬁ is block-diagonal, but its blocks are not diagonal becaugk the preconditiondr. and the matrixD

are not diagonal. Each of thebge blocks has sizé(2Ny + 1) x die]z, and the update process of the whole solution requires th
inversion of all such blocks. Due to this feature, the corapahal cost of HB analyses is moderately superlinear végpect td\y.

All numerical analyses carried out thus far, however, shmt the computational speed of the HB analysis remainsfgigntly higher

than that of the TD despite the abovesaid overhead.

TWO-DIMENSIONAL YAWED WIND MODELING

In order to define boundary data and motion parameters f&@BhED and FD analyses presented in the result section, thteaohs
flow regime experienced by the airfoils of a HAWT blade in yaweénd has to be defined as a function of the freestream wineld3pg,,
the turbine rotational speead, the angled betweerV ;4 and the normal to the rotor plangafv anglg, the chordc of the airfoil and its
distanceR from the rotational axis. The left and right plots of Fig. Epectively depict the top and front views of a HAWT in yawed
wind, and highlight some of the aforementioned parameifére.circumferential position of a blade is defined by the af@givhich is

taken to be zero when the blade is vertical and descendirgifignoA). The four plots of Fig. 2 report the velocity triangles asated
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Figure 1. SCHEMATIC VIEWS OF HAWT IN YAWED WIND. LEFT PLOT: TOP VIEW; RIGHT PLOT: FRONT VIEW.

with a blade airfoil for the positions labelédo D in the right plot of Fig. 1. The modulus of the axial velocityoponentigV ;| cogd),

and is the same for all radial and circumferential positioftse modulus of the entrainment velocibx R varies linearly withR|, and

is therefore the same in all four triangles of Fig. 2. The gi#jow; and the angle:; (i = A,B,C, D) denote respectively the freestream
velocity andinflow angleobserved by the blade section at radRigind both parameters vary with the circumferential posiie= .
Each velocity triangle is contained in the plane tangertiécylinder of radiuf centered on the rotational axis, and therefore it neglect
any radial {.e.along the blade axis) velocity component. The magnitudaefiiscarded radial component varies véitmo component

is discarded when the blade is vertical (positidnandC), as the entire vectdr ;s is contained in the tangent plane; the entire radial
componenY ;.sin(d) is instead neglected when the blade is horizontal (posificendD), as the radial componentgf; is orthogonal

to the tangent plane. Within the limits of these approxiorati the axial and circumferential components of the freast velocity

A: 8=0° B: 6=90°
9] Y)
Og \ a
yfs 6
3 WB yfs WC
C: 6=180 ° D: 6=270 °
U U
a [/
5 V D yfs//
Yis W J WA

Figure 2. VELOCITY TRIANGLES OF HAWT BLADE SECTION FOR POSITIONS LABELED ATO D IN FIG. 1.
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perceived by each blade section are respectively:

Wy = V;sc0g0) (30)

Wp = wR— Vssin(d) cog ) (31)

The 2D simulation of the unsteady flow past the blade airfbthe HAWT in yawed wind could be performed by using a motissle
domain and enforcing the time-dependent freestream \gldefined by conditions (30) and (31). Alternatively, onaicbalso use a
moving-domain simulation with steady farfield conditiomslauitably defined grid motion. The modulys and the orientation s of

the uniform freestream are obtained by removing the timgeddent term of Eqn. (31), and their expressions are ragplsct

Wis = 1/ (V150088)? + (wR)? (32)

0fs = arctar{(Viscosd)/(wR)] (33)

When using steady farfield boundary conditions, the vditghof the inflow state associated with the case of motiosldemain is

equivalent to and can be replaced by a horizontal sinusoidéibn of the grid. The expression of such motion is:

h(t) = hgsin(wt)
hp = Vissind/w

(34)

The moving domain model has been adopted for the analyssesrigal in the result section, and it could also be used t@mper2D
experimental measurements aimed at studying the aerodycharacteristics of HWAT airfoils in yawed wind. A typicIAWT airfoil
twisted by an anglg is depicted in the left plot of Fig. 3 along with an indicatiohthe harmonic motion. The right plot provides a

representation of Eqn. 34, and the four positiérie D correspond to those labeled with the same symbols in Fiduaesi 2.

hfe)
B
h
A Cc | ‘
g % 90 180 270 360(°)
v \e/
1

Figure 3. HARMONIC MOTION OF HAWT BLADE SECTION CORRESPONDING TO YAWED INFLOW.
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VALIDATION

The second order accuracy of the time-discretization fecauis flows has been verified by computing the unsteady lawviameex
shedding behind a cylinder. Several simulations have bedgonmed, each of which has used a physical time-step adatdig halving
that of the preceding simulation. The lift and drag forcetaoted at a chosen time from each simulation have been uggerfiorm
Richardson'’s extrapolations, which have confirmed thersgcoder accuracy of the time-discretization [32]. The seloorder accuracy
of the convective flux discretization has been verified by potimg the solution of a 2D inviscid test case for which thalgtical
solution has been determined. The problem has been solirgiseveral grids, which become successively finer by a faxdttwo in
both directions. Analysis of the RMS of the error betweenahalytical solution and the computed solutions obtaineddigg these
grids have confirmed the second order of the space-disatietiZ20]. The second order accuracy of the time- and spésmetization
of the solver using LSP has also been demonstrated by coimgjde unsteady test case resulting from the superposifiaruniform
low-speed flow and a steady vortex. The analytical solutidhie problem has been used to verify the second order acgofaCOSA

for this type of problem [18].

To validate the implementation of the moving grid capaietitof the COSA solver, the unsteady flow field past a pitchatgfilate
has been considered. The time-dependent angular posititwe dlat plate varies accordind 8, sin(wt), with A8, positive in the
clockwise direction. For the case in which the flat plate igradd with a uniform stream when it takes its mean positiam(¢g) = 0),
an analytical solution of this problem has been provided bgadorsen [33]. The input parameters of the analysid@gethe position

of the hinge, the freestream velocitys, and the reduced frequenkydefined as:

A = we/Wks (35)

In the selected configuratioAf, = 1°, the hinge is at 25 % chord from the leading edge, the fremstrelocity corresponds to a Mach
number of 0001, andA = 0.1. The TD analysis has been carried out using a 6-block gtia ¥29 points on each side of the flat plate,
97 points before the leading edge and after the trailing edged7 points in the normal direction. The freestream boueslare placed

at about 5 chords from the flat plate, and the minimum distandee first grid points off the plate surface from the plaseitis Q5 %

of the chord. The period has been discretized with 32 intenraad the simulation has been run for 2 periods. Figure diges the
theoretical prediction of the amplitude of the first harnoasfithe differential static pressure coefficieptacross the flat plate. The static
pressure coefficient is defined gs= (p — pfs)/0.5pfst25, and the variable on theaxis is the modulus ofic, = cpy — ¢p L, Where
the subscriptg and. denote upper and lower side respectively. Xtaxis reports the position along the chord. Figure 4 alsavsttbe
profiles of|Acy| computed by COSA with and without LSP. A very good agreemetwben the numerical result obtained with LSP and
the theoretical prediction is observed. The bad agreenawien theory and numerical prediction without LSP hiditsghe necessity

of using LSP with low-speed flows to preserve numerical ssoyr
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Figure 4. AMPLITUDE OF THE FIRST HARMONIC OF THE DIFFERENTIAL STATIC PRESSURE COEFFICIENT ACROSS A PITCHING FLAT PLATE:

COMPARISON OF THEORETICAL RESULT AND NUMERICAL PREDICTIONS OBTAINED WITH AND WITHOUT LSP.

Table 1. INPUT PARAMETERS FOR THE 2D UNSTEADY MOVING-GRID CFD ANALYSES OF TWO SECTIONS OF HAWT BLADE.

section| M¢s | ats (°) | @s (°) |ho/c| A

90% ||0.22] 9.1 5.4 (1.21/0.076

30% ||0.08] 25.8 | 6.7 | 0.4 {0.622

RESULTS

The 2D laminar flow field past two airfoils of a rotating HAWTdudle in yawed wind is considered in this section. The bladgttei
is 457 m and its rotational speed is H/RPM, which corresponds to a value afof about 183 rad/s. The freestream wind velocity
Vis is 14m/s, and a yaw anglé of 3(° is assumed. The sections at 90 and 30 percent blade heigbbm@sielered. The former has
a chordc of 3.16 mand a twisty of 3.7°; the chord and the twist of the latter ar&l® m and 191° respectively. Using the rotational
speedw, the chord and the relative freestream velocity defined hy. E8R), one can calculate the reduced frequenby means of
Eqgn. (35). The relative angle of attack (Aojs is obtained by subtracting the twigtto the inflow anglenss defined by Eqgn. (33).
Choosing a reference temperature of 28&ne can calculate the Mach numibdéys corresponding t&V;s. The set of input data used
for the 2D unsteady moving-grid simulations of the 2 secti@mreported in Table 1. The airfoil selected for both sextits the
NACAO0012 airfoil, and the Reynolds number has been set td10he C-grid adopted for all simulations has 321 points glthre
airfoil, 97 points in the grid cut, and 129 points in the nohiilee direction. The farfield boundary is placed at abouth@rds from the
airfoil, and the distance of the first grid points off the ailsurface from the the surface itself is abou@D % of the chord. The airfoil
and the whole grid are inclined by the twist anglen the horizontal direction. In the unsteady simulatioe, \whole grid undergoes a

sinusoidal motion defined by Eqgn. (34). All TD simulationsé&deen performed using 128 time-intervals per period, anding the
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simulations for 3 periods. The HB analyses for both secti& been performed fddy varying between 1 and 5. The CFL number
has been set to 3 for all simulations reported herein. Naettie choice of a relatively thin airfoil with respect to ieotypically
used in HAWT's, and the lack of turbulence modeling, requthie unsteady flows analyzed in the next two subsectionsaiog hully
correspondent to those of real HAWT yawed conditions. Tharabjectives of the following analyses, however, ar@l@ssess the
accuracy and the computational performance of the HB tdoggpdeing developed against those of the conventional Thrielogy,

and thusb) demonstrate the suitability of the HB technology with LSPJasteady periodic flows with the same kinematic patterns o

yawed HAWT flows.

Section at 90 % blade height

The lift coefficientc; over one rotor revolution computed by the TD analysis andHiBeanalysis withNy = 1,...5 is depicted in
Fig. 5, the abscissa of which reports the percentage timepefiad. The selected period of the TD simulation is the toiné. These
curves show that an accurate predictiorcpby means of the HB analysis is achieved with > 2. The plot also provides the value
of the AoA @5 over the period, and it highlights thatincreases agss decreases and viceversa. This happens because the flow on
upper side of the airfoil is separated at all times, and thecton of the separation extent induced by a reductiogsgtauses; to
increase. The hysteresis cycles of the lift coefficientditagy coefficienty and the moment coefficient, are depicted in the three plots

of Fig. 6, which confirms that the HB analyses wiNh > 2 lead to an excellent agreement with the TD result.

0.29

———— Timé Domain
— HB- 1 Mode
————— HB - 2 Modes

—— HB - 3 Modes e

N HB - 4 Modes //

027} Nttt E(I)BASModes/ _
/

Figure 5. LIFT COEFFICIENT OF 90 % BLADE SECTION OVER ONE REVOLUTION COMPUTED WITH TD AND FIVE HB ANALYSES.

The real and imaginary part of the pressure coefficigntomputed by the TD analysis and the 5 HB analyses are platted |
Figures 7-a and 7-b respectively. In both casesxthgis reports the position along the axial chaggd = ccosy. These figures also
confirm that 2 harmonics are sufficient to resolve the flowesdiness with the HB analysis. The real and imaginary pdnteoébsolute
value of the skin-friction coefficierd; computed by the TD analysis and the 5 HB analyses are instettdgin Figures 8-a and 8-b
respectively. In this case, one sees that an adequate HBitieamf the imaginary part ofcs | requiresNy > 3. Note that the sudden

slope veering of both the real and imaginary part&ef starting at about 60 % axial chord is due to the oscillatiothefpoint where
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Figure 6. HYSTERESIS FORCE LOOPS OF 90 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN FIG. 5):

a) LIFT COEFFICIENT, b) DRAG COEFFICIENT, c) PITCHING MOMENT COEFFICIENT.

separation on the upper side of the airfoil occurs.

The convergence histories of the five HB analyses and thdteoTD solver for a particular physical time are reported ig. B.
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Figure 7. PRESSURE COEFFICIENT OF 90 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES: a) REAL PART, b) IMAGINARY

PART.

The variable on the-axis is the number of multigrid iterations, and the vardblon they-axis is the logarithm in base 10 of the
RMS of all cell-residuals for alNyge equations. The HB analyses have been run Wintil 1.d — 12; the iterative solution process of
each physical time-step of the TD analysis has been stoptieat henl, < 1.d — 12 or after 3000 MG iterations if at this stage this
convergence tolerance had not been achieved. For mostcghiigie-steps, however, the prescribed residual tolerafidd — 12 has
been achieved well before the limit of 3000 MG iterations. iAteresting feature is that the convergence historiesldiRlanalyses
are practically superimposed, and thus independeRgofFigure 9 also reports the convergence history for the gtpeablem, which
differs very little from that of the HB analyses. These cagence data point to the fact that the flow nonlinearity fas firoblem

is fairly small, and therefore neither the contribution loé ffirst harmonic to the HB source term nor that of the highemioaics are
sufficient to significantly affect the spectrum of the linead operator associated with the integration of the HB gqus with respect
to that associated with the integration of the steady egoati All these analyses could be performed without the RHKilgtation

previously discussed, namely using algorithm (28) for thletson update. Therefore the cost of a single HB MG iteratowith good
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Figure 8. SKIN FRICTION COEFFICIENT OF 90 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN FIG. 7-a):

a) REAL PART, b) IMAGINARY PART.

approximation proportional toNg; + 1. The HBspeed ugparameter, defined as the ratio of the wallclock time regttivecalculate three
periods with the TD solver and a single period with the HB sofer each of the adopted five values\yf is reported in Table 2. The
first row of speed up parameters refers to results computad tlee aforementioned residual toleramcef 1.d — 12, and it shows that
the accurate HB solution obtained willy = 3 can be obtained 17 times faster than with the TD analysisrteg herein. The blade
forces, however, may achieve an acceptable level of coamemwith less stringent residual tolerances. Indeed, adnmgpthe results

of the TD simulation witH; = 1.d — 12 and that witH; = 1.d — 09 reveals that the maximum difference of the lift and dragfficients
with respect to their averages over the third period contbuti¢h I, = 1.d — 12 is smaller than .8 — 01%. Similarly, comparing the
results of the HB simulations with = 1.d — 12 and that with, = 1.d — 09 reveals that the maximum difference of the lift and drag
coefficients with respect to their averages over the thimbgdecomputed witH, = 1.d — 12 is of order 1d — 04%. The second row
of speed up parameters of table 2 refers to results compstad tesidual tolerande of 1.d — 09, and it shows that the HB solution

obtained withNy = 3 can be obtained 8 times faster than with the TD analysis.
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Figure 9. CONVERGENCE HISTORIES OF TD, HB AND STEADY ANALYSES FOR 90 % BLADE SECTION.

Table 2. ACCELERATION FACTORS OF HB ANALYSES WITH RESPECT TO TIME-DOMAIN ANALYSIS FOR THE 90 % BLADE SECTION.

I NH 1 213|415

1.d-12|| speed up40.8/24.3|17.4/13.5[11.0

1.d-09| speed up19.3{11.4| 8.2 | 6.3 | 5.2

Section at 30 % blade height

The flow regime associated with this section is more compiar that of the 90 % section, because the reduced frequertlog of
former is nearly 10 times that of the latter. The lift coefficic, over one rotor revolution computed by the TD analysis andHiize
analysis withNy = 1,...5 is depicted in Fig. 10. These curves show that an accuratégiion ofc; by means of the HB analysis is
achieved withiNy > 3. More precisely, the HB solution obtained witly = 3 still presents some discrepancies with respect to the TL
solution, whereas the HB solutions flly = 4 andNy = 5 are practically superimposed on the TD solution. The gk highlights
that, unlike in the case of the 90 % sectionincreases a®;s increases and viceversa. This happens because the flowatseparate,
possibly due to the high value af and therefore the airfoil response is closer to the steadgraling branch of a standard lift/AoA
curve. The hysteresis cycles f ¢y andcy, are depicted in the three plots of Fig. 11, the inspection littv confirms that the HB
analyses wittNy > 3 lead to an excellent agreement with the TD result.

The real and imaginary part @f, computed by the TD analysis and the five HB analyses are glatt&igures 12-a and 12-b
respectively. These figures may lead one to believe thatrdvacs are sufficient to resolve the flow unsteadiness wehHB analysis,
particularly if one considers the real part@f. These plots, however, show only the first harmonic of thdeauy flow. The fact
that the hysteresis force loops highlight that 2 harmoniesat sufficient to fully resolve the periodic unsteady flogttights that a
non-negligible contribution of the second harmonic is pres Since one of the main output functionals of the yawedinalysis is

the time-dependent force at the attachment of the bladewdbe rotor hub, the contribution of the higher order harie®eannot be
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Figure 10. LIFT COEFFICIENT OF 30 % BLADE SECTION OVER ONE REVOLUTION COMPUTED WITH TD AND FIVE HB ANALYSES.

neglected in practical applications, as doing so may réstitte inaccurate estimate of the time-dependent structtress at the blade
attachment. The real and imaginary part of the absoluteevaflos computed by the TD analysis and the 5 HB analyses are proirided
Figures 13-a and 13-b respectively. The plot of the imagipart shows more clearly that at least 3 harmonics are redjinirorder to
fully capture the viscous unsteady characteristics ofghidlem.

The convergence histories of the five HB analyses and th&teoT D solver for a particular physical time are reported ig. Bi4.
As for the section at 90 % blade height, the HB analyses hawe he untill, < 1.d —12; the iterative solution process of each physical
time-step of the TD analysis has been stopped either wherl.d — 12 or after 3000 MG iterations if at this stage this conveogen
tolerance had not been achieved. For most physical tinpes;stkee prescribed residual tolerance af 1 12 has been achieved using
all 3000 MG iterations. Unlike the case of the 90 % blade sectbne now sees that the convergence histories of the 5 Hsasa
are not superimposed, and the convergence rate of the HBsasahppears to decreaseNasincreases. Figure 14 also reports the
convergence history for the steady problem, which showsthieasteady solver converges to the required level of cgarare using
fewer iterations than all HB analyses. A closer inspectibthis figure reveals that the asymptotic convergence iiaté¢hle constant
slope of the residual curves after the initial numericatsiant) of the steady and the HB solver is about the smae. sksised in the
section on the integration of the HB equations, these petteiay be due to a significant nonlinearity of the unsteady; fldvich results
in a large contribution of the HB source terms to the overdl Jacobian. Such contribution may increase the non-notynaithe
HB Jacobian with respect to that of the steady equationsltieg in an initially slower decay of the HB residuals. Theadysis of the
sectional forces has highlighted that not only the first s ¢he higher order harmonics contribute to this unsteanty. fTherefore, the
non-normality of the HB Jacobian is likely to increase with, which may explain the increasing reduction of the initiaheergence
rate ad\} is increased. The higher nonlinearity of the flow field of ti@ep@rcent section with respect to that of the 90 percentmecti
is caused primarily by the higher reduced frequency of theon®f the former section. It is the authors’ experience tha abovesaid
dependence of the HB convergence ratdNgralways increases with the flow nonlinearities. As with thep@€cent blade section, these
HB analyses could be performed without the RK stabilizagiceviously discussed, namely using algorithm (28) for tiatton update.

It has also been verified that the use of the stabilized iategr (29) results in negligible changes of the convergéistery of the 5 HB
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Figure 11. HYSTERESIS FORCE LOOPS OF 30 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN FIG. 10):

a) LIFT COEFFICIENT, b) DRAG COEFFICIENT, c) PITCHING MOMENT COEFFICIENT.

analyses with respect to the curves of Fig. 14. The HB spegdgmneter is reported in Table 3. One sees that the accuBagelHtion

obtained withNy = 4 can be obtained more than 10 times faster than with the Tysisaeported herein. Similarly to what done in
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Figure 12. PRESSURE COEFFICIENT OF 30 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES: a) REAL PART, b) IMAGINARY

PART.

the case of the 90 percent blade section, the speed up pararoetresponding to the analyses performed With 1.d — 09 have also
been considered. Comparing the results of the TD simulatitml, = 1.d — 12 and that witH, = 1.d — 09 reveals that the maximum
difference of the lift and drag coefficients with respectheit averages over the third period computed With- 1.d — 12 is smaller
than 1d — 01%. Similarly, comparing the results of the HB simulatiovith I, = 1.d — 12 and that with, = 1.d — 09 reveals that the
maximum difference of the lift and drag coefficients withpest to their averages over the third period computed vith1.d — 12 is
of order 1d — 01%. The second row of speed up parameters of table 3 refezsutis computed using residual tolerahoef 1.d — 09,
and it shows that the HB solution obtained wiNh = 4 can be obtained 8 times faster than with the TD analysis.

The quantitative effects of LSP on the estimate of the seatilift force are assessed in the plot of Fig. 15, the abasis$ which
report time as a fraction of a period. The left ordinates refiw lift coefficient computed using LSP, and the right aedes report
the absolute value of the percentage error between theolfificient computed with LSP and that computed without. OCeesghat

the maximum error is above 4 %. The inaccuracy of the premtiatiithout LSP grows as the Mach number decreases. In the ca
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Figure 14. CONVERGENCE HISTORIES OF TD, HB AND STEADY ANALYSES FOR 30 % BLADE SECTION.
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Table 3. ACCELERATION FACTORS OF HB ANAL

SES WITH RESPECT TO TIME-DOM

AIN ANALYSIS FOR THE 30 % BLADE SECTION.

Ir

NH

1

2

3

4

5

1.d-12

speed up48.1

22.4

16.0

12.4

10.2

1.d-09

speed up30.7

15.3

10.6

8.1

6.2

of turbulent conditions the inaccuracies due to the lack 8PLbecome even larger, and they may lead to significantlgreifit stall

characteristics of the section [34].

Figure 15. LIFT COEFFICIENT OF 30 % BLADE SECTION COMPUTED BY TD ANALYSIS WITH AND WITHOUT LOW-SPEED PRECONDITIONING.

CONCLUSIONS

The numerical models underlying the implementation of aeghtvarmonic balance compressible Navier-Stokes solvér lait/-

speed preconditioning for wind turbine unsteady aerodyosufmave been presented. The integration of both the haorm@iance

and the time-domain equations is based on a multigrid iteratsing a multi-stage Runge-Kutta smoother, and inclydiical time-

stepping and implicit residual smoothing for further camence acceleration. In the framework of the dual-time Etegp method

used for solving the time-domain problem, the explicit nguitl integration can present a numerical instability whiee local pseudo-

time-step is much larger than the physical time-step. Brevexperience of the authors with the harmonic balancesdlscribed

in this paper lead one to believe that a numerical instghditsimilar origin can also arise when using the same mudtigpproach

for the solution of the harmonic balance equations. Theegfa novel stabilization procedure for the multigrid ireggpn of the HB

NS equations has been designed and presented herein. Therti@abalance solver with low-speed preconditioning islsalted

for the analyses of periodic wind turbine flows. The compatetl performance and the accuracy of the technology beévgldped

have been assessed by computing the flow field past two seafanhorizontal axis wind turbine blade in yawed wind withtbthe
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time- and frequency-domain solvers. Results highlight tha harmonic balance solver features accuracies conlpamthose of its

time-domain counterpart, and yields a reduction of conmtmal costs of about one order of magnitude with respedtadite-domain

solver. The aerodynamic analyses presented herein aredaand two-dimensional. A substantially larger reductbnomputational

times is expected for the case of periodic turbulent thiegedsional flows. The time-domain analysis of these problemfact, is

likely to require a higher time-resolution per period andsibly a larger number of cycles before a periodic statehigeaed. In these

circumstances the benefits of using the harmonic balanbedémgy will be even higher than those reported in this paper
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