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ABSTRACT

This paper presents the numerical models underlying the implementation of a novel harmonic balance compressible Navier-

Stokes solver with low-speed preconditioning for wind turbine unsteady aerodynamics. The numerical integration of the har-

monic balance equations is based on a multigrid iteration, and, for the first time, a numerical instability associated with the use

of such an explicit approach in this context is discussed andresolved. The harmonic balance solver with low-speed precondi-

tioning is well suited for the analyses of several unsteady periodic low-speed flows, such as those encountered in horizontal axis

wind turbines. The computational performance and the accuracy of the technology being developed are assessed by computing

the flow field past two sections of a wind turbine blade in yawedwind with both the time- and frequency-domain solvers. Results

highlight that the harmonic balance solver can compute these periodic flows more than 10 times faster than its time-domain

counterpart, and with an accuracy comparable to that of the time-domain solver.

INTRODUCTION

The aeromechanical design of horizontal axis wind turbines(HAWT’s) is a complex multidisciplinary task that requiresconsid-

eration of a very large number of operating regimes due to theextreme variability of the environmental conditions on time scales

∗Address all correspondence to this author.
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ranging from seconds (e.g.wind gusts) to months (e.g.seasonal wind variations). Modern industrial design stillrelies on low-fidelity

and/or semi-empirical computational tools such as blade element momentum theory (BEMT), stall and dynamic inflow models [1]. The

main advantage of these techniques is their high computational speed. Their main drawback is that they heavily rely on the existence

and availability of high-quality airfoil data. Thus, new HAWT configurations cannot be assessed with confidence by meansof these

methods. Conversely, the use of high-fidelity computational aerodynamics tools such as Navier-Stokes (NS) solvers in an integrated

aeromechanical analysis and design system has the potential of overcoming the aforementioned constraint. These solvers enable one to

analyze the unsteady aerodynamic and aeroelastic responseof prospective new turbine configurations to challanging off-design condi-

tions. Several outstanding examples of the predictive capabilities of NS solvers for HAWT aerodynamics have been published [2–4].

The main drawback of NS solvers is their computational cost,which is substantially higher than that of low-fidelity systems even when

massive parallel computing is adopted. Accurate time-dependent simulations of HAWT flows may still take several days, whereas the

same engineering problem could be solved within a few hours using BEMT-based systems.

Several fundamental HAWT unsteady aerodynamic problems can be viewed as periodic. This is the case of stall-induced vibrations

and the yawed wind regime, which occurs when the freestream wind velocity is not orthogonal to the turbine rotor. The yawed wind

problem is one for which the underlying assumptions of BEMT-based systems are particularly weak, and a more reliable analysis of

which would therefore benefit from the use of unsteady NS solvers. A time-resolved time-domain (TD) NS simulation of thisproblem

requires a long wallclock time due to the fact that several rotor revolutions have to be simulated before a periodic stateis achieved,

and a time-resolved solution requires about 1000 physical time steps per revolution [5]. Fortunately, the wallclock time required by the

TD NS prediction of unsteady periodic flows can be dramatically reduced by using a frequency-domain (FD) formulation andsolution

of the governing unsteady equations. The harmonic balance (HB) NS technology for the solution of unsteady periodic flows[6] is

one of the most promising FD NS methods. The HB NS technology has been applied to the prediction of the periodic flow associated

with flutter and forced response of turbomachinery blades [6–8], and various vibratory motion modes of aircraft configurations [9–11].

For this type of application, it has been observed that the use of the HB NS approach for the calculation of periodic flows can lead

to a reduction of the wallclock time varying between one and two orders of magnitude with respect to conventional TD NS analyses.

Another successful and computationally effective FD approach to the solution of unsteady periodic flows is the nonlinear frequency-

domain (NLFD) method [12–14]. The NLFD technology has also been applied to the simulation of the periodic flow past rotorcraft

blades [15]. Several other FD methods have been developed inthe past years, among which a one-harmonic FD technique for the

calculation of periodic turbomachinery flows [16], which bears some resemblance to the HB approach of [6], but differs from it in that

the calculation of the zeroth harmonic (mean state) is decoupled from that of the first harmonic representing the sought unsteady flow

component. Numerous examples of the application of the HB and NLFD technologies to periodic flows of engineering interest exist, but

a thorough review of all existing FD methods and their application is beyond the scope of this report.

This paper focuses on the development and application of theHB NS technology for the analysis of periodic wind turbine flows,

such as that caused by the yawed wind condition. One of the main differences between HAWT flows and the other aerodynamic
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problems for which the HB NS method has been used thus far is that the flow speeds observed in wind turbine flows are typically

in the incompressible range (Mach number well below 0.3), though future large off-shore turbines are likely to operate at the border

between the incompressible and compressible regimes. A NS solver for HAWT aerodynamics could therefore be based eitheron the

incompressible formulation or the compressible formulation augmented withlow-speed preconditioning(LSP) [17, 18]. One of the

advantages of choosing the compressible formulation with LSP is the capability of this approach to perform aeroacoustic analyses.

This paper presents the mathematical and numerical theory behind the implementation of a time- and frequency-domain multigrid

(MG) compressible NS solver based on the HB technology and featuring an optimized LSP method. It also discusses an important

numerical stability problem that may be encountered when solving the HB NS equations with explicit solvers such as the MGiteration

based on the Runge-Kutta smoother, and it proposes a robust and elegant solution for suppressing such an instability. Then, a simple

kinematic model enabling one to determine the two-dimensional (2D) time-dependent freestream conditions observed bythe blade

sections of a HAWT in yawed wind is presented. Finally, the effectiveness of the HB NS solver with LSP is demonstrated by computing

the periodic unsteady flow past two sections of a HAWT blade inyawed wind using both the TD and the HB solvers. The TD and HB

results are compared in terms of accuracy and wallclock timerequired for their calculation. To the best of the authors’ knowledge, this

is the first reported development of the NS HB technology withLSP and its application to wind turbine unsteady aerodynamics.

GOVERNING EQUATIONS

Time-domain formulation

Internal and external viscous flows can be computed by solving the NS equations, which are a system ofNpde nonlinear partial

differential equations (PDE’s) obtained by imposing the conservation of mass, momentum and energy over a control volume. For 2D

laminar flowsNpde= 4 because the momentum equation has only two scalar components. Given a control volumeC with boundaryS,

the Arbitrary Lagrangian-Eulerian (ALE) integral form of the 2D TD NS equation is:

∂
∂t

(

Z

C (t)
UdC

)

+

I

S(t)
(Φi −Φv) ·dS= 0 (1)

The arrayU of conservative flow variables is defined as:

U = [ρ ρu ρv ρε]′

where the superscript′ denotes the transpose operator, andρ, u, v andε are respectively the flow density, thex− andy−component of

the flow velocity vector v, and the total energy per unit mass. The definition of the total energy isε = e+(u2 +v2)/2, wheree denotes

the internal energy per unit mass. The generalized inviscidflux vectorΦi is:

Φi = Ei i + Fi j −vb U (2)
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whereEi andFi are respectively thex− andy−components ofΦi , and are given by:

Ei = [ρu ρu2+p ρuv ρuH]′ , Fi = [ρv ρuv ρv2+p ρvH]′

The vector vb is the velocity of the boundaryS, and the flux term−vb U is its contribution to the overall flux balance, which is nonzero

only in the case of unsteady problems with moving boundaries. The symbolp denotes the static pressure and the symbolH denotes the

total enthalpy per unit mass, the expression of which isH = ε+ p/ρ. The generalized viscous flux vectorΦv is:

Φv = Evi + Fv j (3)

whereEv andFv are respectively thex− andy−components ofΦv, and are given by:

Ev =

















0

τxx

τxy

uτxx+vτxy−qx

















, Fv =

















0

τxy

τyy

uτxy+vτyy−qy

















The scalarsqx andqy are the Cartesian components of the heat flux vectorq = −k∇T, wherek is the thermal conductivity, andT is the

static temperature. The scalarsτxx, τxy andτyy are the Cartesian components of the stress tensorτ. Such tensor depends on the divergence

of the flow velocity vector v, and the strain tensors= (∇v+ ∇vT)/2. For a Newtonian fluid one hasτ = 2µ[s−1/3(∇ ·v)I ], whereµ is

the dynamic viscosity.

Harmonic balance formulation

The HB formulation of the NS equations assumes that the fundamental frequencyω of the sought periodic flow field is known.

Denoting byu andh respectively the volume and surface integral of Eqn. (1), one can approximate both variables by means of the

following truncated Fourier series, in which the retained number of harmonicsNH is a user-given parameter:

u(t) ≈ û0 +
NH

∑
l=1

(û2l−1cos(lωt)+ û2l sin(lωt)) (4)

h(t) ≈ ĥ0 +
NH

∑
l=1

(

ĥ2l−1cos(lωt)+ ĥ2l sin(lωt)
)

(5)

Inserting expansions (4) and (5) into Eqn. (1), and ’balancing’ or matching harmonics of the same order results in a system of [Npde×

(2NH +1)] PDE’s, the matrix-vector form of which is:

ωAû+ ĥ = 0 (6)
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Hereû = [û′
0 û′

1 . . . û′
2NH

]′, ĥ = [ĥ′
0 ĥ′

1 . . . ĥ′
2NH

]′, and matrixA is defined as:

A =

























0 0 0 · · · 0

0 J1 0 · · · 0

0 0 J2 · · · 0

· · · · · · · · · · · · · · ·

0 0 0 . . . JNH

























Jl = INeqs⊗ l





0 1

−1 0





l = 1,2, · · · ,NH

(7)

where the symbol⊗ detones the Kronecker tensor product,INeqs denotes the identity matrix of size(Neqs)
2, Neqs= Npde, and blocksJl

have size(2Npde)
2. Writing explicitly the equations of system (6), one finds that the unknown harmonic componentsû are coupled by

the harmonic residualŝh, whereas no coupling occurs through the first term of the equation, since matrixA is block diagonal. As pointed

out in [6], however, the computational cost of the HB system (6) grows cubically with the number of retained harmonicsNH , and the

analytical derivation of the equations becomes extremely complex when dealing with the turbulence models required forhigh Reynolds

number flows.

To alleviate these problems, it has been noted that an alternative formulation of the HB equations is obtained by reconstructing the

Fourier coefficients of the volume integralû of the conservation variables and the surface integralĥ of the fluxes from the knowledge of

the temporal behavior ofu(t) andh(t) at 2NH +1 equally spaced points over one period. Such points are defined by:

tn =
n

(2NH +1)

2π
ω

, n = 0,1, · · · ,2NH (8)

Let ũ = [ũ′
0 ũ′

1 . . . ũ′
2NH

]′ = [u(t0)′ u(t1)′ . . .u(t2NH )′]′ andh̃ = [h̃′
0 h̃′

1 . . . h̃′
2NH

]′ = [h(t0)′ h(t1)′ . . .h(t2NH )′]′. In view of these definitions,

expansions (4) and (5) yield:

ũ = F−1
H û and h̃ = F−1

H ĥ (9)

with FH = EH ⊗ INpde and the Fourier matrixE−1
H given by:

















1 cos(ωt0) sin(ωt0) · · · cos(NHωt0) sin(NH ωt0)

1 cos(ωt1) sin(ωt1) · · · cos(NHωt1) sin(NH ωt1)

· · · · · · · · · · · · · · · · · ·

1 cos(ωt2NH ) sin(ωt2NH ) · · · cos(NHωt2NH ) sin(NHωt2NH )

















Computing the inverse of relationships (9), inserting these latter into Eqn. (6), and premultiplying Eqn. (6) byF−1
H yields the system:

ωDũ+ h̃ = 0 (10)

5 TURBO-10-1073, M.S. Campobasso



in which

D = F−1
H AFH (11)

Inserting the integral definitions ofu andh into Eqn. (10) leads to the so calledhigh-dimensional harmonic balance formulation[19] of

the NS equations:

ωD

(

Z

CH(t)
UH dCH

)

+

I

SH (t)
(Φi,H −Φv,H) ·dSH = 0 (12)

whereUH = [U(t0)′ U(t1)′ . . .U(tNH )′]′, Φi/v,H = [Φi/v(t0)
′ Φi/v(t1)

′ . . .Φi/v(tNH )′]′, and similar expressions hold forCH andSH . Moving

from the time- to the frequency-domain, the number of PDE’s increases fromNpde to [Npde× (2NH + 1)]. Despite the fact that the

number of PDE’s to be solved has increased, the HB approach allows one to compute unsteady periodic flows at a substabtially lower

computational cost with respect to the time-domain approach.

CFD SOLVER

Space discretization

The structured multi-block finite volume cell-centered parallel CFD codeCOSA[18, 20, 21] solves the integral form of both the

TD conservation laws (system (1)) and the HB conservation laws (system (12)) making use of a second order upwind scheme. The

discretization of the convective fluxes is based on Van Leer’s MUSCLextrapolations and Roe’s flux-difference splitting. Denoting by

n the normal of the face of a grid cell, anddS the area of such face, the numerical approximation to the continuous convective flux

componentΦi, f = (Φi ·n)dSthrough such face is:

Φ∗
i, f =

1
2

[

Φi, f (UL)+ Φi, f (UR)−

∣

∣

∣

∣

∂Φi, f

∂U

∣

∣

∣

∣

δU
]

(13)

Here the superscript∗, the subscriptf , and the subscriptsL andR denote numerical approximation, face value, and value extrapolated

from the left and from the right, respectively. The numerical dissipation depends on the generalized flux Jacobian∂Φi, f /∂U and the flow

state discontinuity across the cell face, defined byδU = (UR−UL).

The discretization of the viscous fluxes is based on second order centered finite-differences. The Cartesian derivatives of the flow

velocity components are computed with the chain rule, usingthe derivatives of such components with respect to the localgeneralized

curvilinear coordinates associated with the grid lines, and the grid metrics.

Integration of time-domain equations

The physical time-derivative of system (1) is discretized with a second-order backward finite-difference. The set of nonlinear

algebraic equations resulting from the space- and time-discretization of system (1) is then solved with an explicit approach based on
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the use of a fictitiuos time-derivative (Jameson’s dual-time- stepping [22]). The discretization of the physical time-derivative of the

unknown flow state by means of a second order backward finite difference, and the introduction of the derivative with respect to the

fictitious timeτ yield the equation:

V
dQ
dτ

n+1

+ Rg(Qn+1) = 0 (14)

where

Rg(Qn+1) =
3Qn+1−4Qn+ Qn−1

2∆t
V + RΦ(Qn+1) (15)

The entries of the arrayQ are the unknown flow variables at theNcell cells discretizing the computational domain. The arrayQ can

be viewed as made up ofNcell subarrays, each of which stores theNpde flow unknowns at a particular physical time. The length ofQ

is therefore(Npde×Ncell). The arrayRΦ stores the cell residuals, and its structure is the same as that of Q. For each cell, theNpde

residuals are obtained by adding the convective fluxesΦ∗
i, f and the viscous fluxesΦ∗

v, f through all the faces of the cell. The symbolRg

denotes instead a residual vector which also includes the source terms associated with the discretization of physical time-derivative

∂U/∂t contained in Eqn. (1). The diagonal matrixV stores the volumes of the grid cells. It can be viewed as a block-diagonal matrix of

size (Ncell ×Ncell) with each block being the identity matrix of size (Npde×Npde) multiplied by the volume of the cell the block refers

to. Note thatV is independent of the physical time-level (denoted by the superscriptsn+ 1,n andn− 1) because in this report only

rigid-body grid motion is considered. The symbol∆t indicates the user-given physical time-step. Equation (14) can thus be viewed

as a system of(Npde×Ncell) ordinary differential equations (ODE’s) in which the unknown is Qn+1, the flow state at time-leveln+ 1.

The calculation ofQn+1 is performed iteratively by discretizing the fictitious time-derivative(dQn+1/dτ) of Eqn. (14) with a four-stage

Runge-Kutta (RK) scheme, and marching the equations in pseudo-time until a steady state is achieved. Such steady state is the flow

solution for the physical time being considered. The convergence rate is then greatly enhanced by means of local time-stepping (LTS),

variable-coefficient centralimplicit residual smoothing(IRS) and afull-approximation schememultigrid (MG) algorithm.

This solution procedure may become unstable when the physical time-step∆t is significantly smaller than the pseudo-time-step∆τ.

This instability was reported in [23],and thoroughly investigated by Melsonet al. [24]. The latter study elegantly solved the stability

problem by treating implicitly theQn+1 term of the physical time-derivative within the RK integration process. This strategy has also

been implemented in COSA, as summarized below. The residualRg is split into the contribution depending on theQn+1 term of the

physical time- derivative, and a termRd equal to the difference ofRg and the aforesaidQn+1 term:

Rg(Qn+1) =
V
∆t

[

3
2

Qn+1 +g(Qn,Qn−1)

]

+ RΦ(Qn+1)

whereg(Qn,Qn−1) = −2Qn+0.5Qn−1. This equation can also be written as:

Rg(Qn+1) = Rd(Qn+1)+
3V
2∆t

Qn+1 (16)
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Discretising the fictitious time-derivative of Eqn. (14) with a multi-stage RK scheme, introducing the decomposition of Rg provided by

Eqn. (16), and considering theQn+1 term at stagek rather than at stage(k−1) yields the following modified RK algorithm:

W0 = Ql

(I + αkβ)Wk = W0−αk∆τV−1Rd(Wk−1)

Ql+1 = WNS

(17)

wherek varies between 1 and the number of RK stagesNS, αk is thekth RK coefficient,β = 1.5∆τ/∆t, l is the RK cycle counter, and

Ql is shorthand forQn+1
l . The stability analysis of [24] shows that the stability of algorithm (17) no longer depends on the ratio∆τ/∆t.

However this formulation is still unsuitable when IRS and MGare also used, because both acceleration techniques have tobe applied

to a residual term that vanishes at convergence, and this is not the case ofRd. The solution is to introduce the residualRg which does

vanish at convergence. Given that:

∆τRd(W) = −βVW+ ∆τRg(W)

the IRS-MG-tailored counterpart of algorithm (17) is:

W0 = Ql

(I + αkβ)Wk = W0 + αkβWk−1

−αk∆τV−1LIRS[Rg(Wk−1)+ fMG]

Ql+1 = WNS

(18)

whereLIRS denotes the IRS operator, andfMG is the MG forcing function, which is nonzero when the smoother (18) is used on a coarse

level after a restriction step [25]. Note that the matrix multiplying Wk at the second line of algorithm (18) is diagonal, and this implies

that for each grid cell theNpde unknowns can be updated without an actual matrix inversion.

Integration of harmonic balance equations

At the differential level, the only difference between system (1) and system (12) is that the physical time-derivative of the former

system is replaced by a volumetric source term proportionalto ω in the latter. The set of nonlinear algebraic equations resulting from

the space-discretization of system (12) is thus solved withthe same technique used for steady problems [20], namely thefour-stage RK

smoother accelerated by LTS, IRS and MG. The introduction ofthe derivative with respect to the fictitious timeτ yields the equation:

VH
dQH

dτ
+ Rg,H(QH) = 0 (19)
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where

Rg,H(QH) = ωVHDQH + RΦ,H(QH) (20)

The arrayQH is made up of(2NH + 1) flow states referring to the physical times defined by Eqn. (8). Therefore, one hasQH =

[Q′
0 Q′

1 . . .Q′
2NH

]′ = [Q(t0)′ Q(t1)′ . . .Q(t2NH )′]′, and each subarray ofQH has length(Npde×Ncell). The arraysRg,H andRΦ,H have the

same structure ofQH . The subarray(RΦ)n (n = 0,1, · · · ,2NH) denotes the grid-residuals associated with the convectiveand viscous

fluxes at timetn. The subarray(Rg)n denotes instead a residual vector which also includes the source termωVHDQH . The diagonal

matrix VH is given byVH = I2NH+1⊗V. Matrix D is defined by Eqn. (11), and the matrixA appearing herein is defined by Eqn. (7)

whereNeqs= Npde×Ncell.

Equation (19) can thus be viewed as a system of[Npde×Ncell × (2NH + 1)] ODE’s in the unknownQH . The calculation ofQH is

performed iteratively by discretizing the fictitious time-derivative(dQH/dτ) of Eqn. (19) with a four-stage RK scheme, and marching

the equations in pseudo-time until a steady state is achieved. The IRS and the MG acceleration techniques are also used exactly as for

steady and TD problems.

Although no rigorous stability analysis has been carried out yet, the authors have found that this explicit MG solution procedure of

the HB equations may become numerically unstable for certain type of aerodynamic problems. More specifically, a numerical instability

of the HB MG iteration has been encountered in the solution ofthe transonic flow problems with the COSA solver reported in [9]. It is

the authors’ view that this instability is the FD counterpart of the TD one, discussed in the preceding subsection. In theTD framework,

the instability may occur when the physical time-step∆t is significantly smaller than the pseudo-time step∆τ. With transonic flows,

for example, this may occur in the supersonic region upstream of a shock. In the HB context, the equivalent physical time-step∆t is

given by∆t = 2π/ω/(2NH + 1). In order to stabilize the RK-IRS-MG iteration used to solvethe HB equations for all flow regimes, a

stabilization procedure similar to that proposed by [24] has been successfully implemented and tested in the COSA solver. To the best

of the authors’ knowledge, this is the first reported study onthe use of this method for the solution of the HB Euler and NS equations.

The stability problem is removed by treating implicitly thesource term of Eqn. (20) within the RK integration process. Discretising the

fictitious time-derivative of Eqn. (19) with a multi-stage RK scheme, and considering the source term of Eqn. (20) at stage k rather than

at stage(k−1) yields the following modified RK algorithm:

W0
H = (QH)l

(I + αkβHD)Wk
H = W0

H −αk∆τV−1
H RΦ,H(Wk−1

H )

(QH)l+1 = WNS
H

(21)

whereβH = ω∆τ and the other symbols have been defined in the preceding subsection. This formulation is still unsuitable when IRS

and MG are also used, because both acceleration techniques have to be applied to a residual term that vanishes at convergence, and this

is not the case ofRΦ,H . The solution is to introduce the residualRg,H which instead vanishes at convergence. The IRS-MG-tailored
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counterpart of algorithm (21) is:

W0
H = (QH)l

(I + αkβHD)Wk
H = W0

H + αkβHDWk−1
H

−αk∆τV−1
H LIRS,H [Rg,H(Wk−1

H )+ fMG,H ]

(QH)l+1 = WNS
H

(22)

where the HB MG forcing function is defined asfMG,H = [fMG(t0)′ fMG(t1)′ . . . fMG(t2NH )′]′ with the (2NH + 1) values oftn defined by

Eqn. (8), and the HB IRS operatorLIRS,H can be viewed as a[(2NH + 1)× (2NH + 1)] block-diagonal matrix, the nonzero blocks of

which are the(2NH + 1) LIRS(tn) operators. Note that the matrix multiplyingWk
H at the second line of algorithm (22) is not diagonal.

For each grid cell, the update of the[Npde× (2NH + 1)] unknowns requires the inversion of one[(2NH + 1)× (2NH + 1)]-sub-block of

(I + αkβHD). Such overhead results in the computational cost of the HB analysis growing in a moderately superlinear fashion with

respect toNH . Despite this feature, however, the computational cost of the HB analysis remains competitive with that of the TD analysis.

As an example, the transonic flow studies performed with the COSA solver based on algorithm (22) and reported in [9] show that the

HB analysis can predict the periodic body forces acting on a pitching airfoil with extremely small errors with respect tothe TD analysis,

but requiring a CPU-time about one order of magnitude smaller. These HB transonic flow analyses failed to converge when the standard

rather than the stabilized RK algorithm (22) was used.

It has been observed that the use of an explicit approach to integrate the HB NS equations requires the introduction of an additional

constraint on the size of the local time-step used to pseudo-time-march the solution for stability reasons [8]. Such constraint depends on

the fundamental frequencyω and the number of complex harmonicsNH , and becomes more stringent as either parameter increases.In

this circumstance, the number of MG iterations required forconvergence would increase asNH increases. The use of the stabilization

presented herein, on the other hand, removes this additional constraint, thus making the convergence rate more independent ofNH .

When using an explicit integration method, however, the convergence rate of explicit HB solvers may still show a certaindegree of

dependence onNH for flow problems with significant nonlinearities. This is because one of the factors on which the convergence rate of

iterative solvers depends is the features of the overall Jacobian (e.g.condition number, degree of non-normality and diagonal dominance)

of the HB NS equations, made up of the sum of the standard flux Jacobian of the steady NS equations and the termωVHD. The last

term is an antisymmetric matrix, the size and magnitude of which grow with NH andω respectively. Its main effect is to reduce the

diagonal dominance and increase the non-normality of the HBJacobian with respect to that of the Jacobian of the steady equations. A

reduction of the diagonal dominance impairs the convergence rate of iterative stationary linear smoothers such as the Gauss-Seidel and

the symmetric successive over-relaxation iterations. Theeffect ofNH andω on the diagonal dominance of the HB Jacobian of the HB

equations is analyzed in reference [7], which also uses a robust preconditioned Krylov subspace solver to greatly reduce the dependence

of the computational cost of an implicit HB solver on these two parameters. A significant level of non-normality of the HB Jacobian may

result in numerical transients during which significant reductions of the convergence properties of linear smoothers (including the RK
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iteration) with respect to the theoretical expectation areexperienced [26]. These observations refer to the case in which the standard non-

stabilized integration of the HB equations is used. When thestabilized integration is used, however, the non-normality characteristics

of the linear operator corresonding to the iteration (22) may differ from those of the standard HB Jacobian. This mathematical aspect is

still under investigation. For these reasons, it is expected that the convergence rate of the presented MG HB solver willbe fairly close

to that of the associated steady problem, and independent ofNH for problems with low level of flow nonlinearity. For problems with

significant nonlinearities, however, the convergence rateof the HB solver may worsen with respect to that of the steady state whenNH

is increased because of the significant contribution of the higher harmonics to the non-normality of the overall HB Jacobian.

When solving the HB equations with an implicit approach, theHB source term has to be treated implicitly for stability reasons [10,

11]. This constraint may require substantial code extensions if the HB solver is built around an existing code. It may also yield very large

memory usage for storing the Jacobian associated with all(2NH +1) flow states if a Krylov-subspace method with approximate Jacobian-

based preconditioning is used for the solution of the linearsystems arising at each step of Newton’s method. One possible solution is to

use an iterative stationary linear block-solver such as block-Jacobi to solve the linear systems, as this allows one to treat separately the

Jacobians associated with each flow snapshot during the integration [10]. An alternative solution to simplify the development of the HB

technology around an existing implicit solver is the treatment of the HB source term presented in [27].

LOW-SPEED PRECONDITIONING

In the case of low-speed flows, a large disparity between the convective and acoustic eigenvalues of the flux Jacobian∂Φi, f /∂U

exists. This results in unbalanced amounts of numerical dissipation, and this occurrence spoils the accuracy of the solution. When using

explicit time-marching methods, the local time-step also depends on the eigenvalues of the flux Jacobian, and a large disparity between

convective and acoustic speeds substantially impairs the convergence rate of the solver. These problems are circumvented by using

low-speed preconditioning [17].

In the case of time-dependent problems, the pseudo-time derivative of Eqn. (14) is premultiplied by a preconditioning matrix (Γc)
−1.

This results in a rescaling of the eigenvalues of the flux Jacobian which restores the correct levels of numerical dissipation and allows

one to maintain high convergence rates even with low-speed problems. The preconditionerΓc used by COSA is that proposed in [17],

where its expression can be found. The matrixΓc depends on a parameterMp. The choiceMp = 1 yields no preconditioning. For

low-speed flows, the parameterMp is:

Mp = min(max(M,Mpg,Mvis,Muns,ε) ,1) (23)

whereM is the actual local Mach number,Mpg is a cut-off value based on the local pressure gradient [28, 29], Mvis is a cut-off value

based on the cell Reynolds number (also called Peclet number) [30], Muns is a cut-off value based on the physical time-step∆t and the

characteristic lengths of the domain [17], andε is a small cut-off parameter that prevents the preconditioner from becoming singular at

stagnation points.
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The introduction of preconditioning modifies the artificialdissipation term of the numerical flux provided by Eqn. (13) as follows:

Φ∗
i, f =

1
2

[

Φi, f (UL)+ Φi, f (UR)−Γ−1
c

∣

∣

∣

∣

Γc
∂Φi, f

∂U

∣

∣

∣

∣

δU
]

(24)

For steady problems, the choice of Eqn. (23) withMuns = 0 to build Γc and its inverse guarantees both the balance of the numerical

dissipation and an optimal convergence rate. For time-dependent problems, however, the use of Eqn. (23) withMunsdefined as proposed

in [17] usually yields a high convergence rate, but does not guarantee an optimal scaling of the artificial dissipation. This has been

observed by the same developers of this preconditioner for time-dependent problems with motionless grids [31], and more recently

confirmed by the authors of this paper for the case of time-dependent problems with moving grids [18]. The latter article also pre-

sented amixed preconditioningstrategy to overcome this problem, and demonstrated its effectiveness with a number of time-dependent

problems with motionless and moving grids. In essence, mixed preconditioning consists of using the steady preconditioning parameter

(i.e.the value ofMp obtained from Eqn. (23) after settingMuns= 0) to construct the preconditioner required to calculate the numerical

dissipation, and the unsteady preconditioning (i.e.the complete form of Eqn. (23)) to construct the preconditioner needed to compute the

preconditioned eigenvalues used in the calculation of the local time-step. The modified numerical flux is thus:

Φ∗
i, f =

1
2

[

Φi, f (UL)+ Φi, f (UR)−Γ−1
cu

∣

∣

∣

∣

Γcs
∂Φi, f

∂U

∣

∣

∣

∣

δU
]

(25)

where the subscriptscs andcu respectively denote the use of the steady and unsteady preconditioning parameters to build the precondi-

tionerΓc.

The general form of the standard TD RK-IRS-MG iteration featuring LSP, obtained by premultiplying the fictitious time-derivative

of Eqn.(14) byΓ−1
cu , and discretizing this derivative with the multistage RK ofchoice, is:

W0 = Ql

Wk = W0

−αk∆τV−1LIRSΓcu[Rg(Wk−1)+ fMG]

Ql+1 = WNS

(26)

The use of the stabilization process of the RK cycle discussed in the previous subsections yields the following stabilized iteration:

W0 = Ql

(I + αkβΓk−1
cu )Wk = W0 + αkβΓk−1

cu Wk−1

−αk∆τV−1LIRSΓk−1
cu [Rg(Wk−1)+ fMG]

Ql+1 = WNS

(27)
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The matrix premultiplyingWk is block-diagonal, but its blocks are not diagonal because of the preconditionerΓcu which is not a diagonal

operator. Therefore the update process requires the inversion of an(Npde×Npde)-matrix for each cell of the computational domain. The

interested reader is referred to [18] for further details onthe LSP implementation of the COSA solver.

In the case of frequency-domain problems, the pseudo-time derivative of Eqn. (19) is premultiplied by a[(2NH +1)× (2NH +1)]-

block-matrixΓ−1
c,H , and the nonzero blocksΓ−1

c,n with n = 0,1, · · · ,2NH are simply instantiations of the preconditioning matrixΓ−1
c

discussed above at the times defined by Eqn. (8). In all the HB analyses reported in the remainder of this paper, the steady preconditioner

set up (i.e.a value ofMp obtained by settingMuns= 0 in Eqn. (23)) has been used for the calculation of both the numerical dissipation

and the local time-step. The general form of the standard HB RK-IRS-MG iteration featuring LSP is:

W0
H = (QH)l

Wk
H = W0

H

−αk∆τV−1
H LIRS,H Γc,H [Rg,H(Wk−1

H )+ fMG,H ]

(QH)l+1 = WNS
H

(28)

The use of the stabilization process of the RK cycle discussed in the previous subsections yields the following stabilized iteration:

W0
H = (QH)l

(I + αkβHΓk−1
c,H D)Wk

H = W0
H + αkβHΓk−1

c,H DWk−1
H −αk∆τV−1

H

LIRS,HΓk−1
c,H [Rg,H(Wk−1

H )+ fMG,H ]

(QH)l+1 = WNS
H

(29)

The matrix premultiplyingWk
H is block-diagonal, but its blocks are not diagonal because both the preconditionerΓc and the matrixD

are not diagonal. Each of theseNcell blocks has size[(2NH + 1)×Npde]
2, and the update process of the whole solution requires the

inversion of all such blocks. Due to this feature, the computational cost of HB analyses is moderately superlinear with respect toNH .

All numerical analyses carried out thus far, however, show that the computational speed of the HB analysis remains significantly higher

than that of the TD despite the abovesaid overhead.

TWO-DIMENSIONAL YAWED WIND MODELING

In order to define boundary data and motion parameters for the2D TD and FD analyses presented in the result section, the unsteady

flow regime experienced by the airfoils of a HAWT blade in yawed wind has to be defined as a function of the freestream wind speedV f s,

the turbine rotational speedω, the angleδ betweenV f s and the normal to the rotor plane (yaw angle), the chordc of the airfoil and its

distanceR from the rotational axis. The left and right plots of Fig. 1 respectively depict the top and front views of a HAWT in yawed

wind, and highlight some of the aforementioned parameters.The circumferential position of a blade is defined by the angle θ, which is

taken to be zero when the blade is vertical and descending (positionA). The four plots of Fig. 2 report the velocity triangles associated
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Figure 1. SCHEMATIC VIEWS OF HAWT IN YAWED WIND. LEFT PLOT: TOP VIEW; RIGHT PLOT: FRONT VIEW.

with a blade airfoil for the positions labeledA to D in the right plot of Fig. 1. The modulus of the axial velocity component is|V f s|cos(δ),

and is the same for all radial and circumferential positions. The modulus of the entrainment velocityω×Rvaries linearly with|R|, and

is therefore the same in all four triangles of Fig. 2. The velocity Wi and the angleαi (i = A,B,C,D) denote respectively the freestream

velocity andinflow angleobserved by the blade section at radiusR, and both parameters vary with the circumferential position θ = ωt.

Each velocity triangle is contained in the plane tangent to the cylinder of radiusRcentered on the rotational axis, and therefore it neglects

any radial (i.e.along the blade axis) velocity component. The magnitude of the discarded radial component varies withθ: no component

is discarded when the blade is vertical (positionsA andC), as the entire vectorV f s is contained in the tangent plane; the entire radial

componentV f ssin(δ) is instead neglected when the blade is horizontal (positionsB andD), as the radial component ofV f s is orthogonal

to the tangent plane. Within the limits of these approximations, the axial and circumferential components of the freestream velocity
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Figure 2. VELOCITY TRIANGLES OF HAWT BLADE SECTION FOR POSITIONS LABELED A TO D IN FIG. 1.
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perceived by each blade section are respectively:

WX = Vf scos(δ) (30)

Wθ = ωR−Vf ssin(δ)cos(ωt) (31)

The 2D simulation of the unsteady flow past the blade airfoil of the HAWT in yawed wind could be performed by using a motionless

domain and enforcing the time-dependent freestream velocity defined by conditions (30) and (31). Alternatively, one could also use a

moving-domain simulation with steady farfield conditions and suitably defined grid motion. The modulusWf s and the orientationα f s of

the uniform freestream are obtained by removing the time-dependent term of Eqn. (31), and their expressions are respectively:

Wf s =
√

(Vf scosδ)2 +(ωR)2 (32)

α f s = arctan[(Vf scosδ)/(ωR)] (33)

When using steady farfield boundary conditions, the variability of the inflow state associated with the case of motionless domain is

equivalent to and can be replaced by a horizontal sinusoidalmotion of the grid. The expression of such motion is:

h(t) = h0sin(ωt)

h0 = Vf ssinδ/ω
(34)

The moving domain model has been adopted for the analyses presented in the result section, and it could also be used to perform 2D

experimental measurements aimed at studying the aerodynamic characteristics of HWAT airfoils in yawed wind. A typicalHAWT airfoil

twisted by an angleγ is depicted in the left plot of Fig. 3 along with an indicationof the harmonic motion. The right plot provides a

representation of Eqn. 34, and the four positionsA to D correspond to those labeled with the same symbols in Figures1 and 2.
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Figure 3. HARMONIC MOTION OF HAWT BLADE SECTION CORRESPONDING TO YAWED INFLOW.
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VALIDATION

The second order accuracy of the time-discretization for viscous flows has been verified by computing the unsteady laminar vortex

shedding behind a cylinder. Several simulations have been performed, each of which has used a physical time-step obtained by halving

that of the preceding simulation. The lift and drag forces obtained at a chosen time from each simulation have been used toperform

Richardson’s extrapolations, which have confirmed the second order accuracy of the time-discretization [32]. The second order accuracy

of the convective flux discretization has been verified by computing the solution of a 2D inviscid test case for which the analytical

solution has been determined. The problem has been solved using several grids, which become successively finer by a factor of two in

both directions. Analysis of the RMS of the error between theanalytical solution and the computed solutions obtained byusing these

grids have confirmed the second order of the space-discretization [20]. The second order accuracy of the time- and space-discretization

of the solver using LSP has also been demonstrated by considering an unsteady test case resulting from the superpositionof a uniform

low-speed flow and a steady vortex. The analytical solution of this problem has been used to verify the second order accuracy of COSA

for this type of problem [18].

To validate the implementation of the moving grid capabilities of the COSA solver, the unsteady flow field past a pitching flat plate

has been considered. The time-dependent angular position of the flat plate varies accordind to∆θpsin(ωt), with ∆θp positive in the

clockwise direction. For the case in which the flat plate is aligned with a uniform stream when it takes its mean position (sin(ωt) = 0),

an analytical solution of this problem has been provided by Theodorsen [33]. The input parameters of the analysis are∆θp, the position

of the hinge, the freestream velocityWf s, and the reduced frequencyλ, defined as:

λ = ωc/Wf s (35)

In the selected configuration,∆θp = 1o, the hinge is at 25 % chord from the leading edge, the freestream velocity corresponds to a Mach

number of 0.001, andλ = 0.1. The TD analysis has been carried out using a 6-block grid with 129 points on each side of the flat plate,

97 points before the leading edge and after the trailing edgeand 97 points in the normal direction. The freestream boundaries are placed

at about 5 chords from the flat plate, and the minimum distanceof the first grid points off the plate surface from the plate itself is 0.5 %

of the chord. The period has been discretized with 32 intervals, and the simulation has been run for 2 periods. Figure 4 provides the

theoretical prediction of the amplitude of the first harmonic of the differential static pressure coefficientcp across the flat plate. The static

pressure coefficient is defined ascp = (p− pf s)/0.5ρ f sW2
f s, and the variable on they-axis is the modulus of∆cp = cp,U − cp,L, where

the subscriptsU andL denote upper and lower side respectively. Thex-axis reports the position along the chord. Figure 4 also shows the

profiles of|∆cp| computed by COSA with and without LSP. A very good agreement between the numerical result obtained with LSP and

the theoretical prediction is observed. The bad agreement between theory and numerical prediction without LSP highlights the necessity

of using LSP with low-speed flows to preserve numerical accuracy.
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Figure 4. AMPLITUDE OF THE FIRST HARMONIC OF THE DIFFERENTIAL STATIC PRESSURE COEFFICIENT ACROSS A PITCHING FLAT PLATE:

COMPARISON OF THEORETICAL RESULT AND NUMERICAL PREDICTIONS OBTAINED WITH AND WITHOUT LSP.

Table 1. INPUT PARAMETERS FOR THE 2D UNSTEADY MOVING-GRID CFD ANALYSES OF TWO SECTIONS OF HAWT BLADE.

section M f s α f s (o) φ f s (o) h0/c λ

90 % 0.22 9.1 5.4 1.21 0.076

30 % 0.08 25.8 6.7 0.4 0.622

RESULTS

The 2D laminar flow field past two airfoils of a rotating HAWT blade in yawed wind is considered in this section. The blade height

is 45.7 m and its rotational speed is 17.5 RPM, which corresponds to a value ofω of about 1.83 rad/s. The freestream wind velocity

Vf s is 14 m/s, and a yaw angleδ of 30o is assumed. The sections at 90 and 30 percent blade height areconsidered. The former has

a chordc of 3.16 m and a twistγ of 3.7o; the chord and the twist of the latter are 9.48 m and 19.1o respectively. Using the rotational

speedω, the chord and the relative freestream velocity defined by Eqn. (32), one can calculate the reduced frequencyλ by means of

Eqn. (35). The relative angle of attack (AoA)φ f s is obtained by subtracting the twistγ to the inflow angleα f s defined by Eqn. (33).

Choosing a reference temperature of 288K, one can calculate the Mach numberM f s corresponding toWf s. The set of input data used

for the 2D unsteady moving-grid simulations of the 2 sections is reported in Table 1. The airfoil selected for both sections is the

NACA0012 airfoil, and the Reynolds number has been set to 1000. The C-grid adopted for all simulations has 321 points along the

airfoil, 97 points in the grid cut, and 129 points in the normal-like direction. The farfield boundary is placed at about 20chords from the

airfoil, and the distance of the first grid points off the airfoil surface from the the surface itself is about 0.01 % of the chord. The airfoil

and the whole grid are inclined by the twist angleγ on the horizontal direction. In the unsteady simulation, the whole grid undergoes a

sinusoidal motion defined by Eqn. (34). All TD simulations have been performed using 128 time-intervals per period, and running the
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simulations for 3 periods. The HB analyses for both sectionshave been performed forNH varying between 1 and 5. The CFL number

has been set to 3 for all simulations reported herein. Note that the choice of a relatively thin airfoil with respect to those typically

used in HAWT’s, and the lack of turbulence modeling, result in the unsteady flows analyzed in the next two subsections not being fully

correspondent to those of real HAWT yawed conditions. The main objectives of the following analyses, however, are toa) assess the

accuracy and the computational performance of the HB technology being developed against those of the conventional TD technology,

and thusb) demonstrate the suitability of the HB technology with LSP for unsteady periodic flows with the same kinematic patterns of

yawed HAWT flows.

Section at 90 % blade height

The lift coefficientcl over one rotor revolution computed by the TD analysis and fiveHB analysis withNH = 1, . . .5 is depicted in

Fig. 5, the abscissa of which reports the percentage time of aperiod. The selected period of the TD simulation is the thirdone. These

curves show that an accurate prediction ofcl by means of the HB analysis is achieved withNH ≥ 2. The plot also provides the value

of the AoA φ f s over the period, and it highlights thatcl increases asφ f s decreases and viceversa. This happens because the flow on the

upper side of the airfoil is separated at all times, and the reduction of the separation extent induced by a reduction ofφ f s causescl to

increase. The hysteresis cycles of the lift coefficient, thedrag coefficientcd and the moment coefficientcm are depicted in the three plots

of Fig. 6, which confirms that the HB analyses withNH ≥ 2 lead to an excellent agreement with the TD result.

Figure 5. LIFT COEFFICIENT OF 90 % BLADE SECTION OVER ONE REVOLUTION COMPUTED WITH TD AND FIVE HB ANALYSES.

The real and imaginary part of the pressure coefficientcp computed by the TD analysis and the 5 HB analyses are plotted in

Figures 7-a and 7-b respectively. In both cases, thex-axis reports the position along the axial chordcax = ccosγ. These figures also

confirm that 2 harmonics are sufficient to resolve the flow unsteadiness with the HB analysis. The real and imaginary part ofthe absolute

value of the skin-friction coefficientcf computed by the TD analysis and the 5 HB analyses are instead plotted in Figures 8-a and 8-b

respectively. In this case, one sees that an adequate HB resolution of the imaginary part of|cf | requiresNH ≥ 3. Note that the sudden

slope veering of both the real and imaginary parts of|cf | starting at about 60 % axial chord is due to the oscillation ofthe point where
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a)

b)

c)

Figure 6. HYSTERESIS FORCE LOOPS OF 90 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN FIG. 5):

a) LIFT COEFFICIENT, b) DRAG COEFFICIENT, c) PITCHING MOMENT COEFFICIENT.

separation on the upper side of the airfoil occurs.

The convergence histories of the five HB analyses and that of the TD solver for a particular physical time are reported in Fig. 9.
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a)

b)

Figure 7. PRESSURE COEFFICIENT OF 90 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES: a) REAL PART, b) IMAGINARY

PART.

The variable on thex-axis is the number of multigrid iterations, and the variable lr on they-axis is the logarithm in base 10 of the

RMS of all cell-residuals for allNpde equations. The HB analyses have been run untillr ≤ 1.d−12; the iterative solution process of

each physical time-step of the TD analysis has been stopped either whenlr ≤ 1.d−12 or after 3000 MG iterations if at this stage this

convergence tolerance had not been achieved. For most physical time-steps, however, the prescribed residual tolerance of 1.d−12 has

been achieved well before the limit of 3000 MG iterations. Aninteresting feature is that the convergence histories of all HB analyses

are practically superimposed, and thus independent ofNH . Figure 9 also reports the convergence history for the steady problem, which

differs very little from that of the HB analyses. These convergence data point to the fact that the flow nonlinearity for this problem

is fairly small, and therefore neither the contribution of the first harmonic to the HB source term nor that of the higher harmonics are

sufficient to significantly affect the spectrum of the linearized operator associated with the integration of the HB equations with respect

to that associated with the integration of the steady equations. All these analyses could be performed without the RK stabilization

previously discussed, namely using algorithm (28) for the solution update. Therefore the cost of a single HB MG iteration is with good
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a)

b)

Figure 8. SKIN FRICTION COEFFICIENT OF 90 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN FIG. 7-a):

a) REAL PART, b) IMAGINARY PART.

approximation proportional to 2NH +1. The HBspeed upparameter, defined as the ratio of the wallclock time required to calculate three

periods with the TD solver and a single period with the HB solver for each of the adopted five values ofNH is reported in Table 2. The

first row of speed up parameters refers to results computed using the aforementioned residual tolerancelr of 1.d−12, and it shows that

the accurate HB solution obtained withNH = 3 can be obtained 17 times faster than with the TD analysis reported herein. The blade

forces, however, may achieve an acceptable level of convergence with less stringent residual tolerances. Indeed, comparing the results

of the TD simulation withlr = 1.d−12 and that withlr = 1.d−09 reveals that the maximum difference of the lift and drag coefficients

with respect to their averages over the third period computed with lr = 1.d−12 is smaller than 1.d−01%. Similarly, comparing the

results of the HB simulations withlr = 1.d− 12 and that withlr = 1.d− 09 reveals that the maximum difference of the lift and drag

coefficients with respect to their averages over the third period computed withlr = 1.d−12 is of order 1.d−04%. The second row

of speed up parameters of table 2 refers to results computed using residual tolerancelr of 1.d−09, and it shows that the HB solution

obtained withNH = 3 can be obtained 8 times faster than with the TD analysis.
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Figure 9. CONVERGENCE HISTORIES OF TD, HB AND STEADY ANALYSES FOR 90 % BLADE SECTION.

Table 2. ACCELERATION FACTORS OF HB ANALYSES WITH RESPECT TO TIME-DOMAIN ANALYSIS FOR THE 90 % BLADE SECTION.

lr NH 1 2 3 4 5

1.d-12 speed up40.8 24.3 17.4 13.5 11.0

1.d-09 speed up19.3 11.4 8.2 6.3 5.2

Section at 30 % blade height

The flow regime associated with this section is more complex than that of the 90 % section, because the reduced frequency ofthe

former is nearly 10 times that of the latter. The lift coefficientcl over one rotor revolution computed by the TD analysis and fiveHB

analysis withNH = 1, . . .5 is depicted in Fig. 10. These curves show that an accurate prediction ofcl by means of the HB analysis is

achieved withNH ≥ 3. More precisely, the HB solution obtained withNH = 3 still presents some discrepancies with respect to the TD

solution, whereas the HB solutions forNH = 4 andNH = 5 are practically superimposed on the TD solution. The plot also highlights

that, unlike in the case of the 90 % section,cl increases asφ f s increases and viceversa. This happens because the flow does not separate,

possibly due to the high value ofλ, and therefore the airfoil response is closer to the steady ascending branch of a standard lift/AoA

curve. The hysteresis cycles ofcl , cd andcm are depicted in the three plots of Fig. 11, the inspection of which confirms that the HB

analyses withNH ≥ 3 lead to an excellent agreement with the TD result.

The real and imaginary part ofcp computed by the TD analysis and the five HB analyses are plotted in Figures 12-a and 12-b

respectively. These figures may lead one to believe that 2 harmonics are sufficient to resolve the flow unsteadiness with the HB analysis,

particularly if one considers the real part ofcp. These plots, however, show only the first harmonic of the unsteady flow. The fact

that the hysteresis force loops highlight that 2 harmonics are not sufficient to fully resolve the periodic unsteady flow highlights that a

non-negligible contribution of the second harmonic is present. Since one of the main output functionals of the yawed wind analysis is

the time-dependent force at the attachment of the blade rootto the rotor hub, the contribution of the higher order harmonics cannot be
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Figure 10. LIFT COEFFICIENT OF 30 % BLADE SECTION OVER ONE REVOLUTION COMPUTED WITH TD AND FIVE HB ANALYSES.

neglected in practical applications, as doing so may resultin the inaccurate estimate of the time-dependent structural stress at the blade

attachment. The real and imaginary part of the absolute value ofcf computed by the TD analysis and the 5 HB analyses are providedin

Figures 13-a and 13-b respectively. The plot of the imaginary part shows more clearly that at least 3 harmonics are required in order to

fully capture the viscous unsteady characteristics of thisproblem.

The convergence histories of the five HB analyses and that of the TD solver for a particular physical time are reported in Fig. 14.

As for the section at 90 % blade height, the HB analyses have been run untillr ≤ 1.d−12; the iterative solution process of each physical

time-step of the TD analysis has been stopped either whenlr ≤ 1.d−12 or after 3000 MG iterations if at this stage this convergence

tolerance had not been achieved. For most physical time-steps, the prescribed residual tolerance of 1.d−12 has been achieved using

all 3000 MG iterations. Unlike the case of the 90 % blade section, one now sees that the convergence histories of the 5 HB analyses

are not superimposed, and the convergence rate of the HB analyses appears to decrease asNH increases. Figure 14 also reports the

convergence history for the steady problem, which shows that the steady solver converges to the required level of convergence using

fewer iterations than all HB analyses. A closer inspection of this figure reveals that the asymptotic convergence rate (i.e.the constant

slope of the residual curves after the initial numerical transient) of the steady and the HB solver is about the smae. As discussed in the

section on the integration of the HB equations, these patterns may be due to a significant nonlinearity of the unsteady flow, which results

in a large contribution of the HB source terms to the overall HB Jacobian. Such contribution may increase the non-normality of the

HB Jacobian with respect to that of the steady equations, resulting in an initially slower decay of the HB residuals. The analysis of the

sectional forces has highlighted that not only the first but also the higher order harmonics contribute to this unsteady flow. Therefore, the

non-normality of the HB Jacobian is likely to increase withNH , which may explain the increasing reduction of the initial convergence

rate asNH is increased. The higher nonlinearity of the flow field of the 30 percent section with respect to that of the 90 percent section

is caused primarily by the higher reduced frequency of the motion of the former section. It is the authors’ experience that the abovesaid

dependence of the HB convergence rate onNH always increases with the flow nonlinearities. As with the 90percent blade section, these

HB analyses could be performed without the RK stabilizationpreviously discussed, namely using algorithm (28) for the solution update.

It has also been verified that the use of the stabilized integration (29) results in negligible changes of the convergencehistory of the 5 HB
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b)

c)

Figure 11. HYSTERESIS FORCE LOOPS OF 30 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN FIG. 10):

a) LIFT COEFFICIENT, b) DRAG COEFFICIENT, c) PITCHING MOMENT COEFFICIENT.

analyses with respect to the curves of Fig. 14. The HB speed upparameter is reported in Table 3. One sees that the accurate HB solution

obtained withNH = 4 can be obtained more than 10 times faster than with the TD analysis reported herein. Similarly to what done in
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b)

Figure 12. PRESSURE COEFFICIENT OF 30 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES: a) REAL PART, b) IMAGINARY

PART.

the case of the 90 percent blade section, the speed up parameters corresponding to the analyses performed withlr = 1.d−09 have also

been considered. Comparing the results of the TD simulationwith lr = 1.d−12 and that withlr = 1.d−09 reveals that the maximum

difference of the lift and drag coefficients with respect to their averages over the third period computed withlr = 1.d− 12 is smaller

than 1.d−01%. Similarly, comparing the results of the HB simulationswith lr = 1.d−12 and that withlr = 1.d−09 reveals that the

maximum difference of the lift and drag coefficients with respect to their averages over the third period computed withlr = 1.d−12 is

of order 1.d−01%. The second row of speed up parameters of table 3 refers toresults computed using residual tolerancelr of 1.d−09,

and it shows that the HB solution obtained withNH = 4 can be obtained 8 times faster than with the TD analysis.

The quantitative effects of LSP on the estimate of the sectional lift force are assessed in the plot of Fig. 15, the abscissas of which

report time as a fraction of a period. The left ordinates report the lift coefficient computed using LSP, and the right ordinates report

the absolute value of the percentage error between the lift coefficient computed with LSP and that computed without. One sees that

the maximum error is above 4 %. The inaccuracy of the prediction without LSP grows as the Mach number decreases. In the case
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b)

Figure 13. SKIN FRICTION COEFFICIENT OF 30 % BLADE SECTION COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN

FIG. 12-a): a) REAL PART, b) IMAGINARY PART.

Figure 14. CONVERGENCE HISTORIES OF TD, HB AND STEADY ANALYSES FOR 30 % BLADE SECTION.
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Table 3. ACCELERATION FACTORS OF HB ANALYSES WITH RESPECT TO TIME-DOMAIN ANALYSIS FOR THE 30 % BLADE SECTION.

lr NH 1 2 3 4 5

1.d-12 speed up48.1 22.4 16.0 12.4 10.2

1.d-09 speed up30.7 15.3 10.6 8.1 6.2

of turbulent conditions the inaccuracies due to the lack of LSP become even larger, and they may lead to significantly different stall

characteristics of the section [34].

Figure 15. LIFT COEFFICIENT OF 30 % BLADE SECTION COMPUTED BY TD ANALYSIS WITH AND WITHOUT LOW-SPEED PRECONDITIONING.

CONCLUSIONS

The numerical models underlying the implementation of a novel harmonic balance compressible Navier-Stokes solver with low-

speed preconditioning for wind turbine unsteady aerodynamics have been presented. The integration of both the harmonic balance

and the time-domain equations is based on a multigrid iteration using a multi-stage Runge-Kutta smoother, and including local time-

stepping and implicit residual smoothing for further convergence acceleration. In the framework of the dual-time stepping method

used for solving the time-domain problem, the explicit multigrid integration can present a numerical instability whenthe local pseudo-

time-step is much larger than the physical time-step. Previous experience of the authors with the harmonic balance solver described

in this paper lead one to believe that a numerical instability of similar origin can also arise when using the same multigrid approach

for the solution of the harmonic balance equations. Therefore, a novel stabilization procedure for the multigrid integration of the HB

NS equations has been designed and presented herein. The harmonic balance solver with low-speed preconditioning is well suited

for the analyses of periodic wind turbine flows. The computational performance and the accuracy of the technology being developed

have been assessed by computing the flow field past two sections of a horizontal axis wind turbine blade in yawed wind with both the

27 TURBO-10-1073, M.S. Campobasso



time- and frequency-domain solvers. Results highlight that the harmonic balance solver features accuracies comparable to those of its

time-domain counterpart, and yields a reduction of computational costs of about one order of magnitude with respect to the time-domain

solver. The aerodynamic analyses presented herein are laminar and two-dimensional. A substantially larger reductionof computational

times is expected for the case of periodic turbulent three-dimensional flows. The time-domain analysis of these problems, in fact, is

likely to require a higher time-resolution per period and possibly a larger number of cycles before a periodic state is achieved. In these

circumstances the benefits of using the harmonic balance technology will be even higher than those reported in this paper.
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