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A new method is introduced for analysis of interactions between time-dependent coupled oscillators,
based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase
slips and enables the evolution of the coupling functions and other parameters to be followed. It is based
on phase dynamics, with Bayesian inference of the time-evolving parameters achieved by shaping the
prior densities to incorporate knowledge of previous samples. The method is tested numerically and
applied to reveal and quantify the time-varying nature of cardiorespiratory interactions.
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The common assumption that a dynamical system under
study is isolated and autonomous is never rigorously true.
Furthermore, it is often a poor approximation, because the
inevitable external influences may be too strong to ignore.
For an oscillatory system, they can, e.g., modify its natural
frequency and/or amplitude. Much effort has therefore
been devoted to understanding nonautonomous oscillators
driven from equilibrium by a variety of external forcings. A
more difficult problem is faced where two or more inter-
acting oscillatory systems are subject to external determi-
nistic influences, a scenario that often arises in practice,
e.g., in physiology including cellular dynamics, blood
circulation, and brain dynamics. In such cases, the inter-
acting systems (e.g., cardiorespiratory) are influenced by
other oscillatory processes as well as by noise. Similarly,
interactions at the intercellular level [1] and between sub-
cellular components [2] are crucial to multicellular organ-
isms. Evaluation of the interactions by analysis of
physiological signals ([3] and references therein) has
proved useful in relation to a diversity of different diseases.

Granger causality [4,5] and transfer entropy [6,7] have
brought insight into the functional connectivity of systems,
especially in neuroscience. Based on autoregressive and
information-theoretic approaches to data-driven causal in-
ference, these methods focus on the statistical properties of
the time series by measuring the extent to which the
individual components exchange information. However,
these methods are designed to infer effect, not mechanism.
In contrast, we consider here complex interacting systems
that are oscillatory and subject to noise and extract their
dynamical properties.

Several questions immediately arise in relation to the
dynamics of coupled systems. Does the external influence
alter their natural frequencies or amplitudes? Are they
synchronized, or do they exhibit finite coherence? If syn-
chronized, is it continuous or only for some of the time?
Measurements may be relatively straightforward, using
modern sensors and digital signal acquisition equipment,
but how are the resultant signals to be analyzed to reveal
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the characteristics of the originating systems? To date, this
inverse problem has no solution.

Earlier work on coupled oscillators emphasized the
detection of synchronization [8—11] and quantifying the
couplings and directionality of influence between the os-
cillators [12-15]. The inference of an underlying phase
model enabled extraction of the phase-resetting curves,
interactions, and structures of networks [16-21].
However, these techniques inferred neither the noise dy-
namics nor the parameters characterizing the noise. In a
quite separate line of development, Bayesian inference
[22-27] has opened the door to the analysis of noisy
time-evolving phase dynamics.

In this Letter, we introduce a new method that
(a) encompasses time-variable dynamics, (b) detects syn-
chronization where it exists, and (c) determines the inter-
oscillator coupling functions regardless of whether or not
they are time varying. By reconstructing the dynamics in
terms of a set of base functions, we evaluate the probability
that they are driven by a set of equations that are intrinsi-
cally synchronized, distinguishing phase slips of dynami-
cal origin from those attributable to noise. The Bayesian
probability lying at the core of the method is itself time
dependent via the prior probability as a time-dependent
informational process. Thus relatively small windows can
provide good time-resolved inference.

When two noisy, weakly interacting, N-dimensional,
self-sustained oscillators synchronize [28], their motion
is described by their phase dynamics:

b= w; + fi(d) + gi(b;, b)) + &(1), (1)

leaving other coordinates expressed as functions of the
phase: r; = r;(¢;). £ is a two-dimensional noise, usually
assumed Gaussian and white, (£;(1)€;(7)) = 6(t — T)E;;
and which may, or may not be, spatially correlated.
Noise can induce phase slips in a system that would be
synchronized in the noise-free limit, so evaluation of syn-
chronization needs precise inference of f; and g;, and of
the noise matrix E;;. The systems’ periodic nature suggests

© 2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.109.024101

PRL 109, 024101 (2012)

PHYSICAL REVIEW LETTERS

week ending
13 JULY 2012

periodic base functions, hence, the use of Fourier terms for
the decomposition:

fid) = &ysin(ke,) + &y cos(ke,),

k=—o00

gi(o;, ¢J) = Z Z 5i;mei2wr¢iei2#s¢j.

§=—00 r=—00

2)

Assuming that the dynamics is adequately described by a
finite number K of Fourier terms, we can rewrite the phase
dynamics of (1) as a finite sum of base functions:

K
b= (b, b2) + £1(0), (3)

=K

where [ = 1,2, @y = O,y =1, cg) = w,, and other @,
and cg) are the K most important Fourier components.

In order to reconstruct the parameters of (3), we exploit
the approach already presented in [25,26] assuming

that a two-dimensional time series of observational data
X ={¢;, = ¢,(t,)} (t, = nh) is provided and that the
unknown model parameters M = {cff), E;;} are to be
inferred.

In Bayesian statistics a given prior density ppo(M)
that encloses expert knowledge of the unknown parameters
(based on previous observations) and the likelihood func-
tion €(X|M), the probability density to observe {¢; (1)}
given choice M of the dynamical model, are used to
calculate the so-called posterior density px(M|X)
of the unknown parameters M, conditioned on observa-
tions, by application of Bayes’ theorem py(M|X) =
g(leVl)pprior(m)/ fe(-xlm)ppnor(m)dm

For independent white Gaussian noise sources, and in

the midpoint approximation where ¢, = w and

&7, = (10 + dras1)/2, the likelihood is given by a
product over n of the probability of observing ¢;,+

at each time. The negative log-likelihood function
S = —Iné(X|M) is

N G (0P
=—In|E|+ —
S > n|E| 2,§)<Ck s

T Ldin — DT DIE )L —cy>®j,k<¢.*;n>])

with implicit summation over repeated indices k,/,i,j. The
log-likelihood is a function of the Fourier coefficients of
the phases. Hence, for a multivariate prior probability, the
posterior probability is a multivariate normal distribution.
From [25,26], and assuming such a distribution as a prior
(0
k

for parameters c;’, with mean ¢, and covariances E_lpri o

the stationary point of S is calculated recursively from

Eij = N(Q”i,n - ng)q)i,k(d)-',n))((bj,n - C;g)q)j,k((b-,n)),
r%) = (E;rilor);civ,vl')cw + hq)i,k((ﬁfin)(E_l)ij(ﬁj,n—i—
_ha®u(e.)
2 i,
B = BUD R (BLIET P (05), @)
with implicit summation over n = 1,..., N and over re-

peated indices k,l,i,j,w. The mean parameter vector of the
posterior is then ¢!’ = (E~1){:)/{). We note that a non-
informative flat prior can be used as the initial limit of an
infinitely large normal distribution, by setting =, = 0
and Cpyior = 0. The multivariate probability N x(cl, ¢, E)
for the given time series X explicitly defines the probabil-
ity density of each parameter set of the dynamical system.

When the sequential data come from a stream of mea-
surements providing multiple blocks of information, one
applies (4) to each block. If the system is known to be non-
time varying, then the posterior density of each block is
taken as the prior of the next one. Thus, the uncertainties in
the parameters steadily decrease with time as more data are
included.

If the system has time dependence, however, the method
of propagating knowledge about the state of parameters
obviously has to be refined. Our framework prescribes the
prior to be multinormal, so we synthesize our knowledge
into a squared symmetric positive definite matrix. We
assume that the probability of each parameter diffuses
normally with a known diffusion matrix 4. Thus, the
probability density of the parameters is the convolution
of two normal multivariate distributions, Epost and
2 gite: Egiolr = 20t T 2lier-

The particular form of 34 describes which part of the
dynamical fields defining the oscillators has changed, and
the size of the change. In general (y);; = p;j0;0;,
where o; is the standard deviation (SD) of the diffusion
of ¢; in the time window 7, and p;; is the correlation
between the change in the parameters ¢; and c;. We will
consider a particular example of 2 we assume there is
no change of correlation between parameters (p;; = 0;;)
and that each SD o; is a known fraction of the relevant
parameter, o; = p,,c;, where p,, indicates that the parame-
ter p refers to a window of length ¢,,.

The probability of synchronized dynamics is estimated
by sampling the posterior and evaluating its overlap with
the Arnold tongue border: py,. = [s(c) N x(clé, E)de,
where s(c) = {1, 0} defines whether the parameter set c is
inside or outside the synchronization region. For motion on
the torus T? defined by the toroidal coordinate
(& (1), d,(1)), and the polar coordinate (), we consider
a Poincaré section defined by { =0 and assume that
d{(1)/dt| ;o > 0 for any ¢. Thus, the direction of motion
along the toroidal coordinate is the same for every point of
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the section, which we would like to follow in order to
check whether there is a periodic orbit. If so, and if its
winding number is zero, then the system is synchronized,
and there must be at least one other periodic orbit with one
of them being stable and the other unstable.

Solution of the dynamical system over the torus yields a
map M: [0, 27r] — [0, 247] that defines, for each s, on the
Poincaré section, the next phase ¢,+; after one period of
the toroidal coordinate: ¢, = M(y,). The map M is
continuous, periodic, and has two fixed points (one stable
and one unstable) if and only if there are two periodic orbits
for the dynamical system; i.e., synchronization is verified if
i, exists such that ¢, = M(,) and |dM(¢,)/dy| < 1.
To calculate s(c) for any of the sampled parameter sets, we
(i) fix an arbitrary { and, for any ¢, integrate (3) numeri-
cally for one cycle of the toroidal coordinate, obtaining the
mapped point M (i), and (ii) by finite difference evaluation
of dM/dys employ a modified version of Newton’s root-
finding method to find the occurrence (if any) of ¢ such that
M() = . If there is a root, s(c) = 1 is returned; other-
wise, s(c) = 0 is returned.

From the inferred parameters of the base functions
fi(é:), gi(di, ¢;), we can reconstruct the specific func-
tional form that governs interactions among the oscillators
q:(¢;, ¢ ;). The novel advantage of this framework is that it
allows reconstruction of the time variability and evolution
of such coupling functions. Simple normalization of the
inferred coupling parameters yields the inter-oscillator
coupling strengths, and thence the directionality index
[12-15]. If D € (0, 1] the first oscillator drives the second
(1 —2), orif D € [—1, 0) the second (2 — 1) drives the
first. Note that, although (for simplicity and clarity) our
discussion relates to two oscillators, Egs. (1)-(4) are also
applicable to a network of oscillators.

As a demonstration of how the synchronization detec-
tion works, we simulated numerically a pair of coupled,
noisy, phase oscillators (1). Bayesian inference followed
by examination of the constructed map M(i,) showed that
our approach successfully distinguishes synchronized
(s(c) =1) from unsynchronized dynamics (s(c) = 0),
i.e., whether the root M(y,) = i, exists or not. To dem-
onstrate the novelty of our method, we consider the char-
acteristic case illustrated in Fig. 1. The parameters were
such that the oscillators were only just inside the Arnold
tongue so that, for moderate noise, phase slips occurred, as
shown schematically in Fig. 1(a). The application of earlier
methods based on the statistics of the phase difference
[8-10] suggests that the oscillators are not synchronized.
In contrast, our new technique shows that the oscillators
are intrinsically synchronized as shown in Fig. 1(c): the
phase slips are attributable purely to noise (the intensity of
which is inferred in matrix E; j), and not to deterministic
interactions between the oscillators.

To see how the new method can also follow time
variations of the parameters, coupling functions, and
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FIG. 1 (color online). Synchronization discrimination for the
coupled phase oscillators (1) with: w; =1.2, w, = 0.8, &y = 0.1,
gy = 0.35, fi(¢;) = 0, g, = sin(¢y — ¢1), & = sin(¢p, — ¢»),
and noise strengths E1; = E,, = 2. (a) Schematic Arnold tongue to
illustrate synchronization [36]. (b) Phase difference, exhibiting two
phase slips. (c) Map of M(i,) for (b) demonstrating that a root of
M(i) = i exists, i.e., that the state is, in fact, synchronized.

synchronization, we take as an example two coupled noisy
Poincaré oscillators:

. _(,/xg Ty - 1>xl~ — @i (0)y; + 80 (x; — x) + &,(1)

yVi= —(Vx% +y52 - 1))’[ + w;(t)x; + Si(f)()’j —y)+ &)
with i=1,2;j=1,2;i # j. (5)

We consider bidirectional coupling (1 < 2), where the
natural frequency of the first oscillator, and its coupling
strength to the second one, vary periodically. For £; = 0.1,
there is no synchronization: the time-varying parameters
(f1(¢) and &,(z)) are accurately traced [full red lines of
Figs. 2(a) and 2(b)]. For a coupling of &; = 0.3, the two
oscillators will be synchronized for part of the time, result-
ing in intermittent synchronization. The time variability of
the parameters in the nonsynchronized intervals is again
determined correctly whereas, within the synchronized
intervals, the inferred parameters [dashed lines in (a),(b)]
diverge from their true values (full red curves). Within
these synchronized intervals, all of the base functions are
highly correlated, with values lying within the Arnold
tongue. The latter was detected as the range for which
s(c) = 1, gray-shaded in Figs. 2(a) and 2(b).

The reconstructed sinelike functions ¢q;(¢,, ¢,) and
q>(d, ¢d,) are shown in Figs. 2(c) and 2(d) for the first
and second oscillators, respectively. They describe the
functional form of the interactions between the two
Poincaré systems (5). The results suggest that the form of
the coupling functions does not evolve with time: ¢g; and
q,, evaluated for later time segments, are presented in
Figs. 2(e) and 2(f), respectively. By comparison of
Figs. 2(c) and 2(e), or of Figs. 2(d) and 2(f), we see that
the coupling functions did not change qualitatively, even
though there were time-varying parameters and weak ef-
fects from the noise.

It is well known that modulation and time variations tend
to affect synchronization between biological oscillators
[3,29,30]. Hence, the need for a technique able not only to
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FIG. 2 (color online). Extraction of time-varying parameters,
synchronization, and coupling functions from numerical data
created by (5). The plots show the results inferred for the numeri-
cal values of constants listed in the text. The frequency f(¢) and
coupling &,(f) are independently varied: (a) w,(f) = w,+
Ay sin(@,1); (b) &,(f) = &, + A, sin(@,1). The dotted and full
lines plot the parameters when the two oscillators are synchro-
nized for part of the time (¢; = 0.3), and not synchronized at all
(g1 = 0.1), respectively. The regions of synchronization, found by
calculation of the synchronization index, are indicated by the gray
shaded regions. (¢)—(f) show the coupling functions g;(¢, ¢,)
and ¢,(¢;, ¢,) for time windows centered at different times: (c)
and (d) at r = 350s; (e) and (f) at + = 1000s. The window length
t,, = 50s,and £; = 0.1 in both cases. Note the similarity in forms
of (c) and (e), and of (d) and (f). The other parameters were:
g, =0.1,w, =271, w, =271.14,A; = 0.2, A, = 0.13, &, =
270.002, @, =270.0014 and noise E;; = E;; = 0.1. The
phases were estimated as ¢; = arctan(y;/x;).

identify time-varying dynamics but also to evaluate mea-
sures of interaction, e.g. synchronization, directionality,
and coupling functions. To demonstrate the method on
real biological data, we analyzed cardiorespiratory mea-
surements from resting human subjects whose paced respi-
ration was ramped down with decreasing frequency. The
instantaneous cardiac phase was estimated by wavelet
synchrosqueezed decomposition [31] of the ECG signal.
Similarly, the respiratory protophase was extracted from the
CO, concentration signal, followed by transformation [19]
to the phase. The results are shown in Fig. 3. First, just for
comparison, the corresponding synchrogram [28] of the
same data is presented in (a). The time variation of the
respiration frequency is clearly evident in (c). By normal-
izing the inferred coupling parameters, we determined the
net directionality of the interactions. Fig. 3(d) suggests that

sync

I

() [Hz]

D(t)

FIG. 3 (color online). Synchronization, directionality, and cou-
pling functions in the cardiorespiratory interaction. (a) Standard
1:N synchrogram. (b) Synchronization index for ratios 1:4, 1:5,
and 1:6, as indicated. The light-gray dotted line represents the
mean, and the dark-gray dashed line the mean +2 SD, of
synchronization indices calculated from 100 surrogate [37]
realizations. (c) The time-varying respiration frequency (note
the downward ramp due to pacing). The gray areas in (c)
represent =2 SD from the mean value. (d) Directionality index
(full curve); the light-gray dotted line represents the mean
directionality index calculated from 100 surrogate realizations,
and the dark-gray dashed line represents the mean +2 SD.
(e)=(g) coupling functions q,(¢;, ¢,) calculated at different
times, as indicated by the gray arrows.

the degree of directionality is time varying; the analyses
confirm that respiration-to-heart is dominant [3,12—15],
even for nonpaced respiration (not shown). The set of
inferred parameters and how they are correlated can be
used to determine whether cardiorespiratory synchroniza-
tion exists and, if so, in what ratio. Fig. 3(b) shows tran-
sitions from the non-synchronized to the synchronized
state, in ratios 1:4 to 1:5 to 1:6, as the ramp progressed.
The cardiorespiratory coupling function, evaluated
for three different time windows, is presented in
Figs. 3(e)-3(g). Note that the interactions are now described
by complex functions whose form changes qualitatively
over time—cf. Fig. 3(e) with Figs. 3(f) and 3(g).
This implies that, in contrast to many systems with
time-invariant coupling functions (e.g., Figs. 2(c)-2(f) or
[32-34]), the functional relations for the interactions of an
open (biological) system can themselves be time-varying
processes. By analyzing consecutive time windows, we can
even follow the time evolution of the coupling functions—cf.
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the similarities i.e. evolution of Figs. 3(f) and 3(g) (see
Supplementary Material [35]). It is important to note that
the variability in form of the coupling function can cause
synchronization transitions. This variability is not caused by
the time-varying respiration frequency (which is decom-
posed separately). We also observed time evolution of the
coupling functions for spontaneous (nonpaced) breathing.

In summary, our new method for inference of phase
dynamics enables the evolution of a system to be tracked
continuously. Unlike earlier methods that only detect the
occurrence of transitions to or from synchronization, it
reveals details of the phase dynamics, describing the in-
herent nature of the transitions and simultaneously deduc-
ing the characteristics of the noise that stimulated them.
We have identified the time-varying nature of the functions
that characterize interactions between open oscillatory
systems. The cardiorespiratory analysis demonstrated that
not only the parameters but also the functional relation-
ships can be time varying, and the new technique follows
their evolution effectively. This novel facility immediately
invites many new questions, e.g., the functional forms
between which the couplings vary, their frequencies of
variation, how their variation affects synchronization tran-
sitions, and whether there is periodicity or a causal rela-
tionship waiting to be identified and understood. Thus, a
whole new area of investigation has become accessible.
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