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Classical and quantum magneto-oscillations of current flow near a p-n junction in graphene
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The proposed semiclassical theory predicts two types of oscillations in the flow of current injected from a
point source near a ballistic p-n junction in graphene in a strong magnetic field. One originates from the classical
effect of bunching of cyclotron orbits of electrons passing back and forth across the p-n interface, which displays
a pronounced dependence on the commensurability between the cyclotron radii in the n and p regions. The other
effect is caused by the interference of monochromatic electron waves in p-n junctions with equal carrier densities
on the two sides and it consists of magneto-oscillations in the current transmission through the interface with
periodicity similar to Shubnikov–de Haas oscillations.
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Graphene is a gapless semiconductor with charge carriers
that behave as massless Dirac particles,1,2 in which it is
possible to locally control the carrier density and type using
local electrostatic gates, and create p-n junctions.3–6 Due to
the Dirac-type properties of the carriers, such p-n junctions
are highly transparent for incoming electrons.7,8 Also, it has
been suggested that p-n junctions in ballistic graphene may
be able to focus flow of electrons injected through a pointlike
source,9 which is the result of the inverted dispersions εc = vp

and εv = U − vp, for electrons in the conduction and valence
bands on opposite sides of the junction, and consequently, an
effectively negative index of refraction for electron trajectories.

In this Rapid Communication we study the features in the
flow of electrons injected in the vicinity of a p-n junction
in ballistic graphene in a magnetic field, resulting from the
negative refraction of electrons crossing the p-n interface.
Reflected and transmitted electrons follow trajectories which
combine elements of skipping orbits10–12 (formed by re-
peatedly reflected electrons) and snaking orbits (formed by
electrons repeatedly crossing the p-n interface). In a recent
experimental work,13 signatures of such snaking orbits were
observed in transport measurements on gated graphene p-n
junctions. Also, it has been noticed14,15 that when skipping
orbits originate from a pointlike source, they bunch into
caustics and exhibit focusing of charge flow at periodically
repeated cusps. Here, we show that the periodic appearance
of caustics and their cusps is also characteristic for the
combined skipping-snaking orbits of electrons propagating
along a p-n interface in ballistic graphene, and we analyze how
the resulting singularities in the flow of current injected using a
pointlike source depend on the relative value of the densities of
carriers (electrons or holes) on the two sides of the p-n junction.

A typical distribution of current calculated in such a system
is illustrated in Fig. 1, where the formation of the p-n junction
is defined using a pair of split gates providing a potential step
U = v(pn + pp) for electrons in graphene, and the maxima in
the current intensity are marked as the bright spots. Also, we
find that for a junction with equal carrier densities on the two
sides, the distribution of current displays additional quantum
magneto-oscillations.

The proposed theory is based on the analysis of the families
of orbits of electrons injected, e.g., on the n side of the p-n

junction at a distance x0 from it. The radii of the electron
cyclotron orbits on either side of the interface are given by
rn(p) = pn(p)/eB, where pn(p) are the electron Fermi momenta
in the doped regions. Also, as in Ref. 8, we assume the p-n
junction potential step U to be sharp on the scale of the electron
Fermi wavelength. For each individual trajectory, such as
shown in Fig. 2, an electron leaves the source at a certain angle
ϑ , 0 < ϑ < 2π . The following path of the electron consists of
a sequence of circular segments on either the n-doped (with
radius rn) or the p-doped (with rp) side, which are matched at
the interface by the kinematically prescribed Snell’s law with
negative refraction index,9

rn sin θ = −rp sin θ ′, sin θ = − sin ϑ − x0

rn

. (1)

Here, the values of electron momenta pn(p) [where v(pn +
pp) = U ] are absorbed in the values of the cyclotron radii rn(p),
and θ is the angle of incidence and specular reflection, while
θ ′ is the angle of refraction. The sign of the refraction index
in Eq. (1) is negative because the group velocity is �vc = v �p/p

in the conduction band and �vv = −v �p/p in the valence band.
The latter relation also prescribes the reversal of the direction
of the electron’s angular velocity as it crosses the interface,
making electrons drift along the p-n interface in a magnetic
field (Fig. 2).

To describe the distribution of the current carried by the
drifting electrons, one has to take into account that electron
trajectories branch at the interface, with the probability WT (θ )
to be transmitted and WR = 1 − WT to be reflected. For
electrons arriving at a sharp p-n interface with angle of
incidence |θ | < θc,7,8

WT = 4 cos θ
√

1 − κ2 sin2 θ

(cos θ + √
1 − κ2 sin2 θ )2 + (1 + κ)2 sin2 θ

, (2)

and WT = 0 for |θ | � θc, where sin θc = 1/κ and κ = rn/rp.
Branching of the electron trajectories can be then labeled by a
sequence,

M = {s1,s2, . . . ,sN(M)−1,sN(M)}, (3)

where si = +1 if the ith circle segment is on the n side and
si = −1 if it is on the p side of the junction. Together with ϑ ,
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FIG. 1. (Color online) Current distribution in a graphene p-n
junction in a perpendicular magnetic field, with electrons injected
isotropically at the Fermi energy from the point source S.

the sequence uniquely defines the path with N circle segments,
as shown in Fig. 2. Using Snell’s law (1) and elementary
geometry, one can show that the centers of all cyclotron orbits
whose segments belong to the sequence M are positioned at
the same distance X(ϑ) from the p-n interface.

To calculate the density �(x,y) of trajectories on the
graphene sheet, we define a generating function,15

F (x,y,ϑ,M) ≡ [x − X(ϑ)]2 + [y − Y (ϑ,M)]2 − r2(M),

Y (ϑ,M) =
N(M)−1∑

i=1

[
(zi(M) + 2)

√
r2
n − X2(ϑ)

2

− (zi(M) − 2)

√
r2
p − X2(ϑ)

2

]
− rn cos ϑ,

(4)
X(ϑ) = x0 + rn sin ϑ,

r(M) = sN(M)
rn − rp

2
+ rn + rp

2
,

zi(M) = si(M) + si+1(M).

FIG. 2. (Color online) Branching of trajectories of electrons
propagating in a magnetic field along an asymmetric, rn �= rp (top),
and symmetric, rn = rp (bottom), p-n junction.

For each ϑ and M, a point (x,y) lies on the N th segment of
the path if F = 0, thus, the density of trajectories is

�(x,y) =
∑
M

[1 − sN(M) sgn x]

×
∣∣∣∣∂F

∂ϑ

∣∣∣∣
−1

F=0

(WT )nT (M)(1 − WT )nR(M),

nR(M) = N (M) + S̃(M) − 1

2
,

(5)

nT (M) = N (M) − S̃(M) − 1

2
,

S̃(M) =
N(M)−1∑

i=1

si(M)si+1(M),

where we take into account all sequences whose final segments
pass through (x,y) for all possible ϑ which solve the equation
F = 0, and nR(nT ) is the number of reflections(transmissions)
contained in the sequence M.

Figure 3 shows the spatial distribution of �(x,y), calculated
from Eq. (5), which illustrates spreading of current flow
injected from a pointlike source along the p-n interface,
for various combinations of system parameters: x0, rn, and
rp. It reflects the periodic appearance of singularities in the
skipping-snaking orbits (caustics and caustic cusps), weighted
with the reflection or transmission probabilities. In Fig. 3,
caustics are seen as bright lines, indicating the points (xc,yc)
on the two-dimensional (2D) plane where both F = 0 and
∂F/∂ϑ = 0:

xc(ϑ,M) = X(ϑ) ± β(ϑ,M)r(M)√
α2(ϑ) + β2(ϑ,M)

,

yc(ϑ,M) = Y (ϑ,M) ± α(ϑ)r(M)√
α2(ϑ) + β2(ϑ,M)

, (6)

α(ϑ) = dX(ϑ)/dϑ, β(ϑ,M) = dY (ϑ,M)/dϑ.

Cusps, representing the bright spots of “magnetic focusing”of
the electron flow,14,15 appear at the points where, additionally,
∂2F/∂2ϑ = 0.

When rp = 0 (first column of Fig. 3), all electrons striking
the interface on the n side are reflected, so that, classically,
current would flow only on the side of the source, displaying
singularities (single cusps as well as cusp triplets) in the
distribution specific for the families of simple skipping
orbits.15 As rp is increased (second column), electrons start
getting transmitted to the p side, leading to caustics and
cusplike features on both sides of the interface. As rp is made
comparable to rn, the critical angle θc disappears, and the
strength of features produced by reflected electrons diminishes
significantly (third column). In fact, for x0 = rn = rp, the
caustics and cusps produced by skipping trajectories vanish,
and we only find the features produced by snaking orbits,
leading to a doubling of the period of appearance of cusps, as
compared to the case of purely skipping trajectories. As rp is
increased further (fourth column), the period of appearance of
cusps of snaking orbits and the number of cusps of skipping
orbits between consecutive cusps of snaking orbits increase.
Note that, in the general case of rn �= rp, the trajectories
for different paths are not commensurate for all angles. This
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FIG. 3. (Color online) Calculated density of current injected from a pointlike source (bright spot) near the p-n junction. Electrons are
injected isotropically at a distance x0 from the interface and travel along the interface, undergoing transmissions and reflections. Spatial
oscillations of current distribution are caused by a periodic appearance of caustics and cusp singularities.

determines a complex pattern of current distribution. In special
cases where the radii rn and rp are commensurate (rp = mrn),
the singularities in the current distribution on the side of
the source or the opposite side of the p-n junction display
long range periodicity at mrn. The evolution of the current
distribution upon the change of magnetic field and carrier
density is shown in Fig. 4 for current measured at a distance
of 4x0 from the source.

FIG. 4. (Color online) Calculated local density of current at the
point (x0,4x0), located directly below the source at a distance of 4x0

from it. The magnetic field B and carrier density nn(p) dependence of
the local current density are encoded in the dependence of rp/rn =√

np/nn and rn/x0 ∝ 1/B.

In the special case of a symmetric p-n junction, with
rn = rp, it is also possible to develop a coherent semiclassical
description of current distribution, taking into account quan-
tum interference effects. This involves taking into account the
phases acquired by electrons upon transmission or reflection at
the interface and during free propagation of Dirac electrons. As
shown in Fig. 2, for the case rn = rp, all familiesM of electron
trajectories for any x0 and ϑ belong to a periodic sequence of
circles, which enables one to describe the wave propagating
along such paths using a pair of amplitudes, ψn(j,ϑ) and
ψp(j,ϑ), for an electron on the n or p side of the interface
after j − 1 encounters it. The wave amplitudes ψn(p)(j,ϑ) on
the j th circle segment on the n(p) side, immediately after the
(j − 1)th interaction with the interface, were found using a
transfer matrix approach as

(
ψn(j,ϑ)

ψp(j,ϑ)

)
= [�S]j−2�

(
eiφ0

0

)
,

� = eiθ

(
i sin θ cos θ

cos θ i sin θ

)
, (7)

S =
(

eiφn 0

0 eiφp

)
.

Here the scattering matrix � describes the transmission and
reflection of Dirac spinors at the interface, and S their
propagation between interactions with the interface. These
matrices were calculated for the plane wave Dirac spinors of
electrons in graphene,7,8 and hence the product S� includes
the electron Berry phase. The phase φ0 is acquired by electrons
while propagating between the source and the interface,
and φn(p) = ∫

(−e �A/h̄ + �pn(p)/h̄) · d�l are phases acquired by
electrons propagating in a magnetic field along a single circular
segment. As segments on the p and n sides always form full
circles (Fig. 2), we find that φn − φp = πp2/(h̄eB).
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Due to the above-discussed feature, the drift of the Dirac
electron along the p-n interface described by Eq. (7) has the
following interesting property: For any ϑ and x0, both the
matrix V = �S� and the matrix W = [S�]2 are diagonal.
According to Eq. (7), after 2N encounters with the inter-
face, the amplitudes ψn(p)(2N + 1,ϑ) of the Dirac electron
on the n(p) sides are determined by the evolution matrix
(�S)2N−1� = V WN−1. Therefore, if p2/(h̄eB) = (2l + 1),
the electrons will appear only on the same side of the junction
as their source after any even number of encounters with the p-n
interface. As a result, we predict rapid quantum oscillations of
the electron current between the two sides of the junction.
The oscillations develop on a scale linear in the inverse
magnetic field B−1, with the same period �(B−1) = 2h̄e/p2

as Shubnikov–de Haas oscillations:2 The phase difference,
φn − φp, coincides exactly with the phase acquired by an
electron with momentum p after it has propagated along
a closed cyclotron trajectory in the bulk of the graphene
flake with carrier density n = p2/(πh̄2). These oscillations
are specific to a small interval |rn − rp| � h̄/(eBr) near the
symmetry condition rn = rp = r .

At a finite temperature T � h̄v/(4kBr), r ≡ rn = rp, ther-
mal smearing of the Fermi level results in the loss of
monochromaticity of the electron source, which attenuates the
above-mentioned interference effect, leading to the classical
results applicable to the incoherent propagation of electrons.
Then, incoherent propagation gives rise to a classical density
profile for the distribution of electrons injected by the dc

source, as defined in Eq. (5). For the case of rn = rp,
summation of the series in Eq. (5) can be performed using
a recursive method similar to Eq. (7), resulting in

�(x,y) =
∑

j

1

2
[1 − sgn x(1 − 2WT [θ ])j−1]

∣∣∣∣∂F

∂ϑ

∣∣∣∣
−1

F=0

,

where ϑ is chosen to solve F = 0 for the point (x,y), and which
produces an alternating pattern of weak and strong cusps, as
shown in Fig. 3.

In conclusion, we predict periodic spatial modulation of
current injected from a point source near a p-n junction
in graphene in a magnetic field, which originates from
caustic bunching of skipping-snaking orbits. Experimentally,
such oscillations would appear as magneto-oscillations of
conductance of a two-terminal device with two point contacts.
For a symmetric carrier density of 1011/cm2 and x0 = 1000 Å,
the required magnetic field would be of the order of 0.5 T for
the range of parameters in Fig. 4. We also find that, for the
case of commensurate size of electron cyclotron orbits in the
n- and p-type regions, the current distribution undergoes rapid
quantum oscillations between the two sides. For the values
mentioned above, the period of these oscillations �B would
be of the order of 0.1 T.
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