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Non-Gaussianity from preheating
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We consider a two-field model for inflation where the second order metric perturbations can be
amplified by a parametric resonance during preheating. We demonstrate that there can arise a considerable
enhancement of non-Gaussianity sourced by the local terms generated through the coupled perturbations.
We argue that the non-Gaussianity parameter could be as large as fNL � 50. Our results may provide a
useful test of preheating in future cosmic microwave background experiments.
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Introduction.—Preheating, first realized in [1] and
worked out in detail in [2–4], may play an important
role in understanding the hot thermal Universe after the
end of inflation. Preheating can occur during the coherent
oscillation of the homogeneous inflaton condensate if a
resonant production of particles takes place due to a tem-
porary vacuum instability. During this phase it is also
possible to amplify the gravitational fluctuations or the
metric fluctuation to the super-Hubble scale [5,6] (for a
general first order linear perturbation theory, see [7]). So
far the analysis has been limited to the first order metric
and matter perturbations, although there have also been
some attempts to understand the higher order effects [8]. In
some cases the inflaton could also fragment into nontopo-
logical solitons, but then the inhomogeneities remain be-
low the subhorizon scale [9].

Since cosmic microwave background (CMB) experi-
ments such as WMAP [10] have now reached a precision
whereby cosmological models can be put to the test, pre-
heating may also move from the theoretical playground to
observational scrutiny. In this Letter, we propose that non-
Gaussianities in the CMB fluctuations could provide a
useful tool for studying preheating.

The simplest single-field inflationary models produce
scale invariant Gaussian fluctuations, assuming that the
initial state is the standard vacuum. However, non-
Gaussianities are expected to be generated at some level,
either because of inflaton self-couplings [11], nonstandard
initial vacuum state [12], or because of a host of other
reasons often involving models beyond the simple single-
field inflation [13–15] (for a review, see [16]). For ex-
ample, in hybrid-type scenarios with two fields the fluctu-
ations of the ‘‘waterfall’’ field may give rise to large non-
Gaussianities during inflation [15].

Major non-Gaussianities may also be generated after
inflation [17]. Here we focus on non-Gaussianities during
the preheating stage, although our approach is quite ge-
neric and applicable to any scalar condensate responsible
for reheating the Universe, such as a supersymmetric flat
direction [18], for which we may employ the formalism
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developed in [15]. We will consider a simple toy model of
two fields, making some well motivated physical assump-
tions regarding the motion of the coupled fields. Our start-
ing point is an oscillating inflaton coupled to another field,
which for simplicity is assumed to have a vanishing vac-
uum expectation value. Therefore, classically the second
field is sitting at the bottom of its potential. However, its
fluctuation about the background solution is nonvanishing,
giving rise to matter perturbations which naturally are
higher order, mainly chi-squared fluctuations [19], which
may source the metric perturbations and lead to non-
Gaussianities. We illustrate that, although the first order
metric perturbations do not grow, for long wavelength
super-Hubble horizon modes the second order metric fluc-
tuations can grow exponentially, highlighting the potential
for a large non-Gaussian signature arising from preheating.

For simplicity, for obtaining the estimates we will ne-
glect the expansion of the Universe. This may seem rather
restrictive, but since the homogeneous condensate oscil-
lates coherently with a frequency larger than the Hubble
expansion rate during the initial stages of preheating, the
only relevant time scale is the mass of the coherently
oscillating field. Of course, for detailed numerical values,
the expansion as well as backreaction effects will be
important.

Basic equations.—Let us consider a two-field model
with the potential

V �
1

2
m2
’’

2 �
1

2
g2’2�2; (1)

where ’ is the homogeneous scalar condensate coherently
oscillating with a mass m’. We assume ’ to be our
inflaton. The � field will be created resonantly by virtue
of the coupling term.

For simplicity and for the sake of clarity we assume that
the vacuum expectation value (VEV) of � vanishes, h�i �
0, which makes it possible to obtain analytic approxima-
tions from the second order perturbation equations, as we
show below. Such a situation occurs if the � field is driven
to the minimum of its potential during inflation.
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The metric in our case is given by

g00 � �a�
�2�1� 2��1� ���2��; g0i � 0;

gij � a�
�2�1� 2 �1� �  �2���ij;
(2)

where we are using the generalized longitudinal gauge and
neglect the vector and tensor perturbations. Here 
 is the
conformal time and a�
� is the scale factor. We divide the
fields into background and perturbations,

’ � ’0�
� � ��1�’�
;x� �
1

2
��2�’�
;x�;

� � ��1���
;x� �
1

2
��2���
;x�;

(3)

where the background value for � is assumed to vanish.
The background equations of motion are found to be

3H 2 �
1

2M2
p
’02

0 �
M2
p

2
a2m2

’’
2
0; (4)

0 � ’00
0 � 2H’0

0 � a2m2
’’0; (5)

while the �0 equation is trivial, and H denotes the Hubble
expansion rate in conformal time. We denoted the reduced
Planck mass as Mp 
 2:4� 1018 GeV.

The relevant first order perturbation equations can be
written in the form [15]

��1�00 � @i@i��1� � 2
�
H �

’00
0

’0
0

�
��1�0

� 2
�
H 0 �

’00
0

’0
0

H

�
��1� � 0;

(6)

��1��00 � 2H��1��0 � @i@
i��1��� g2’2

0�
�1�� � 0: (7)

Note that there are no metric perturbations in Eq. (7). This
is due to assuming a vanishing VEV for �. If it were
nonvanishing, we would not be able to decouple the metric
fluctuations from the perturbations in the � field. Now the
� part can be solved separately and for the rest the usual
one field results apply.

Parametric resonance.—Let us now turn to the para-
metric resonance for ��1��k. Throughout this section we
neglect the expansion of the Universe, which results in a �
1 and 
 � t, i.e., conformal and cosmic time are equal,
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since the coherent oscillations begin only whenm’ � H .
Hence the excitation of �k will follow the equation of
motion valid for a narrow parametric resonance regime
[3,5],

d2��1��k
dz2

� �Ak � 2q cos2z���1��k � 0; (8)

where Ak � k2=m2
’ � 2q, q � g2�2=4m2

’, and z � m’t.
The amplitude of the oscillations is denoted by �. In a
narrow resonance regime q < 1. In this regime the pertur-
bation grows exponentially as ��1��k / exp��km’t�,
where

�k �
�������������������������������������������������
�q=2�2 � �2k=m’ � 1�2

q
: (9)

Therefore, we have a resonance for the modes k when
k� < k< k� with k� � �m’=2��1� q=2�.

For our purposes it is sufficient to estimate the solution
to be independent of k in the resonance band. Therefore,
we estimate ��1��eff � A exp��effm’t�, where �eff �

�max=2 � q=4 in the resonance band and ��1��eff � 0
otherwise; here A is an amplitude after the end of inflation.

The amplitude depends on the effective mass of �
field. If g’0 � m’, then the initial perturbations are

given by A
 ��1��k 
 �H=
��������
2k3

p
��k=aH�3=2��, where � �����������������������������������

9=4� g2’2
0=H

2
q

. For a narrow resonance regime, g �

H=’0 
H=Mp � 1, the spectrum follows that of the
inflaton, where we assumed at the end of inflation ’0 


Mp. For a broad resonance regime, q > 1, and g’0 � m’,
there the amplitude of the perturbations for � field will be
suppressed compared to that of the inflaton; see [6].

Perturbations.—The first order metric perturbation at
the end of inflation for a single field is given by [7],

��1� �
H
_’0
��1�’ � �

’0

2M2
p
��1�’; (10)

where the quantities on the right-hand side are calculated at
the horizon crossing. We obtained the final result by using
slow roll equations of motion. Since g� 1, then during
inflation we can effectively treat ��1��
 ��1�’. This de-
termines the initial conditions before preheating starts.

In the second order we are only interested in the gravi-
tational perturbation, whose equation can be written in an
expanding background as [15]
��2�00 � 2
�
H �

’00
0

’0
0

�
��2�0 � 2

�
H 0 �

’00
0

’0
0

H

�
��2� � @i@

i��2� � J�;local � J�;non�local � J rest; (11)
where the source terms J are quadratic combinations of
first order perturbations; in particular,

J �;local � �
2

M2
p
���1��0�2 �

a2

M2
p

�2V

��2 ��
�1���2: (12)
J�;non�local involves an inverse spatial Laplacian, thus
rendering it nonlocal, while J rest consists of metric and
’ perturbations. Note that the left-hand side of the above
equation is identical to the first order equation, Eq. (6).

Fourier transforming J�;local ! J k [with our conven-
tion f�x� � �1=2��3

R
d3kek�xf�k�] we end up with the
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convolutions

J k��
2

M2
p�2��

3

Z
d3k0��1��0

k0�
�1��0

k�k0

�
1

M2
p

�2V

��2

1

�2��3
Z
d3k0��1��k0��1��k�k0 : (13)

The object then is to compute the convolutions. We are
interested in their contributions at large scales and, to that
end, we take the limit k! 0; we also assumed a � 1.
Since the mode function ��1��eff only depends on the
magnitude of the vector k, the angular integration can be
carried out trivially. The time derivative only produces a
constant factor. Thus, we obtain

J k � �2
1

M2
p

4�

�2��3
Z
dk0k02���1��0

k0 �
2

�
a2

M2
p

�2V

��2

4�

�2��3
Z
dk0k02���1��k0 �

2

�

�
�

2�2
effm

2
’

M2
p

�
1

M2
p

�2V

��2

�
��1��2

eff

4�

�2��3
Z k�

k�
dk0k02;

(14)

where in the last step we have assumed that the k depen-
dence of the amplitude A can be ignored. If we are working
in a narrow resonance regime with q < 1, the integral can
be written as

Z k�

k�
dk0k02 �

1

3

�m’

2

�
3
�
3q� 2

�
q
2

�
3
�
’ q

�m’

2

�
3
: (15)

We can now write the source term as

J k�
4�

�2��3
q
�m’

2

�
3
�
�
q2m2

’

8M2
p
�

1

M2
p

�2V

��2

�
A2eqm’t=2

�
2m2

’q

M2
p

�
1�

q
16

�
�Beqm’t=2: (16)

Where B � �q=8�2��m’=2�3A2. It is worth noting that the
source J k, which we study at the large scale limit k
 0, is
actually generated by first order local perturbations on
much smaller scales (k� < k< k�).

Non-Gaussianity.—Consider Eq. (11) in k space. The
homogeneous part is the same as in the first order.
Therefore we know that the homogeneous solutions are
well behaved. Barring accidental cancellations we may
assume that the local terms we have considered are repre-
sentative of the exponential behavior of the source; see
Eq. (12). There is also a nonexponential part which natu-
rally becomes quickly insignificant. In order to estimate the
behavior of ��2� at large scales (k
 0) we neglect the
expansion of the Universe and drop the terms with H .
The approximated metric perturbation then reads
16130
��2�00
k � 2

’00
0

’0
0

��2�0
k �

2m2
’q

M2
p

�
1�

q
16

�
� Beqm’t=2

� �nonexponential source�; (17)

Assuming that, on average, after some oscillations the
fraction ’00

0=’
0
0 can be approximated by the frequency of

the coherent oscillations 
m’, we readily obtain an ex-
ponential behavior for the solution of Eq. (17). We may
thus write

��2�
k � �

2m2
’�1� q=16�B

M2
pm2

’�1� q=4�
eqm’t=2: (18)

Let us use the following definition for the constant
nonlinearity parameter f�NL: � � ��1� � f�NL��

�1��2.
However, the definition is given in x space and we have
performed our calculations in k space. In principle we
could transform ��2�

k back to x space, but then we would
need to know it for all k and we have evaluated only the
superhorizon mode k � 0. Instead, we can carry the defi-
nition of f�NL over to k space by ��2�

k � f�NL
1

�2��3
�R

d3k0��1�
k0 �

�1�
k�k0 where we have treated f�NL as a constant.

In the present scenario, where the first order perturba-
tions are equivalent to that of a single-field case, we have
��1��
 ��1�’ right after inflation. Since, during inflation
and preheating ��1� stays roughly constant, we immedi-
ately obtain an order of magnitude estimate from Eq. (10),

f�NL 

��2�
k

���1� ���1��k
� �8

1� q=16
1� q=4

�Mp

’0

�
2
eNq=2; (19)

where we have written N � t!, where N is the number of
oscillations during preheating and! is the frequency of the
oscillations. On average the frequency of the oscillations is
given by !
m’. Inflation ends when ’0 
Mp, therefore
the coefficient in front of the exponential is order one. The
factor B in the coefficient of Eq. (18), whose origin lies in
the source terms [see Eqs. (14)–(16)], cancels out com-
pletely the contribution coming from ���1� ���1��k, be-
cause the initial evolutions for ��1�’ and ��1�� are the
same. The above expression should be compared with the
observationally constrained one: fNL � �f�NL � �11=6�.

The amplitude of the oscillations remains constant in our
case. Therefore N is an indicative number, which is valid
until the backreaction kicks in and shuts off the parametric
resonance. Obviously N depends on a particular potential
and also on the expansion of the Universe. The parametric
resonance would shift with the expansion as q
�2t�2

and thus becomes narrower. However, for a simple single-
field chaotic type inflation model with V 
 �m2

’=2�’2, one
would typically have many oscillations within one Hubble
time: !H�1 
Mp=� � 1. It seems therefore that back-
reaction would be more decisive as far as the magnitude of
the non-Gaussian amplitude f�NL is concerned. This re-
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quires more study, but let us point out that in chaotic
inflation backreaction becomes important after 10–30 os-
cillations [3]. Hence N � O�10� might be a reasonable
number and, should we for illustrative purposes choose
q � 0:8, we would obtain fNL � e4 � 55. This should
certainly be at an observable level for the Planck
Surveyor mission.

The expansion of the Universe changes the situation in
two ways: First, the parametric resonance can be broad
with q > 1 a time dependent quantity [3], and, second,
because of the expansion the momenta and the oscillation
amplitude redshift. However, the amplitude of the first
order metric perturbation still undergoes resonant amplifi-
cation as the momentum modes drift through the broad
resonance regime [5]. This ensures that the second order
metric perturbations also grow exponentially, but one has
to ensure that the amplitude of the initial perturbations for
� does not damp away during inflation. A detailed study
would require numerical simulation, but nevertheless we
may conclude that our result hints at the possibility of
exciting the second order metric perturbations during the
first few oscillations of the inflaton, hence linking preheat-
ing with possibly observable non-Gaussianities.
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