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Challenges in generating density perturbations from a fluctuating inflaton coupling
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We discuss the possibility of generating adiabatic density perturbations from spatial fluctuations in the
inflaton decay rate which are due to quantum fluctuations of light moduli fields coupling to the inflaton. We
point out that nonrenormalizable operators, which lift the flathess of the moduli potential, play an important
role for the density perturbations. In particular, the nonrenormalizable terms give rise to a considerable damp-
ing of the fluctuations and thereby pose an obstruction to the construction of possible models.
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Inflation is the main contender for an explanation of thewhere¢ is the inflatonh andh are the two Higgs doublets,
observed adiabatic density perturbations with a nearly Scalgndq and g, are quark and |ept0n Superfie'ds and their an-
invariant spectrunil]. However, recently alternative mecha- tiparticles.M is some cutoff scale which could be the grand
nisms for generating the density perturbations have also begjhified theory(GUT) scale or the Planck scale. The effective
much discussed. In the curvaton scenario, iscocurvature pegoupling for inflaton decay into Higgs fields ds,=\o[1
turbations of some light “curvaton” field are converted into +(SIM)+ ...], whereSis the (VEV) of one of the flat
adiabatic perturbations in the post-inflationary universegirection fields in the theory. The effective coupling for the

[2—4]. Another interesting proposal is that the perturbationspflaton decay to quarks i8,=S/M with S=(q), (qc), or
could be generated from the fluctuations of the inflaton courpy . Effective couplings of this form can result from inte-

pling to the standard model degrees of freed@n6]. It has  grating out heavy particles.

been argued that the inflaton coupling strength to ordinary s 4 single decay channel dominates, the density contrast
matter, instead of being a constant, could depend on thg Splp~ S\IN.Y For \g>\n the nonrenormalizable cou-
vacuum expectation valuy/EV) of the various fields in the  jings dominate, and the inflaton decays predominantly into

theory. If these fields are light during inflation their quantumqyarks and antiquarks. We will refer to this decay as indirect
fluctuations will lead to spatial fluctuations in the inflaton decay. This yields a density contrast

coupling strength. As a consequence, when the inflaton de-
cays, adiabatic density perturbations will be created because S0 5S
fluctuations in the inflaton coupling translate into fluctuations o 292 ) 2)
in the reheating temperature. p S decay
A particularly interesting implementation of this scenario

is to consider the minimal supersymmetric standard modetoy jight fields such tham2<H? the quantum fluctuations
(MSSM) plus an inflaton fieldS]. There are many flat direc-  4re set by the Hubble scaS~H. The density contrast
tions in the MSSM[7]. The moduli fields parametrizing required to explain the observed temperature anisotropy in
these flat directions are light, and their quantum fluctuationgne cosmic microwave backgrountCMB) radiation is
during inflation produce fluctuations in the inflaton coupling.5p/p~10—5 which can be obtained fo8, ~10°H* pro-
The degeneracy of the MSSM scalar potential is lifted byyiged there is no later damping of the fluctuations. Here and
supersymmetry breaking effects and by nonrenormalizablg, the following, the subscript * denotes the corresponding
operators. In this note we analyze the effect of these nongyaniity evaluated at the time observable scales leave the
renormalizable operators on the produced density perturbgyyrizon, which is some 60 e-folds before the end of inflation.
tions. We restrict the discussion to MSSM flat directions, butginces > H. the perturbation spectrum will be Gaussian

. % * .
the results can easily be adopted to more general models. |, ihe opposite limith,>\ the inflaton decays mainly

Assuming the inflaton is a gauge singlet, it can decay 1Qn, Higgs fields. We will call this the direct decay channel,
normal matter through both normalizable and nonrenormal-

izable interactions in the superpotenti&l

It is also possible that one channel is responsible for the fluctua-
tions, but another is the main decay mode. Since the inflaton decay

iy q Qc h is exponentialcexp(—I'/H) it Id i fine-tuning t
Ws M dhh+ d—ag+ ¢ < +b—qa., 1 p p( ) it would require some fine-tuning to
>And ¢ w49 ¢ w dede ¢ w 9% @ obtain sizable density perturbations.
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as decay is mediated by renormalizable operators. The CO¥EV of Shas a typical valus, ~ \/(8*2), the bound on the

responding density perturbation is Hubble constant becomell, <10°10°,10'° GeV for n
=4,5,6 respectively. This result is independentnof, ex-
op 06S DA . :
—_——— ) 3 cept thatmg~10">H, in order to get density perturbations
P Mecay of the observed sizép/p~10°. Takingmg~TeV, this re-

. . . . sult is inconsistent fon=4, i.e., domination of the mass
For this decay channel the density perturbations are indepeRs i, ang density fluctuations of the observed size are incom-

dent ofS. The fI_uctuanns V\."" be _Gau_ss!an 65 >H, and patible. The results are only marginally consistent for
non-Gaussian in the opposite limit. It is important to remem-_

ber that in Egs(2), (3) the right hand side is always evalu-
ated at the time of inflaton decay.

As was pointed out ifi5] the flat directionS must have a
mass smaller thail, in order to obtain adiabatic, nearly
scale invariant, fluctuations. Therefore the Hubble-induce
supergravity correction to the moduli mass should not excee@
ms~10 'H, in order to have a successful scenario. This

can pe realized e.g. in no_-scale supergravity mogﬂlsvlth the potential Eq(4) has already been studied|ig,3] in the
a Heisenberg symmetry imposed on the chiral fields in the, eyt of MSSM curvaton models. A simple analysis shows
Kahler function[9], or in models where inflation is driven by that during inflation the flat direction field condensate is
a D-term. Apart from the Hubble induced mass terms thereslow-rolling in the nonrenormalizable potentiaV/
are also soft contributions from low energy supersymmetry 2S20-D/M20-3) The amplitude of the field can b’\(‘eRes—
breaking. However such contributions are smalD(TeV), timated as p '
and do not pose any threat to the scenarios discusg&gbin
Finally, the flat directions are lifted by nonrenormalizable H M3\ /n-2)
operators in the superpotential of the fornw *~( X )
=xS"nMp~% [10,11]. Within the MSSM with R-parity
conservation most of the flat directions are lifted by wheres=6S/S, ~H, /S, .
=4,5,6 nonrenormalizable operatdés]. The flattest one is Now let us turn our attention to the density perturbations.
lifted by n=9. If dominant, these nonrenormalizable contri- The equations of motion for the homogeneous and the fluc-
butions can play an important role during and after inflation.tuation parts are given by

Before discussing the effects of the nonrenormalizable op-
erators, let us start by analyzing the parameter space where S+3HS+V'(9)=0, (7)
they are subdominant and therefore can be neglected. The

The density contrast generated through the direct decay
channel is independent &, , see Eq.(3). A Gaussian per-
turbation spectrum requirdd, <S, , with S, bounded by
g. (5) if the mass term is to dominate.

We will now consider the opposite limit, in which the
EV of Sis large and the nonrenormalizable terms in the
potential dominate. We should point out that the dynamics of

: (6)

scalar potential for a flat direction can be written as ) _ K2
0S+3HISH+| = +V'(S) | 65=0, (8
1 (252(—1) a
V(S)= >m3S?+ — — (4)
2 2" IMm20=3) where the prime denotes derivative with respec&t&ince

) we are only interested in the long wavelength mode (
where x~O(1), andms~O(TeV) is the soft mass for the ) ysing the slow roll approximation during inflation we
flat direction. We have assumed here that there is no Hubblgg¢

induced mass correction during inflation. Such a mass term

can be included, but it will not change our conclusions in any 3HS+V/(S)=0 9)
essential way. Note, however, that for a negative Hubble in- ’
duced mas$ the effective mass can become negative during 3H 55+ V" (S)5S=0 (10

inflation, m3— cH?<0. The flat direction field then settles in
the minimum of the potential, and the nonrenormalizableyhere we have omitted the subscriptunderstanding that

terms cannot be neglected. 58S is for the superhorizon mode. The evolution of the ratio
Requiring that the mass term dominates puts an Uppesf the fluctuations to the homogeneous modeSoin the
bound on the VEV during inflation nonrenormalizable potentidyg is
S, =(MM"~% )M 72), (5 5S (&S| [S|2-2)
sAslis s ow
For the indirect decay chann&, ~10°H, , as follows S S/\S

from Eq. (2). This translates into an upper bound on the

Hubble constant during inflatior, <10f,168,10° GeV for where i denotes the initial value. During inflation the zero
i, =10°,1C¢°, . . .
respectivelyn=4,5,6; here we have assumati~M,, « mode obeys Eq9), which can be integrated to yield

~1 andmg~TeV. However, the bound can be made stron-
ger. Quantum fluctuations during inflation grow until a satu-
ration value(S?)~3H*/87?m3 [12]. If one assumes that the S

—1/2(n-2)

AN . (12

Sena [ (2n=4) V'(S,)
- 3(2n—-3) R
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with AN the number of e-foldings after observable scalesvhere we have used that at the end of slow roll inflation
leave the horizon, and¢,4the Hubble constant at the end of He,=my. For the indirect decay channel,\{)gecay

inflation. In a slow roll regimeV”(S,)<H2 . For AN=60 = Sgecay M. The correct level of density perturbations is ob-
we find S/S~0.5 forn=4. We conclude that during infla- tained ifDH, /S, ~10">, as follows from Eq/(2). Assum-
tion the damping of the perturbations is negligible. ing S, =H, , which assures Gaussian fluctuations, implies

After inflation the moduli fieldS slow-rolls (although  the limit Syeca= 0.1IM or mg= 10*2m¢. For the direct decay
marginally with V'~H?2(t), and we can still use the slow channel on the other hand () gecay= N o @and density pertur-
roll approximation Eqgs(9), (10). The perturbations are fur- bations are of the observed magnitude provided, /M
ther damped according to E(L1) until H~mg and the field ~10"°, see Eq(3). For S, =H,, this requires\y=0.1 or
starts oscillating in the quadratic potential. There is no furmg= 10*2m¢,.
ther damping during this epoch of oscillations. The adiabatic To conclude, the inclusion of nonrenormalizable operators
density perturbations are generated when the inflaton fielth the potential of the moduli leads rather generically to a
decays, which happens wheh~F¢~)\2m¢, with my the  considerable damping of the perturbations. This puts severe
mass of the inflatoA Thus, damping occurs between the endconstraints on the parameters of the model. In particular,
of inflation and, depending on which event happens firstgither the inflaton coupling to normal matter should be rather
inflaton decay or the onset of moduli oscillations. The totallarge, A=0.1, or the moduli mass should be largag

damping factor is 210*2m<,,. Another possibility is to consider low scale in-
flation. In this case the VEV of the moduli is small, and the
S r 2 nonrenormalizable operators in the potential are s_ubdoml-
DE( S/S)decay [ Max ‘/”mS]) nant. However, for the indirect decay channel we find that
(65/S)eng Hend this appears to be inconsistent if the potential is liftednby
Nma){)\gecay(mslmqﬁ)z]v (13) =4 operators, and only marginally consistentifiee5. The

constraints are milder for the direct decay channel.
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