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Challenges in generating density perturbations from a fluctuating inflaton coupling
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We discuss the possibility of generating adiabatic density perturbations from spatial fluctuations in the
inflaton decay rate which are due to quantum fluctuations of light moduli fields coupling to the inflaton. We
point out that nonrenormalizable operators, which lift the flatness of the moduli potential, play an important
role for the density perturbations. In particular, the nonrenormalizable terms give rise to a considerable damp-
ing of the fluctuations and thereby pose an obstruction to the construction of possible models.
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Inflation is the main contender for an explanation of t
observed adiabatic density perturbations with a nearly s
invariant spectrum@1#. However, recently alternative mech
nisms for generating the density perturbations have also b
much discussed. In the curvaton scenario, iscocurvature
turbations of some light ‘‘curvaton’’ field are converted in
adiabatic perturbations in the post-inflationary unive
@2–4#. Another interesting proposal is that the perturbatio
could be generated from the fluctuations of the inflaton c
pling to the standard model degrees of freedom@5,6#. It has
been argued that the inflaton coupling strength to ordin
matter, instead of being a constant, could depend on
vacuum expectation value~VEV! of the various fields in the
theory. If these fields are light during inflation their quantu
fluctuations will lead to spatial fluctuations in the inflato
coupling strength. As a consequence, when the inflaton
cays, adiabatic density perturbations will be created beca
fluctuations in the inflaton coupling translate into fluctuatio
in the reheating temperature.

A particularly interesting implementation of this scena
is to consider the minimal supersymmetric standard mo
~MSSM! plus an inflaton field@5#. There are many flat direc
tions in the MSSM@7#. The moduli fields parametrizing
these flat directions are light, and their quantum fluctuati
during inflation produce fluctuations in the inflaton couplin
The degeneracy of the MSSM scalar potential is lifted
supersymmetry breaking effects and by nonrenormaliza
operators. In this note we analyze the effect of these n
renormalizable operators on the produced density pertu
tions. We restrict the discussion to MSSM flat directions,
the results can easily be adopted to more general mode

Assuming the inflaton is a gauge singlet, it can decay
normal matter through both normalizable and nonrenorm
izable interactions in the superpotential@5#

W{lhfh̄h1f
q

M
qq1f

qc

M
qcqc1f
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wheref is the inflaton,h and h̄ are the two Higgs doublets
andq andqc are quark and lepton superfields and their a
tiparticles.M is some cutoff scale which could be the gra
unified theory~GUT! scale or the Planck scale. The effectiv
coupling for inflaton decay into Higgs fields islh5l0@1
1(S/M )1 . . . #, whereS is the ~VEV! of one of the flat
direction fields in the theory. The effective coupling for th
inflaton decay to quarks islq5S/M with S5^q&, ^qc&, or
^h&. Effective couplings of this form can result from inte
grating out heavy particles.

If a single decay channel dominates, the density cont
is dr/r;dl/l.1 For lq@lh the nonrenormalizable cou
plings dominate, and the inflaton decays predominantly i
quarks and antiquarks. We will refer to this decay as indir
decay. This yields a density contrast

dr

r
;

dS

S U
decay

. ~2!

For light fields such thatmS
2!H2 the quantum fluctuations

are set by the Hubble scaledS;H. The density contras
required to explain the observed temperature anisotrop
the cosmic microwave background~CMB! radiation is
dr/r;1025, which can be obtained forS* ;105H* pro-
vided there is no later damping of the fluctuations. Here a
in the following, the subscript * denotes the correspond
quantity evaluated at the time observable scales leave
horizon, which is some 60 e-folds before the end of inflatio
SinceS* @H* the perturbation spectrum will be Gaussian

In the opposite limitlh@lq the inflaton decays mainly
into Higgs fields. We will call this the direct decay chann

1It is also possible that one channel is responsible for the fluc
tions, but another is the main decay mode. Since the inflaton de
is exponential}exp(2G/H) it would require some fine-tuning to
obtain sizable density perturbations.
©2003 The American Physical Society03-1
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as decay is mediated by renormalizable operators. The
responding density perturbation is

dr

r
;

dS

M U
decay

. ~3!

For this decay channel the density perturbations are inde
dent ofS. The fluctuations will be Gaussian forS* @H* and
non-Gaussian in the opposite limit. It is important to reme
ber that in Eqs.~2!, ~3! the right hand side is always evalu
ated at the time of inflaton decay.

As was pointed out in@5# the flat directionS must have a
mass smaller thanH* in order to obtain adiabatic, nearl
scale invariant, fluctuations. Therefore the Hubble-indu
supergravity correction to the moduli mass should not exc
mS;1021H* in order to have a successful scenario. T
can be realized e.g. in no-scale supergravity models@8# with
a Heisenberg symmetry imposed on the chiral fields in
Kähler function@9#, or in models where inflation is driven b
a D-term. Apart from the Hubble induced mass terms th
are also soft contributions from low energy supersymme
breaking. However such contributions are small;O(TeV),
and do not pose any threat to the scenarios discussed in@5,6#.
Finally, the flat directions are lifted by nonrenormalizab
operators in the superpotential of the formW
5kS n/nMp

n23 @10,11#. Within the MSSM with R-parity
conservation most of the flat directions are lifted byn
54,5,6 nonrenormalizable operators@11#. The flattest one is
lifted by n59. If dominant, these nonrenormalizable cont
butions can play an important role during and after inflatio

Before discussing the effects of the nonrenormalizable
erators, let us start by analyzing the parameter space w
they are subdominant and therefore can be neglected.
scalar potential for a flat direction can be written as

V~S!5
1

2
mS

2S21
k2S2(n21)

2n21M2(n23)
, ~4!

wherek;O(1), andmS;O(TeV) is the soft mass for the
flat direction. We have assumed here that there is no Hu
induced mass correction during inflation. Such a mass t
can be included, but it will not change our conclusions in a
essential way. Note, however, that for a negative Hubble
duced mass2, the effective mass can become negative dur
inflation,mS

22cH2,0. The flat direction field then settles i
the minimum of the potential, and the nonrenormaliza
terms cannot be neglected.

Requiring that the mass term dominates puts an up
bound on the VEV during inflation

S* &~mMn23/k!1/(n22). ~5!

For the indirect decay channelS* ;105H* , as follows
from Eq. ~2!. This translates into an upper bound on t
Hubble constant during inflation:H* &106,108,109 GeV for
respectivelyn54,5,6; here we have assumedM;Mpl , k
;1 andmS;TeV. However, the bound can be made stro
ger. Quantum fluctuations during inflation grow until a sa
ration valuê S2&'3H4/8p2mS

2 @12#. If one assumes that th
12130
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VEV of S has a typical valueS* ;A^S*
2 &, the bound on the

Hubble constant becomesH* &103,108,1010 GeV for n
54,5,6 respectively. This result is independent ofmS , ex-
cept thatmS;1025H* in order to get density perturbation
of the observed sizedr/r;1025. TakingmS;TeV, this re-
sult is inconsistent forn54, i.e., domination of the mas
term and density fluctuations of the observed size are inc
patible. The results are only marginally consistent forn
55.

The density contrast generated through the direct de
channel is independent ofS* , see Eq.~3!. A Gaussian per-
turbation spectrum requiresH* &S* , with S* bounded by
Eq. ~5! if the mass term is to dominate.

We will now consider the opposite limit, in which th
VEV of S is large and the nonrenormalizable terms in t
potential dominate. We should point out that the dynamics
the potential Eq.~4! has already been studied in@2,3# in the
context of MSSM curvaton models. A simple analysis sho
that during inflation the flat direction field condensate
slow-rolling in the nonrenormalizable potentialVNR

;k2S2(n21)/M p
2(n23) . The amplitude of the field can be es

timated as

S* ;S HMn23

l D 1/(n22)

, ~6!

whered[dS/S* ;H* /S* .
Now let us turn our attention to the density perturbatio

The equations of motion for the homogeneous and the fl
tuation parts are given by

S̈13HṠ1V8~S!50, ~7!

dS̈k13HdṠk1S k2

a2
1V9~S!D dSk50, ~8!

where the prime denotes derivative with respect toS. Since
we are only interested in the long wavelength modek
→0), using the slow roll approximation during inflation w
get

3HṠ1V8~S!50, ~9!

3HdṠ1V9~S!dS50, ~10!

where we have omitted the subscriptk, understanding tha
dS is for the superhorizon mode. The evolution of the ra
of the fluctuations to the homogeneous mode ofS in the
nonrenormalizable potentialVNR is

dS

S
;S dS

S D
i
S S

Si
D 2(n22)

, ~11!

where i denotes the initial value. During inflation the ze
mode obeys Eq.~9!, which can be integrated to yield

Send

S*
.S 11

~2n24!

3~2n23!

V9~S* !

H2
DND 21/2(n22)

, ~12!
3-2
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with DN the number of e-foldings after observable sca
leave the horizon, andHend the Hubble constant at the end
inflation. In a slow roll regimeV9(S* )<H

*
2 . For DN560

we find S/Si;0.5 for n54. We conclude that during infla
tion the damping of the perturbations is negligible.

After inflation the moduli fieldS slow-rolls ~although
marginally! with V9;H2(t), and we can still use the slow
roll approximation Eqs.~9!, ~10!. The perturbations are fur
ther damped according to Eq.~11! until H;mS and the field
starts oscillating in the quadratic potential. There is no f
ther damping during this epoch of oscillations. The adiaba
density perturbations are generated when the inflaton fi
decays, which happens whenH;Gf;l2mf , with mf the
mass of the inflaton.2 Thus, damping occurs between the e
of inflation and, depending on which event happens fi
inflaton decay or the onset of moduli oscillations. The to
damping factor is

D[
~dS/S!decay

~dS/S!end
;S max@Gf ,mS#

Hend
D 2

;max@ldecay
4 ,~mS /mf!2#, ~13!

2We assume that the inflaton decays perturbatively. The res
change if preheating occurs, and the inflaton decays through
perturbative processes.
ar,

1

r,

12130
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-
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l

where we have used that at the end of slow roll inflati
Hend.mf . For the indirect decay channel, (lq)decay
5Sdecay/M . The correct level of density perturbations is o
tained if DH* /S* ;1025, as follows from Eq.~2!. Assum-
ing S* *H* , which assures Gaussian fluctuations, impl
the limit Sdecay*0.1M or mS*1022mf . For the direct decay
channel on the other hand (lh)decay5l0 and density pertur-
bations are of the observed magnitude providedDH* /M
;1025, see Eq.~3!. For S* *H* , this requiresl0*0.1 or
mS*1022mf .

To conclude, the inclusion of nonrenormalizable operat
in the potential of the moduli leads rather generically to
considerable damping of the perturbations. This puts sev
constraints on the parameters of the model. In particu
either the inflaton coupling to normal matter should be rat
large, l*0.1, or the moduli mass should be large,mS
*1022mf . Another possibility is to consider low scale in
flation. In this case the VEV of the moduli is small, and t
nonrenormalizable operators in the potential are subdo
nant. However, for the indirect decay channel we find t
this appears to be inconsistent if the potential is lifted byn
54 operators, and only marginally consistent forn55. The
constraints are milder for the direct decay channel.
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