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A Dynamic Programming Policy Improvement
Approach to the Development of Maintenance

Policies for 2-Phase Systems With Aging
Andrew J. MacPherson and Kevin D. Glazebrook

Abstract—The deterioration observed in many industrial sys-
tems may be modeled in two phases. In the first phase, a period
during which the system operates fault free ends with entry into
a worn state. In the second phase, the system spends time in the
worn state prior to failure. Should the system be found to be in
the worn state upon inspection, failure can be pre-empted by pre-
ventive maintenance. Transitions into the worn state occur more
frequently as the system ages, as does the cost of maintaining the
system. The goal of analysis is the design of cost-effective policies
for the inspection, maintenance, and renewal of such systems.
The paper extends previous work by offering a choice between
a (cheap) repair and a (more expensive) renewal of the system,
should it be found to be in the worn state upon inspection. The
decision-maker may also renew the system at any time without
inspection. We propose simple, cost effective heuristic policies,
whose design avoids the computational complexities of a full
dynamic programming (DP) solution. The closeness to optimality
of these policies is investigated, as is their sensitivity to parameter
misspecification. A numerical investigation identifies cases for
which the inclusion of the repair option is most advantageous.

Index Terms—Cost minimization, heuristic policy, policy
improvement, preventive maintenance, reactive maintenance,
sensitivity analysis, 2-phase systems.

ACRONYMS

PM Preventive Maintenance

RM Reactive Maintenance

DP dynamic programming

p.d.f probability density function

NAG Numerical Algorithms Group

NOTATION

Age of system.

Time elapsed, from age 0, until the system
enters the worn state.

Manuscript received January 24, 2009; revised March 17, 2010 and
November 02, 2010; accepted November 30, 2010. Date of publication April
25, 2011; date of current version June 02, 2011. This work is supported by
the Engineering and Physical Sciences Research Council (EPSRC) through
the provision of a doctoral studentship to the first author. Associate Editor: L.
Walls.

The authors are with the Department of Management Science, Lancaster Uni-
versity, Lancaster, LA1 4YX, U.K. (e-mail: A.MacPherson1@Lancaster.ac.uk;
K.Glazebrook@Lancaster.ac.uk).

Digital Object Identifier 10.1109/TR.2011.2135750

Time elapsed, from age , until a system
enters the worn state.

Time spent in the worn state prior to system
failure.

Hazard rate for transitions of the system into
the worn state.

Probability density function of .

Probability density function of .

Probability density function of .

Fixed cost of an inspection of the system.

Fixed cost of a repair of the system.

Fixed cost of a renewal of the system.

Fixed cost of system renewal following
failure.

Probability the system is fully functioning
at age given the system was fully
functioning at age .

Probability the system is worn at age
given the system was fully functioning at age

.

Probability the system fails before achieving
age given the system was fully
functioning at age .

-expected time until whichever is earlier of
system failure or the system achieving age

, having started with a fully functioning
system aged .

-expected cost incurred over time horizon
by maintenance policy , having started with
a fully functioning system of age .

-expected cost incurred over time horizon
where a system of age has its first scheduled
PM at age at which point action is
taken. Thereafter policy is operated.

Cost rate incurred under maintenance policy
.

-bias function for costs of system operated
under maintenance policy .
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A maintenance policy based on a cycle of
interventions at ages given by the -vector

. At ages the system is
inspected and repaired if worn. At ages ,

the system is inspected
and renewed if worn. The system is renewed
at age .

Total cost incurred in a single cycle of the
system under the maintenance
policy.

Time incurred in a single cycle of the system
under the maintenance policy.

I. INTRODUCTION

I N [1], Maillart and Pollock discuss the development of
plans for the optimal maintenance of a 2-phase system

of a kind to be found in many industrial contexts. In such a
system, a transition from a fully functioning state in which
its operation is fault free into a worn state is a precursor to
failure. The system will fail following a random sojourn in
the worn state unless a maintenance intervention prevents that
outcome. Should the system fail, it is replaced by a new one
at considerable cost. A preventive maintenance (PM) policy
is a schedule of inspections of the system at each of which
a determination is made of whether it is in the worn state or
not. Should the system be found worn, it is renewed. Both
inspections and renewals of the system incur costs, though
those are small compared to the cost of system failure. In [1],
Maillart and Pollock use the methods of stochastic dynamic
programming (DP) to design monitoring schedules to minimize
an aggregate rate of costs incurred through system failure, and
in the course of inspections and renewals.

Following discussions with Gaver and Jacobs and colleagues
in relation to their study of failure patterns of helicopter en-
gines (see [2]–[4]), the model discussed in the paper develops
the model of Maillart and Pollock to expand the set of main-
tenance actions available to the decision maker at inspection.
We shall consider (as did Maillart and Pollock) 2-phase sys-
tems in which the rate of transition into the worn state increases
as the system ages. This implies that the burden of system in-
spection and repair will also increase with age. At some point
it will be cost effective to renew such a system because of its
age, even when it is fully functioning. Further, we shall suppose
that, should a system be found worn at inspection, two PM ac-
tions are available: the system may either be repaired, namely
restored to the fully functioning state but with no reduction of
system age, or it may be renewed (with a reduction in age to
0) at somewhat greater cost. The repair option is likely to be fa-
vored in the early stages of a system’s life, but may not be cost
effective later on. To summarize, while for Maillart and Pollock
the only decision is when to inspect (and then to automatically
renew a system, if worn), we are also required to specify at each
inspection whether to repair or renew a worn system, and addi-
tionally when we should renew the system without inspection.
As we shall see, the introduction of a repair option may lead to
substantial cost savings.

While it is possible to apply the methods of stochastic DP to
our problem, we shall propose two very simple policies (which
we shall call Heuristics 1 and 2) whose underlying rationale
is clear, whose cost performance is strong, which are easy to
implement, and which are trivial to compute. For example, in
Heuristic 2, inspection intervals are always chosen such that the
probability of failure in each is the same. To obtain Heuristic 2,
we perform a (parametric) optimization over the class of such
schedules. Heuristic 1 is similar, but equalizes the probability of
transition into the worn state within each inspection interval. In
1,800 problems studied, Heuristic 2 outperforms Heuristic 1 in
all but four, and was never more than 0.440% suboptimal. We
also develop four further heuristics (Heuristics 3-6) by applying
a single DP policy improvement step to either Heuristic 1 or
Heuristic 2. These policies are also easy to compute and imple-
ment. They can also serve as checks on the quality of Heuristics
1 and 2. If they offer little improvement in performance, then it
is reasonable to infer that the simple heuristics are close to op-
timal. If they offer significant improvement, they may very well
be preferred. Of the four additional heuristics, the strongest per-
forming policy, Heuristic 4, was never more than 0.056% sub-
optimal in the 1,800 problems studied.

To the authors’ knowledge, both the model discussed in
the paper and the DP-based approaches to the construction of
heuristic maintenance policies are new. Other studies which
use DP to construct maintenance policies which mandate
maintenance decisions based on the outcomes of scheduled
inspections include those described in [5]–[8]. The models
considered in [9]–[17] also share some of the features of our
2-phase system with aging, but those contributions do not share
the current paper’s focus on the development of near-optimal
maintenance policies. The reader is referred to [18], and the
literature cited by Maillart and Pollock in [1] for related dis-
cussions of the construction of monitoring policies for 2-phase
systems, while in [19], Wang gives a comprehensive survey of
maintenance policies for deteriorating systems.

The paper is constructed as follows. Our model is described in
Section II, while Section III describes cost rate calculations for
policies of simple structure. Heuristics 1 and 2 are introduced in
Section IV. A stochastic DP formulation of the problem is intro-
duced in Section V where we discuss the design of Heuristics
3-6. Section VI contains a report of a numerical investigation
into the effectiveness of the PM policies proposed.

II. THE MODEL

We consider a system which at time 0 is brand new (has age
0), and is fully functioning, which here means that it is oper-
ating fault free and as intended. As the system is used, it ages. Its
age is here taken to be the time elapsed since it was last renewed.
A system which is fully functioning of age has a probability

of entering the worn state in the next time units.
The function is a hazard rate for the system. If we use
for the time from 0 until the system enters the worn state (i.e.,
for the first time), then has the probability density function
(p.d.f.)
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The notation denotes the time elapsed until a
system which is currently fully functioning of age enters the
worn state. The corresponding p.d.f. is given by

(1)

The worn state is a precursor to failure, and is not outwardly
visible. In the absence of any maintenance intervention, once
the system has entered the worn state, it will spend a random
time there before failure. We use for the p.d.f. of

. System failure is catastrophic, immediately observable, and
very expensive. We plan maintenance interventions to minimize
the rate at which costs are incurred, both from system failure,
and from the interventions themselves.

The solution methods we shall develop are quite general, and
do not require particular distributional choices for and .
In our numerical work, reported in Section VI, our choices for

, and are

(2)

and

(3)

respectively. Note that the choice in (2) guarantees an in-
creasing hazard, as would typically be appropriate. The choice
of an exponential distribution for the duration of the worn phase
is consistent with Maillart and Pollock [1]. Natural alternatives
are an increasing failure rate (IFR) model or a conditional expo-
nential model in which the rate is an increasing function of the
age of the system when the transition into the worn state occurs.
Please note that, in our numerical studies, we shall suppose that
the lengths of sojourns in the worn state are small relative to the
time of the first transition into it. See also the comment at the
end of Section VI-C.

Possible maintenance interventions (and their consequences)
are as follows.

• Preventive Maintenance (PM): The system can be in-
spected at any time for a fixed cost . Each inspection
reveals (without error) the condition of the system to be ei-
ther fully functioning or worn. If the system is found to be
worn, it may be repaired at a further cost , returning it to
the fully functioning state but without loss of age. Alter-
natively, the system may be renewed at a further cost ,
returning the system to its brand new state with age .
Should the system be fully functioning at inspection, it is
allowed to continue operating. In this event, only the cost
of monitoring is incurred.
Alternatively, the system may be renewed at any time
without inspection for a fixed cost . We shall assume
throughout that , but we emphasize that our
methodologies do not require this.

• Reactive Maintenance (RM): Should the system fail, it is
renewed at fixed cost .

All maintenance interventions are deemed to take negligible
time. The cost parameters typically satisfy .
The goal of analysis is the development of a policy for PM (i.e.
a rule for making PM decisions) to minimize the aggregate long

run average cost rate from system failures and maintenance in-
terventions. Such a policy will need to balance the costs of ex-
cessive inspections against the increased risk of system failure
should inspections be too infrequent. We would expect that an
older system would require more frequent inspection. An ex-
ample policy in [1] has such a structure. Further, there may come
a point when a system is too old to be maintained economically,
and needs to be renewed without inspection.

In the next section, we describe cost rate calculations for poli-
cies of simple structure.

III. COST RATE COMPUTATIONS

This section is a necessary digression which explores how
long run average cost rates may be computed for a simple class
of PM policies. We shall use the triple to denote a
policy in the class where is an -vector of system ages with
components . At ages

, a PM intervention of type 1 is scheduled. Such an inter-
vention involves an inspection of the system together with a re-
pair if the system is found to be in the worn state. PM interven-
tions of type 2 are scheduled at ages .
Such an intervention involves an inspection together with a re-
newal if the system is found to be worn. The system is renewed
without inspection at age . Of course, all of these scheduled
PM interventions may be pre-empted by system failure. Note
that we shall use in what follows. Please also note that
all of the heuristic policies proposed in the paper are of this form.

Before proceeding to the details of the cost rate calculation,
we shall introduce some key quantities which are required. Con-
sider a fully functioning system of age under a decision that
the next maintenance action is due when it achieves age
(PM) or failure (RM), whichever comes first. We have the fol-
lowing probabilities.

system is fully functioning at

fully functioning at age

(4)

system is worn at

fully functioning at age

(5)

system fails by

fully functioning at age

(6)

Further, we write for the -expected time until either
system failure or the system achieves age , whichever
comes first. We have that

(7)

Between two successive visits to the brand new (age 0) state,
the system performs a cycle under policy . We write

for the total cost incurred during a single cycle, and
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for the cycle time. As above, we shall also use ,
, and to denote the events that a cycle ends with the system

in the fully functioning, worn, and failed states respectively,
prior to renewal. The long run average cost rate for the system
under policy , from any initial system state, is given by

(8)

Below find the calculations needed to compute the cost rate
under any such policy for which . Other cases are
handled similarly. We consider three possibilities in turn.

A. Event F- the System is Renewed Upon Failure

We write

for the -conditional -expected cycle cost given that the system
completes a cycle with failure during the interval . It is
straightforward, utilizing the definitions in (4) to (6), that

,

,

(9)

with the corresponding -conditional -expected cycle time
being given by

(10)

Finally, the probabilities of the conditioning events in (9) and
(10) are given by (11), shown at the bottom of the page.

B. The System Is Renewed Following Inspection

By definition of the policy , the system is renewed
following inspection when it is found to be in the worn state at
one of the ages . We have

(12)

while the probability of the conditioning event in (12) is given
by

(13)

C. The System Is Renewed at Age

We now consider the possibility that a cycle ends without
failure at . We have

(14)

and the probability of the conditioning event in (14) is given by

(15)

,

.

(11)
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All modes of system renewal at the conclusion of a cycle have
been considered in Sections III-A–III-C above. The -uncon-
ditional -expectations , and may
now be computed from the quantities in (9)–(15) as follows.

(16)

and

(17)

The cost rate may now be inferred from (8), (16), and
(17).

IV. TWO SIMPLE HEURISTICS FOR PM

We now introduce our two simple heuristics for PM. Both
Heuristics 1 and 2 are of the form . Hence the system
is always repaired if found to be in the worn state, and is only
renewed either upon system failure or at age . The two heuris-
tics differ in how the vector is determined for a given . In
the case of Heuristic 1, choose , and select such that

(18)

where . Hence is chosen such that the probability
of a transition from the fully functioning state into the worn
state during each subinterval is held fixed at . For
the Weibull hazard in (2), the components in are determined
by the recursion

(19)

Clearly, is determined uniquely by and , which we write
as . For any , , the long run cost rate
for policy may be obtained by the methods
of Section III. Heuristic 1 is the policy
where is a cost rate minimizing choice.

Heuristic 2 differs from Heuristic 1 in how the vector is
determined for given , and . Equation (18) is now replaced
by

(20)

Hence is chosen such that the probability of system failure
during each subinterval is held fixed at . As before,
Heuristic 2 is obtained by making a cost rate minimizing choice
for the pair . In both cases, the cost rate minimization
is easily accomplished. The optimization routine e04abf, pro-
duced by the Numerical Algorithms Group (NAG), is used to
minimize over for a given . This is followed by a search
over .

Example: As a running example, we consider a set up with
a Weibull model for the rate transitions into the worn state,
as in (2); and an exponential model for length of stay in the
worn state, as in (3). The parameters for these distributions are

, , and . The cost parameters
are given by , , , and .
This is one of the 1800 randomly generated problems which
will be discussed in more detail in Section VI. For this case, we
designed both Heuristics 1 and 2. All computations throughout
the paper were performed on the High Performance Cluster at
Lancaster University. Each execution node comprises 124 Sun
Fire X4100 servers, two dual-core 2.4 GHz Opteron CPUs, and
a standard 8G of memory. Heuristic 1 has an associated long run
average cost rate of 3.448, which is 0.980% above the optimum.
The computation of Heuristic 1 and its cost rate for this example
took 1.6 seconds. Heuristic 2 has a long run average cost rate of
3.424, which is 0.284% above optimal. The computations asso-
ciated with Heuristic 2 took 6.3 seconds.

A summary of all the results relating to the running example,
including more detailed information on the structure of all the
heuristic policies discussed in this section and the next, may be
found at the end of Section V.

V. SDP FORMULATION AND FOUR FURTHER HEURISTICS

In this section, we shall describe how to develop four further
heuristics (Heuristics 3-6) by the application of a single DP
policy improvement step to either Heuristic 1 (thus yielding
Heuristics 3 and 5) or Heuristic 2 (yielding Heuristics 4 and 6).
This is in the spirit of Krishnan [20] who developed a strongly
performing policy for the dynamic routing of customers to
queues by applying a single DP policy improvement step to
a simple static proposal. Our motivation in doing this is as
follows.

(a) Heuristics 3-6 are easy and quick to compute.
(b) In all cases studied to date, Heuristics 3-6 have the form

, namely are in the policy class discussed in
Section III. They are thus easy to implement, and their
cost rates are easy to compute.

(c) Heuristics 3-6 provide a ready check on the likely quality
of Heuristics 1 and 2. If Heuristics 3 and 5 (respectively
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Heuristics 4 and 6) offer little cost improvement over
Heuristic 1 (respectively Heuristic 2), then the latter is
likely close to optimal, and the preferred choice. If, how-
ever, they do offer a substantial cost improvement over the
simplest heuristics, then they may be preferred.

A. DP Policy Improvement

In what follows, we shall use to denote some policy for PM
maintenance. We write for the -expected cost incurred
over a (large) time horizon by operating policy from an ini-
tial state in which the system is fully functioning, and of age .
We expand this notation to to indicate the -expected
cost achieved over horizon when a system of age has its first
scheduled PM at age where . It is inspected and re-
paired (action 1) should it be found to be in the worn state. This
is a PM intervention of type 1. Following the first maintenance
action (whether PM or RM), maintenance policy is operated
for the remainder of the horizon. We have that

(21)

We use for the equivalent quantity, but where the
first scheduled PM action is inspection followed by a renewal
of the system (action 2) if it is found to be in the worn state.
This is a PM intervention of type 2. We have that

(22)

We further use for the equivalent quantity, but where
the first scheduled PM action is renewal without inspection (ac-
tion 3). We have that

(23)

Our general approach to heuristic development is through the
application of a single policy improvement step to some given
maintenance policy . The core idea here is that, in any system
state, we make a cost minimizing choice given that all future de-
cisions are made according to . This idea means that, for a fully
functioning system of age , we seek a pair to achieve the
minimum value of in the limit as . To find
this pair, we note that the system regenerates (reverts to the
brand new state) upon renewal or failure, meaning that
has the -asymptotic form (as )

(24)

In (24), is the long run average cost rate for the system
operating under policy , and is the -bias, defined by

(25)

The bias measures the transient effect of starting the system
fully functioning in age rather than age 0. Using (24) and (25)
within (21)–(23), and minimizing, we infer that the policy ob-
tained by applying a single policy improvement step to will
take the action in system state to achieve the minimum

(26)

Please recall that the quantity in (26) is given in (7).
The new policy derived from is determined by a sequence of

pairs in which . This sequence
is obtained from the following algorithm:

Step 1. Set , and obtain as a minimizer of
(26). If , then stop, and set . Otherwise,
proceed to step 2.
Step k. For , set , and obtain
as a minimizer of (26). If , then stop, and set .
Otherwise, proceed to step .

This policy chooses action at age 0. Should ,
then the system is renewed at age if it has not failed before
then. Either way, under such a policy, decisions are only re-
quired for brand new systems, and we are done. If ,
then further decisions may be called for should the system reach
age without failing , or without being in the worn
state . The policy chooses action at age .
Should , we are done. We continue in this way until
a decision to renew the system without inspection is mandated

. While the above account is correct, it could be argued
that a (full) policy should prescribe an action for a system of
any age. We have exploited the fact that stationary policies will
only be called upon for decisions in relation to systems whose
age is in a restricted set (e.g. of the form in the
above account).

B. Heuristics 3 and 4

We shall now use the method described above to develop our
remaining heuristic policies (3-6) by applying a single policy
improvement step to either Heuristic 1 ( and in doing so obtain
Heuristics 3 and 5), or Heuristic 2 (to obtain Heuristics 4 and 6).
To use the above algorithm based on (26), we require the appro-
priate long run average cost rates , and biases for this
purpose. The cost rates are readily available from Section III,
and we shall now describe how appropriate estimates of the bi-
ases may be developed to produce Heuristics 3 and 4. We shall
describe an alternative, simpler, approach which yields Heuris-
tics 5 and 6 in the next subsection.

We now focus on Heuristic 3, to be developed from Heuristic
1. Recall that is the cost rate minimizing choice in the
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design of Heuristic 1. To specify biases for use in (26), and the
algorithm following, we shall first develop a full policy based on
Heuristic 1, namely a choice of PM action for a fully functioning
system of any age.

Consider a system which is fully functioning, and of age . We
shall propose that starting from age t the system will undergo
a schedule of PM interventions represented by

(27)

The expression in (27) indicates that, from age , the system will
be subject to an initial schedule of PM interventions determined
by an -vector whose components are deter-
mined according to (18), with replacing on the right hand
side, and . The parameter is determined below. The
left hand expression in (27) indicates that, in the first phase of
maintenance of the system, from initial age , the system is al-
ways repaired if found to be in the worn state at inspection, and
is only renewed either upon system failure or at an age equal to
the final ( -th) component in . The right hand ex-
pression in (27) indicates that, once the system has reverted to
the brand new state (at either renewal or failure) for the first time,
further PM interventions are scheduled according to Heuristic 1.
Before proceeding further, we note that , and hence
that the policy (27) reduces to Heuristic 1 when .

To take the discussion further, we need the following
quantities.

• is the total -expected
cost incurred by a system of initial age until its first
entry into the brand new state. During this period, the
system is subject to PM interventions determined by

as in (27).
• is the equivalent total -ex-

pected time.
Because of the regenerative nature of the policy in (27) after

the first return to the brand new state, the -expected total cost
incurred over a large horizon is easily shown to be -asymp-
totically equivalent to (i.e. within an quantity of)

(28)

All of the quantities in (28) may be computed readily by the
methods of Section III. It is now natural to determine a value of
the parameter by minimizing the quantity in (28). Call this
minimizing value .

We can now make use of (24)–(26), together with (28), to
design Heuristic 3 according to the algorithm following (26). In
so doing, our choices of the average cost rate , and bias
are given by

(29)

and (30), shown at the bottom of the page. Because and
may be readily computed for any required , the design

of Heuristic 3 is easily accomplished computationally.
The development of Heuristic 4 is as above, excepting only

that the starting point is Heuristic 2 rather than Heuristic 1.
Hence (20) takes the place of (18) throughout.

Example: We consider again the running example presented
at the end of Section IV. For this example, Heuristic 3 has an
associated long run average cost rate of 3.415 (0.041% above
optimal), and the heuristic and cost rate took 21.6 seconds to
compute. Heuristic 4 has a cost rate of 3.414 (0.006% above
optimal), and the heuristic and cost rate took 1 minute 27.7 sec-
onds to compute. Given that Heuristic 2 outperforms Heuristic
1 for this example, it is not surprising that Heuristic 4 should
outperform Heuristic 3 in cost rate terms.

C. Heuristics 5 and 6

The design of Heuristic 5 from Heuristic 1 is also by means of
(26), and the algorithm following, but takes a different approach
to the development of bias function . As usual, we use
the notation for Heuristic 1. Consider the
system at some age where for some ,

. Hence is a system age at which a PM action
is scheduled under Heuristic 1. Use

for the residual PM schedule under Heuristic 1
from system age onwards. Adapting (27), we
suppose that, from age , the system will undergo a
schedule of PM interventions represented by

(31)

Hence, from age , an initial partial implementation
of Heuristic 1 is followed until the system is renewed for the
first time. From that point, Heuristic 1 is applied in full. Addi-
tionally, we suppose that any fully functioning system of age

is renewed immediately before application of
Heuristic 1. We depict this action as

(32)

We note that the -expected total cost of the system evolving
from age under the PM schedule in (32) over
a large time horizon is easily shown to be -asymptotically
equivalent to

(33)

The above scheme is specified only from initial system
ages appearing in the -vector , and for

. We now derive values of the -bias function evalu-
ated at these ages. Adapting the notation of the previous sub-sec-

.
(30)
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tion, we write
for the total -expected cost incurred by a system of initial
age , , until its first entry into
the brand new state. The system is assumed to be operating
under the schedule for PM interventions given in (31). We write

for the equivalent
-expected time. Following the development around (28)–(30),

(33) above, we infer the -bias values All of the quantities
in (34), shown at the bottom of the page, may be computed
readily by the methods of Section III. Values of the -bias

for -values not included in (34) are now obtained by in-
terpolation, achieved through fitting a cubic spline to the values

, . This fitting was executed using
the routines e01baf and e02baf from the NAG Mark 21 Library.

Heuristic 5 is now designed by use of (26), and the algorithm
immediately following (26); with -bias values developed
as above, and the cost rate given by

(35)

The development of Heuristic 6 is as above, excepting only that
the starting point is Heuristic 2 rather than Heuristic 1.

Example: For our running example, the long run average cost
rate associated Heuristic 5 is 3.419 (0.141% above optimal);
and the heuristic and its cost rate took 7.7 seconds to compute.
Heuristic 6 has a long run average cost rate of 3.416 (0.059%
above optimal); and the heuristic and its cost rate took 52.9 sec-
onds to compute. As before, given that Heuristic 2 outperforms
Heuristic 1 for this example, it is unsurprising that Heuristic 6
should outperform Heuristic 5.

Given that the development of Heuristics 3 and 4 involves the
minimization of the expression in (28), it is unsurprising that
these policies outperform Heuristics 5 and 6, and take longer
to compute. An advantage of the approach to the development
of Heuristics 5 and 6 based on the cubic spline interpolation
following (34) is that it easily lends itself to repeated applica-
tion for so long as the policies thereby created remain within
the class introduced in Section III. While we would expect that
such an iterative procedure would lead to successive improve-
ments, we know of no theory which guarantees convergence to
the optimum.

D. Optimal PM Policies

In the above discussion of our running example, the quality of
the PM heuristics is expressed as a percentage cost rate excess
above the optimum. We determine the optimum cost rate by
using a procedure based on the value iteration algorithm given in

Section 3.5 of [21]. However, we ease the computational burden
by exploiting the fact we have access to strongly performing
policies in Heuristics 1 and 2, and approximations to their value
functions via (24).

We proceed as follows for any given problem. We first com-
pute Heuristic 2, and determine , the age at which the system
is renewed without inspection under this policy. Note that

in the running example above. Our value itera-
tion will then act on successive -discretizations of the space
of all possible states with initial quantum chosen
to be . For our initial value setting, we take a suitably
scaled version of the bias function in (30). This approach is
equivalent to initializing the algorithm with a value function ap-
proximation of the form given in (24) where policy is taken
to be Heuristic 2. We obtain the optimum cost rates for suc-
cessive -discretizations (halving at each step) until conver-
gence is secured (stop when the difference in cost rate from
successive -discretizations is below the current cost rate esti-
mate multiplied by ). Please note that for each suc-
cessive discretization the algorithm is initialized in the same
manner, taking the estimate of the value function available from
its predecessor, and suitably adjusting for the new discretization.
Please also note that the high quality of our heuristic policies has
meant that, to get meaningful cost rate comparisons with the op-
timum, we have needed to estimate optimal cost rates with high
precision. This requirement in turn has meant long run times for
the DP algorithm.

Example: Using the above approach, the optimum cost rate
for the running example was found to be 3.414. The computation
of the optimal policy and its associated cost rate took 4 hours, 8
minutes, 1.8 seconds.

In Table I, find full details of Heuristics 1-6 as designed for
the running example, together with the optimal policy. In the
first row, for example, we observe that the minimizing choice
of for Heuristic 1 is given by , .
The corresponding policy in form makes the choices

, , and . Hence, the
first scheduled inspection under Heuristic 1 is at
while the system is renewed without inspection at .
In each row of the table, we record the time of the first PM
intervention , the first PM intervention of type 2 , and
the occasion of the system’s renewal without inspection
for the corresponding heuristic.

The table mentions a new policy, Heuristic 2MP, which will
be described in greater detail in Section VI-E. This policy takes
its cue from the earlier Maillart and Pollock model, and is of
the form , namely all inspections will be followed by a

,
,

,
.

(34)
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TABLE I
SUMMARY OF RESULTS FOR RUNNING EXAMPLE

renewal of the system, if it is found to be in the worn state. The
policy is otherwise structured along the lines of Heuristic 2.

As we shall see in the upcoming section, the cost rate per-
formances of our policies for the running example give a good
indication of their relative performance for the large collection
of 1,800 problems discussed there.

VI. NUMERICAL STUDY

In an extensive numerical study, the six heuristics proposed
in Sections IV and V were developed for 1,800 problem in-
stances generated at random, and described below. In all cases
studied, all the heuristic policies were of the form ,
and so cost rates were computed for all heuristic policies and
for each problem by the methods of Section III. This approach
was typically achieved in a few seconds of computing time in
each case. The worst case was an instance of Heuristic 4 which
took 4 minutes, 9.1 seconds to compute. The cost rates achieved
by the heuristics are below compared to the optimum cost rate
achievable. The latter was obtained by a DP value iteration algo-
rithm, as described in Section V-D. In contrast to the case with
the heuristics, the optimum policy and associated cost rate could
on occasion only be obtained to the required accuracy after sev-
eral hours of computing time. The worst case took just over 24
hours. The running example we have used in Sections IV and V
is one of our 1,800 sampled problems, and was chosen because
it has features which are fairly typical.

All problems studied were as specified in (2) and (3) above.
Hence, transitions of the system into the worn state follow a
Weibull hazard with parameters , and ; and sojourns in the
worn state (prior to failure) are exponentially distributed with
mean . In the numerical study which follows, we are able to
assess the quality of performance of our six heuristics when ap-
plied to 1,800 randomly generated problems. Of initial interest
is the question of whether the quality of heuristic performance
varies with values of the key parameters (shape parameter of
the Weibull hazard), and (the cost of renewing the system
after failure).

A. Heuristic Performance as Varies

In Table II(a)–(c), find summaries of the percentage subopti-
malities achieved by Heuristics 1-6 for 900 randomly sampled
problems, with 300 problems chosen for each of three distinct

ranges of the key parameter . High values of indicate that
the system ages more rapidly as reflected in an increased rate
of transitions into the worn state. In problem set 1, system
are sampled independently from the continuous uniform dis-
tribution . Here the hazard rates in (2) are all in-
creasing, and concave in the system age. Results for this case
are given in Table II(a). In problem set 2 (Table II(b)), we have

, and the resulting Weibull hazard rates are in-
creasing and close to linear. For problem set 3 (Table II(c)), we
have , and the hazard rates are all increasing
and convex. In each problem set, a total of 300 problems were
generated, and the average cost rate for each heuristic was
computed and compared to the optimum cost rate. Hence, for
each problem set and each of the six heuristics, 300 percentage
suboptimalities

were computed and summarized via the order statistics MIN
(minimum value), LQ (lower quartile), MED (median), UQ
(upper quartile), and MAX (maximum value). These summaries
of suboptimalities are presented in Table II(a)–(c) below.

In this part of the numerical study, other problem parameters
are set/generated as follows.

(36)

(37)

(38)

(39)

(40)

(41)

The sampling in (41) ensures that, once the hazard rate is de-
termined, the parameter is set in such a way that the mean time
spent in the worn condition , expressed as a percentage of
the -expected time until the system’s first entry into the worn
state, is uniform between 9% and 16%.

B. Heuristic Performance as R Varies

We now explore the quality of performance of Heuristics
1-6 as we vary , the cost of system renewal following failure
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TABLE II
PERCENTAGE SUBOPTIMALITIES OF SIX HEURISTICS FOR (a) HAZARD �

INCREASING AND CONCAVE, (b) HAZARD � INCREASING AND

|CLOSE TO LINEAR, AND (c) HAZARD � INCREASING AND

CONVEX. SEE TEXT FOR DETAILS

(equivalently, the ratio of that cost to the inspection cost m). As
in Section VI-A, we study three problem sets containing 900
problems in all. Problem set 4 (reported in Table III(a)) consists
of 300 randomly generated problems with . Similarly,
problem set 5 (Table III(b)) has 300 randomly generated prob-
lems with , while problem set 6 (Table III(c)) has

. The key shape parameters for the Weibull hazard
are obtained by sampling -independently from the continuous
distribution . Subsequent to this sampling, the pa-
rameters , , , , and are set as in (36)–(38), (40) and (41).
The results are presented in the same manner as in Section VI-A.

C. Comments on the Numerical Results

The very simple Heuristics 1 and 2 perform remarkably well
with a worst case performance of 2.007% suboptimality (for
Heuristic 1) in all 1,800 problems studied. That said, Heuristic
2 comfortably outperforms Heuristic 1 throughout the study,
and was never more than 0.440% suboptimal. The notion that
constructing PM schedules by equalizing the failure probability
in each subinterval is plainly a sound one. Heuristic 1 margin-
ally outperformed Heuristic 2 in just four of the 1,800 problems

TABLE III
PERCENTAGE SUBOPTIMALITIES OF SIX HEURISTICS FOR (a) � � ��,

(b) � � ����, AND (c) � � ��. SEE TEXT FOR DETAILS

TABLE IV
PERCENTAGE SUBOPTIMALITIES WHEN HEURISTICS ARE DESIGNED FOR

PARAMETER ESTIMATES. SEE TEXT FOR DETAILS

studied. All of these exceptional cases were characterized by
large (system ages quickly), and large (brief sojourn in the
worn condition). Note that, for very large , transitions into the
worn state lead very quickly to failure, and so Heuristics 1 and
2 become very close to each other. As we would expect from
an approach based on DP policy improvement, Heuristics 3 and
5 (respectively Heuristics 4 and 6) improve upon Heuristic 1
(respectively Heuristic 2). Plainly, the policy improvement ap-
proach which utilizes directly calculated -bias values which is
described in Section V-B, and which yields Heuristics 3 and 4,
is usually more powerful than the simpler approach described in
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TABLE V
PERCENTAGE SUBOPTIMALITIES FOR HEURISTIC 2MP. SEE TEXT FOR DETAILS

Section V-C, which estimates -biases by cubic spline interpo-
lation, and which yields Heuristics 5 and 6. The relative perfor-
mance of the six heuristics is remarkably consistent. Heuristic 4
is the strongest performing policy throughout, with a worst case
performance of just 0.056% suboptimality in the 1,800 prob-
lems. The performance of the heuristics appeared little affected
by varying the key parameters and .

Finally, please note that we have already remarked in
Section II that our methods are not restricted by any assumption
of exponentiality for the distribution of the time spent in the
worn state prior to failure. Observe that, in our numerical exper-
iments, these sojourns are assumed to be short in comparison
to the time to first failure. When this is the case, we would
expect the performances of Heuristics 1 and 2 to remain strong
under quite general distributional assumptions for the sojourns
concerned. Should sojourns in the worn state be longer, and for
example negatively associated with the age of the system, we
would expect the performance of Heuristic 2 to remain strong,
but would not be surprised if Heuristic 1, whose design takes
less account of time spent in the worn state, performed less
well.

D. Sensitivity Analysis

In practice, the parameters in our model will be estimated.
It is thus of considerable interest to study the performance of
Heuristics 1 and 2 when they are designed on the basis of pa-
rameter values which are at some distance from the ‘true’ ones.
To explore this performance, we revisited our 1,800 randomly
generated problems, each with its associated values of , , and

. For each problem, five further problems were generated by
sampling new parameter values , , and from the uniform
distributions , , and
respectively. The original values of the costs , , , and were
retained. We thus have 9,000 randomly generated problems in
1,800 groups of five, each of which contains problems with a
common set of originating system parameters , , and . In
every case, Heuristics 1 and 2 were designed on the basis of the
generated values , , and (to be thought of as parameter
estimates); and applied to the system with parameters , , and

(to be thought of as true values). In every case, a percentage
cost suboptimality was computed. The 9,000 percentage subop-
timalities are summarized by order statistics in Table IV.

The heuristics continue to perform strongly, although unsur-
prisingly their level of performance is somewhat impaired in
comparison with the cases in which all parameter values are as-
sumed to be known. While parametric uncertainty has somewhat

improved the performance of Heuristic 1 relative to Heuristic
2, it is clear that the latter continues to be the stronger.

E. The Value of a Repair Option

While it seems appropriate and natural to have a cheap repair
option available if possible, we now seek to gain some idea of
the cost rate advantage conferred thereby. To achieve this un-
derstanding, we proceed as follows. For each of our 1,800 ran-
domly generated problems, we designed a version of Heuristic
2 (which we shall refer to as Heuristic 2MP to signify its rela-
tion to the earlier Maillart and Pollock model), constructed as
in the discussion around (20), except now each PM intervention
before is assumed to be of type 2. Hence, at these points,
the system is renewed if found to be worn. In our earlier ter-
minology, Heuristic 2MP is of the form . As before,
an optimization over is performed. While we fully ac-
knowledge that Heuristic 2MP will not be optimal for a system
disallowing repair, the cost rate comparisons generated should
be insightful and adequate for our purposes. For each of our
1,800 problems, the percentage suboptimality of Heuristic 2MP
(for the model including repair) was computed, and a summary
via order statistics is given in Table V.

At the left hand end of Table V, find a summary of the perfor-
mance of Heuristic 2 for these problems for ready comparison.
In the second column are results for Heuristic 2MP overall (i.e.
for all 1,800 problems). In the remaining columns, the results
are broken down by -range (concave, near linear, and convex),
and by value of (45, 67.5, and 90). Here, the breakdowns by

and are informative. The cost saving achieved by the avail-
ability of a repair option are greatest when and are small.
When is small, the system deteriorates slowly with age, and a
repair option is likely to remain cost effective well into the PM
schedule. In contrast, large values of the failure cost are likely
to undermine the cost effectiveness of repair.

VII. CONCLUSION AND FURTHER WORK

We have analyzed a 2-phase system in which transitions into
the worn state increase in frequency as the system ages. Should
the system be found to be worn upon inspection, then it may
either be repaired cheaply, or renewed at a rather greater cost.
The system may be renewed without inspection at any point. We
have proposed two very simple heuristics (Heuristics 1 and 2)
with four more (Heuristics 3-6) derived by methods based on DP
policy improvement. All of these policies are easily computed,
and close to cost minimizing in all problems studied.



MACPHERSON AND GLAZEBROOK: DP POLICY IMPROVEMENT TO THE DEVELOPMENT OF MAINTENANCE POLICIES 459

For this model class, we propose the adoption of Heuristic 2
whose inspection intervals are designed to equalize the proba-
bility of system failure in each. At each inspection, the system is
repaired if found to be worn. A check on the quality of Heuristic
2 is available via the design and evaluation of Heuristic 4. If
Heuristic 4 offers little cost rate reduction in comparison to
Heuristic 2, then it is reasonable to infer that the latter is close
to optimal. If Heuristic 4 does offer significant improvement,
it may well be preferred. Heuristic 4 will likely differ from
Heuristic 2 in that the inspections which come late in each cycle
of the system (i.e. between renewals) will lead to renewal, not
repair, of a system found to be worn. If the system ages quickly,
and sojourns in the worn state are brief, Heuristic 1 is a serious
competitor to Heuristic 2, and may on occasion outperform it
in cost terms. Additional insights from our work are (i) that the
precision with which model parameters are estimated has sig-
nificance for the quality of performance of the derived main-
tenance policies, with some deterioration in performance to be
expected when there is parametric uncertainty; and (ii) that in-
clusion of the repair option in the model yields significant cost
rate reductions.

We plan to take the work forward. Lagrangian techniques
should allow us to use similar approaches to those of the cur-
rent paper to tackle problems of maximizing system availability
in situations where (i) inspections, repairs, renewals, and fail-
ures all lead to system down time; and (ii) there is some fixed
budget for maintaining the system. We also plan to consider the
deployment of a sensor to support system monitoring. Such a
sensor should give a signal whenever the system enters the worn
state, but is typically imperfect, and has associated errors of both
kinds (false positives, and false negatives). The question arises
of how such a sensor might best be used within an overall policy
for maintenance and replacement of the system. How reliable
does such a sensor need to be for it to yield significant benefits?
Methods based on the approaches described in this paper will
assist in answering such questions.
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