Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land use change in response to growing food needs

Hardacre, Catherine and Palmer, Paul I. and Baumanns, Kerstin and Murray-Rust, Dave and Rounsevell, Mark (2012) Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land use change in response to growing food needs. Atmospheric Chemistry and Physics, 12. pp. 33359-33410. ISSN 1680-7316

[img]
Preview
PDF
acpd_12_33359_2012.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB)

Abstract

We quantify the impact of land use change, determined by our growing need for food and biofuel production, on isoprene emissions and subsequent atmospheric oxidant chemistry in 2015 and 2030, relative to 1990, ignoring compound climate change effects over that period. We estimate isoprene emissions from an ensemble n=1000 of land use change realizations from 1990--2050, broadly guided by the IPCC AR4/SRES scenarios A1 and B1. We also superimpose land use change required to address projected biofuel usage using two scenarios: (1) assuming that world governments make no changes to biofuel policy after 2009, and (2) assuming that world governments develop biofuel policy with the aim of keeping equivalent atmospheric CO2 at 450 ppm. We present the median and interquartile range (IQR) statistics of the ensemble and show that land use change between -1.50 x 10 12 m2 to +6.06 x 10 12 m2 was found to drive changes in the global isoprene burden of -3.5 to +2.8 Tg yr-1 in 2015 and -7.7 to +6.4 Tg yr-1 in 2030. We use land use change realizations corresponding to the median and IQR of these emission estimates to drive the GEOS-Chem global 3-D chemistry transport model to investigate the perturbation to global and regional surface concentrations of isoprene, nitrogen oxides (NO+NO2), and the atmospheric concentration and deposition of ozone (O3). We show that across sub-continental regions the monthly surface O3 increases by 0.1--0.8 ppb, relative to a zero land-use change calculation, driven by increases (decreases) in surface isoprene in high (low) NOx environments. At the local scale (4 x 5) we find that surface O3 increases by 5-12 ppb over temperate North America, China and Boreal Eurasia, driven by large increases in isoprene emissions from short-rotation coppice crop cultivation for biofuel production.

Item Type: Journal Article
Journal or Publication Title: Atmospheric Chemistry and Physics
Additional Information: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
Uncontrolled Keywords: /dk/atira/pure/subjectarea/asjc/1900/1902
Subjects:
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 63151
Deposited By: ep_importer_pure
Deposited On: 26 Mar 2013 08:55
Refereed?: Yes
Published?: Published
Last Modified: 19 Feb 2020 01:49
URI: https://eprints.lancs.ac.uk/id/eprint/63151

Actions (login required)

View Item View Item