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Abstract

The study begins by summarising three key topics of research in criminal careers of
sexual offenders: explaining the observed bimodality of the age-crime curve for sexual
offenders; determining whether rapists and child molesters follow well-separated, or
overlapping criminal career paths; and assessing whether non-contact sexual offending
is associated with serious sexual crime, and if so, which serious sexual crimes it is
associated with. It is argued that these and other salient questions in the study of
criminal careers of sexual offenders cannot easily be answered using trajectory models
that aggregate crimes across types, or profile models that account for mix of crimes but
do not take account of criminal career dynamics.

Using data on 824 male sexual offenders from the Massachusetts Treatment Center,
the study investigates four methods for the joint analysis of sexual offender trajec-
tories and profiles. The four methods are: optimal matching with non-probabilistic
clustering; “constrained” multivariate group based trajectory models; “unconstrained”
multivariate group based trajectory models; and a Poisson-log normal factor model
with posterior trajectory analysis of the factor scores.

Optimal matching is found to be a useful way to summarise and visualise complex
sequences of events, with the advantage that clustering can be performed without ag-
gregating the data. However, without the ability to make inferences from findings its
usefulness is limited to an exploratory role.

The constrained and unconstrained multivariate trajectory models are compared,
and it is found that neither one dominates the other in all contexts, and that both
correspond to interesting theoretical hypotheses. It is suggested that the unconstrained
models should be a starting point for modeling, since they make fewer assumptions and
allow the appropriateness of the constrained model to be tested.

It is demonstrated that the factor model can produce parsimonious trajectories for
different types of criminal activity that are close to independent at each time point, but
which are nevertheless highly associated (positively or negatively) over the life course.
In applying the model, it is shown that a three factor model distinguishes between
trajectories characterised by general crime, rape and child molestation.

With regards to the research questions, all of the methods lend evidence to indicate
the existence of bimodal trajectories, and that these trajectories exist at the individual
level and are not an artifact of aggregation. However, it is shown that it is not possible
to answer questions relating to associations between the occurrences of certain types of
crime, using a dataset in which certain combinations of occurrence and non-occurrence
are structurally missing.
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1 Introduction

The Group Based Trajectory Model (GBTM) is a widely used model for the analysis of
criminal careers, represented as “trajectories” - smooth curves of frequency of offending over
time. One of the main advantages of GBTMs is their ability to reduce the dimensionality of
complex trajectories of offending, from initially, N separate trajectories, to a small number, to
enable the qualitative interpretation of patterns of offending over time. In recent years, they
have increasingly been used to analyse offending trajectories of sexual offenders (Hanson,
2002; Lussier, 2010), a group of offenders who have traditionally been treated as unique and
incomparable to general offenders within criminological research (Soothill et al., 2000).

The results of the application of trajectory models to sexual offending have, in some
instances, confirmed that sexual offenders are similar to other types of offender, with similar
trajectories of offending and a large degree of overlap between sexual and other types of
offending. In other instances, studies have seemed to show ways in which sexual offending,
or certain types of sexual offending, are indeed unique. For example, studies on sexual
offenders have seemed to show bimodal offending trajectories, and the presence of late-onset
accelerators into middle age, neither of which are predicted by the classic theoretical models
(c.f. Moffitt (1993); Gottfredson and Hirschi (1990)). Other studies have also cast doubt on
the idea that sexual offending is a homogenous and well-separated phenomenon, by showing
that sexual offenders both engage in other types of non-sexual crime and specialise in certain
types of sexual offending, sometimes at the same time (Soothill et al., 2000). If sexual
offenders are not a homogenous and well-separated group, with regards to offending profiles
as well as trajectories, then it is necessary to use methods that can discover this hidden
heterogeneity in the cross-sectional plane (profiles of criminal offending at any one time) as
well as the longitudinal (trajectories of offending over time).

The extant questions in criminal careers research for sexual offending: questions of se-
quencing, escalation in crime seriousness and versatility/specialisation - are not usually ad-
dressed using GBTMs, in which crimes of different types tend to be aggregated into a single
frequency of offending by age. Other types of model exist, that are well suited to modeling
criminal profiles. Latent class analysis, sometimes called latent profile analysis, is simply the
cross-sectional counterpart to a group based trajectory model. These models have been used
to analyse profiles of sexual burglary by Pedneault et al. (2012). Elsewhere, correspondence
analysis has been used as a way to represent the strength of categorical association between
categories of sexual and general offence (Soothill and Francis, 1999). Longitudinal models for
changing profiles of offending include latent markov models (Bartolucci et al., 2007). How-
ever, none of these models take account of changing frequency of offending over time, or of
the interaction between changing frequency and changing offending profiles.

Using data on 824 male sexual offenders from the Massachusetts Treatment Center, this
study will investigate interactions between trajectories and profiles of offending directly, by
employing models that extend the GBTM to deal with multivariate data. In addition to em-
ploying existing models for multivariate trajectories, we will consider a method that makes
use of factor analysis to reduce the dimensionality of criminal profiles before analysing tra-
jectories of the resulting factor scores. As far as we know this method has not been used
before in the context of criminal careers research. The method will be evaluated based on
its usefulness for jointly modeling trajectories and criminal profiles.
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We will also show how non-probabilistic data mining approaches can be employed to
aid in the exploration of complex sequences of crime occurrence and assist the formation
of hypotheses. In so doing, we will argue that, despite their limitations, sequence mining
methods are a powerful complement to model-based methods.

In the next section we will outline the development of GBTMs within criminal careers
research for general and sexual offending, and we will trace the background to some current
issues in the study of sexual offending trajectories.

1.a Background to criminal careers research

An important concept in criminology is the age-crime curve. This concept can be used to
describe the changing prevalence and also the changing incidence, of crime with age. At an
aggregated level, the shape of the age-crime curve has been found to be remarkably stable
across groups, crime types and contexts (Hirschi and Gottfredson, 1983). The typical age-
crime curve describes the occurrence of crime rising rapidly throughout adolescence, peaking
before 20 and declining sharply thereafter, with a fat tail. However, what has been less clear
is the extent to which the regularity of the age crime curve is caused by changing prevalence
with age (i.e. the changing proportion of people participating in crime) or changing incidence
with age (i.e. a change in frequency of commission of crimes for individuals) (Farrington,
1986).

In this context, in the early 1990’s the emphasis of analyses of the age-crime curve shifted
from the aggregate level to the individual longitudinal level. This change of emphasis was
driven by the development of two, somewhat incompatible, theoretical models for criminal
careers. On the one hand, Moffitt (1993) argued that the age crime curve was decomposable
into two distinct groups, termed “adolescent-limiteds” and “life-course persistents”, with age-
crime curves (trajectories) that were different not just in magnitude, but also in shape. On
the other hand, Gottfredson and Hirschi (1990) asserted that the level of criminal activity of
an individual was a function only of a single time-stable underlying factor, or propensity, that
was related to lack of self-control. This theory allowed for variation of criminal activity with
age, but not the interaction between propensity and age, with the implication that criminal
trajectories for all people should be proportional and have the same shape.

The inconsistency between these two theories was clear, and new methods were needed
that could test the validity of both. In this context, Nagin and Land (1993) introduced a
new method for clustering individual criminal careers, based on finite mixture models, that
facilitated the testing of such theories. Together, this method and theory have spawned a
multitude of studies devoted to teasing out “latent trajectories” of criminal careers.

The group based trajectory or latent trajectory model, as it has become known, has been
extended and generalised to allow the analysis of multivariate trajectories. This has mainly
focused on modeling variables that are disjoint in time, for example, the co-modeling of
pre-adolescent indicators of anti-social behaviour and later involvement in crime. However,
they have tended to be limited to the analysis of at most two variables, and the analysis of
associations between variables has tended to be secondary to the classification of individuals.

One area that has, until relatively recently, not been subjected to group based trajectory
analysis has been the area of sexual offending. The study of sexual offending has tended to be
a specialised area of criminology with its own theories and methods. This has been at least
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partly due to an implicit assumption that sexual offenders are completely distinct from, and
incomparable to, general offenders. This assumption is counter to the criminal propensity
theory of Gottfredson and Hirschi, which would predict sexual offending to be caused by the
same propensities as general offending. Much of the work that has bridged the gap between
sexual offending research and criminal careers research in recent years has been concerned
with examining this assumption, asking in what ways sexual offending is unique, and in what
ways is it similar to and related to other types of offending.

Soothill et al. (2000) showed that sexual offenders were actually likely to be involved
in other non-sexual offending throughout their lives. They also demonstrated, somewhat
counterintuitively, that sexual offenders often specialised in one type of sexual offending,
whilst remaining versatile in their non-sexual offending. Using the same sample as this study,
Harris et al. (2009) analysed specialisation by using specialisation and diversity indices, and
found that the male sexual offenders in the sample were versatile on the whole, although
child molesters were more likely to specialise than rapists.

Studies have also addressed the question of whether trajectories of offending for sexual
offenders are distinct from general offending trajectories, and whether different trajectories
for sexual offending exist. Although not employing a group based model, Hanson (2002)
analysed trajectories of recidivism risk, and found that the aggregated age-crime curve for
sexual offenders was bimodal, with a peak before the age of 20 corresponding to the peak
of offending in the general population, and a second peak in the mid- to late-30s. He also
found differences between rapists and child molesters in the rate of decline of recidivism risk.
He found that the risk of recidivism for child molesters did not begin to decline until well
into middle age. Lussier (2010) fitted a group based trajectory model to a sample of sexual
offenders, and found groups of “late bloomers” whose offending appeared to accelerate into
middle age. He also found that child molesters were more associated with this late onset
group.

Apart from post-hoc analyses of classes to explore their constitution, studies of criminal
career trajectories have not tended to address specialisation/versatility, and vice versa. The
specialisation/versatility debate and the criminal career trajectories debate cannot be artifi-
cially separated in this way. If, as both Harris et al. (2009) and Hanson (2002) claim, there
are important differences between rapists and child molesters, both in terms of specialisa-
tion and trajectories, then the interaction between frequency and specialisation needs to be
understood. Furthermore, if, as both Soothill et al. (2000) and Harris et al. (2009) claim,
versatility is the rule, then perhaps the classification of offenders as child molesters or rapists,
which is the starting point for comparing their trajectories, is dubious to begin with.

The bimodal age-crime trajectory noticed by Hanson (2002) is another empirical obser-
vation that requires a blend of approaches to understand. Is this bimodal age crime curve
caused by the aggregation of different offenders with different single peaked trajectories?
Or are there individual offenders who follow double-peaked offending trajectories? In either
of these cases, are the different peaks associated with apexes of the occurrence of different
types of crime? If yes, then perhaps the appearance of multiple trajectories is caused by the
aggregation of different types of crime, and would disappear if the crimes were disaggregated?
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1.b Research questions

It is from the intersection of the specialisation/versatility debate and the field of sexual
offender trajectory research that the substantive research questions for the present study
arise. These can be summarised as follows:

1. Bimodality of trajectories:

• Is the observed bimodality of trajectories for sexual offenders unique to sexual
offenders? and if so:

• Is it within- or between- offender?

• Is it within- or between- crime type?

• i.e. Can it be explained by disaggregating offenders into classes, or by disaggre-
gating criminal activity into crime types?

2. Association between child molestation and rape:

• Is there a strong separation between rapists and child molesters?

• Do offenders commit only one of these over the life course, or both?

• Do offenders specialise in one at one point in their lives, and another at another
point?

3. Association of non-contact sexual offending with serious offending:

• Are rapists, or child molesters more likely to commit non-contact sexual offences?

• Does non-contact sexual offending tend to precede serious sexual offending, in a
pattern of escalation, or is there no evidence of this?

The first set of questions relate to the bimodality of trajectories. Answering these ques-
tions will require the use of specifications for the group based trajectory model that allow
bimodal trajectories to be fitted, since the currently common quadratic and cubic polynomial
trajectories would hide bimodal trajectories if they exist.

The second and third sets of questions relate to longitudinally dynamic aspects of the
criminal profiles (mix of crimes) of offenders, and require multivariate methods to answer.
The suggestion that specialisation might be local, within an overarching pattern of versatility
over the life course, demands models that can distinguish between within-period association
of the occurrence of different crimes, and within-individual association.

1.c Aims of the study

The purpose of this study can be separated into three broad aims:

1. To address the substantive research questions:

(a) Bimodality of trajectories;

(b) Association between child molestation and rape;
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(c) Association of non-contact sexual offending with serious offending.

2. To implement and evaluate four approaches to jointly analysing criminal career trajec-
tories and profiles (mix of crimes):

(a) Optimal matching and non-probabilistic clustering;

(b) Constrained and unconstrained multivariate trajectory models;

(c) A Poisson-log normal factor trajectory analysis.

3. To investigate, and if possible account for, inferential problems caused by the circum-
stances of construction of the sample.

The second and third aims arise necessarily from the thorough pursuit of answers to the
substantive research questions. The association of sexual offenders, and child molesters in
particular, with late-onset criminal career trajectories, as suggested by Lussier (2010), will
be assessed using optimal matching and multivariate group based models. In addition, the
study will assess the existence of multi-modal trajectories, as predicted by Hanson (2002).

The Poisson-log normal factor trajectory model, and a posterior log-linear analysis of class
membership probabilities, will be used to investigate the extent to which certain categories
of sex offender are separate, or the extent of overlap between types, and will allow for the
possibility of offenders following multiple trajectories for different crime types.

For inferences from any analyses to be valid, the sample must be an unbiased sample
of a population of interest, and we will also investigate whether this is the case, whether
adjustments can be made to models to account for any biases, and the extent to which
substantive findings can be generalised.

1.d Structure of the dissertation

The next section will introduce the sample, describe the background to the collection of
the data, and present some general summary measures of the properties and composition of
the dataset. The main motivations for the use of the sample will be explained, as well as
some limitations of the sample that must be accounted for if it is to be appropriate to draw
inferences from it.

The rest of the study will be structured as three independent analyses: in the first analysis,
non-probabilistic data mining techniques will be applied to classify and visualise the criminal
careers as sequences of events. This analysis will serve as a more thorough exploratory data
analysis, and aid the generation of hypotheses for the following analyses.

The second analysis will consist of fitting two group based trajectory models. The first will
involve fitting a group based trajectory model to frequencies of total offending, as a bench-
mark against which to compare the multivariate analyses. In this section the specification
of the group based trajectory model will be laid out, as well as some general methodological
decisions that apply to all of the GBTMs fit in this study. In the second part of the sec-
ond section, frequency of offending will be disaggregated into two sub-frequencies - sexual
offending and general offending, and GBTMs will be fitted to both frequencies. Two types
of multivariate GBTM will be fitted to these dual frequencies and compared.
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In the third analysis, a factor model for count data will be introduced, as a way of
reducing the dimensionality of the crime frequencies without making a priori decisions about
aggregation, and preserving the covariance structure of the crime categories. It will be shown
that the factor model can be used to produce statistics called factor scores, and these will
be used in trajectory models to determine whether trajectories have simple structure once
crime types are accounted for.

In the final section, we will draw upon the results of the three analyses to determine if
the aims of the study have been met, and if answers to the questions posed in section 1.b can
be answered. The limitations of the study, and suggestions for future studies to build upon
this one, will also be discussed.

2 The Sample

The sample is a set of 824 male offenders who were referred to the Massachusetts Treatment
Center (MTC) for Sexually Dangerous Persons, part of the Bridgewater State Hospital in
Massachusetts, USA, between 1959 and 1984. All of the men had committed at least one
serious sexual offence involving contact with a victim (rape, child molestation, contact sexual
offences). The offenders were referred to the MTC via the legal system under laws for “sexual
psychopaths”. In many cases the referral was made at the time of conviction for the index
offence(s), which would have been serious sexual offences, but in some cases the referral was
made a long time after the index offences when the subject had been brought before the
courts for another reason. Approximately half of the men were admitted as inmates into the
treatment center; the rest were judged not to be sexually dangerous and were either released,
or sent back into the prison system to serve their sentences.

This is therefore a convenience sample, and the question of its generalisability to the sub-
population of serious sexual offenders is not taken for granted, but is not addressed explicitly
by this project. Despite the limitations caused by the circumstances of its creation, the
dataset is nevertheless an incredibly rich source of criminal histories for sexual offenders.
Each offender has an average of 15 offences, and the largest number of offences for a single
offender is 96.

For each offender the date of birth has been recorded, as well as an indicator for whether
he was admitted or released, and various other pieces of personal information that are not
employed in the study. The dataset lists all recorded crimes for each offender, from the age
of seven to the time of referral to the MTC. There is also information on offences committed
after release from the treatment center. This follow-up data was not used because the two sets
of offending data are separated by an indeterminate period of incarceration in the treatment
center, which could bias the estimated trajectories.

Offending histories consist of a date for each offence, which was usually the date of
conviction or the date of charge, but in some cases exact dates were not available, and only
the month or year of the offence was available. Because in most cases the dates are not the
actual dates of offence, there is some clustering in offence dates.

The dataset was used in two forms during the three analyses. For the optimal matching
the offences were not aggregated into time periods, and were used in long person-event form.
For the group based and factor models offences were aggregated into counts by five-year
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period for each individual, with a count for each category of offence, sub-totals for sexual
and general (non-sexual) offending, and a total for all offending in each period.

The type of offence is recorded as a nominal variable with, originally, 20 categories. These
20 categories were mapped to eight categories for the optimal matching and factor analysis,
and two broad categories - sexual offences and general (non-sexual) offences - for the dual
trajectory analysis. Table 1 shows the frequency of offences by the original categorisation,
and the mappings to the eight categories. Underlined categories are included in the sexual
offending total, whereas the rest are included in the general offending total. One category,
homicide, was not used in the factor analysis, because there were too few occurrences. Of
the explicitly sexual offences, all were mapped directly, apart from “contact SO” which was
merged with rape because of the small number of occurrences.

It can be seen in Table 1 that by far the greatest number of offences were child molestation,
which exceeds the combined total of the other sexual offences. This is perhaps related to the
age of the sample; in the mid-twentieth century some categories of rape, such as date rape or
marital rape, were considered less serious than they are today and were prosecuted rarely. In
contrast, child molestation has always been considered a serious offence, and a serious form
of sexual deviancy. The second most numerous type of offending is motoring offences. Rather
than removing these and other possibly trivial offences from the dataset, they were retained
so that the relationships between serious sexual offending and low-level law-breaking could
be examined.

The third piece of information for each offence was the disposition (sentence) for the
offence. These were originally categorised into twenty categories. This information was only
used in the study in the form of an indicator of incarceration in the current period. Lag
variables were also created indicating incarceration in each of the previous three periods for
each offender. These were used in the zero-inflation model to account for an increased risk of
zero inflation in periods following a custodial sentence. An exposure indicator was calculated,
equal to five in periods with no incarceration, and reduced proportional to the time that the
offender was at liberty during other periods.

Table 1: Frequencies of the twenty original offence types, mapped to the seven aggregated
offence types.

Offence Type Mapped to Count Offence Type Mapped to Count

Child molest. Child molest. 2679 Misc. Other 300
Motoring Other 1864 Abduction Other 283
Assault Assault 1226 Property Property 272
Breaking & ent. Breaking & ent. 997 Justice/ milit. Other 233
Rape Rape 945 White-collar Other 207
Theft Property 912 Dangerous act. Other 204
Non-contact SO Non-contact SO 805 Contact SO Rape 178
Alcohol Other 690 Weapons Other 120
Public order Other 659 Drugs Other 87
Robbery Property 309 Homicide Homicide 79
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2.a Exploratory analysis

10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

Density of crimes by age

Age

D
en

si
ty

Figure 1: Density plot of the number of crimes in the unaggregated dataset, by age. The kernel is
gaussian and the bandwidth=1.
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Figure 2: Histogram of frequency of crimes in each five-year period. 1653 pre-referral zeroes have
been removed.

Some basic exploratory analysis was conducted on the dataset. Firstly, missing data was
checked. There is minimal missing data on the offences themselves. There are less than
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Figure 3: Histogram of total offences committed by offenders.

2% missing dates (either date of birth or date of offence) and no missing offence types.
The offences with missing dates were deleted, after checking that they did not appear to be
associated with any particular types of crime. In total, there is complete data for 13,049
offences.

Secondly, the overall distribution of counts was plotted at the level of each offender, and
also at the level of five-year periods. It was found that offenders have an average of 15.1
offences throughout the observation period (see Figure 3). The average number of offences
in each five-year period before referral is 3.3 (see Figure 2). Figure 1 shows the empirical
density of offences by age, plotted using gaussian kernel density estimation. The peak is
before the age of 20, as in the archetypal age-crime curve although there is a second smaller
peak in the mid-30s at around the age where a second peak would be predicted by Hanson
(2002).
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2.b Non-ignorable and unobserved missingness

There are two forms of missingness that are problematic in the sample. The first is a form
of unobserved missingness due to unrecorded periods of incarceration. The second is a form
of non-ignorable missingness due to right censoring.

The problem of unobserved missingness due to incarceration has been considered previ-
ously with regards to GBTMs. Eggleston et al. (2004) underlined the importance of treat-
ing periods of incarceration as missing data, to avoid downward bias in estimates of crime
frequency due to periods of incarceration being treated as periods of no offending. The Mas-
sachusetts dataset, in common with many other criminal careers datasets, does not contain
information on periods of incarceration; in effect the missingness indicator is itself missing.
A common approach to accounting for so-called “structural zeroes” in GBTMs has been to
employ a zero-inflated Poisson (ZIP) model (Nagin and Land, 1993)(see Section 4.b.iii).

The second missingness problem is related to the sampling process. In the Massachusetts
dataset, the follow up period ends when the offender is admitted to the MTC. Because of
this, all observations are right censored at the point of referral. By construction, there are no
participants who die or desist from criminal activity before the end of the follow up period,
and referral is usually at or near a period of frequent offending. This means that the sample
is unsuitable for modeling desistance from crime, because all criminal careers are truncated
before desistance.

The problem is exacerbated by a steep decline in the size of the active sample from
around the mid-20s onwards (see Table 11a in Section 4.b.iii). This means that not only
are those offenders who remain bound to be active offenders, but also the frequency of their
offending will have a disproportionate effect on the height of the trajectories they contribute
to. The use of group-based models means that it is difficult to calculate exactly how many
offenders contribute to each trajectory, because contributions are weighted by posterior class
membership probabilities.

The problem of non-ignorable dropout in GBTMs has been addressed by Haviland et al.
(2011), who outlined a generalisation of the model to incorporate dependence of the dropout
process upon class membership and other covariates. This generalisation is designed to
alleviate bias in the estimation of class membership probabilities. However, this extension
would not address the unsuitability of the sample for modeling desistance or the inevitably
biased estimates of trajectories towards the end of the period, which are a consequence of the
sample’s construction. The latter problem has been addressed to some extent by truncating
the follow up period at an age where the active sample size is still reasonable (the period
49-53).

In Section 4.b.iii the zero-inflated model for periods of unobserved missingness is outlined.
It is explained that extending this model not only to intermittent missingness, but also
missingness after referral, has been used to counteract bias in the estimated trajectories.
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3 Analysis One: Optimal Matching

3.a Motivation

Sequence mining methods were incorporated into the study for two reasons. Firstly, since
they require no data aggregation and almost no transformation, the complexity of the data
was not hidden. Secondly, optimal matching techniques are non-statistical, and as such rely
on very different set of assumptions to group based trajectory models; it is therefore useful to
compare the results of applying these two techniques as a way to understand the implications
of the assumptions being made in both.

The analysis was conducted using the R package1, TraMineR (Gabadinho et al., 2011)
which incorporates tools for the analysis of state and event sequences. Although primarily
oriented towards state sequences, there are nevertheless specific tools for use with event
sequences, and Studer et al. (2010) has recently extended the capabilities of TraMineR with
the addition of a function to calculate a dissimilarity matrix for event sequences, based on
the concept of “edit distance” from one sequence to another. Once a dissimilarity matrix has
been calculated, widely recognised clustering algorithms, such as agglomerative nesting and
partitioning around medoids, can be used to cluster the sequences.

The application of methods of optimal matching in the social sciences have been criticised
because it is not clear how the conceptual model of edit distance translates well from text
and genetic research to the domain of criminal careers (Levine, 2000). Additionally, they
require the researcher to make subjective decisions about costs of various edit operations.
Also, McVicar and Anyadike-Danes (2010) asked whether there was an application of optimal
matching in the social sciences that could not be better achieved with other methods. It will
be demonstrated that OM methods are useful for exploratory analysis and should be regarded
as a complement to model-based analyses, although we will not address the question of the
arbitrariness of the parameters.

3.b Methods used in the optimal matching analysis

3.b.i Optimal matching and edit distance

In event sequence analysis, a criminal career is represented as a string of ordered events,
together with the time separating each pair of consecutive events. An example might be the
following sequence:

→17 (Assault)→2 (Theft)→1 (Rape)→5

Where the numbers above the arrows are the length of the period separating two events, in
years (Studer et al., 2010). It can be seen that the sequence is augmented with the length of
the period before the first event (age of onset) and the length of the period in between the
last event and the end of the observation period. It is therefore possible to define variable
observation periods and right censoring.

Optimal matching is based upon the premise that any sequence of events can be mapped
to any other sequence of events by a series of transformations, or “edits” of the sequence.
Different variations on the method allow for different types of operation. The method used

1R Core Team (2012).
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in this study allows for three types of operation: insertion of an event; deletion of an event;
and translation of an event by a unit of time (either forwards or backwards). Each type of
operation is associated with a cost, ϕ, which can depend upon the type of event, in the case of
insertion/deletion costs. These costs are chosen by the researcher, and it has been suggested
that the cost of an insertion/deletion should be inversely proportional to the probability of
occurrence of the event in the sample (Studer et al., 2010).

The unscaled edit distance or Levenshtein distance d(A,B) between two sequences of
events A and B is equal to the minimum total cost of transforming one sequence to be equal
to the other. The cost of insertion of an event is constrained to be equal to the cost of deletion
of the same event, otherwise the distances will not be symmetrical (i.e. d(A,B) 6= d(B,A)).

The unscaled edit distance is a euclidean distance, in that it respects the triangle in-
equality. However, the distance depends upon the length of the sequences, with two short
sequences likely to be closer to each other than two longer sequences. For this reason, the
edit distance is scaled so that each distance is proportional to the maximum possible distance
between the two sequences. The scaled distance lies in the range 0-1, where 1 is the maximum
possible distance, and is also a euclidean distance.

Edit distances are calculated using a dynamic programming algorithm, the output of
which is an n×n dissimilarity matrix containing the scaled edit distances between each pair
of sequences (criminal careers). The dissimilarity matrix can then be used as a summary
measure in a subsequent data analysis. The most common use of dissimilarity matrices
calculated in this way is to subject them to some form of clustering, to uncover hidden
structure in the event sequences.

3.b.ii Non-probabilistic clustering techniques

Non-probabilistic clustering techniques are used to find categorical structure in data that has
not been pre-categorised. This task is achieved using many different methods, two of the
most popular of which are heirrarchical clustering, and partition-based clustering.

Heirrarchical clustering begins with the unclustered data, and proceeds by clustering
observations or clusters of observations that are close together, until all of the data has been
encompassed in one group. At each cycle, the algorithm only makes one join, that of the two
observations or clusters that are closest in that cycle. The closeness of two clusters can be
measured either from the centres of the two clusters, or from the nearest two observations in
the two clusters, or from the farthest two observations in the two clusters. A popular method,
Ward’s method, uses the increase in variance of each cluster as a measure of distance at each
stage. The result of heirrarchical clustering is not one set of clusters, but a tree-like structure
of successively aggregated clusters. The researcher can examine the heirrarchical structure
using a visualisation called a dendrogram, and decide upon the most desirable clustering by
eye.

In partition-based clustering methods, in contrast, the researcher must decide upon the
number of clusters, k, beforehand. A popular partition-based method is called Partitioning
Around Medoids (PAM). In PAM, a set of k representative observations are chosen, called
medoids, and other observations are clustered according to their closeness to each of these
medoids. The goodness of the clustering produced by a given set of medoids is measured by
the sum of the dissimilarities of all objects to their nearest medoid. The algorithm proceeds
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by swapping one medoid at a time until the sum of dissimilarities cannot be reduced further.
The output of PAM is a cluster assignment for each observation into one of the k clusters,
and a set of k representative medoids.

A summary measure of the goodness of a k-cluster solution is the average silhouette width
of observations, that can be used to choose between different values of k. The silhouette width
of an observation, y1 is defined as follows. Firstly, the average distance between y1 and all
other yj in the same cluster, c1, is calculated:

D(y1, c1) =
1

n1

∑
j∈c1

d(y1, yj)

Then the average distance between y1 and all yj in the nearest neighbouring cluster:

D(y1, c2) = min
i∈k

(D(y1, ci)) = min
i∈k

(
1

ni

∑
j∈ci

d(y1, yj)

)

The silhouette width of y1 is then:

s(y1) =
D(y1, c2)−D(y1, c1)

max (D(y1, c1), D(y1, c2))

Different clustering algorithms were compared. The heirrarchical clustering tended to
produce a combination of a few very large clusters and some single-observation clusters, which
was undesirable for the purposes of the study. The TraMineR package contains a function that
calculates a PAM solution, using the centroids of the k level of a Ward heirrarchical clustering
as start values. This function was compared to the default PAM function and produced the
best average silhouette widths, so this function was used to calculate the clusters.

3.b.iii Method

As stated previously, very little data manipulation was required prior to calculating optimal
matching distances. The crimes were unaggregated, and age of the offender at the time of
offence was used as the time variable. The end time for each sequence was set as the time of
the last offence.

Following Studer et al. (2010) the insertion/deletion costs were chosen to be inversely
proportional to the proportion of occurrence of each type of crime in the sample. This
has the effect of balancing the influence that each type of crime has on the distance, and
hence the clustering, otherwise clusterings would be dominated by small differences in the
distribution of the most common crimes. Sexual offences were weighted by a factor of three
to reflect their relative importance in the analysis. The resulting costs were scaled so that
the smallest cost, that for “Other” offences, has a cost equal to one. Table 2 shows the costs
used. The translation cost was set equal to 0.3, so that a translation of six-seven years would
be equivalent to a deletion and an insertion of a completely new event in the case of the most
common category of crime.
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Table 2: Insertion/Deletion costs for the different crime categories.

homicide assault rape child noncont other property breakent

58.82 3.79 12.42 5.19 17.31 1.00 3.11 4.66

3.c Results of the optimal matching analysis

Table 3 shows the average silhouette widths for two to six clusters from the PAM clustering
with Ward start values. The maximum value is for the four-cluster solution, which is therefore
selected. The average silhouette widths for each cluster are given in Table 4, which shows
that there are no clusters with very poor separation, and one small cluster with very good
separation from the others.

Table 3: Choice of PAM/Ward solution by average silhouette width

No. of clusters 2 3 4 5 6

Avg. Silhouette width 0.11 0.12 0.13 0.12 0.12

Table 4 also shows the average criminal career characteristics of the four clusters. Al-
though all of the clusters have different averages, in general there seems to be evidence of two
“super clusters” grouping clusters one and two, and clusters three and four. The first two
clusters have later ages of onset, later ages of referral, and a lower intensity of criminal ac-
tivity (crimes/period length). Length of career and total crimes do not exhibit this two-way
structure, however.

Table 4: Properties of the four PAM/Ward clusters.

Average:

Silhouette Age of Age of Length of Total Crime
Cluster % width onset referral career crimes Intensity

1 24.4 0.137 20.1 31.7 11.6 16.3 1.4
2 31.4 0.098 21.5 32.1 10.6 11.7 1.1
3 36.5 0.128 17.2 25.7 8.5 16.5 1.9
4 7.6 0.281 17.2 29.2 12.0 19.5 1.6

The criminal profiles of the four clusters are summarised in Table 5. It can be seen that
the four clusters are similar in their commission of “Other” crimes, which comprise around
one third of crimes for all clusters. Apart from this, the criminal profiles appear to follow the
same super clustering as the criminal career statistics. Clusters one and two are characterised
by the commission of child molestation, whereas clusters three and four commit more assault,
rape, property, and breaking and entering offences. There are a couple of crimes which are
dominated by one cluster: cluster one commits 86% of all non-contact sexual offences, and
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cluster four commits all of the homicide offences. The separation of the murderers was a
consequence of the large insertion/deletion cost given to homicide, but was not inevitable,
and would not have occurred if murderers were not otherwise quite homogenous in their
offending sequences. Although the murderers have a very similar profile to cluster three on
the other crimes, it is notable that they commit less rape per person than members of cluster
three, and more child molestation.

Table 5: Number and proportion of crimes committed by the four PAM/Ward clusters.

Homicide Assault Rape Child Non-cont. Other Property B & E Total

Cluster One: 24.4%.
No. 0 241 113 934 698 1069 259 192 3506
% 0 6.9 3.2 26.6 19.9 30.5 7.4 5.5 100

Cluster Two: 31.4%.
No. 0 179 18 1435 23 1218 232 143 3248
% 0 5.5 0.6 44.2 0.7 37.5 7.1 4.4 100

Cluster Three: 36.5%.
No. 0 626 880 214 63 1902 809 538 5032
% 0 12.4 17.5 4.3 1.3 37.8 16.1 10.7 100

Cluster Four: 7.6%.
No. 79 180 112 96 21 458 193 124 1263
% 6.3 14.3 8.9 7.6 1.7 36.3 15.3 9.8 100

To visually summarise the criminal careers of the four clusters, both empirical trajectories
(mean number of crimes per year) and Kaplan-Meier curves have been plotted in Figures 4 and
5. The two types of plot are complementary: the empirical trajectories can be interpreted
in a way similar to trajectories from a group based model; and the Kaplan-Meier curves
represent the probability of members of the cluster not having committed at least one crime
of each type at each point. The Kaplan-Meier curves are therefore useful for analysing age
of onset, and to some extent shed light on specialisation, since they show to what extent
offenders are exclusive in their offending. The tick marks on the survival curves indicate
when an observation is censored without having committed that crime.

The two-way super clustering is evident in Figure 4. The first two clusters are charac-
terised by the commission of child molestation over a long period, whereas the second two
clusters are more associated with assault, breaking and entering, and rape, with a shorter
and earlier period of high activity. The survival curves in Figure 5 show, however, that of
those whose criminal careers last to the end of the period, most of the offenders in all clusters
will have committed child molestation at least once.

The plotted trajectories also make clear how the clusters are different within each super
cluster; cluster two is associated almost exlusively with child molestation, whereas cluster
one is active in assault, rape, breaking and entering, and particularly non-contact sexual of-
fending. Cluster three, the largest cluster, is most associated with rape and assault, whereas
cluster four is also associated with child molestation and murder. Cluster two is the most spe-
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cialised, whereas cluster four, the murderers, are the least specialised and have a reasonable
probability (at least 0.4) of having committed all crimes except non-contact sexual offences
by the age of 30. By the age of 25, around half of this cluster have committed murder.

The survival curves suggest that in the second two clusters, those who are offending in
adolescence usually begin with breaking and entering, and progress to assault and then rape.
In the first two clusters there is not much evidence of progression, and members of these
clusters seem likely to begin offending by committing child molestation.
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Figure 4: Mean number of events per year for each crime type for the four PAM/Ward clusters.
“Other” and “Property” lines are not plotted.

3.c.i Model checking

In order to provide some kind of sense-check of the clusters produced by the PAM/Ward
algorithm it was necessary to somehow visualise the space over which the optimal match-
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Figure 5: Kaplan-Meier survival curves for the first occurrence of each crime type for the four
PAM/Ward clusters. “Other” and “Property” lines are not plotted.

ing produced distances, and over which the sequences were clustered. The distance matrix
produced by the optimal matching was mapped to a two-dimensional space using multidi-
mensional scaling, and the clusters were plotted in Figure 6. There appears to be quite a well-
defined cluster structure to the sequences, with at least three clusters visually discernable in
the plot. Although largely consistent, the clustering produced by the PAM/Ward algorithm
does not correspond exactly with what would be expected from the plot, suggesting that the
topographical mapping produced by multi-dimensional scaling does not correspond exactly
to that produced by the optimal matching. The multidimensional scaling is constrained to
two dimensions which might explain this.
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Figure 6: Sequences mapped to 2D space using multi-dimensional scaling. Symbols represent
PAM/Ward clusters. Large red numbers show positions of the four medoids

3.d Evaluation of the optimal matching results

The combination of optimal matching and algorithmic clustering has provided a rich summary
of both trajectories and profiles of offenders in the sample. The four class solution from
the PAM/Ward clustering indicated at the very least a strong two-way structure, separating
rapists from child molesters. The super cluster of child molesters, comprising 56% the sample,
committed 88% of all child molestation, and the super cluster of rapists, comprising 44% of
the sample, committed 72% of all rape. However, the Kaplan-Meier curves suggest that
child molestation was probable for all sample members whose criminal careers lasted long
enough. In general, offenders appear to be versatile as long as their criminal careers lasted
long enough, with most having a greater than 50% probability of having committed more
than one type of offence by the age of 30, apart from those in cluster two.

The discovery of a cluster of murderers was a consequence of the insertion/deletion cost
assigned to murderers, which reveals a limitation of the method - that it is dependent upon
the choice of optimal matching costs. This is not a limitation, however, if optimal matching
is viewed as a way of summarising complex data rather than as a way of making inferences
on phenomena outside the dataset. The separation of all those committing homicide was
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valuable because it revealed that on the whole those committing murder are generalists,
and are more associated with rape than child molestation. The value of optimal matching
is that it summarises data using rules determined by the researcher, but providing results
not necessarily foreseen by the researcher, and is therefore a good impetus for hypothesis
generation.

Varying observation periods were not taken account of by the empirical trajectories, but
were taken account of in the calculation of the dissimilarity matrix, and therefore in the
clustering. The Kaplan-Meier curves take account of right censoring by definition, as they
show the proportion of those in the at-risk group who have not yet committed the crime,
and the tick marks indicate when an observation is censored without having committed that
crime.

4 Analysis Two: Group Based Trajectory Models

4.a Motivation

However useful they may be for data exploration, non-probabilistic methods do not allow
the extension of inferences on a phenomenon outside the data. In order to shed light on the
research questions, it is necessary to model the processes that generated the data, and model
the uncertainty in those processes. Finite mixture models, and group based trajectory models
in particular, provide a flexible semi-parametric framework to model complex phenomena
whilst keeping assumptions to a minimum. We will introduce multivariate extensions to the
group based trajectory model with the aim of imitating the ability of optimal matching to
jointly model trajectories and profiles, in a statistical framework.

4.b Group based trajectory models

Group-Based Trajectory Models are longitudinal regression models for counts2. Typically,
counts are modeled using Poisson or negative binomial distributions, or their zero-inflated
(ZI) variants. The “trajectory” part of their name comes from the use of linear and poly-
nomial terms for time (usually biological age). The “group-based” part of their name comes
from the fact that GBTMs are a type of finite mixture model.

Finite mixture models are a popular class of models that approximate an underlying
distribution of a phenomenon of interest by a combination of distinct distributions. Finite
mixture models have two complementary interpretations and justifications: the first is as a
convenient semi-parametric way of fitting complex distributions that are not easily fitted by
known distributions; and the second is as a way of inferring the existence and membership
of unmeasured subpopulations in the sample.

In the “semi-parametric fitting” interpretation, a random vector of variables for the j’th
member of the sample, Yj (j = 1, . . . , N) is thought to be distributed according to an
unknown complex distribution, f(yj)

3 which might be skewed, overdispersed, or multimodal.

2Usually, although a linear version for factor scores was also employed in this study
3Which may be either a continuous density or discrete probability mass function
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This unknown distribution can be approximated by:

f(yj) =
k∑
i=1

πifi(yj)

where πi are mixing proportions or weights summing to one, and fi(yj) are the component
densities (i = 1, . . . , k), the individual parametric distributions of which the mixture is
comprised. Using this formulation, almost arbitrarily complex distributions can be fitted,
depending on the choice of the component densities and mixing weights. The component
densities do not need to come from the same family.

In the “latent class” interpretation, the random sample, Y is assumed to be sampled
from several distinct subpopulations, each with its own set of unknown parameters for the
distribution(s) of the variables of interest. The subpopulation membership of the j’th member
of the sample is denoted by Zj, a vector of component membership or classification indicators
for each of the components i (i = 1, . . . , k). Assuming the latent class model is valid, each
member of the sample can only belong to one sub-population or component, so only one of
the zij can be one, and the rest are zero. However, the values of Zj are not known.

This formulation allows mixture models to be fitted as “missing data” problems, us-
ing estimation procedures such as Expectation-Maximisation (EM) or Data Augmentation
MCMC. In this interpretation also, the πi take on another meaning as the proportions of the
sample who belong to each of the k latent classes, and consequently as the prior probabilities
of class membership for each of the participants. This interpretation allows the posterior
probabilities of class membership conditional upon the observed data τij = Pr(zij = 1|yj)
to be calculated for each individual. These can be used to assign members of the sample to
components, usually on the basis of the modal value of τj . These modal assignments can be

denoted Ẑj.
These interpretations are not entirely distinct, and in many applications their use is

justified from both perspectives; GBTMs are a good example of this. Indeed Nagin (2005)
originally justified the GBTM approach as a semi-parametric way to overcome the over-
dispersion usually present in frequencies of criminal offending4. However, the continuing
focus in the literature on plotting and labelling the component trajectories, and the strong
links to the typological work of theoretical criminologists such as Moffitt suggests that the
main reason for the continuing popularity of GBTMs is their power to classify complex
longitudinal datasets.

In GBTMs, the general finite mixture model is extended to allow for repeated observa-
tions. This is achieved by only letting τj vary between individuals and not within individuals
and imposing an assumption that observations are independent of each other conditional upon
component membership. The general form of the GBTM is given by:

p(Yj) =
k∑
i=1

πipi(Yj|θi)

where each pi(Yj|θi) is a count distribution with parameters θi. Due to the assumption of

local independence of observations, pi(Yj|θi) =
∏T

t=1 pi(yjt|θi). If the count distributions are

4See Section 4.b.ii
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Poisson, then:

pi(yjt|Agejt, zj,θi) =
λ
yjt
it e
−λit

yjt!

where Agejt denotes any terms for age included in the design matrix, and λit = E[yjt] is the
rate parameter for component i at time t. The relation of λit to age covariates and parameters
is specified using a log-link so that:

log(λit) = xTjtβi

Note that in this case θi = βi.

4.b.i Modeling multivariate data

GBTMs can be extended to situations where there are several variables, each measured
repeatedly for each individual. In the context of this study, the variables are counts of
different categories of crime. GBTMs can be extended to handle multivariate random vectors
in three ways. The first way is by modelling the components as multivariate distributions;
this is done in the case of model-based clustering, where multivariate normal components are
used. However, this is problematic for counts, because multivariate models for counts are
limited and difficult to apply.

The second method exploits the fact that if variates are assumed to be independent, the
joint density for each component reduces to a product of univariate densities. Using this
method, variables are assumed to be uncorrelated within components, however correlation is
induced between variables at the overall level by the mixing distribution. This can be seen as
an extension of the local independence assumption for repeated measurements. This model
has been called a “constrained” multivariate trajectory model (Nagin and Tremblay, 2001;
Brame et al., 2001).

The third method, which has been called the “unconstrained” model (Nagin and Trem-
blay, 2001), decomposes the multivariate sample into a set of univariate mixtures, with sepa-
rate mixing distributions. Using this method, each variable has a distinct set of components,
so that each member of the sample has a set of posterior probabilities of class membership
for each variable τ jg (g = 1, . . . , p). Variables are assumed to be independent of each
other given their mixing distributions, but mixing distributions are not assumed to be inde-
pendent. Association between the mixing distributions of the variables can be assessed by
cross-classifying the modal class assignments, Ẑjg, and using tests of association or log-linear
models to analyse association. However, Nagin (2005) points out that tests of association
carried out on contingency tables of Ẑjg can be biased, and will also underestimate standard
errors, because they do not take account of classification error. He advocates simultaneously
estimating all g mixtures using a likelihood based upon the joint mixing proportions πg1,g2,....

The choice between the latter two models depends on practical considerations as well
as the researcher’s hypotheses for the underlying model of the sample. Generally, the un-
constrained model will provide a fit that is optimal for each variable, because the fitting
algorithm does not have to compromise between the various variables. However, if the group
structure on all variables is reasonably well represented by a joint set of groups, then the
constrained model will tend to be better at distinguishing these groups, and will tend to have
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Figure 7: Constrained and unconstrained group based trajectory models for multivariate counts.

lower classification errors because there is more information available for the separation of
the components, and more information available for the posterior classification of individuals.
However, if the underlying group structure of the variables is disjoint, then the constrained
model will tend to fit a large number of components. This is because the true joint group
structure can only be represented by cross-classification of the components for each variable,
with non-trivial proportions in the off-diagonal cells, and the constrained model will try to
fit a component for each of the cells of this cross-classification.

Fitting the unconstrained model requires special software, or approximation using ẑjg.
In this study we will take the latter approach, although we are cognizant of the risk of bias
this introduces due to classification errors.

It is not clear whether a single measure can be constructed upon which the two types
of model can be compared. The unconstrained models are effectively being fitted in parts
to different data, and because of the different parameters used in each we doubt that the
log-likelihoods can be summed to create one measure. Therefore the strategy that has been
adopted in this study is to compare the models on classification errors, size of components,
and a tendency to find a large number of clusters.

4.b.ii Modeling overdispersion in counts

The usual model for counts, aggregated into time periods, is the Poisson model. In its
simplest form, the group-based trajectory model is based upon a Poisson model, where the
rate parameter is allowed to vary with age. However, it is commonly observed (Hinde and
Demetrio, 2010) that the assumption of equal variance and mean implicit in the Poisson
distribution imposes too much structure on real count data. If the variance is greater than
the mean, this is called overdispersion.

To relax this strong assumption, various models have been used. To deal with overdisper-
sion, the most common strategy is to allow the rate parameter itself to be a random variable,
and to model the counts using a mixture distribution such as the negative binomial (Poisson
mixed with gamma distribution for the rate parameter). In the negative binomial model
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component densities are defined as:

pi(yjt|Agejt, zj,θi) =
Γ(yjt + 1/α)

yjt!Γ(1/α)

(
1/α

1/α + µit

)1/α(
µit

1/α + µit

)yjt
(1)

where α is the class-independent overdispersion parameter, and µit = λit = E[yit] is the
class-specific mean conditional upon age. This is the Latent Gold parametrisation. In R α is
replaced with θ = 1/α. To avoid notational confusion since θ has already been defined, this
quantity will be denoted by ν = 1/α.

Alternatives include the log-normal distribution, or a discrete (finite) mixing distribution,
which essentially is the basis for a group-based trajectory model. These mixing distributions
are sometimes combined, so for example a group-based trajectory model will model the
counts, conditional upon group membership, as negative binomially distributed rather than
Poisson distributed, to account for overdispersion after the groups have been taken into
account.
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Figure 8: The frequency of counts in pre-referral periods is compared to Poisson and Negative
Binomial (ν = 0.37) densities.

Figure 8 compares the empirical distribution of counts to both a simulated Poisson and a
simulated negative binomial distribution fitted to the data. It can be seen that the Poisson
distribution seriously underestimates both the right tail of the distribution, and the number
of zeroes. The Poisson mode is at the mean, whereas in the observed data the mode is at
zero. In contrast, the negative binomial distribution fits the observed frequencies very well,
but still underestimates the concentration of zeroes by about a quarter.

A negative binomial distribution has been adopted for the models in this Section, to
account for overdispersion in the sample. However, it is clear that the adoption of the
negative binomial distribution does not account for all of the excess zeroes. A class of models
designed specifically to account for an excess of zeroes in count processes is the class of
zero-inflated and zero-altered models.
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4.b.iii Accounting for right-censoring and intermittency in the sample

In Section 2.b we outlined two types of missingness in the sample, one of which related to
unrecorded periods of incarceration, and the other to non-ignorable right censoring at the
point of referral.

The negative binomial model can be adjusted to account for the first of these by employing
a zero-inflated negative binomial model. This is essentially a mixture model in which one
of the components has a negative binomial distribution, and the other component is a point
mass at zero.

pi(yjt) = φI(y=0) + (1− φ)pnegbin,i(yjt)

where pnegbin,i(yjt) is the negative binomial distribution as defined in (1), φ is a class-
independent zero-inflation weight, and:

I(y=0) =

{
1 if y = 0,

0 everywhere else.

The zero-inflation weight, φ, in common with π in the general mixture specification, can
take covariates that predict membership of the zero-inflated component, by the addition of
a logistic model for the zero-inflation probability. We implemented the zero-inflated model
with age, and three indicators of having been handed a custodial sentence in each of the last
three periods, as predictors of zero-inflation.

The use of the zero-inflated model to account for unrecorded incarceration is motivated
on the grounds that, if it is assumed that the counts of offenders who are free to offend
follow a negative binomial distribution, then zero counts in excess of those predicted by the
negative binomial must be caused by some other process. We concede that it is a leap of
faith to assume that this process is incarceration, but the otherwise good fit of the negative
binomial to the data (c.f. Figure 8) lends some empirical weight to the assumption.

In practice, unfortunately, Latent Gold was not able to accommodate the model described
above, since the zero-inflated model implemented in Latent Gold treats zero-inflation as
occurring at the level of sample member j, rather than observation jt. To circumvent this
problem the zero-inflated model was fitted separately in R. The posterior probabilities of
zero-inflation, τ zj were then calculated by:

τ zj =
P (zzi = 1)P (yjt = 0|zzi = 1)

P (yjt = 0)
=

φI(y=0)

φI(y=0) + (1− φ)pnegbin,i(yjt)

The posterior probability of non-zero-inflation, τ¬zj = 1− τ zj , was then added to the dataset.
This probability was used as a weight on the observations in the group-based trajectory
models. Reducing the weight of an observation yjt to zero is equivalent to setting that
observation to missing, so reducing the weight of an observation to 0 ≤ τ¬zj ≤ 1 is equivalent
to treating the observation as missing in proportion to the probability that the observation
is zero-inflated.

Missingness due to right censoring at the point of referral is not unrecorded, but the fact
that all sample members are right-censored before desistance introduces upwards bias in the
tails of trajectories. Many of the offenders who were referred to the MTC would have been
released before the end of the observation period, and although some of those would have
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committed more crimes, many would not. There was no easy way to alleviate this bias, but
it could not be ignored because it had a sometimes-drastic effect on the fitted trajectories.

The approach taken in this study has been to extend the zero-inflated model to the post-
referral period for each sample member. The effect of this is that observations are no longer
deterministically missing after referral, but missing in proportion to τ zj . The justification for
this method is that referral to the MTC is a type of incarceration for which the duration
was not recorded, and does not take account of offenders who were subsequently released
and who desisted from offending. It should be noted that in practice this method produces
weightings that are very small for observations that would have been missing after referral.

4.b.iv Top-coding large counts

Weakliem and Wright (2009) analysed simulated data generated from an asymmetrical con-
tinuous mixing distribution, and found that finite mixture models tended to “find” multiple
classes when there were none. They attributed this phenomenon to an excess of very large
counts. In the MTC dataset, large counts tend to be associated with multiple counts of the
same crime, either occurring on the same occasion, or more usually over multiple occasions,
having been brought to justice on one occasion. There is arguably a point where one offender
committing the same crime does not add more information to the sample, and risks exerting
disproportionate influence on the shape of trajectories or probabilities of class membership.

For this reason, the counts of total offending have been re-coded, with any larger than 40
coded as 40. Similarly, counts for general offending and sexual offending have been top-coded
at 40 and 30, respectively. Figure 9 shows the distribution of the counts with and without
top-coding; only a handful of counts are affected.
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Figure 9: Index plot of counts with and without top-coding at 40.
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4.b.v Cubic splines and the calculation of confidence bands

Trajectories in group based trajectory models are usually specified by using either quadratic
or cubic polynomials to allow for curved trajectories. However, standard polynomials have
two limitations that are important in the context of this study. Firstly, the fitting of a
polynomial curve is “non-local” meaning that a data point in one part of the response space
(observation period) can influence the shape of the curve in a distant part of the response
space. This is a concern in this study because of the sparsity of observations at the end of the
observation period, and the risk that the fitted trajectory in this portion of the observation
period will be influenced by data points in the denser region of the period.

A second and, given the aims of the study, much more restrictive limitation is that neither
a quadratic nor a cubic polynomial is capable of producing curves that are arbitrarily multi-
modal. A cubic polynomial can fit a curve with an “up-tick” at the end, but it cannot
produce a curve that rises and then falls more than once. Since neither of these limitations
are acceptable, in this study cubic splines have been employed as a flexible alternative to
polynomials.

In its simplest form, a cubic spline with one knot h1 can be fitted by adding a basis to
the design matrix of a cubic polynomial (e.g. X = (1, age, age2, age3)). The additional basis
has the form:

(age− h1)3+ =

{
(age− h1)3 if age > h1,

0 if age ≤ h1.

Additional bases can be added to accommodate more than one knot point in the data.
Although simple to define, spline bases calculated in this way suffer from the fact that the

basis functions are usually highly correlated with each other, which can lead to numerical
instability and imprecision in the fitted estimates (Keele, 2008). To reduce this problem,
a B-spline basis is an orthogonal transformation of a spline basis, that preserves all of the
fitting properties of a simple spline whilst avoiding collinearity.
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Figure 10: Basis of a third degree (cubic) B-spline with two knot points. The degrees of freedom of
the basis = degree + knots.
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Figure 10 shows the values of the basis functions used in the study, augmented to yearly
(rather than five-yearly) periods. This augmented design matrix was used for plotting to
provide a smooth interpolation of trajectories between five year mid-points.

95% pointwise confidence bands were calculated to provide a visual indication of the
imprecision in the fitted splines. The 95% pointwise confidence interval for the vector of
fitted values ŷ is calculated by back-transforming the confidence interval limits of the vector
of linear predictors, η̂ = Xβ̂, where X is the design matrix and β̂ is the vector of parameter
estimates. The upper and lower limits of the confidence interval of η̂ are given by:

[L95%(η̂), U95%(η̂)] = η̂ ± Z0.025 s. e.(η̂)

Where Z0.025 ≈ −1.96 is the 2.5th centile of the standard normal distribution, and s. e.(η̂) is
the vector of standard errors of η̂. This is given by:

s. e.(η̂) = X cov(β̂)XT

where cov(β̂) is the covariance matrix of β̂.
The confidence interval limits thus calculated are then backtransformed using the inverse

link function g−1(·) = exp(·) to give the confidence interval limits of the fitted trajectory ŷ.

4.b.vi Choosing the number of components

The choice of the optimal number of components in a GBTM, as in any finite mixture model,
is an important consideration, and does not have a single well-defined solution. The number
of components used obviously has a large bearing on the fit and on the interpretation of the
model, but it is not determined by the model, and must be provided a priori by the researcher.
A common approach is to fit a sequence of models with increasing numbers of components,
and compare them using some summary statistic. However, this too is complicated because
a set of finite mixture models are not nested, and so likelihood ratio tests are not available5.

To deal with this problem, researchers often use one of the many available information cri-
teria - measures that approximate the Kullback-Leibler information divergence, which is the
information available to distinguish the modeled distribution from the empirical distribution
of the data.

However, most information criteria are based upon the likelihood of the observed data,
Y, given the model. The observed data likelihood does not take account of the likelihood
of the unobserved data, which in the case of finite mixture models is the unobserved set of
class-membership indicators, Z. The fact that this data is unobserved should mean that all
possible values are equally likely. However, in the missing data conceptualisation of finite
mixture models, it is assumed that the true Z is a collection of zeroes and ones, and cannot
take any value in between. This means that any model that moves the estimates τ̂ij away
from zero or one, makes any possible values of Z less likely. Note that this distinction is
only important if we are treating the “missing data” conceptualisation as true; if we do not
believe in the existence of some unobserved vector of class memberships, then the observed-
data likelihood is the same as the complete-data likelihood.

5Unless some form of bootstrapping is used, but such methods are not considered in this study.
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This distinction between the observed-data likelihood and the complete-data likelihood
(also called the classification likelihood) has given rise to the formulation of information
criteria based upon the latter. These measures take advantage of the fact that, assuming
independence, the joint likelihood of two partitions of the set of random variables can be
found by the product of the likelihoods for each partition, or equivalently by the sum of their
log-likelihoods. Therefore, the log-likelihood, logL(Y,Z) = logL(Y) + logL(Z). The mean
of the log-likelihood of Z, conditional upon the observed data, can be approximated using the
negative entropy of τ̂ , the vector of estimated posterior probabilities of class membership,
where the entropy is given by:

EN(τ̂ ) = −
k∑
i=1

n∑
j=1

τ̂ij log τ̂ij

Biernacki et al. (2000) use this quantity to create a measure called the Integrated Classifica-
tion Likelihood (ICL). Although the full form of the ICL is difficult to calculate, there is an
approximation to the ICL that has been shown to have good properties if the size of clusters
is large, called the ICL-BIC. The form of the ICL-BIC is as follows:

ICL-BIC = −2 logLOBS + 2 EN(τ̂ ) + d logN

where logLOBS is the observed-data log-likelihood, d is the number of parameters fitted by
the model, and N is the sample size. It can be seen that the ICL-BIC is equal to the BIC
with the addition of 2 EN(τ̂ ). In practice, this extra quantity is easily calculated using the
posterior probabilities output by Latent Gold.

The ICL-BIC has been shown to perform well in simulations at finding the true number
of classes (McLachlan and Peel, 2000) and is less likely to overfit than the BIC or many
other information criteria. One situation where discretion might be needed is when the ICL-
BIC indicates that the optimal number of groups is one. Since a single component model is
bound to have an entropy of zero this is a risk, and it is not entirely clear whether the use of
a criterion based upon the classification likelihood should be taken to its logical conclusion
in such a situation. If this situation arises the one-class model will be reported as the most
parsimonious model, and if there are other local minima for models with more than one
component they will also be investigated.

Since this study is not being conducted using Bayesian methods, there is no way to
incorporate a prior belief on the number of components. However, this does not mean that
we do not have prior beliefs. We believe that there is not necessarily any objective truth to
the idea of classes of trajectory, but that classifying criminal careers into a small number of
trajectories is a useful way to begin to understand and interpret them. With these purposes
in mind, our “prior” for the number of classes is that it is greater than one, and not so great
that, when trajectories are plotted, they look like spaghetti.

It is fair to ask whether a criterion that maximises the complete-data likelihood is desir-
able, given that we have expressed some skepticism about the existence of unobserved classes
in the data. However, it is still true that the main methods of analysis of, and interpretation
of GBTMs are through the window of either plotted trajectories, or modal class assignments.
The ICL-BIC, tending to prefer well-separated classes and smaller numbers of classes, is
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well-suited to the purpose of producing easily interpretable, stable groups. If the purpose of
the model were to estimate the trajectories of individuals in the study, such as was done by
Blokland et al. (2005), then it would be preferable to employ an information criterion that
maximised the observed-data likelihood and fit as many components as necessary, as they
point out.

4.c Method of fitting the total frequency and dual frequency mod-
els

All of the group based trajectory models were fitted in Latent Gold (Vermunt and Magidson,
2005) using the Expectation-Maximisation algorithm, with a Newton-Raphson step to aid
rapid convergence. The counts were combined with a B-spline design matrix, the exposure
indicators and the zero-inflation weights. The total frequency models were also fitted with
weights equivalent to censoring all of the observations after referral, and with no weighting,
equivalent to no censoring, for comparison.

Both constrained and unconstrained variants of the GBTM were fitted. The two types of
model were compared for classification performance, cluster sizes, and tendency to fit a large
number of groups, favouring those where both classification errors and the number of groups
tended to be small. We preferred the smallest class size not to be much smaller than 10% due
to the risk that the effective class size at the later ages would become very small. Each model
was fit with one-five classes, and the optimal number of classes within each model/sub-model
was determined using the ICL-BIC measure.

4.d Results of the total frequency models

4.d.i Results of the zero-inflation model

The effective sample sizes resulting from the use of zero-inflation weights, as well as the
effective sample sizes from both full right censoring and no right censoring are presented in
Table 11. It can be seen that the effective sample sizes for the zero inflation and fully censored
methods are similar, but that the zero inflation method increases the effective sample size at
the end of the observation period.

4.d.ii Results of the group based trajectory models

Table 6 shows fit statistics for the models on total frequency, fit with one-five classes, and the
model fit to two classes using the alternative methods of accounting for missingness. Using
BIC, the model with three classes would have been optimal. However, the ICL-BIC indicates
that the model with only one class is the optimal model. Apart from the one-class model,
the lowest ICL-BIC is for the model with two classes. All of the models with ZI coding, apart
from the one-class model display large classification errors, whereas the classification errors
from the censoring and no-censoring methods are less severe.

Figure 12 shows a comparison of the fitted trajectories from the three methods of censoring
observations. It can be seen that the approach where observations are right censored after
referral (fully censored) produces trajectories that do not decline with age. The fully-censored

34



Figure 11: Effective sample size by age for the three methods of dealing with missingness.
Table also shows ratio of ZI to censoring method.

(a)

Zero- Not
Age inflation Censored censored ZI:C

11 821 821 821 1.00
16 733 733 733 1.00
21 582 593 672 0.98
26 470 425 701 1.11
31 317 292 753 1.09
36 205 185 771 1.11
41 113 108 792 1.04
46 61 63 806 0.98
51 47 37 811 1.26

(b)
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Table 6: Fit statistics for the models on total frequency

No. Cl. LL BIC Npar Entropy ICL-BIC Class. Err. Max. π Min. π

Models using zero-inflation weighting
1 -8551 17150 7 0 17150 0.000
2 -8402 16906 15 264 17434 0.151 0.52 0.48
3 -8370 16894 23 442 17778 0.249 0.49 0.23
4 -8349 16906 31 553 18012 0.311 0.42 0.12
5 -8332 16925 39 557 18039 0.315 0.41 0.05

Model using full censoring
2 -8222 16544 15 186 16916 0.107 0.54 0.46

Model using no censoring
2 -9750 19602 15 118 19838 0.053 0.66 0.34

data also produces trajectories with larger standard errors in the later ages than the other
two methods. This is to be expected, since the size of the confidence bands is directly related
to the effective sample size. The confidence bands of the trajectories for the zero-inflation
method overlap more than the trajectories for the other two methods, which probably explains
why the classification was less well-separated. This is not necessarily a fault of the method,
since the fully censored method might have been expected to have produced even worse
classification errors, had the trajectories been closer, because of the smaller effective sample
size as evidenced by the wider confidence bands.

The fully censored method and the zero inflation method produce groups that are similar
in size and in general shape. In contrast, the uncensored data produces trajectories that are
completely different. In particular, the order of group size is reversed between the adolescent-
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onset and accelerator groups.
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Figure 12: Comparison of three different methods for treating missingness. Two-class models for
total frequency.

4.e Evaluation of results of the total frequency model

The zero inflation model and the fully censored model both produce reasonably similar results
in terms of component size, and the fitted trajectories are similar, apart from the tendency of
the fully censored data to produce trajectories that do not decrease, and sometimes increase
without bounds in the later ages. Although only one comparison is shown, this tendency
was observed to be consistent in a number of other models, the observation of which largely
motivated the use of the zero-inflation weights to augment the effective sample size at the
later ages. The unorthodox use of a zero-inflated model might be considered a trick to
bring the trajectories down to a reasonable level, and is justified only as a crude way of
counterbalancing the bias caused by non-ignorable missingness explained in section 2.b.

Either model shows some evidence of bimodality in at least one of the trajectories. How-
ever, the second peak, where present, seems to be much later than predicted by Hanson
(2002) or Lussier (2010), who predict the second peak at around the age of 30. In fact, at
around the age of 30 there appears to be a slight lull in offending, and the second peak is
after the age of 40. Only the uncensored data produces a model that agrees with Hanson or
Lussier.

In the next section, the frequency of criminal activity will be disaggregated into sexual
and non-sexual crimes, to investigate whether this bimodality can be explained by crime mix.

4.f Results of the dual frequency (sexual/general) models

Table 7 presents the fit statistics resulting from fitting the constrained models with one-five
classes. Table 8 presents the fit statistics for the unconstrained models The classification
errors are lower in the constrained models than in either of the sets of unconstrained models.
Again, the minimum of the ICL-BIC is at the one-class constrained model. ICL-BIC was not
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Table 7: Fit statistics for the constrained models for sexual and general offending.

No. Cl. LL BIC Npar Entropy ICL-BIC Class.Err. Max. π Min. π

1 -11920 23927 13 0 23927 0.000
2 -11692 23565 27 208 23981 0.109 0.65 0.35
3 -11569 23413 41 274 23961 0.135 0.50 0.24
4 -11521 23412 55 343 24098 0.165 0.40 0.10
5 -11442 23348 69 354 24056 0.171 0.38 0.09

Table 8: Fit statistics for the unconstrained models for sexual and general offending.

No. Cl. LL BIC Npar Class.Err.

Unconstrained models for general offending
1 -6946 13938 7 0.000
2 -6816 13733 15 0.142
3 -6766 13686 23 0.226
4 -6747 13702 31 0.278
5 -6730 13722 39 0.361

Unconstrained models for sexual offending
1 -4974 9995 7 0.000
2 -4925 9951 15 0.277
3 -4911 9976 23 0.344
4 -4910 10028 31 0.485

calculated for the unconstrained models, but due to the large classification errors might be
expected to give the same minimum at one class. The trajectories for the one-class model
are plotted in Figure 13. The trajectory for general offending is akin to a classic age-crime
curve, whilst the trajectory for sexual offending has a peak in the mid-40s. The shapes of
the two trajectories for general and sexual offending are very similar to the shapes of the first
and second classes in the model for total frequency.

Figure 14 shows the three-class model for sexual and general offending. The first set of
plots show the complete trajectories; the confidence bands, particularly for the second class
(26%) become very large after the age of 40. This is presumably because the effective sample
size for this group becomes very small (perhaps zero) after this age. The confidence bands
for the other trajectories are similarly wide. This demonstrates that even clusters that are
reasonably large at the beginning of the period might have very small effective sample sizes
towards the end of the period. In the second set of plots the trajectories have been truncated
at the age of 40 to more clearly show the unaffected parts of the trajectories.

The first class (50%) has a general offending trajectory that peaks at a low rate in the
mid-20s and then declines, but not to zero. This class has a sexual offending trajectory that
rises steadily from the age of 15 to middle age. The second class (26%) has a general offending
trajectory that can best be described as “adolescent-limited” and a similarly limited sexual
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offending trajectory. The third class (24%) has a general offending trajectory that peaks
slightly later, just after the age of 20, and declines slowly, but is still greater than one offence
per year into middle age. The sexual offending trajectory for this class is similar to the
sexual offending trajectory for the second class, and in fact is indistinguishable, based on the
confidence bands. Interestingly, the BIC for the unconstrained models indicate minima at
three and two class models for the general and sexual offending, respectively.

Figure 13: Trajectories for general and sexual offending. One-class constrained model.
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4.g Evaluation of results of the dual frequency model

There is strong evidence of bimodality in the one-class dual frequency model, with each
offender expected to have a peak of general offending in late adolescence, and a peak of
sexual offending after the age of 40 (c.f. Figure 13). This model is equivalent to a fixed-
effects spline regression. The shape of the fitted trajectories echoes the shapes of the two-class
total frequency trajectories. This suggests that the two-class model for total frequency in
the last section can be partly explained by the relative weighting of different crime types in
the criminal profiles of offenders.

The three-class mixture reinforces the evidence of bimodality and late onset of sexual
offending: three quarters of offenders are classified on trajectories of sexual offending that
increase steadily into middle age. The three quarters of offenders whose sexual offending
increases with age can be further split into those who commit relatively few non-sexual
offences over a long time period, and those who commit a large number of non-sexual offences
over a long time period.

The other quarter of offenders are adolescent-limited in both general and sexual offending.
This group is truly adolescent-limited, in that the frequency of both types of offending reduces
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Figure 14: Trajectories for general and sexual offending. Three-class constrained model, with and
without truncation at 40.
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to zero by the mid-20s. Such a group of strictly adolescent-limited sexual offenders is not
predicted, as far as we know, by any previous studies or theories.

It can already be seen, with the one-class dual frequency model, that the disaggregation
of crimes explains some of the apparent variation in trajectories at the aggregate level. The
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next stage of the analysis will investigate whether the classification of crimes into sexual and
non-sexual itself obscures heterogeneity in trajectories at a lower level.

5 Analysis Three: Poisson-Log Normal Factor Trajec-

tory Analysis

5.a Motivation

Although it is an improvement on the single frequency model, the dual frequency model nev-
ertheless still relies on an a priori grouping and aggregation of the crimes. This aggregation
might conceal differences in the trajectories of different crimes within the group. It is possible
to continue to disaggregate into smaller and smaller groups; however with each subdivision
the models become harder to fit and harder to interpret.

In order to model the trajectories in a way that is parsimonious, without hiding potentially
different trajectories, it is desirable to find a way to partition the set of crime types into groups
that are guaranteed to have trajectories that are as close to proportional as possible. For
this purpose it is sufficient to find groups of crimes whose frequencies of occurrence are as
positively correlated as possible within each time period, because if crimes are positively
correlated within each time period, then their trajectories will be proportional, and the
within-t correlation between the frequencies of any two types of crime is a measure of the
degree to which their trajectories will be proportional.

To this end we introduce a method of dimension reduction that explains the maximum
possible within-t covariance in the sample in a set of continuous factors. We will show
that, due to this property, this factor analytic model is useful for the analysis of multivariate
criminal careers, independently of the use of factors to hypothesise the existence of theoretical
constructs.

5.b Factor analytic models for count data

A factor analytic model is a model for dimension reduction of multivariate data. It is based
upon the principle that the dependence structure of a set of observed variables can be rep-
resented by a smaller number of latent continuous variables. To formulate the model, the
observed or manifest variables, Yg (g = 1, . . . , p) are assumed to be independent of each
other, given a smaller set of unobserved random variables, Fl (l = 1, . . . , q; q < p). It is
assumed that the distribution of these unobserved variables is multivariate normal, and that
the Fl are related to the Yg by a linear measurement model.

In the case that the manifest variables are all Poisson distributed random variables, the
linear measurement model is linked to the rate parameter, λg, of the Poisson distribution of
each variable, Yg, by a log link so that:

log (λg) = µ+
∑
l

Γklfl

where Γkl are the loadings of factor fl on each observed g. Since a linear combination of
normals is also normal, this model produces a lognormal mixing distribution for the rate
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parameter, λ of each observed variable. The shape of the lognormal distribution is similar to
the shape of the gamma distribution, so the lognormal factor model allows for overdispersion
in the observed variables in a way that is reasonably interchangeable with using negative
binomials. The loadings, analogous to regression co-efficients, encode the relative weight of
each factor in creating the λ of each manifest variable.

The distribution of Y obtained by integrating over the joint distribution of F:

p(yjgt|Ω) =

∫ p∏
g=1

p(yjgt|fjlt,Γ)f (fjlt|Υ) dfjlt

where Υ are the means and covariance matrix for the prior of the multivariate normal factors,
and Ω contains all parameters of interest.

This model can be seen as a generalisation of the Poisson-log normal multivariate model
of Aitchison and Ho (1989), except that in the latter each observed variable is accompanied
by a unique log normal variable, and there are no cross-loadings. Apart from the benefits
of dimension reduction and interpretative simplicity, a practical advantage of reducing the
number of log normal variables in the mixing distribution is that fitting the model becomes
computationally less difficult to estimate because there are less dimensions to integrate over.

In contrast with normal linear factor analysis, estimates of the “uniquenesses”, residual
variance unique to each manifest variable, are not calculated, because it is assumed that
the variance of the Poisson variables is equal to the mean. It is possible to calculate these
unique variances, but this would require calculating the full p dimensional covariance ma-
trix, which would entail integrating over p, rather than q, dimensions. The lack of residual
variance in the mixing distribution means that factors tend to load very highly onto at least
one manifest variable, because they are maximising the explanation of total excess variance
(due to overdispersion) rather than covariance, in a way very similar to probabilistic PCA
(McLachlan and Peel, 2000, p.149) and interpretation of the results should take this into
account.

Factor scores are calculated in MPlus (Muthen and Muthen, 2011) by maximising the log
of the posterior distribution of fjt given the observed yjt:

g(fjt|yjt) ∝ p(yjt|fjt,Γ)f (fjt,Υ)

Identifiability is an important concern in factor analysis. The log normal factor model
is similar to linear factor models in being subject to three types of invariance: location
invariance; scale invariance; and rotation invariance (Bartholomew and Knott, 1999). The
first two of these imply that the distribution of factors is undefined, and must be fixed by
setting a prior on the distribution of the factors. In order for the model to be identified, either
the scale of the factors (the variance) or the location must be fixed. The scale can be fixed
by specifying that the factors must be standard normal with unit variance. Alternatively the
location can be fixed by constraining one of the loadings, Γ to one, thus tying the location of
the factor to the location of the corresponding manifest variable. In this study, the prior is
multivariate normal and the locations have been fixed by setting one loading on each of the
factors to one. Rotation invariance means that it is not possible to distinguish empirically
between a model with loadings Γ, and a model with loadings ΓM, where M is a non-singular
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transformation matrix. Under such a transformation the factors would be transformed to
F′ = MTF.

The maximum number of degrees of freedom that can be used in a factor model is equal
to (p(p+ 1))/2, which in the case of seven manifest variables is 28.

Exploratory and confirmatory factor analysis proceed in the same way as for linear factor
analysis: in the exploratory phase no loadings are constrained to zero. Models with an
increasing number of factors6 are fitted by maximum likelihood. The model with the lowest
value of BIC is selected. The factor loadings are rotated using oblique rotation. The rotated
loadings that are close to zero (see Section 5.c.i) in the exploratory analysis are constrained
to zero in the confirmatory analysis. These constraints usually improve identification of the
model and remove rotational invariance.

5.b.i The interpretation of the Poisson log normal factor model

Aitchison and Ho (1989) justify the Poisson log normal model as a model for multivariate data
by envisaging circumstances in which the observed count processes are dependent upon other,
unobserved processes, and the count processes are independent of each other, conditional
upon the unobserved processes, which are not. The example given by Aitchison and Ho
(1989) was to do with butterfly and plant species, but it is easy to apply similar reasoning
to criminal careers.

The occurrence of crime can be conceptualised as depending upon both the desire to
commit a crime, and an opportunity to commit a crime. Crime opportunities (victims in
the case of person crimes, unguarded property in the case of property crimes) are random
events that can be assumed to be independent of each other, given the offender, whereas the
offender’s desire or propensity to commit a particular type of crime is not independent of
propensity to commit other crimes, or of propensity to commit the same crime in adjacent
periods. These propensities can be conceptualised as a set of random variables of dimension
p, or they can be thought of as being fewer in number than the number of different crime
types, or there might be only one (c.f. Gottfredson and Hirschi (1990)). This is not to say
that, given the existence of such a set of propensities, the solution of the factor model is
necessarily a faithful representation of it. However, it is useful to have such a conceptual
model in mind because it clarifies the roles of the different parts of the model.

5.c Method

5.c.i Estimation of the factor measurement model

The estimation of the exploratory and confirmatory factor analysis models and the calculation
of factor scores were carried out in MPlus (Muthen and Muthen, 2011). In MPlus both types
of model were estimated by maximum likelihood with robust standard errors, using an E-M
algorithm with numerical integration on seven points of support.

The exploratory factor analysis was carried out using one to three factors. Three factors
was the maximum that could be fitted using degrees of freedom ≤ 28. Oblique rotation was
carried out using the Geomin method.

6Limited by the total degrees of freedom available.
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Based on the results of the exploratory factor analysis, a confirmatory factor model was
constructed. All observed variables with scaled loadings greater than 0.5 were included in
the measurement model for the corresponding factor. Cross loadings were allowed in a few
cases, with a more stringent criterion of 0.6 for inclusion in the second measurement model.

5.c.ii Fitting the trajectory model to the predicted factor scores

Factor scores were calculated in MPlus and were exported into a text file for subsequent
analysis in Latent Gold (Vermunt and Magidson, 2005). They were combined with a B-
spline design matrix and the zero-inflation weights. Although the continuous factors are not
zero-inflated, they do contain a large number of very low values that represent zeroes in the
count variables. The effect of the zero-inflated model was to reduce the weight of these low
values, and was equivalent to applying the zero-inflation weights to the observed variables
themselves, had this been possible in MPlus.

The model fit in Latent Gold was a mixture of gaussian linear regressions with repeated
values. Both constrained and unconstrained variants of the GBTM were fitted. The two
types of model were compared for classification performance, cluster sizes, and tendency to
fit a large number of groups, favouring those where both classification errors and the number
of groups tended to be small. We preferred the smallest cluster size not to be much smaller
than 10%. Each model was fit with one to seven classes, and the optimal number of classes
within each model/sub-model was determined using the ICL-BIC measure.

From the unconstrained model, the modal class assignments Ẑ were cross-classified and
used to construct joint probability contingency tables, which were then subjected to a Pois-
son log-linear analysis to determine associations between class assignments on the different
factors.

5.d Results

5.d.i Estimation of the factor measurement model

Exploratory factor analysis was carried out on one-three factors. The solution with the
lowest BIC was the three-factor solution. The loadings for the two- and three-factor rotated
solutions are shown in Table 9, where a comparison of the two solutions reveals that there is
a factor associated with rape, assault and property crimes, which in the three-factor solution
is sub-divided into a factor weakly loading on to rape and assault, and including property
crimes, and a factor loading onto rape, assault and non-contact sexual offences. In both
solutions, there is a factor associated only with child molestation and non-contact sexual
crimes. The underlined loadings are those where the two decision rules (loading greater than
0.5, or greater than 0.6 for cross-loading) were met.

Based on the results of the three-factor solution, a confirmatory factor model was con-
structed with a reduced set of loadings, and fitted. The loadings were included based on the
criteria outlined in the method. The standardised results of the confirmatory factor model
are presented in Figure 15. The standardised loadings of Factor one onto Property, Breaking
and Entering and Other are very close to 1, which illustrates the tendency of the count factor
analysis model towards high loadings. The loading of factor one onto rape is the lowest of
the loadings of factor one. Factor two loads most strongly onto rape (0.83) and almost as
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Table 9: Factor loadings from the two- and three-factor exploratory factor models

(a) Two Factor (BIC: 42,732)

Factor 1 2

Assault 1.000 0.003
Rape 0.989 -0.150
Child 0.138 0.990
Non-contact 0.410 0.912
B & E 0.964 0.265
Property 0.969 0.247
Other 0.893 0.449

(b) Three Factor (BIC: 39,694)

Factor 1 2 3

Assault 0.602 0.780 0.172
Rape 0.764 0.646 0.000
Child -0.223 0.214 0.951
Non-contact 0.035 0.697 0.716
B & E 0.995 0.007 0.099
Property 0.988 0.101 -0.116
Other 0.811 0.007 0.585

Figure 15: Fitted confirmatory factor model, with standardised intercepts, loadings and correlations.
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strongly onto non-contact sexual offences (0.71). Factor three loads only onto child molesta-
tion and non-contact sexual offences. The correlations between the factors are weak, and
the correlation between factors two and three is especially small, which is perhaps surprising
because the two factors both load onto non-contact sexual offences. All free parameters were
significant based on Z scores.
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5.d.ii Fitting the trajectory model to the predicted factor scores

The factor scores for each observation on the three factors were exported and used in con-
strained and unconstrained GBTMs. Tables 10 and 11 show fit statistics for the constrained
and unconstrained models, respectively. It can be seen that the constrained model tends
towards a large number of clusters, and the classification errors are in general slightly larger
than those for the unconstrained model. The unconstrained model was favoured for these
reasons.

In both types of model it can be seen that BIC consistently favours models with poor
classification properties and a large number of classes. Indeed, in most cases BIC did not seem
to reach a minimum by seven clusters, which was the largest number of groups considered.
Especially in the unconstrained model, the ICL-BIC favours much smaller number of clusters
than the BIC. Using the ICL-BIC, there are clear minima at three and two clusters for the
first two factors. The ICL-BIC for the third factor has a minimum at two clusters, but
the three cluster model has an ICL-BIC that is only fractionally (0.2) larger. As with any
information criterion, which are asymptotically valid approximations of the Kullback-Leibler
distance, such a small difference should not be considered decisive.

Four sets of trajectories are plotted in Figures 16, 17, 18 and 19; one set for each of the
first two factors, and both the two-class and three-class trajectories for Factor 3. It can be
seen that the main difference between the two- and three-class solutions for factor three is
the addition of a third class, whilst the other two classes remain almost unchanged in shape.
The largest class in both models (73%; 65%) has an almost linear, constantly rising trend
into middle age. The second class (27%), which is completely unchanged in both models, is
a class of participants who were not active in this factor. The size, π of the third class in
the three-class model is smaller than 10%, and the average τ for sample members modally
allocated to the third class is only 0.77 (compared to greater than 0.99 for the other two
classes). However, the posterior probability of class membership is a function of π as well as
the observed data, so smaller clusters can be expected to have smaller posterior probabilities.
Whether to favour the two- or three-class model seems to be a matter for discretion. The
extra trajectory in the three-class model is substantively interesting because it represents a
group who were actively involved in child molestation and non-contact sexual offences during
adolescence, and who then had a second, smaller peak of the same kind of offending in
adulthood. The class represents around 8% of the sample, or around 60 participants.

Figure 16 shows the fitted trajectories for Factor One, with 95% confidence bands. In-
terestingly, since this is the factor with the strongest loadings for non-sexual offending, the
largest class (60%) is represented by a trajectory that most resembles the classic age-crime
curve, with a peak before the age of 20 and a slow decline. The second class (29%) is repre-
sented by a trajectory that peaks in the mid 20s and in the late 40s. In both of these classes
the confidence interval around the fitted trajectory flares in the later ages, which indicates
that the sample size available to fit these trajectories was much smaller towards the end of
the time period. The third class (11%) is a class of participants who were not active in this
factor.

Figure 17 presents the fitted trajectories for Factor Two. The confidence intervals around
both of these trajectories are quite wide, indicating uncertainty in the fitting of the model.
The classification errors for this model were also the largest of all of the unconstrained factor
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models. The largest class (67%) has a fitted trajectory with a peak in the mid-20s. There
appears to be a second peak or rising trend beginning at around the age of 40, although the
confidence bands after this point would also admit a flat trajectory from this point on. The
second class (33%) is associated with a low trajectory that has no peak in the mid 20’s, and
rises steadily to around 40.

Table 10: Results for Constrained three-factor models

No. Cl. LL Npar Entropy BIC ICL-BIC Class.Err. Min. π

1 -19740 19 0 39607 39607 0.000 1
2 -19320 39 157 38902 39216 0.085 0.42
3 -19031 59 193 38458 38844 0.101 0.20
4 -18771 79 191 38071 38453 0.095 0.12
5 -18550 99 174 37764 38112 0.082 0.11
6 -18351 119 196 37502 37894 0.090 0.12
7 -18218 139 231 37369 37831 0.102 0.10
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Figure 16: Trajectories of factor one - two-class unconstrained model

5.d.iii Fitting the log-linear model to cross-classified classes

Table 12 shows the three-way cross-tabulation of participants by modal class assignment.
It can be seen that there are far more observations in the active (i.e. higher frequency)
first classes for each of the factors. The appearance of a strong diagonal in this cross-
tabulation would provide evidence to support a constrained model, in which classes are shared
by all factors; this is clearly not the case, since the counts in the diagonals for all two-way
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Table 11: Results for Unconstrained three-factor models

No. Cl. LL Npar Entropy BIC ICL-BIC Class. Err. Min. π

Factor One
1 -6567 7 0 13181 13181 0.000 1.00
2 -5508 15 0 11117 11117 0.000 0.11
3 -5308 23 169 10769 11107 0.091 0.11
4 -5245 31 346 10699 11391 0.172 0.11
5 -5198 39 354 10659 11367 0.173 0.07
6 -5166 47 388 10648 11424 0.180 0.06
7 -5134 55 471 10637 11579 0.221 0.07

Factor Two
1 -4212 7 0 8471 8471 0.000 1.00
2 -3814 15 120 7729 7969 0.060 0.32
3 -3745 23 252 7645 8149 0.135 0.14
4 -3700 31 317 7608 8242 0.157 0.06
5 -3667 39 402 7596 8400 0.196 0.07
6 -3639 47 493 7594 8580 0.237 0.06
7 -3611 55 537 7591 8665 0.251 0.06

Factor Three
1 -7626 7 0 15299 15299 0.000 1.00
2 -4957 15 0 10015 10015 0.000 0.27
3 -4881 23 50 9916 10016 0.028 0.08
4 -4828 31 93 9863 10049 0.046 0.05
5 -4783 39 224 9829 10277 0.111 0.04
6 -4737 47 225 9791 10241 0.110 0.01
7 -4726 55 263 9820 10346 0.134 0.01

interactions (F1:F2, F2:F3, F1:F3) are small in comparison to the counts in the off-diagonals.
The largest cell overall corresponds to the highest-frequency class in all Factors.

The interaction terms from the Poisson log-linear model are shown in Table 13. The
interaction terms in a log-linear model are good approximations to the log of the cross-
product ratio between two levels of two cross-classified categorical variables, as long as the
table is not sparse, and the table is structurally complete (i.e. it is possible for all cells to
have non-zero values). There is only one empty cell in the contingency table, and there is no
reason to believe it is structurally zero, so the Poisson log-linear model is appropriate. The
log cross-product ratio takes positive values if the two levels are positively associated (i.e.
membership of one class makes membership of the other more likely) and negative values if
the two levels are negatively associated.

Before fitting the log-linear model each of the variables (modal class assignments) was
re-levelled so that the reference category was the inactive or least active class. Because
of this, a positive interaction effect is associated with positive correlation between the two
factors involved in the interaction, and a negative interaction effect is associated with negative
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Figure 17: Trajectories of factor two - two-class unconstrained model
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Figure 18: Trajectories of factor three - two-class unconstrained model

correlation between the two factors. The results in Table 13 seem to show strong positive
associations between the active classes of Factor One and Factor Two, and strong negative
associations between the active classes of the first two factors, and Factor Three.

5.e Evaluation of results from the factor model

The transformation of the frequencies of offending into a set of three factors led to three well-
separated sets of trajectories. This separatedness is explained by the existence of inactive
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Figure 19: Trajectories of factor three - three-class unconstrained model

Table 12: Cross-classification of classes for Factors one-three

(a) Counts

Factor Two (class 1)
Factor 3

Factor 1 1 2 3

1 188 140 40
2 96 45 11
3 26 0 2

Factor Two (class 2)
Factor 3

Factor 1 1 2 3

1 84 15 20
2 79 9 1
3 44 2 5

(b) Proportions

Factor Two (class 1)
Factor 3

Factor 1 1 2 3

1 .233 .173 .050
2 .119 .056 .014
3 .032 .000 .002

Factor Two (class 2)
Factor 3

Factor 1 1 2 3

1 .104 .019 .025
2 .098 .011 .001
3 .055 .002 .006

classes of offenders in factors one and three. Indeed, the two-class models for factors one and
three, consisting of only an active and an inactive class (not shown) produce perfect posterior
classification of offenders. The factor models also produce fitted trajectories with, in general,
smaller standard errors than the previous models. However, both the improved classification
and the reduced imprecision are due to the fact that the factor scores do not take account of
variation in the Poisson part of the factor model. The fitted trajectories are, in effect, the
conditional means of conditional means, and the standard errors only take account of one
level of variability.
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Table 13: Results from a Poisson log-linear model on the cross-classified counts (two-way
interactions only)

Interaction Estimate S.E. Z P value

F1(1) - F2(1) 1.43 0.26 5.43 < 0.0001
F1(2) - F2(1) 0.93 0.27 3.38 0.0007
F1(1) - F3(1) -2.59 0.73 -3.55 0.0004
F1(2) - F3(1) -2.10 0.74 -2.84 0.0046
F1(1) - F3(3) -1.85 0.82 -2.25 0.0246
F1(2) - F3(3) -2.51 0.87 -2.89 0.0039
F2(1) - F3(1) -1.35 0.23 -5.82 < 0.0001
F2(1) - F3(3) -1.20 0.32 -3.69 0.0002

The log-linear analysis of the cross-classified class assignements revealed a strong negative
association between activity in factor three, and activity in the other two factors. If valid,
this would suggest that those committing rape are less likely to commit child molestation
and vice-versa, and would seem inconsistent with the observation that the largest sub-group
of offenders are those who are active in all factors.

What the log-linear analysis really reveals is that it is impossible to estimate the associ-
ation between rape and child molestation using a sample in which having committed one of
these crimes is a necessary condition for sample membership. Generally, if the cross-classified
table of probabilities of two events (say, commission of rape and child molestation) contains
a cell for P (¬rape,¬child) that is structurally zero, then the log cross product ratio will be
equal to −∞ indicating perfect negative association. This will be the case if the occurrence
of at least one of these events is a necessary condition for sample membership, even if the
events are independent in the population. Although the log-linear analysis is not directly
measuring the association between these two crimes, it is measuring the association between
classes that are based upon factors, that are based upon frequencies of the two types of crime,
and is therefore indirectly affected by the sampling restriction.
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6 Conclusions

6.a Substantive research questions

The substantive research questions to be addressed by the study were categorised into the
following three topics:

1. Bimodality of trajectories;

2. Association between child molestation and rape;

3. Association of non-contact sexual offending with serious offending.

The first question related to bimodality of trajectories concerned the existence, or not, of
individuals with bimodal trajectories, as opposed to bimodality being an artefact of aggre-
gation. The fitted curves of several GBTM classes7 suggest that there are groups of people
who have more than one peak of offending. The positions of the two peaks differ depending
on the analysis. Furthermore, there is evidence from the factor model that the peak of rape,
in the early 20s, is later than the peak for general offending, which occurs before the age of
20. This suggests that there may in fact be three peaks, with the adolescent peak of minor
offending not well separated from the slightly later peak for rape.

We asked whether bimodality of trajectories could be explained by disaggregating crime
types. The results of the factor model indicate that, although certain factors are associated
with certain trajectories, there is nevertheless variation in trajectories after accounting for
crime type. A surprising example of this is the group of “adolescent-limited” child molesters
in the trajectory model for factor three (Figure 19). This echoes the small group of adolescent-
limited sexual offenders that appeared in the dual trajectory analysis (Figure 14).

There is also strong evidence from the optimal matching (c.f. Figure 5) that those who
commit rape in early life, particularly those who commit rape after the age of 20, are likely
to commit crimes of child molestation in later life, as long as they are still active in later life.
This evidence is corroborated by the factor analysis, particularly the cross-classified factor
classes (c.f. Table 12), which show that the largest group of offenders is in class one or class
two in factors one and two (active in rape and general offending), and class one in factor three
(active in child molestation and non-contact sexual offending). There seems to be separation
between the two within each time period, but a large overlap over the life course. The factor
model, allowing the distinction between within-period, and within-individual association,
is well suited to modeling this pattern. Specialisation in different crimes at different ages
provides a possible explanation for the bimodality observed in the criminal careers of sexual
offenders.

Non-contact sexual offending appears to be mostly associated with child molestation, al-
though there is some evidence that it is associated with more specialised, less incidental, sex-
ual offending in general. If valid, this finding might be useful in distinguishing between those
whose sexual offending is part of a pattern of general offending, for example adolescent-limited
sexual offenders, and sexual offenders with more persistent propensity to offend sexually.

7C.f. Figures 12, 16, 19.
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Answering the second and third sets of research questions is limited, however, by sampling
bias. It has been shown that it is not possible to quantify the extent of association between
child molestation and rape over the life course, using a sample in which having committed
one offence or the other is a necessary condition for sample membership. Similarly, it is not
possible to quantify the extent to which non-contact sexual offending is associated with either
of these serious crime types. This problem is not unique to this sample. Lussier (2010) and
others have used datasets comprising only serious sexual offenders because they provide a
level of detail that is difficult to find in datasets of general offenders. However, if these and
other questions involving associations between types of crime are to be answered, samples of
the wider population of offenders, or even including non-offenders, must be used.

6.b Evaluation of methods

6.b.i Optimal matching and non-probabilistic clustering

Optimal matching, far from being irrelevant, has been shown to be a useful complement to
model-based trajectory modeling. The retrospective structure of the study partly obscures
the extent to which hypotheses and research questions that motivated other analyses emerged
from the use of optimal matching analysis as an exploratory method. Although limited by
inability to take account of missingness such as periods of incarceration, and inability to make
inferences from the results, it has the advantages that it is quick and easy to do, and no data
aggregation is needed. However, ultimately we concur with Levine (2000) who argues that the
idea of edit distance is not a convincing model for the underlying processes governing criminal
careers, and that (overdispersed, zero-inflated) Poisson models are conceptually more valid.
For this reason, optimal matching can only be useful as a complement to probabilistic models.

Conducting an analysis that relies on a completely different model and set of assumptions
has the advantage that it can provide a sense-check for the main model. This is especially
important in the case of GBTMs given their complexity and the dearth of diagnostics for
conducting a thorough check of the fit of trajectories to observed counts.

6.b.ii Constrained and unconstrained group based trajectory models

The constrained and unconstrained trajectory models were found to both be useful in different
contexts. When there is good correspondence between the group structure in one variable,
and the group structure in another, the constrained model is a parsimonious model for
common classes. However, by assuming a common group structure, the constrained model
precludes the possibility of checking its validity. The unconstrained model is therefore a
preferable starting point for analysis, since it allows the hypothesis of common group structure
to be checked. We did not investigate the possibility of using the joint class membership
probabilities from the unconstrained model to formally test hypotheses relating to common
group structure, but we are aware that specific log-linear models can be formulated to test a
variety of hypotheses about the structure of categorical associations. The major limitation
of the unconstrained model is the fact that there are few software packages that can fit the
full unconstrained model simultaneously.
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6.b.iii The Poisson-log normal factor trajectory analysis

This study is the first, as far as we know, to use factor analysis to reduce the dimensionality
of correlated counts, before subjecting the factor scores to a group based trajectory analy-
sis. The concept for the model is similar to the “mixture of factor analysers” described by
McLachlan and Peel (2000), except that the age co-efficients, rather than the factor loadings,
were free to vary by class. Although still requiring refinement, the model fulfilled its intended
purpose, which was to group crimes according to common trajectory paths. Crucially, the
model allowed for the distinction between correlations at the level of five-year period, and
associations between trajectories at the level of the individual. The emergent picture was of
crimes types that were independent or even negatively associated in each period, but with a
large degree of overlap over the criminal career.

One methodological question that was not dealt with in the study was whether the rota-
tion of the factors should be done using an orthogonal or oblique method. Oblique methods
are usually preferred in the social sciences because there is no reason why the factors (i.e. the
latent constructs) should be assumed to be uncorrelated. However, when the factor scores
are to be used in posterior analysis where one of the assumptions of the trajectory model is
that the variables are independent within each component, allowing oblique rotation could
invalidate this assumption. The trade-off is that orthogonal rotation algorithms are less likely
to find simple structure.

Assessment of the goodness-of-fit of the fitted factor model was problematic because the
usual fit statistics for linear factor models (proportion of variance explained, root-mean-
squared error of approximation, covariance residuals, modification indices) could not be cal-
culated, due to the lack of residual variance (apart from Poisson variance) in the model.

Originally when investigating the factor model it was envisaged that a sufficient statistic
for the factors could be calculated on the scale of the crime counts, such that the sum of
these statistics could be interpreted as the sum of the rates of the different types of crime.
That is:

q∑
l=1

flt =

p∑
g=1

λgt

The usefulness of this statistic would be in the interpretation as proportion of crime explained
by the factor, and the factor scores would be on a meaningful scale. However, the log link
meant that the measurement model was multiplicative for the λgt. It would be interesting to
investigate whether an alternative gamma factor model with an identity link, as described
by Wedel et al. (2003), would provide a solution to this problem.

6.b.iv Other methodological considerations

Other than the models themselves, a few other methods were used that were either innovative
or at least uncommon in the context of criminal careers research.

The most important of these was the use of cubic splines in the linear model for the
trajectories. The use of splines was central to answering the first set of research questions,
regarding bimodality of trajectories.

Although Blokland et al. (2005) previously used this technique it does not seem to have
gained in popularity since then, and the majority of researchers still employ quadratic or
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cubic polynomial terms in the specification of trajectories. Bushway et al. (2009) mentions
splines, but chooses not to use them on the grounds that the addition of two additional terms
adds too much complexity to the model. It is not clear why the maximum complexity of the
linear model should be limited, as long as there are still enough degrees of freedom left to fit
the model, and as long as all parameter estimates are significant8. Neither are splines more
difficult to interpret than ordinary polynomials. Indeed, due to their local nature B-splines
are easier to interpret than ordinary polynomials, because the sign and magnitude of each
term can be interpreted as increasing or reducing the slope of the trajectory in that region
of the observation period.

A criticism that applies equally to splines and other polynomials is that fitted curves can
behave erratically in regions where data is sparse, such as near the end of the observation
period. An adjustment that can be made to alleviate this problem is to constrain the degree
of the spline to be linear after the last knot point, which is not possible with ordinary
polynomials.

The use of the ICL-BIC, rather than an information criterion for the observed data
likelihood, was also an uncommon choice for selecting from among group based trajectory
models. As a fit statistic, the ICL-BIC tended to favour models with only one class in
the single and dual trajectory analyses. This does not indicate a weakness of the measure.
Rather it indicates that a zero-inflated negative binomial fit the data well, with little or
no residual overdispersion. This was already hinted at before the models were fitted (c.f.
Figure 8). If, instead of a negative binomial, a Poisson specification had been used (as
is common in other studies), some of the groups identified by the model would have been
artifacts of overdispersion, as was demonstrated in simulation studies by Skardhamar (2010).
Nevertheless, in these instances we chose to analyse other models giving local minima of the
ICL-BIC, in addition to the one-class solution. Perhaps this underlines the fact that fitting
group based trajectory models will always have a subjective element, regardless of which
selection criteria are used.

The zero-inflation adjustment that was used to account for unrecorded periods of incar-
ceration was not uncommon in group based trajectory models. However, the method of its
implementation, and its extension to deal with right-censoring, were unorthodox. Although
the two-step process for calculating and then importing the (non-)zero-inflation weights into
Latent Gold was reasonable, in hindsight we are not sure that our justification for extend-
ing the zero-inflation weights to deal with right-censoring was watertight. It is true that
the missingness is non-ignorable, and would have caused bias in the trajectories. What is
less clear is whether the adjustment we made alleviated the problem of bias, or just hid it.
Perhaps the trajectories should have been presented as they were “warts and all” with the
caveat that they were subject to bias. At any rate, we do not believe that the substantive
conclusions would have been materially affected.

6.c Further work

Given the tentatively interesting substantive findings from the methods we have employed, it
would be productive to repeat the analysis, using similar research questions and methods, but

8We have not presented significance of parameter estimates for GBTMs, but in general most of the spline
terms were significant well beyond p=0.05.
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on a larger sample with a less restrictive sampling scheme. This would hopefully enable the
testing of associations between crime types, that was not possible using the current dataset.

Apart from this, there are a number of improvements that could be made to the method.
The first of these would be to employ the full unconstrained model as described by Nagin
and Tremblay (2001). This would ensure that there is no bias in the estimates of association
between classes caused by classification errors in the modal assignment of observations to
classes.

The factor model could possibly be improved in the ways described above, by replacing
the log normal specification with a gamma specification for the factors themselves, with an
identity link, and by constraining covariances between factors to zero.

The use of factor scores in posterior analysis leads to underestimates of the variance
of estimates. This is because factor scores are estimates of unobserved random variables
yet are treated as observed. One way around this would be to take a set of samples from
the posterior predictive distribution of the factor scores (Asparouhov and Muthen, 2010),
estimate the model repeatedly, and pool the estimates (Rubin, 2004).

This requirement, along with the ability to place a prior on the number of components,
and the availability of posterior predictive checking as a way of thoroughly diagnosing model
fit, points to the use of a Bayesian modeling paradigm for future development of the model.
Bayesian methods lend themselves readily to latent variable models, since in a Bayesian
framework the entire distribution of unknown quantities is estimated, rather than a point
estimate of it.
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