Mechanistic Elucidation of Intramolecular Aminoalkene Hydroamination Catalyzed by a Tethered Bis(ureate) Complex: Evidence for Proton-Assisted C-N Bond Formation at Zirconium

Leitch, David C. and Platel, Rachel H. and Schafer, Laurel L. (2011) Mechanistic Elucidation of Intramolecular Aminoalkene Hydroamination Catalyzed by a Tethered Bis(ureate) Complex: Evidence for Proton-Assisted C-N Bond Formation at Zirconium. Journal of the American Chemical Society, 133 (39). pp. 15453-15463. ISSN 0002-7863

Full text not available from this repository.

Abstract

A broad mechanistic investigation regarding hydroamination reactions catalyzed by a tethered bis(ureate) zirconium species, [ureate(2-)]Zr(NMe(2))(2)(HNMe(2)), is described. The cyclization of both primary and secondary aminoalkene substrates gives similar kinetic profiles, with zero-order dependence on substrate concentration up to similar to-60-75% conversion, followed by first-order dependence for the remainder of the reaction. The addition of 2-methylpiperidine changes the observed substrate dependence to first order throughout the reaction, but does not act as a competitive inhibitor. The reactions are first order in precatalyst up to loadings of similar to 0.15 M, indicating that a well-defined, mononuclear catalytic species is operative. Several model complexes have been structurally characterized, including dimeric imido and amido species, and evaluated for catalytic performance. These results indicate that imido species need not be invoked as catalytically relevant intermediates, and that the mono(amido) complex [ureate(2-)]Zr(NMe(2))(Cl)(HNMe(2)) is much less active than its bis(amido) counterpart. Structural evidence suggests that this is due to differences in coordination geometry between the mono- and bis(amido) complexes, and that an equatorial amido ligand is required for efficient catalytic turnover. On the basis of the determination of kinetic isotope effects and stoichiometric reactivity, the catalytic turnover-limiting step is proposed to be a concerted C-H, C-N bond-forming process with a highly ordered, unimolecular transition state (Delta S(double dagger) = -21 +/- 1 eu). In addition to this key bond-forming step, the catalytic cycle involves an on-cycle pre-equilibrium between six- and seven-coordinate intermediates, leading to the observed switch from zero- to first-order kinetics.

Item Type:
Journal Article
Journal or Publication Title:
Journal of the American Chemical Society
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1500/1503
Subjects:
ID Code:
62868
Deposited By:
Deposited On:
13 Mar 2013 13:43
Refereed?:
Yes
Published?:
Published
Last Modified:
29 Jul 2020 11:03