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Living systems have time-evolving interactions that, until recently, could not be identified accurately from
recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced
a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying
synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics
from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the
time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous
samples. We now present the method in detail using numerically generated data, data from an analog electronic
circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators
and thus demonstrate its applicability to small-scale networks.
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I. INTRODUCTION

Systems of interacting oscillators are ubiquitous in sci-
ence. In the common case where the natural frequencies or
amplitudes or interoscillator couplings are time-varying, they
pose a continuing challenge to the time-series analyst who
endeavours to understand the underlying system from the
signal(s) it creates. Oversimplified hypotheses are often used to
render the problem more tractable, but can all too easily result
in a failure to describe phenomena that are in fact of central
importance—given that the strength, direction, and functional
relationships that define the nature of the interactions can cause
qualitatively new states to appear or disappear. Time variability
of this kind is especially important in biological applications,
though it is by no means restricted to biology.

In the absence of time variability, there are many different
methods available [1–4] for detecting and quantifying the
couplings and directionality (dominant direction of influence)
between oscillators based, especially, on the analysis of phase
dynamics. Approaches to the detection of synchronization
have mostly been based on the statistical properties of the
phase difference [5–8]. The inference of an underlying phase
model has been used as the functional basis for a number of
techniques to infer the nature of the phase-resetting curves,
interactions, and structures of networks [9–14]. However,
these techniques inferred neither the noise dynamics nor the
parameters characterizing the noise. An additional challenge
to these methods can be the time-varying dynamics mentioned
above. In a separate line of development, Bayesian inference
was applied to analyze the system dynamics [15–20], thereby
opening the door to inference of noisy time-evolving phase
dynamics. Methods based on transfer entropy and Granger
causality have a generality that has facilitated a number of
applications, including inference of the coupling strength and
directionality [21–23]. These techniques provide measures of
the amount of information in a measured signal, or the causal
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relationships between measured signals and, in doing so, they
infer effect rather than mechanism.

In this paper we describe in detail and further extend a
recently introduced method [24] based on dynamical Bayesian
inference. As we demonstrate below, it enjoys many advan-
tages over earlier approaches. One of these is that it does not
require the observable to fill the domain of the probability
density function at equilibrium: it can thus provide the same
information from a small fraction of the data that is required
by the transfer entropy or Granger causality approaches.
Additionally, the dynamical approach has the advantage of
characterizing the system completely (not only in terms of
information measures). Thus, from the inferred dynamics one
can deduce self-consistently any information that is of interest,
be it coupling functions, or synchronization, or causality, or
equilibrium densities, including the equations of motion. We
discuss in detail the theoretical background, the technical
aspects, and limitations of the algorithms, and we demonstrate
the wide applicability of the method by consideration of several
examples.

The coupling functions are of particular importance. Their
form is uniquely able to describe the functional laws of
interaction between the oscillators. Earlier theoretical studies
have included the work of Kuramoto [25] and Winfree [26],
which used a function defined either by the phase difference or
by both phases, and of Daido [27,28] and Crawford [29] who
used a more general form in which the coupling function was
expanded in Fourier series. Other methods for inference of the
coupling functions have also been suggested [10,11,13,30].
The technique described below goes beyond all of these
because it is able to follow the time variability of the coupling
functions and hence can reveal their dynamical character where
it exists.

We will also show how the technique can readily be
extended to encompass networks of interacting oscillators.
These form a large and important group of physical systems,
including neural networks [9,31,32], electrochemical systems
[10,33], crowd synchrony on the Millennium bridge, and
networks of fireflies [34]. The large scale of the networks can
introduce a higher complexity, both in structure and functional
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behavior. For example in neuronal networks, the existence of
spatial and spatial-temporal correlations, collective or partially
collective (clustering) behavior, synchronization or desynchro-
nization, and time variability has been reported [31,32,35,36].
In such cases, and given the kinds of phenomenon to be studied,
there is an increasing need for powerful techniques that can
infer the time-varying dynamics of the oscillatory networks.

In Sec. II we provide details about the phase decomposi-
tions, the implementation of the Bayesian framework, and how
the time-varying information is propagated. Synchronization
detection through a map representation of the phase dynamics
is discussed in Sec. III, while the method for describing the
interactions is demonstrated in Sec. IV. Before the method
is applied, we consider in Sec. V some important technical
aspects and limitations. The wide applicability of the method
is demonstrated in Sec. VI, through the analysis of time series
from numerical phase and limit-cycle oscillators, analog sim-
ulation, and cardiorespiratory interactions. The generalization
of the approach to networks of oscillators, as exemplified by
two numerical examples, is presented in Sec. VII. Finally, we
summarize and draw conclusions in Sec. VIII. The algorithm
used for the detection of synchronization is described in
Appendix A.

II. PHASE-DYNAMICS DECOMPOSITION

Consider an N -dimensional oscillator dx/dt = f(x(t))
whose solution f admits a limit cycle. Such an oscillator can
usually be represented by a constant phase velocity φ̇ = ω and
a vector coordinate that defines the limit cycle as a function of
the phase φ: r ≡ r(φ).

When two such oscillators mutually interact sufficiently
weakly, their motion is commonly approximated just by their
phase dynamics [25,37]. We note that, in general, if we
describe the phase of a system through a generic monotonic
change of variables, than the dynamical process can be written
as

φ̇i = ωi + fi(φi) + gi(φi,φj ) + ξi . (1)

Equation (1) explicitly includes a noise term ξi to enable
it to represent a process in a real system. The noise can
be, e.g., a white Gaussian noise 〈ξi(t)ξj (τ )〉 = δ(t − τ )Eij ,
where the symmetric matrix Eij encloses the information about
correlations between the noises on different oscillators, which
we will refer to as spatial correlation.

The phase-dynamics decomposition technique is highly
modular from the algorithmic point of view, and each module
will be explained separately in the sections that follow. The
overall procedure comprises the following steps:

(1) Assumption that the dynamics can be precisely de-
scribed by a finite number of Fourier terms (see Sec. II A).

(2) Inference, given the data, of the Fourier terms, the
noise amplitude, and their correlation in form of a parameter
probability distribution (see Sec. II B for stationary dynamics,
and Sec. II C for time-varying dynamics).

(3) Integration of the probability that this parameter-set lies
inside the Arnold tongue defining synchronization. This effec-
tively yields the cumulative probability of the synchronization
state of the dynamics (see Sec. III).

(4) Use of the parameter information as obtained in
step 2 to create a description of the interactions, leading
to detection of the predominant directionality and coupling
function estimation among the oscillators (see Sec. IV).

A. Truncated Fourier series

The periodic behavior of the system suggests that it
can appropriately be described by a Fourier decomposition.
Decomposing both fi and gi in this way leads to the infinite
sums

fi(φi) =
∞∑

k=−∞
c̃i,2k sin(kφi) + c̃i,2k+1 cos(kφi)

and

gi(φi,φj ) =
∞∑

s=−∞

∞∑
r=−∞

c̃i;r,s ei2πrφi ei2πsφj . (2)

It is reasonable to assume that, in most cases, the dynamics
will be well described by a finite number K of Fourier terms,
so that we can rewrite the phase dynamics of Eq. (1) as a finite
sum of base functions,

φ̇i =
K∑

k=−K

c
(i)
k �i,k(φ1,φ2) + ξi(t), (3)

where i = 1,2, �1,0 = �2,0 = 1, c(l)
0 = ωl , and the rest of �l,k

and c
(l)
k are the K most important Fourier components.

B. Bayesian inference

In order to reconstruct the parameters of Eq. (3) we
make extensive use of the approach to dynamical inference
presented in [18,19]. In this section we briefly outline the
technique as adapted to the present case. The fundamental
problem in dynamical inference can be defined as follows.
A two-dimensional (in general L-dimensional) time series of
observational data X = {φl,n ≡ φl(tn)} (tn = nh, l = 1,2) is
provided, and the unknown model parametersM = {c(l)

k ,Eij ,}
are to be inferred.

Bayesian statistics employs a given prior density pprior(M)
that encloses expert knowledge of the unknown parameters,
together with a likelihood function 	(X |M), the probability
density to observe {φl,n(t)} given the choice M of the
dynamical model. Bayes’ theorem

pX (M|X ) = 	(X |M) pprior(M)∫
	(X |M) pprior(M)dM (4)

then enables calculation of the so-called posterior density
pX (M|X ) of the unknown parameters M conditioned on the
observations.

For independent white Gaussian noise sources, and in the
midpoint approximation where

φ̇l,n = φl,n+1 − φl,n

h
and φ∗

l,n = (φl,n + φl,n+1)

2
,

the likelihood is given by a product over n of the probability
of observing φl,n+1 at each time. The likelihood function is
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constructed by evaluation of the stochastic integral of the noise
term over time, as

ξ
(1)
l (ti) ≡

∫ ti+1

ti

ξl(t) dt =
√

h H zl, (5)

where H is the Cholesky decomposition of the positive definite
matrix E, and zl is a vector of normally distributed random
variables with zero mean and unit variance. The joint proba-
bility density of zl is used to find the joint probability density
of the process in respect of [φl(ti+1) − φl(ti)] by imposing
P [φl(ti+1)] = det(J φ

ξ )P (ξ i), where J
φ
ξ is the Jacobian term

of the transformation of variables that can be calculated from
Eq. (2). If the sampling frequency is high enough, the time
step h tends to zero, and the determinant of the Jacobian J

φ
ξ

can be well approximated by the product of its diagonal terms

det
(
J

φk (tn)
ξk (tn)

) ≈
∏

l

∂�l,k(φ·,n)

∂φl

.

This transformation leads to an extra term in a least
squares likelihood, and the minus log-likelihood function
S = − ln 	(X |M) can thus be written as

S = N

2
ln |E| + h

2

N−1∑
n=0

(
c

(l)
k

∂�l,k(φ·,n)

∂φl

+ [
φ̇i,n − c

(i)
k �i,k(φ∗

·,n)
]
(E−1)ij

[
φ̇j,n − c

(j )
k �j,k(φ∗

·,n)
])

,

(6)

where summation over the repeated indices k,l,i,j is implicit.
The log likelihood (6) is a quadratic form of the Fourier

coefficients of the phases. Hence if a multivariate prior prob-
ability is assumed, the posterior probability is a multivariate
normal distribution as well.

This is highly desirable for two reasons: (i) a Gaussian
posterior is computationally convenient because it guarantees
a unique maximum, with the mean vector and covariance
matrix completely characterizing the distribution and giving
us the most significant information; (ii) all the multivariate
normal posteriors can be used again as priors in the presence
of a new block of data, and knowledge about the system
can easily be updated. This last feature is essential for any
real-time application because it ensures that the complexity of
the algorithm does not change with the length of the input data
stream.

From [18], and assuming a multivariate normal distribution
as the prior for parameters c

(l)
k , with means c̄, and covariances

�prior, the stationary point of S can be calculated recursively
from

Eij = h

N

(
φ̇i,n − c

(i)
k �i,k(φ∗

·,n)
) (

φ̇j,n − c
(j )
k �j,k(φ∗

·,n)
)
,

c
(i)
k = (�−1)

(i,l)
kw r (l)

w ,

r (l)
w = (

�−1
prior

)(i,l)

kw
c(l)
w + h �i,k(φ∗

·,n) (E−1)ij φ̇j,n

− h

2

∂�l,k(φ·,n)

∂φl

,

�
(i,j )
kw = �prior

(i,j )
kw + h �i,k(φ∗

·,n) (E−1)ij �j,w(φ∗
·,n), (7)

where the covariance is � = �−1, summation over n from 1 to
N is assumed and summation over repeated indices k,l,i,j ,w
is again implicit. We note that a noninformative “flat” prior can
be used as the limit of an infinitely large normal distribution,
by setting �prior = 0 and c̄prior = 0.

The multivariate probability NX (c|,c̄,�) given the readout
time series X = {φl,n ≡ φl(tn)} explicitly defines the proba-
bility density of each parameter set of the dynamical system.
Because each of them can be discriminated as belonging or
not belonging to the Arnold tongue region, we can define the
binary property s(c(l)

k ) = {1,0}, and can obtain the posterior
probability of the system being synchronized or not by
evaluating the probability of s,

psync ≡ pX (s = 1) =
∫

s(c)NX (c|c̄,�) dc . (8)

The computation of psync will be discussed in Sec. III.

C. Time-varying information propagation

The multivariate probability described by NX (c,�) for
the given time series X = {φn ≡ φ(tn)} explicitly defines the
probability density of each parameter set of the dynamical
system. When the sequential data come from a stream of
measurements providing multiple blocks of information, one
applies (7) to each block. Within the Bayesian theorem, the
evaluation of the current distribution relies on the evaluation
of the previous block of data, i.e., the current prior depends
on the previous posterior. Thus the inference defined in this
way is not a simple windowing, but each stationary posterior
depends on the history of the evaluations from previous blocks
of data.

In classical Bayesian inference, if the system is known to
be non-time-varying, then the posterior density of each block
is taken as the prior of the next one: �n+1

prior = �n
post. This full

propagation of the covariance matrix allows good separation
of the noise, and the uncertainties in the parameters steadily
decrease with time as more data are included.

If time variability exists, however, this propagation will act
as a strong constraint on the inference, which will then fail
to follow the variations of the parameters. This situation is
illustrated in Fig. 1(a).1 In such cases, one can consider the
processes between each block of data to be independent (i.e.,
Markovian). There cannot then be any information propagation
between the blocks of data, and each inference starts from the
flat distribution �n+1

prior = ∞. The inference can thus follow
more closely the time variability of the parameters, but the
effect of noise and the uncertainty of the inference will of
course be much larger, as shown in Fig. 1(b).

Where the system’s parameters are time dependent, we may
assume that their probability diffuses normally accordingly
to the known diffusion matrix �diff . Thus, the probability
density of the parameters is the convolution of the two normal

1Note that Fig. 1 shows inference of two coupled noisy Poincaré
oscillators with the frequency of one oscillator time varying—for
clarity and compactness of presentation the details are not shown
here, but the reader can refer to the model and other details in
Sec. VI.
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FIG. 1. Inference of a rapidly time-varying coupling parameter
from coupled noisy oscillators (12). The gray lines represent the
actual parameter in the numerical simulation, whereas the black lines
indicate the time-varying parameter inferred from the resultant time
series, for (a) full propagation, �n+1

prior = �n
post; (b) no propagation,

�n+1
prior = ∞; and (c) propagation for time-varying processes, �n+1

prior =
�n

post + �n
diff .

multivariate distributions �post and �diff ,

�n+1
prior = �n

post + �n
diff .

The covariance matrix �diff expresses our belief about which
part of the dynamical fields that define the oscillators has
changed, and the extent of that change. Its elements are
(�diff)i,j = ρijσiσj , where σi is the standard deviation of
the diffusion of the parameter ci after the time window tw
that has elapsed from the first block of information to the
following one. ρij is the correlation between the change of the
parameters ci and cj (with ρii = 1). In relation to the latter,
a special example of �diff will be considered: we assume that
there is no correlation between parameters, i.e., ρij = 0, and
that each standard deviation σi is a known fraction of the
parameter ci : σi = pwci (where pw indicates that p is referred
to a window of length tw). It is important to note that this
particular example is actually rather general because it assumes
that all of the parameters (from the �n

post diagonal) can be of
a time-varying nature—which corresponds to the inference
of real (experimental) systems with a priori unknown time
variability.

There are two obvious limits in modeling the knowledge
assumed with respect to possible time variation of parameters.
The first of these is to assume no time variability: in this
case the full information propagation matrix is used,

∑n+1
prior =∑n

post. If the assumption proves wrong, the inferred parameters
may accumulate a bias when the real system varies in time. The
other limit is to assume each time window to be completely
independent of the previous signal history. In this case no
propagation is used,

∑n+1
prior = ∞ (i.e., �n+1

prior = 0), and there
is no bias but, because much information is forgotten, the
probability of the inferred parameters has a large covariance
matrix. An optimal assumption must lie in between these two
limits:

∑n+1
prior = ∑n

post +
∑n

diff , where the choice of
∑n

diff is
parametrized with the values of the pw’s. If a diffusion matrix
is assumed, we allow the method some freedom for the time
variability to be followed, while restricting it to be unbiased.
The amount of variability is part of the model, like the number
of free parameters in any standard method. Figure 1 illustrates
the two extreme limits, and a possible tradeoff. The inference
in Fig. 1(c) demonstrates that the time variability is captured
correctly and that the uncertainty is reduced because more data
have been included.

If one knows beforehand that only one parameter is varying
(or, at most, a small number of parameters), then �diff can be
customized to allow tracking of the time variability specifically
of that parameter. This selective propagation can be achieved
if, for example, not all but only the selected correlation ρii

from the diagonal has a nonzero value.

III. SYNCHRONIZATION DETECTION

It is important to note that finite noise can induce phase slips
in a system that would be synchronized in the noiseless limit.
Rather than focusing on the presence and statistics of phase
slips, we propose to detect synchronization from the nature
of the phase slip itself. An interesting feature of the present
study is that it proposes evaluation of the probability that the
equations driving the dynamics are intrinsically synchronized
and thus of whether any phase slips that may possibly be
observed are dynamics related or noise induced.

After performing the inference, one can use the recon-
structed parameters, derived in the form of a multivariate
normal distribution NX (c,�), to study the interactions be-
tween the oscillators under study. In general, the border of the
Arnold tongue may not have an analytic solution. In practice,
we estimate psync numerically, sampling from the parameter
space many realizations {c(l)

k }m, where m labels each parameter
vector tested. For every set of c we compute s(cm) numerically.
Let us assume for now that s(cm) is given. To find psync with
arbitrary precision, it is enough to generate a number M of
parameters cm = {c(l)

k }m, with m = 1, . . . ,M sampled from
NX (c|c̄,�), since psync = limM→∞ 1

M

∑M
m s(cm).

However, this 2K-dimensional integration quickly be-
comes inefficient with an increasing number of Fourier
components. Moreover, as we will discuss in Sec. III, the
computation time of the variable s(cm) is not insignificant. On
the other hand, if the posterior probability pX is sharply peaked
around the mean value c̄, then psync will be indistinguishable
from s(c̄), and the evaluation of s(c̄) will suffice.

A. Synchronization discrimination and map representation

We now illustrate a simple numerical technique to recognize
whether a coupled phase oscillator system is synchronized
or not. The technique itself amounts to a simple check by
numerical integration of the system of ordinary differential
equation defined by Eq. (1) through one cycle of the dynamics,
and testing whether the 1:1 synchronization condition |ψ(t)| =
|φ1(t) − φ2(t)| < K is always obeyed.

Let us assume that we are observing motion on the torus T 2

defined by the toroidal coordinate ζ (φ1(t),φ2(t)) = [φ1(t) +
φ2(t)]/2, and the polar coordinate ψ(t).

For assessment of possible 1:1 synchronization the phase
difference ψ(t) will be defined as ψ(φ1(t),φ2(t)) = φ1(t) −
φ2(t). Figure 2 provides a schematic representation of the phase
dynamics on the torus. Let us consider a Poincaré section
defined by ζ = 0 and assume that dζ (t)/dt |ζ=0 > 0 for any
ψ . This means that the direction of motion along the toroidal
coordinate is the same for every point of the section. Ideally we
would follow the time evolution of every point and establish
whether or not there is a periodic orbit; if there is one, and if
its winding number is zero, then the system is synchronized.
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=0

FIG. 2. Torus representation of the phase dynamics, with toroidal
coordinate ζ (φ1(t),φ2(t)) and polar coordinate ψ(φ1(t),φ2(t)). The
white circle denotes the Poincaré cross section.

If such a periodic orbit exists, then there is at least one other
periodic orbit, with one of them being stable and the other
unstable.

The solution of the dynamical system over the torus
yields a map M : [0,2π ] → [0,2π ] that defines, for each
ψn on the Poincaré section, the next phase ψn+1 after one
circuit of the toroidal coordinate ψn+1 = M(ψn). Figures 3(b)
and 3(c) illustrate the map M as evaluated computationally
in two situations, corresponding to no synchronization, or
synchronization, respectively.

The map M is continuous, periodic, and has two fixed points
(one stable and one unstable) if and only if there is a pair of
periodic orbits for the dynamical system, i.e., synchronization
is verified if ψe exists such that ψe = M(ψe) and | dM(ψ)

dψ
|ψe

| <

1. The existence of the fixed point ψe is established through
the simple algorithmic procedure described in Appendix A.

IV. DESCRIPTION OF THE INTERACTIONS

Inferring the parameters of the system not only allows for
evaluation of the synchronization as an epiphenomenon in
its own right, but their probability NX (c,�) also describes
the interaction properties of the oscillators. Because their
dynamics is reconstructed separately, as described by Eq. (1),
use can be made only of those inferred parameters from the
base functions fi(φj ) and gi(φi,φj ) that are linked to influences
between the oscillators.

One can seek to determine the properties that characterize
the interaction in terms of the strength of coupling, predomi-
nant direction of coupling, or even by inference of a coupling
function. The analysis of information propagation allows
inference of the time-varying dynamics, and the interactions’

properties can be traced in time as well. This is especially
important for the inference of open interacting oscillatory
processes where the time variability of the interactions can
lead to transitions between qualitatively different states, such
as synchronization [37].

The coupling amplitude quantifies the total influence
between the oscillators in a particular direction, e.g., how
much the dynamics of the first oscillator affects the dynamical
behavior of the second oscillator (1 → 2). Depending on
whether the coupling is in only one direction, or in both di-
rections, we speak of unidirectional or bidirectional coupling,
respectively. In the inferential framework that we propose, the
coupling amplitudes are evaluated as normalized measures,
based on the interacting parameters inferred from the coupling
base functions. The influence of one oscillator on the other
can either be direct through fi(φj ), or can arise through
the combined interacting base functions gi(φi,φj ). In what
follows, the base functions fi(φj ) and gi(φi,φj ) are described
with a common notation qi(φi,φj ). The quantification is
calculated as a Euclidian norm:

ε21 = ‖q1(φ1,φ2)‖ ≡
√

c2
1 + c2

3 + . . .,
(9)

ε12 = ‖q2(φ1,φ2)‖ ≡
√

c2
2 + c2

4 + . . .,

where the odd inferred parameters are assigned to the base
functions q1(φ1,φ2) for the coupling that the second oscillator
imposes on the first (ε21 : 2 → 1), and vice versa (ε12 : 1 →
2).

The directionality of coupling [2] often provides useful in-
formation about the interactions. It is defined as normalization
about the predominant coupling amplitude,

D = ε12 − ε21

ε12 + ε21
. (10)

If D ∈ (0,1] the first oscillator drives the second (1 → 2), or if
D ∈ [−1,0) the second (2 → 1) drives the first. The quantified
values of the coupling strengths εi or the directionality D

represent measures of the combined relationships between the
oscillators. Thus, a nonzero value can be inferred even when
there is no interaction. Such discrepancies can be overcome by
careful surrogate testing [38,39]—by rejection of values below
a surrogate acceptance threshold, which can be specified,
e.g., as the mean plus two standard deviations among many
realization of the measure.

FIG. 3. (Color online) Synchronization discrimination for the coupled phase oscillators (11). (a) Schematic of an Arnold tongue in the
coupling frequency ε-ω plane: synchronization exists only within the shaded area [37]. (b) Map of M(ψ) for ε12 = 0.25 demonstrating that the
oscillators are not synchronized. (c) Map of M(ψ) for a case where a root of M(ψ) = ψ exists, i.e., where the state is synchronized. (d) The
corresponding phase difference, exhibiting two phase slips.
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In addition to the coupling strength and the directionality,
one can also infer the coupling function that characterizes
the interactions, i.e., the law that describes the functional
relationships between the oscillators. Its characteristic form
reflects the nature of the oscillators and how their dynamics
reacts to perturbations.

The coupling function should be 2π periodic. In the
inferential framework under study, the coupling functions
were decomposed into a finite number of Fourier components.
The function describing the interactions between the two
oscillators was decomposed by use of the odd parameters
q1(φ1,φ2) ∈ {c1,c3, . . .} and the corresponding base functions
�n[q1(φ1,φ2)] ∈{sin(φ1,φ2), cos(φ1,φ2)} up to order n of the
decomposition. The reverse function q2(φ1,φ2)∈ {c2,c4, . . .}
was similarly decomposed.

V. TECHNICAL ASPECTS AND CONSIDERATIONS

The technique is quite generally applicable to a broad class
of problems, and so there are a number of technical aspects
and choices to bear in mind. We now discuss three of them in
particular: the number of base functions to be employed in the
inference process (which is part of the model); the intensity
of the noise characterizing the system (which is an externally
imposed constraint); and the time resolution.

(a) Number of base functions. Selection of the optimal set
of base functions to describe the problem is far from trivial.
In general one wishes to have the minimal set that describes
sufficiently well the model to be tested. Where the length
of the data series is very long or effectively infinite, one
can include an excessive number of base functions without
immediate penalties. In reality, however, any unneeded base
function jeopardizes the precision of the coefficients that
really are relevant for the model, and the picture is further
complicated when the model to be adopted is expected to
be an outcome of the inference machinery. Where one deals
with a long data series, possibly with a high signal-to-noise
ratio, a relatively large number of base functions can be used.
The speed of computation is also an important aspect to
keep under consideration, given that having a large number
of base functions vastly increases the parameter space, and
that iterative calculations (especially matrix inversion) slow
the speed of processing by the third power of the number
of coefficients. Note that, even though Bayesian inference
is generally popular in real-time applications, computational
speed limitations mean that our inference framework for
general phase dynamics cannot yet be used in this way.

(b) Role of noise intensity. In general, the greater the
noise intensity, the bigger the covariance of the inferred
parameters. For a repeated experiment (e.g., generation of
a synthetic signal, and parameter inference based on that
signal) the variance of a particular parameter would increase
monotonically with noise amplitude, as shown in Fig. 4.
There are, however, a few notable exceptions. The inferential
capabilities rely on the volume of phase space spanned by the
variables. A state of synchronization would represent a limit
cycle for the global system, and parameter inference of neither
oscillator would reach satisfactory precision. In such cases
a minimal amount of noise is typically needed, sufficient to
drive the system out of equilibrium at least once. During the

FIG. 4. Statistics of (a) the inferred frequency ω1 and (b) coupling
ε1 for different noise intensities E. The signal to be analyzed is
generated from Eq. (12). The dotted line shows the actual values of the
parameters. The box plots refer to the descriptive statistics (median,
quartiles, max., and min.) of 104 different runs of the generation-and-
inference loop.

resultant phase slip, the data would be filling the phase space
sufficiently for correct parameter reconstruction.

(c) Time resolution. We now summarize the limits of an
idealized data acquisition. The time step h is much smaller
than any of the sequential time windows used as data blocks
for inference, so that each block contains many data points.
Also, h is much smaller than either of the oscillator periods.
Each inference block is big enough to contain many cycles of
the dynamics (in particular, more cycles than those typical of a
phase slip) while, at the same time, each block is small enough
to provide the desired resolution of parameter change.

It can happen that the time resolution of the change in
dynamical parameters is incompatible with an acquisition time
window that would guarantee precision for other parameters.
The choice of the time window must therefore be done on
a case-by-case basis, depending on the type of information
that is required from the system. Figure 5 illustrates such a
compromise. We use the numerical model (12) that will be
introduced in Sec. VI A2 to investigate the time resolution
for the case where the frequency ω1(t) = ω1 + Ã1 sin(ω̃t)
and coupling amplitude ε2(t) = ε2 + Ã1 sin(ω̃t) were varying
periodically at the same time. The parameters were ω1 =
2π 1.1, ω2 = 2π 2.77, ε1 = 0, ε2 = 1, ω̃ = 2π 0.002, Ã1 =
0.1, Ã2 = 0.5, and noise strengths E1 = E2 = 0.15. The
parameters were reconstructed using four different window
lengths for the inference. The results presented in Fig. 5
demonstrate that, for small windows (0.5 s), the parameters
are sparse and sporadic, while for very large windows (100 s)
the time variability is faster than the size of the window
and there is a cutoff on the form of the variability. The
optimal window length will lie between these two. Another
interesting feature is that, for the smallest window (0.5 s), the
coupling amplitude improves with information propagation as
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parameter from time series data generated by model (12) for four
different lengths of the inference windows. The sizes of the windows
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time progresses, while the frequency inferred (as a constant
component without base function) remains sparse throughout
the whole time interval.

VI. APPLICATIONS

The technique is first applied to synthetic data to test the
performance of the algorithm, and then real data are analyzed.
To create the synthetic data, we used both numerical and analog
electronic simulations. In the examples that follow, except
where stated otherwise, we used the phase model Eqs. (1)–(3)
with Fourier expansion to second order K = 2, propagation
constant pw = 0.2, and window length of tw = 50 s.

A. Numerically generated test data

Numerically generated data were obtained from models of
phase oscillators and limit-cycle oscillators.

1. Phase oscillators

The phase oscillator model provides a sufficient basis for
the description of synchronization while being, at the same
time, analytically traceable. We thus test the detection of
synchronization (as explained in Sec. III) through Bayesian
inference of synthetic data whose synchronization is already
known. The model is given by two coupled phase oscillators
subject to white noise,

φ̇i = ωi + εji sin(φj − φi) + ξi(t), i,j = 1,2. (11)

The parameters are ω1 = 1.2, ω2 = 0.8, ε21 = 0.1; parameter
ε12 is chosen so that the system lies close to the border of the
Arnold tongue (either just inside or just outside). Because we
aim to demonstrate the precision of synchronization detection,
we add no time variability to the model, the inference is applied
to a single block of data, and there is no spatial noise correlation
with noise intensities E11 = E22 = 2. The dynamics of the

phase difference is described as ψ̇ = �ω − ε sin(ψ) + ξ1(t) +
ξ2(t), where �ω = ω2 − ω1 is the frequency mismatch and
ε = ε21 + ε12 is the resultant coupling. It is evident that the
analytic condition for synchronization, i.e., the existence of
a stable equilibrium solution ψ̇ < 0, is �ω/ε < 1. For ε12 =
0.25 (outside the Arnold tongue) the reconstructed map M(ψ)
[Fig. 3(b)] after parameter inference has no root M(ψe) = ψe:
hence the oscillators are not synchronized. When ε12 = 0.35,
even though the system was inside the Arnold tongue, noise
triggered occasional phase slips [see Fig. 3(d)]. We tested
synchronization detection on the same signals using the
methods already available in the literature, based on the
statistics of the phase difference [5–7], but none of them was
able to detect the presence of synchronization under these
conditions. For example, one of the most widely used methods
for synchronization detection [5] gives a normalized index of
0.7539, well below the 0.9183 threshold (evaluated as the
mean plus two standard deviations of surrogate realizations)
for acceptance of synchronization. In spite of the phase slips,
our technique correctly detects the root M(ψe) = ψe from
the inferred parameters, revealing that the oscillators are
intrinsically synchronized as shown in Fig. 3(c): the phase
slips are attributable purely to noise (whose inferred intensity is
given by the matrix Ei,j ), and not to deterministic interactions
between the oscillators.

2. Limit-cycle oscillators

To demonstrate the capabilities of the technique in tracing
time-varying parameters, coupling functions, directionality,
and synchronization, we analyzed data from a numerical model
of two coupled, nonautonomous, Poincaré oscillators subject
to white noise,

ẋi = −rixi − ωi(t) yi + εi(t) qi(xi,xj ,t) + ξi(t),

ẏi = Y − riyi + ωi(t) xi + εi(t) qi(yi,yj ,t) + ξi(t), (12)

ri =
(√

x2
i + y2

i − 1

)
i,j = 1,2.

We tested several possibilities for the parameters: while letting
the frequencies ωi and coupling parameters εi be time varying,
we ran numerical experiments with the coupling function qi

either fixed or time varying.
As a first numerical experiment, we considered bidirec-

tional coupling (1↔2), where the natural frequency of the
first oscillator, and its coupling strength to the second one,
vary periodically at the same time: ω1(t) = ω1 + Ã1 sin(ω̃1t)
and ε2(t) = ε2 + Ã2 sin(ω̃2t). The other parameters were
ε2 = 0.1, ω1 = 2π 1, ω2 = 2π 1.14, Ã1 = 0.2, Ã2 = 0.13,
ω̃1 = 2π 0.002, ω̃2 = 2π 0.0014, and noise E11 = E22 = 0.1.
The coupling function was proportional to the difference in
the state variables: qi(xi,xj ,t) = xi − xj and qi(yi,yj ,t) =
yi − yj (the same coupling function was used for construction
of Figs. 1, 4, and 5). The phases were estimated as the angle
variable φi = arctan(yi/xi) (where arctan is defined as the
four-quadrant inverse tangent function). With ε1 = 0.1, in
a state of no synchronization, the time-varying parameters
ω1(t) and ε2(t) are accurately traced as can be seen in
Figs. 6(a) and 6(b). The coupling amplitude of ε1 = 0.3
corresponds to a state of intermittent synchronization, where
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FIG. 6. (Color online) Extraction of time-varying parameters,
synchronization, and coupling functions from numerical data created
by (12). The frequency ω1(t) (a) and coupling ε2(t) (b) are indepen-
dently varied. The dotted and full lines plot the parameters when
the two oscillators are synchronized for part of the time (ε1 = 0.3),
and not synchronized at all (ε1 = 0.1), respectively. The regions of
synchronization, found by calculation of the synchronization index,
are indicated by the gray shaded regions. Panels (c) and (d) show
the coupling functions q1(φ1,φ2) and q2(φ1,φ2) for time windows
centered at t = 350s. In both cases, the window length was tw = 50s
and the coupling was ε12 = 0.1.

the two oscillators are synchronized for part of the time.
The precision of the reconstructed time-variable parameters
is satisfactory during the nonsynchronized intervals. During
the synchronized intervals, however, the oscillators do not
span sufficient phase space to allow precise inference of the
parameters [Figs. 6(a) and 6(b), dashed lines]. Within these
synchronized intervals, the posterior probability distribution
of the parameters was not peaked; however, it was sensibly
different from zero only in that parameter region for which
the corresponding noiseless dynamics is synchronized. Hence,
despite the impossibility of accurate parameter tracking, the
detection of a synchronized state [s(c) = 1] is always precise
[Figs. 6(a) and 6(b), grey shaded regions].

The reconstructed sinelike functions q1(φ1,φ2) and
q2(φ1,φ2) are shown in Figs. 6(c) and 6(d) for the first and
second oscillators, respectively. They describe the functional
form of the interactions between the two Poincaré systems in
Eq. (12). The reconstructed form of the coupling functions was
evaluated dynamically for each block.

Next, the method was applied to deduce the predominant
direction of coupling as specified from the norm of the inferred
coupling base parameters. To illustrate the precision of the
directionality detection, the frequencies were now set constant,
while both of the coupling strengths remained discretely
time varying. The parameters were ω1 = 2π 1.3, ω2 = 2π 1.7,
E11 = E22 = 0.2, and the coupling functions were, as in
the previous example, qi(xi,xj ,t) = xi − xj and qi(yi,yj ,t) =
yi − yj . Synchronization was not reached, however, for these
parameters. The couplings undergo changes at particular times,
but otherwise remain constant, as shown in Fig. 7. The detected
directionality index D was consistent with the actual values.
Note that, for unidirectional coupling, D does not quite reach
unity on account of the noise.

To further investigate the ability to track subtle changes of
time-varying coupling functions, we used the same model as
in Eq. (12) to generate a synthetic signal where the coupling
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FIG. 7. Directionality of coupling D for discretely time-varying
coupling amplitudes ε1 and ε2. Different unidirectionally and bidi-
rectionally coupled states are reached for different values of ε1 and
ε2, as indicated by the square insets.

functions are absolute values of the state difference raised to a
power of the time-varying parameter:

qx,i(xi,xj ,t) = |(xj − xi)
ν(t)|,

(13)
qy,i(yi,yj ,t) = |(yj − yi)

ν(t)|,
where i,j = {1,2} and i = j . The exponent parameter varied
linearly with time ν(t) = {1 → 3}, and the other parame-
ters remained constant: ω1 = 2π 1, ω2 = 2π 2.14, ε1 = 0.2,
ε2 = 0.3, and E11 = E22 = 0.05. The reconstructed phase
coupling functions qi(φ1,φ2) were calculated from the inferred
parameters for the interacting terms of the base functions.
The results for four consecutive windows are presented in
Fig. 8. It can readily be seen that their complex form now
is not constant, but varies with time. Comparing them in
neighboring (consecutive) pairs, (a) and (b), then (b) and
(c), then (c) and (d), one can follow the time evolution of
the functional form. Even though we can follow their time
variability, the two most distant functions, Figs. 8(a) and 8(d),
are of substantially different shapes. Note also that, besides
their form, the functions’ norm, i.e., coupling strength, also
varies [cf. the height of the maxima in Fig. 8(a) and 8(d)].

Thus we have validated the technique on numerical models
whose deterministic dynamics and time variability were al-
ready known, thereby demonstrating the usefulness, precision,
and comprehensiveness of the method. We found that it can
produce a good description of noise-induced phase slips,
synchronization, directionality, and coupling functions even
when the dynamics is subject to deterministic time-varying
influences.

B. Analog simulations

We also tested the technique on signals emanating from
analog models. These are real, highly controllable, oscillatory
systems and the noise on their signals is real rather than
contrived, as in the case of numerical models. It is attributable
to environmental disturbances, thermal fluctuations, and the
inherent nonidealities of the circuit components. During the
process of data acquisition and discretization, measurement
noise can be introduced as well—noise which has no links
with the actual dynamics of the interacting oscillators. Such
signals provide a good test of our analysis capabilities.

We analyzed data from an analog experimental simulation
of two coupled van der Pol oscillators. Details of the electronic
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FIG. 8. (Color online) Time evolution of the coupling function from model (12) with exponential time variations (13). (a)–(d) Coupling
function q1(φ1,φ2) from the first oscillator for four consecutive time windows. The window length was tw = 50s. For simplicity and clarity
only the function q1(φ1,φ2) is shown. The behavior of q2(φ1,φ2) from the second oscillator was similar.

implementation are given elsewhere [40]. The noise here arises
mainly from the imperfections of the electronic components
and there is also measurement noise.

Figure 9(a) shows the phase portrait derived from the
first oscillator, with time-varying frequency, which drives the
second oscillator,

1

c2
ẍ1 − μ1

(
1 − x2

1

)1

c
ẋ1 + [ω1 + ω̃1(t)]2x1 = 0,

(14)
1

c2
ẍ2 − μ2

(
1 − x2

2

)1

c
ẋ2 + ω2

2x2 + ε(x1 − x2) = 0,

where the periodic time variability ω̃1(t) = Ã1 sin(ω̃t)
[Fig. 9(b)] comes from an external signal generator. The
parameters were ε = 0.7, ω1 = 2π 15.9, ω2 = 2π 17.5, Ã1 =
0.03, ω̃ = 2π 0.2, and c = 100 is constant resulting from
the analog integration. The phases were estimated as φi =
arctan(ẋi/xi).

For the given parameters the oscillators were synchronized,
so that the second driven oscillator changed its frequency from
being constant to being time varying. Applying the inferential
technique showed, correctly, that the oscillators were indeed
synchronized [s(c) = 1] throughout the whole time period.
The frequency of the driven oscillator was inferred as being
time varying [Fig. 9(c)]. Performing a simple FFT [Fig. 9(d)]
showed that ω2(t) is periodic with period 0.2 Hz (exactly as
set on the signal generator).

Clearly, the technique reveals information about the nature
and the dynamics of the time variability of the parameters—
and is still able to do so using a more realistic signal than that
from a numerical simulation.

FIG. 9. Analysis of signals from an analog simulation of the
system (14). (a) Phase portrait from the oscilloscope; (b) frequency
ω̃1(t) from the external signal generator; (c) detected frequency ω2(t)
of the second driven oscillator; (d) Fast Fourier transform (FFT) of
the detected frequency ω2(t).

C. Cardiorespiratory interactions

Having tested our technique on two quite different kinds of
synthetic data, we now apply it to a real physiological problem,
to investigate the cardiorespiratory interaction. The analysis
of physiological signals of this kind has already been found
useful in relation to several different diseases and physiological
states (see, e.g., [41] and references therein). Transitions in
cardiorespiratory synchronization have been studied in relation
to anæsthesia [42] and sleep cycles [43]. It is also known
that modulations and time-varying sources are present, and
that these can affect the synchronization between biological
oscillators [41,44,45]. For comprehensive and reliable analysis
a technique is needed that is able to not only identify the time-
varying information, but which will allow evaluation of the
interacting measures (e.g., synchronization and directionality),
based solely on the information inferred from the signals. We
will show that our technique meets these criteria.

We analyze cardiorespiratory measurements from human
subjects under anæsthesia. Their breathing rate was held
constant, being determined by a respirator. For such systems
the analytic model is unknown, in contrast to analog and
numerical examples, but the oscillatory nature of the signal
is immediately evident. The instantaneous cardiac phase was
estimated by synchrosqueezed wavelet decomposition [46] of
the ECG signal. Similarly, the respiratory phase was extracted
from the respiration signal. The final phase time series were
reached after protophase-phase transformation [12]. A more
detailed explanation of the phase estimation procedure is given
in Appendix B.

Application of the inferential technique reconstructs the
phase parameters that govern the interacting dynamics.
Figure 10(c) shows the time evolution of the cardiac and
respiration frequencies. It is evident that the constant pacing
of the breathing is well inferred, and that the instantaneous
cardiac frequency, i.e., “heart rate variability,” increases with
time. The inferred parameters, and their correlations, are used
to detect the occurrence of cardiorespiratory synchronization
and the corresponding synchronization ratio. The synchro-
nization evaluation Isync = s(c) ∈ {0,1}, shown in Fig. 10(b)
reveals the occurrence of transitions between the synchronized
and nonsynchronized states, and transitions between different
synchronization ratios: from 2:8 (i.e., 1:4) at the beginning
to 2:9 in the later intervals. Because the evaluation of the
synchronization state is based on all of the given details
about the phase dynamics, the proposed method not only
detects the occurrence of transitions, but also describes their
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FIG. 10. Synchronization and time-varying parameters in the
cardiorespiratory interaction. (a) Standard 2:N synchrogram. (b)
Synchronization index for ratios 2:8 and 2:9 as indicated. (c) Time
evolution of the cardiac fh(t) and respiratory fr (t) frequency.

inherent nature. The results for Isync were consistent with the
corresponding synchrogram shown in Fig. 10(a), but provided
a clearer and less ambiguous indication of synchronization.

The functional relationships that describe the cardiores-
piratory interactions are shown in Fig. 11. Evaluated for
three different time windows, the upper figures (a)–(c) show
the coupling function q1(φ1,φ2) from the cardiac oscillating
activity, and the lower figures (d)–(f) show q2(φ1,φ2) from the
respiration oscillator. The form of the functions is complex,
and it changes qualitatively over time—cf. Figs. 11(a) with
11(b) and 11(c), or 11(d) with 11(e) and 11(f). The influence
from respiration to heart [q1(φ1,φ2)] has a larger norm (i.e.,
coupling strength) than in the opposite direction, indicating
that the predominant direction of coupling is from respiration
to heart. One can also observe that q1(φ1,φ2) in (b) and (c) is
of a fairly regular sinusoidal form with a strong influence from
respiration. This arises from the contribution of those base
functions describing the direct influence of respiration (for
a detailed discussion see [47]). Furthermore, Fig. 11 shows

that the functional relationships for the interactions of an
open (biological) system can in themselves be time-varying
processes.

We conclude that the method is effective, not only when
applied to digital and analog synthetic signals, but also in
the analysis of signals from the human cardiorespiratory
system. Unlike the synthetic signals, the cardiorespiratory
signals are real, unpredictable, and subject to considerable time
variability. In this way, we were able to reconstruct the cardiac
and respiratory frequency variabilities, estimate the direction
of coupling, and detect the presence of cardiorespiratory
synchronization and transitions between its different states. We
also found that the form of the coupling functions themselves
is a time-varying dynamical process.

VII. GENERALIZATION TO NETWORKS
OF OSCILLATORS

Our parameter inference procedure can be applied with
only minimal modification to any number N of interacting
oscillators within a general coupled-network structure. The
notation of Eq. (1) is readily generalized for the N oscillators,
and the inference procedure, Eq. (7), is then applied to the
corresponding N -dimensional phase observable. For example,
if one wants to include all k-tuple interactions with k � 4, then
Eq. (1) would be generalized into

φ̇i = ωi + fi(φi) +
∑

j

g
(2)
i (φi,φj ) +

∑
jk

g
(3)
ijk(φi,φj ,φk)

+
∑
jkl

g
(4)
ijkl(φi,φj ,φk,φl) + ξi . (15)

Every function g(k) is periodic on the k-dimensional torus,
and can be decomposed into a sum of k-dimensional Fourier
series in terms of trigonometric functions. Although, this
decomposition is theoretically possible, it becomes less and
less feasible in practice as the number of oscillators and the
number of k-tuples are increased. As a general approach, one

FIG. 11. (Color online) Coupling functions in the cardiorespiratory interaction calculated at different times. The cardiac and respiratory
phases are represented by φ1 and φ2, respectively. (a)–(c) Coupling function q1(φ1,φ2) from the first oscillator, and (d)–(f) q2(φ1,φ2) from the
second oscillator. The window time intervals were calculated at t = 725 s for (a) and (d); t = 1200 s for (b) and (e); and at t = 1250 s for (c)
and (f).
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FIG. 12. (Color online) Coupling functions for the interacting network (16). Each row represents the influence on a specific oscillator:
(a)–(c) on the first one, (d)–(f) on the second, and (g)–(i) on the third. The notation is such that, e.g., q23 represents the influence of the third
oscillator on the second, while q213 represents the join influences of the first and third oscillators on the second one. The numbers on the right
of each coupling function represent their normalized coupling strength c and the significance p value. The significant couplings are denoted
with black squares. The phases were estimated as φi = arctan(yi/xi). The parameter values are given in Table I.

could limit the number of base functions to the most significant
Fourier terms per g(k) functions, but the task of finding the
most significant component is algorithmically demanding in
itself. First, a very fast algorithm for the k-dimensional space
(e.g., that of [48]) is required. Second, since we have the value
of each φi only at sparse values of the φ’s that appear as
arguments in each g(k), the algorithm should be adapted to deal
with sparse, k-dimensional data, as the one recently developed
in [49]. Needless to say, as part of the computational speed
aspects, the overall number of base functions should anyway
be much less than the number of observed data. In view of
these difficulties, automatic selection of the most important
Fourier terms to be used as base functions is hard to achieve
on a network of more than just a few oscillators. Known
information about the system should be used to reduce the
number of base functions such that only those terms relevant
to the N -oscillator dynamics are included.

Other subprocedures like the time-varying propagation, and
the noise inference, apply exactly as before. We note that
the computational power required increases very fast with
N , as discussed in Appendix C, which makes the method
unsuitable for the inference of large-scale networks. However,
for relatively small networks, a standard high-performance
personal computer will suffice for useful inference.

We first demonstrate the inference on three interacting
Poincaré oscillators subject to noise,

ẋi = −rixi − ωiyi +
∑

j

εij xj +
∑
jk

εijkxj xk + ξi(t),

ẏi = −riyi + ωixi +
∑

j

εij yj +
∑
jk

εijkyj yk + ξi(t), (16)

ri = (√
x2

i + y2
i − 1

)
, i,j,k = 1,2,3,

where many of the coefficients εij and εijk are initially set to
zero, but some are nonzero, such as when the first oscillator
is pairwise coupled to the second and third oscillators. The
second oscillator is coupled also to the first (forming a
bidirectional interaction). The third oscillator is influenced
by the joint contribution from the first and second oscillators.
The latter coupling means physically that part of the network
(cluster) exhibits a common functional influence on the other
oscillators. The inference of this cross coupling is the direct
benefit of network (rather than pairwise) coupling detection.
The inference of the three-dimensional phase variables from
a numerical simulation of the network (16) is shown in
Fig. 12. The plots present the specific forms of coupling
function that govern the interactions within the network. The
coupling strengths are evaluated as partial norms from the
relevant base functions. Note that the cross couplings (c),
(f), and (i) are shown for visual presentation as functions
dependent on two phases, whereas the coupling strengths
include also the base function dependent on all the three
phases. In order to determine whether the inferred couplings
are real or spurious, we conducted surrogate testing. The
detected couplings were tested for significance in respect
of 100 couplings evaluated from surrogate phases. Cyclic
surrogates [50,51] were generated from each of the phases,
randomizing the temporal cross correlations, while preserving
the frequencies and statistical characteristics unchanged.

Recently, Kralemann et al. [52] discussed the notion of
effective and structural connectivity in networks. Effective
couplings are those that are detected, while not present in
the original structure, e.g., indirectly induced coupling. In our
numerical examples, the structural couplings are the param-
eters from the numerical simulation, while the effective are
those evaluated as partial norms from the inferred parameters.
The question posed was as follows: Are the effective couplings
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TABLE I. Parameters used for numerical simulation of systems
(16). Note that the indexes j and k are introduced only for easier
notation of the generic coupling amplitudes ε.

Oscillator i fi = ωi/2π Index j Index k εij εik εijk Ei

1 1.1 2 3 0.3 0.2 0 0.1
2 0.27 1 3 0.2 0 0 0.1
3 3 1 2 0 0 0.5 0.1

real, or are they artifacts? Our analysis showed that when one
applies appropriate surrogate testing, the technique is able
to distinguish the structural couplings as being significant.
The resultant coupling strengths and significance p values in
Fig. 12 suggest that the connectivity (black-boxed couplings)
of the network (16) was inferred correctly. Note that some
relations as in (g) have relatively large strength, even though
they are less significant than some weaker couplings as in (e).
If the possibility of effective couplings cannot be excluded,
then our technique (with use of surrogate testing) provides a
consistent way of inferring the true structure of the network. It
is also important to note that the coupling strength is evaluated
as a partial norm and its value is not necessarily equal to the
structural value, but is only proportional to it. When one infers
complex networks, it is not only important what the structural
coupling value is, but also how the oscillators are coupled and
what are the coupling functions between the oscillators.

More importantly, the use of our method allows one to
follow the time variability of the structural and functional
connectivity within the network. This is especially important
when inferring the interactions of biological oscillators, for
which it is known that the dynamics is time varying [24,35,53].
To illustrate the latter we infer the following network of four
phase oscillators subject to white Gaussian noise,

φ̇1 = ω1 + a sin(φ1) + ε13(t) sin(φ3) + ε14(t) sin(φ4) + ξ1(t),

φ̇2 = ω2 + a sin(φ2) + ε21(t) sin(φ2 − φ1) + ξ2(t),
(17)

φ̇3 = ω3 + a sin(φ3) + ε324(t) sin(φ2 − φ4) + ξ3(t),

φ̇4 = ω4 + a sin(φ4) + ε42(t) sin(φ2) + ξ4(t).

Note that, because the coupling strengths are functions of time,
we were effectively changing the structural connectivity of the
network by varying their values. The parameter values for the
simulations were ω1 = 2π 1.11, ω2 = 2π 2.13, ω3 = 2π 2.97,
ω1 = 2π 0.8, a = 0.2, and noise strengths Ei = 0.1. The
couplings were varied discreetly in three time segments, as
follows. (i) For 0–500 s: ε13 = 0.4, ε14 = 0.0, ε324 = 0.4, and
ε42 = 0.4. (ii) For 500–1000 s: ε13 = 0, ε14 = 0.35, ε324 = 0,
and ε42 = 0.4. (iii) For 1000–1500 s: ε13 = 0.45, ε14 = 0.35,
ε324 = 0, and ε42 = 0. The coupling ε21 was continuously
varied at 0.5 → 0.3. Note also that in Eq. (17) the coupling
functions are qualitatively different, i.e., the arguments in
the sine functions are not the same for each oscillator. For
example the coupling functions for ε13, ε14, and ε42 have one
phase argument, while the coupling functions for ε21 and ε324

have the phase difference as their argument. The last two are
additionally different because the coupling function with ε21

for the second oscillator contains its own phase φ2 in the phase
difference.
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FIG. 13. (Color online) Inference of time-varying coupling struc-
ture for the network (17). The color/grayscale code for the couplings
is presented in the box at the top, where ε21 is represented by a dotted
line, ε13 by a dashed line, ε14 by a dash-dotted line, ε324 by a bold full
line, and ε42 by a light full line. The four couplings ε13, ε14, ε324, and
ε42 were held constant at different values within three time segments
each of length 500 s. However, ε21 was varied continuously through
the whole time interval. For each segment the structure of the network
is presented schematically on the diagrams in the dashed grey boxes.
The parameters are given in the text.

The results are presented in Fig. 13. In the first interval
(0–500 s) we inferred three pairwise coupling amplitudes ε21,
ε13, and ε42, and also one joint coupling ε324 which results
from the joint influences of the second and fourth oscillators on
the third one. The schematic diagram above the 0–500-s time
interval represents the structural connectivity, where the arrows
indicate the direction of influence between the oscillators. On
the transition to the second interval (500–1000 s) two of the
couplings ε13, ε324 disappear and a new one ε14 appears. This
change occurs discretely at the instant of transition between the
two regions. Two couplings continue to exist: ε42 at a constant
level, while ε21 decreases linearly and continuously. The
second schematic diagram shows the structure of the network
in this interval. Comparing the diagrams describing the first
two intervals one may note that the method infers correctly the
couplings and their time variability, and by doing so it infers
the network connectivity even though it is changing with time.
Similarly the transition to the third interval (1000–1500 s)
detects the alternations of two couplings ε42 and ε13. This
leads to a new connectivity state of the network, as presented
in the third schematic diagram. The results from the whole time
span demonstrate that the method follows the time variability
of the couplings effectively and precisely. The dynamical
variations are taking the network structure through various
different connectivity states, and the different topologies are
detected reliably throughout their time evolution.

VIII. CONCLUSIONS

Starting from the perspective of dynamical systems infer-
ence, we have built an algorithm able to detect synchronization,
to describe the functional form of the mutual interactions
between oscillators, and to perform such tasks successfully
in the presence of a time-evolving dynamics.
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The algorithm differs substantially from earlier approaches
with respect both to synchronization detection capabilities,
and to the estimation of coupling and directionality. Most
other techniques are based on information flow (e.g., transfer
entropy, or Granger causality) providing them with great
generality. While limiting ourselves to the hypothesis of
continuous time differential equations driving the dynamics
(correspondingly restricting the domain of applicability), we
can optimally exploit the benefits of this assumption. Unlike
all other approaches, our technique does not require the
observable to fill the domain of the probability density function
at equilibrium. Thus, in oscillators with a limit cycle (van
der Pol, FitzHugh-Nagumo, Poincaré, etc.) even one single
extreme path is sufficient to characterize the parameters of
the dynamics. Hence, we can determine uniquely the limit-
time equilibrium distribution, i.e., the Fokker-Plank equation
associated with the stochastic differential equation. Thus
an immediate advantage is that we can extract the same
information from a fraction of the volume of data that is
typically required by earlier methods. Because a very wide
range of natural and artificial systems are describable in terms
of continuous time differential equations (e.g., oscillatory
processes in nature, mechanical systems, analog voltage
systems), the loss of generality in our approach is actually
minimal, compared to the advantage gained in terms of
informational efficiency.

We have applied the algorithm successfully to a representa-
tive classes of oscillators, testing it on synthetically generated
data created from various models, and on data from an analog
circuit device with known dynamics. In each case, we were
able to demonstrate the precision of parameter detection,
the temporal precision of synchronization detection, and the
accuracy of directionality identification.

We have also demonstrated the efficacy of the technique in
relation to cardiorespiratory time series data. Synchronization
phenomena were already well known in such systems, but the
details of functional coupling were not. From the inferred
parameters we were able to reconstruct the extent of the
cardiac and respiratory variability, estimate the direction of
coupling, and detect the presence of and type of intermittent
cardiorespiratory synchronization.

Because the whole enterprize is built on an inference
algorithm for an N -dimensional dynamical system, the tech-
nique was readily extensible to the study of a network of
oscillators whose parameters and coupling functions may be
changing in time. As an example of such an application we
considered a network of Poincaré oscillators, generated by
numerical simulation. We were able to demonstrate effective
coupling detection, cross validating the results by surrogate
testing.

Although the implementation itself might see future im-
provements (e.g., in terms of speed of calculation, or automatic
base function selection), it is worth emphasizing that the
method allows one to designate which components of the
system are expected to be time variable. Such selection is
optional, but it provides an effective means by which to
incorporate previous knowledge available for any particular
system, and enables the algorithm to adapt itself optimally to
the externally imposed constraints.

Given the advantages that the dynamical approach offers in
tackling synchronization detection and coupling identification,
we believe that the framework presented above will be found
valuable for a wide range of future applications.

APPENDIX A: FIXED POINT ALGORITHMIC CHECK

The procedure of synchronization detection between two
oscillators generating phase time series reduces to the in-
vestigation of synchronization of the synthetic phase model
using the parameters returned by the Bayesian algorithm. To
calculate s(c) for any of the sampled parameter sets, one can
proceed as follows:

(i) From an arbitrary fixed ζ , and for an arbitrary ψ0,
integrate numerically (using the standard fourth-order Runge-
Kutta algorithm) the dynamical system prescribed by the phase
base function [Eq. (3) without the noise] for one cycle of the
toroidal coordinate, obtaining the mapped point M(ψ0).

(ii) Repeat the same integration for multiple ψi coordinates
next to the initial one, obtaining the map M(ψi).

(iii) Based on finite difference evaluation of dM/dψ ,
use a modified version of Newton’s root-finding method to
analyze the function M(ψ) − ψ . The method is modified by
calculating M at the next point ψn+1 such that

ψn+1 = ψn + 0.8 × |[M(ψn) − ψn]/[M ′(ψn) − 1]|.
The coefficient 0.8 is an arbitrary constant that we found to
be particularly efficient for solution of the problem. Note that
in this version, Newton’s method can only test the function by
moving forward. In actual fact: (a) the existence of the root is
not guaranteed; and (b) we are not interested in the root itself
but only in its existence.

(iv) If there is a root, s(c) = 1 is returned. If a root is not
found, s(c) = 0 is returned.

APPENDIX B: RELIABLE PHASE ESTIMATION FROM
ELECTROCARDIOGRAM AND RESPIRATION SIGNALS

In order to infer the phase dynamics, one needs to have
good estimates of the phases from the observable time series.
This is even more important when the oscillatory dynamics is
time varying and the analysis requires instantaneous phases.
Potential difficulties for phase estimation arise when the
signals emanate from complex, highly nonlinear, and/or
mixed-mode oscillatory dynamics. Although the phase from
the respiration signal is relatively easy to detect, obtaining the
instantaneous phase from the electrocardiogram (ECG) signal
is considerably more difficult.

We used the synchrosqueezed wavelet transform [46] to
estimate phases from the complex and nonlinear ECG and
respiration signals. Given a signal g(t) we first calculate its
wavelet transform in the scale-time domain (s,t),

W (s,t) =
∫ ∞

−∞
�̄s,t (u)g(u)du, (B1)

where the �̄ represents the complex conjugate of the mother
wavelet �

�s,t (u) = |s|−1/2ν

(
u − t

s

)
. (B2)
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We use the Morlet mother wavelet,

ν(u) = 1
4
√

π
e−i2πf0ue−u2/2,

where the central frequency was set to be f0 = 1 Hz.
The synchrosqueezed transform aims to “squeeze” the

wavelet around the intrinsic frequency in order to provide
better frequency localization. For any (s,t) for which W (s,t) =
0, a candidate instantaneous frequency for the signal g can be
calculated as

ωg(s,t) = −i

∂
∂t

Wg(s,t)

Wg(s,t)
. (B3)

The information from the time-scale plane is transferred to the
time-frequency plane, according to a map (s,t) → (ωg(s,t),t),
in an operation called synchrosqueezing. The synchrosqueezed
wavelet transform is then expressed as

Tg(w,t) =
∫

A(t)
Wg(s,t)s−3/2δ[ω(s,t) − ω]ds, (B4)

where A(t) = {a; Wg(s,t) = 0}, and ω(s,t) is as defined in
(B3) above, for (s,t) such that s ∈ A(t). The complex (as
with real and imaginary values) nature of the synchrosqueezed
transform allows one to extract the phase of the signal as the
angle of the transform,

θ (t) = ∠
[∑

k

Tg(ω,t)(�ω)

]
. (B5)

The transform’s great advantage lies in its ability to deter-
mine instantaneous characteristics from complex signals with
nonharmonic wave forms.

Evaluated through such a procedure the phases θ (t) may,
however, be observable-dependent and nonuniversal, i.e.,

they can retain premises resulting from the phase-detection
technique (in this case the synchrosqueezed transform) but
not from the genuine phases. They are therefore treated as
protophases, and a special technique is applied to transform
the protophases into true phases φ(t) that are independent
of the observable and are universally defined [12]. The
transformation can be written as

φ = θ +
∑
n=0

Sn

in
(einθ − 1), (B6)

where Sn are coefficients from a Fourier expansion of the
averaged phase relationships. For further details see [12].

APPENDIX C: COMPUTATIONAL SPEED
CONSIDERATION

For a sufficiently large number of parameters M , the
complexity of the algorithm for parameter estimation is
substantially dominated by O(M3), which is of the order
of the time required for an M-sized matrix inversion. For a
network of N oscillators, if one considers all possible pairwise
connections then M ∝ c1N

2, where c1 is a proportionality
coefficient to account for by the truncation order of the
Fourier decomposition. Similarly, if one considers all pairwise
connections and every double connection up to a truncation
order of c2, then M ∝ c1[N2 + c2

2N ( N
2 )]. With recursive

reasoning, if one considers all the k-tuples with k up to
P , each with a truncation order of ck , then the number of
coefficients would grow as M ∝ c1N

∑P
k=1 ck

k( N
k ). It is clear

that even for a modest network, considering just a few k-tuples
of possible connections would be unfeasible in practice. Very
careful selection of the base functions is therefore always to
be recommended.
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