Investigation of three-dimensional localisation of neutron sources using parallel axis imaging

Gamage, Kelum and Joyce, Malcolm and Taylor, Graeme (2012) Investigation of three-dimensional localisation of neutron sources using parallel axis imaging. In: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 2012-10-292012-11-03.

Full text not available from this repository.

Abstract

In this paper we discuss the possibility of locating a neutron source in space using a scanning-based method, relative to the three-dimensional location of the detector. The scanning system comprises an organic liquid scintillator detector, a tungsten collimator and adjustable equatorial mount. The detector output is connected to a bespoke fast digitiser (Hybrid Instruments Ltd., UK) which streams digital samples to a personal computer. A neutron source has been attached to a vertical wall and the data have been collected in two stages. In the first case, the scanning system was placed a couple of metres away from the wall and, in the second case it moved few centimetres from the previous location, parallel to the wall. In each case data were collected from a grid of measurement points (set of azimuth angles for set of elevation angles) which covered the source on the wall. The discrimination of fast neutrons and gamma rays, detected by organic liquid scintillator detector, is carried out on the basis of pulse gradient analysis. Images are then produced in terms of the angular distribution of events for total counts, gamma rays and neutrons for both cases. The three-dimensional location of the neutron source can be obtained by considering the relative separation of the centres of the corresponding images of angular distribution of events. The measurements have been made at the National Physical Laboratory, Teddington, Middlesex, UK.

Item Type: Contribution to Conference (Paper)
Journal or Publication Title: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)
Departments: Faculty of Science and Technology > Engineering
ID Code: 62347
Deposited By: ep_importer_pure
Deposited On: 14 Feb 2013 11:31
Refereed?: No
Published?: Published
Last Modified: 01 Jan 2020 05:00
URI: https://eprints.lancs.ac.uk/id/eprint/62347

Actions (login required)

View Item View Item