An optimized force field for crystalline phases of resorcinol

Chatchawalsaisin, Jittima and Kendrick, John and Tuble, Sigrid C. and Anwar, Jamshed (2008) An optimized force field for crystalline phases of resorcinol. CrystEngComm, 10 (4). pp. 437-445. ISSN 1466-8033

Full text not available from this repository.


The two known crystalline phases of resorcinol and their phase transitions are of considerable interest. The crystals exhibit pyro- and piezo- electricity and, remarkably, the higher temperature beta phase is the denser phase. Furthermore, crystals of the a phase, by virtue of having a polar axis, have played a crucial role in investigating fundamental issues of crystal growth. We report an optimized force field for the molecular simulation of crystalline phases of resorcinol. The hydroxyl groups of the resorcinol molecule have a torsional degree of freedom and the molecule adopts a different conformation in each of the two phases of resorcinol. The torsional barrier, therefore, was considered to be critical and has been characterized using ab initio methods. Although the atomic partial charges showed some dependence on the molecular conformation, a single set of partial charges was found to be sufficient in describing the electrostatic potential for all conformations. The parameters for the van der Waals interactions were optimized using sensitivity analysis. The proposed force field reproduces not only the static structures but also the stability of the crystalline phases in extended molecular dynamics simulations.

Item Type:
Journal Article
Journal or Publication Title:
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
13 Feb 2013 14:34
Last Modified:
21 Sep 2023 01:29