On the evaluation of the non-interacting kinetic energy in density functional theory

Peach, Michael J. G. and Griffiths, David G. J. and Tozer, David J. (2012) On the evaluation of the non-interacting kinetic energy in density functional theory. Journal of Chemical Physics, 136 (14). ISSN 0021-9606

Full text not available from this repository.

Abstract

The utility of both an orbital-free and a single-orbital expression for computing the non-interacting kinetic energy in density functional theory is investigated for simple atomic systems. The accuracy of both expressions is governed by the extent to which the Kohn-Sham equation is solved for the given exchange-correlation functional and so special attention is paid to the influence of finite Gaussian basis sets. The orbital-free expression is a statement of the virial theorem and its accuracy is quantified. The accuracy of the single-orbital expression is sensitive to the choice of Kohn-Sham orbital. The use of particularly compact orbitals is problematic because the failure to solve the Kohn-Sham equation exactly in regions where the orbital has decayed to near-zero leads to unphysical behaviour in regions that contribute to the kinetic energy, rendering it inaccurate. This problem is particularly severe for core orbitals, which would otherwise appear attractive due to their formally nodeless nature. The most accurate results from the single-orbital expression are obtained using the relatively diffuse, highest occupied orbitals, although special care is required at orbital nodes. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3700436]

Item Type:
Journal Article
Journal or Publication Title:
Journal of Chemical Physics
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1600/1606
Subjects:
?? ORBITALSATOMIC IONSELECTRON-DENSITIESSTATE CORRELATION ENERGIESPHYSICS AND ASTRONOMY(ALL)PHYSICAL AND THEORETICAL CHEMISTRY ??
ID Code:
62149
Deposited By:
Deposited On:
15 Feb 2013 14:26
Refereed?:
Yes
Published?:
Published
Last Modified:
19 Sep 2023 00:59