Will subglacial rhyolite eruptions be explosive or intrusive? Some insights from analytical models.

Tuffen, Hugh and McGarvie, D. W. and Gilbert, Jennie S. (2007) Will subglacial rhyolite eruptions be explosive or intrusive? Some insights from analytical models. Annals of Glaciology, 45 (1). pp. 87-94. ISSN 0260-3055

This is the latest version of this item.

PDF (Tuffen_et_al_Ann_Glac_2006.pdf)

Download (824kB)


Simple analytical models of subglacial eruptions are presented, which simulate evolving subglacial cavities and volcanic edifices during rhyolitic eruptions beneath temperate glaciers. They show that the relative sizes of cavity and edifice may strongly influence the eruption mechanisms. Intrusive eruptions will occur if the edifice fills the cavity, with rising magma quenched within the edifice and slow melting of ice. Explosive magma-water interaction may occur if a water- or steam- filled gap develops above the edifice. Meltwater is assumed to drain away continuously, but any gap above the edifice will be filled by meltwater or steam. Ductile roof closure will occur if the glacier weight exceeds the cavity pressure and is modelled here using Nye�s law. The results show that the effusion rate is an important control on the eruption style, with explosive eruptions favoured by large effusion rates. The models are used to explain contrasting eruption mechanisms during various Quaternary subglacial rhyolite eruptions at Torfajökull, Iceland. Although the models are simplistic, they are first attempts to unravel the complex feedbacks between subglacial eruption mechanisms and glacier response that can lead to a variety of eruptive scenarios and associated hazards.

Item Type: Journal Article
Journal or Publication Title: Annals of Glaciology
Uncontrolled Keywords: /dk/atira/pure/researchoutput/libraryofcongress/qe
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 620
Deposited By: Dr Hugh Tuffen
Deposited On: 31 Oct 2007
Refereed?: Yes
Published?: Published
Last Modified: 18 Jan 2020 01:59
URI: https://eprints.lancs.ac.uk/id/eprint/620

Available Versions of this Item

Actions (login required)

View Item View Item