

An Integrated Architecture
Analysis Framework for Component-Based

Software Development

Novia Admodisastro

PhD in Computing

Computing Department

Lancaster University

A thesis submitted for the degree of Doctor of Philosophy

October 2011

i

Declaration

I certify that this thesis submitted for the degree of PhD in Computing is the result of

my own research, except where acknowledged, and that this thesis or any part of it has

not been submitted for higher degree to any other university or institution.

Signed : ……………………………............................…

NOVIA INDRIATY ADMODISASTRO

Date : 28/10/2011

ii

Abstract

The importance of architecture in reuse-driven development is widely recognized.

Architecture provides a framework for establishing a match between available

components and the system context. It is a key part of the system documentation;

enforces the integrity of component composition and provides a basis for managing

change. However, one of the most difficult problems in component-based system

development (CBD) is ensuring that the software architecture provides an acceptable

match with its intended application, business and evolutionary context. Unlike custom

development where architectural design relies solely on a detailed requirements

specification and where deficiencies in application context can be corrected by

‘tweaking’ the source code, in component-based system development the typical unit

of development is often a black-box component whose source code is inaccessible to

the developer. Getting the architecture right is therefore key to ensuring quality in a

component-based system. Architecture analysis in CBD provides the developer with a

means to expose interface mismatches, assess configurations with respect to specific

structural and behavioural constraints and to verify the adequacy of compositions with

respect to quality constraints. However, support for key component-based system

design issues is still patchy in most architecture analysis approaches. My solution has

been to develop, Component-based Software Architecture analysis FramEwork

iii

(CSAFE), a scenario-driven architecture analysis approach that combines and extends

the strengths of current approaches using pluggable analysis. CSAFE is process-

pluggable and recognises that negotiation (trade-off analysis) is central to black-box

software development. However, while CSAFE is primarily intended to support

black-box development, we recognise that there may be aspects of the system for

which a black-box solution is not feasible. CSAFE supports custom development in

such situations by treating abstract components as placeholders for custom

development. CSAFE is supported by an extensible toolset.

iv

Acknowledgements

In the Name of Allah, the Beneficent, the Merciful. All praise is due to Allah, whose

Bounties and Mercies I cannot begin to enumerate. Not in my wildest dream, I could

complete this journey, when time is so bleak and dim hope, and only losses keep

accompany, to Allah I thankful for giving me strength to carry on.

My most deepest and earnest appreciation goes to my supervisor, Dr. Gerald

Kotonya, his enthusiasm, his inspiration, and his guidance on this journey has been

invaluable. Tirelessly, he provided encouragement, sound advice, good teaching, and

lots of good ideas. I could not ask for a better supervisor than him, thank you for

believing in me.

I am also most indebted to the Universiti Putra Malaysia for granting me the study

leave and to the Government of Malaysia for awarding me a generous sponsorship.

Sincere thanks to Lancaster University which has granted me William Ritchie Travel

Fund during the study period to attend a prestige international conference in Beijing,

China.

My colleagues and administration staffs from the Lancaster Department of

Computing for supporting me in my research work. I want to thank them for all their

help and support.

v

The affection and heart-warming friendship I received from miraculous people

who have I known in Lancaster University, to name a few Laila Alabadi, Azrina

Kamaruddin, Rafidah Md Noor, Xiaozhu Wu, Sara Khan, Christine Dawson, cannot

be described, only deeply felt.

This thesis is devoted to my parent, Wargo Admodisastro and Mainah Macartney,

for their previous love and support in all my efforts, and for giving me the foundation

to be who I am. To my beloved father, rest in peace, you will always be my greatest

admirable guide and philosopher. To my baby sister Vienna, who gives me comfort

with her cheerful stories, keep on telling good stories.

There have been many others who have give encouragements and prayers and to

all I am grateful.

vi

To all the good memories…

 “So verily, with hardship, there is relief."(94:5)

vii

List of Figures

Fig. 1.1 Components reside in software reuse [Aoyama97] 3

Fig. 2.1 Quality in multi-dimensional construct [Gillies96] 18

Fig. 2.2 A sample catalogue of architectural patterns, organised by is-a
relationship [Bass05] 20

Fig. 2.3 CBSE processes [Kotonya03] 23

Fig. 2.4 Component-based system development [Kotonya04b] 25

Fig. 2.5 CBSE process model [Pressman09] 26

Fig. 2.6 Brown [Brown96] component-based development approach 28

Fig. 3.1 Pluggable analysis 33

Fig. 3.2 Embedded analysis 33

Fig. 3.3 Architectural analysis in CBD 34

Fig. 3.4 Effect of components on spheres of control [Wallnau02] 35

Fig. 3.5 Component and application development processes – together with
associated stakeholder roles 36

Fig. 3.6 NFR-Framework people and activities 38

viii

Fig. 3.7 REDEPEND-REACT architectural analysis process 40

Fig. 3.8 ATAM activities [Kazman98] 42

Fig. 3.9 ASAAM process [Tekinerdogan04] 43

Fig. 3.10 Chaining framework 45

Fig. 3.11 ARGUS-I process [Vieira00] 46

Fig. 3.12 Odyssey-Adapt 47

Fig. 3.12 The process of adapting a component 49

Fig. 4.1 CSAFE and architectural design process 55

Fig. 4.2 Architecture analysis process 56

Fig. 4.3 Requirement and analysis viewpoints 57

Fig. 4.4 Abstract viewpoint structure 58

Fig. 4.5 Service and constraints variability 59

Fig. 4.6 Service partitioning 62

Fig. 4.7 Process parsing and storing XMI/XML specification 63

Fig. 4.8 EDDIS architectural description with interface identification 64

Fig. 4.9 XMI/XML specification of DocManager 66

Fig. 4.10 iXML architectural metamodel 67

Fig. 4.11 Analysis of design mapping 71

Fig. 4.12 Architecture design template 72

Fig. 4.13 Mapping a service onto a design template component 73

Fig. 4.14 Re-factoring facility menu 73

Fig. 4.15 Mapping onto concrete component 75

Fig. 4.16 Contribution of suggested alternatives according to sub-concerns 77

Fig. 4.17 Sensitivity analysis of maintainability 78

ix

Fig. 4.18 CSAFE toolset use-case diagram 79

Fig. 4.19 Architecture of CSAFE toolset 80

Fig. 4.20 Transform architecture sequence diagram 81

Fig. 4.21 Design template metamodel 83

Fig. 4.22 Component metamodel 85

Fig. 5.1 EDDIS use-case diagram 90

Fig. 5.2 Sequence diagram for EDDIS services 90

Fig. 5.3 EDDIS service partitioning 91

Fig. 5.4 EDDIS architectural description with interface identification 92

Fig. 5.5 XMI/XML specification of DocManager 94

Fig. 5.6 Parsed EDDIS architecture (left pane) and EDDIS XMI/XML source
file (right pane) 94

Fig. 5.7 DocManager component specification (right pane) 95

Fig. 5.8 Creating a new analysis scenario ‘Scenario 2’ 98

Fig. 5.9 Formulating scenarios for document_services – Scenario 1 99

Fig. 5.10 Mapping EDDIS formulated scenarios of Scenario 1 onto Design
Template Library 100

Fig. 5.11 Mapping EDDIS formulated scenarios of Scenario 2 onto Design
Template Library 100

Fig. 5.12 Recommended solutions – Scenario 1 102

Fig. 5.13 ClusterServer pattern with its contributions, configuration and
specification 103

Fig. 5.14(i) ClusterServer pattern (S1) 105

Fig. 5.14(ii) Service-Order Provision local-scheme (S2) 105

Fig. 5.14(iii) Three-tier proxy server architectural style (S3) 106

x

Fig. 5.15 Mapping document_services onto DocumentRequestB abstract
component 107

Fig. 5.16 Refactoring ValidManager onto the ServiceOrderProvision 107

Fig. 5.17 AdminManager abstract component with associated services 108

Fig. 5.18 Mapping onto concrete component 109

Fig. 5.19 Structural mismatch found between AdminManager a
AdminManager_3 110

Fig. 5.20 Accessing quality concerns and architecture design solutions – Scenario
1 111

Fig. 5.21 Accessing quality concern and architecture design solutions – Scenari 2
 111

Fig. 5.22 Contribution of suggested alternatives according to overall – Scenario
1 112

Fig. 5.23 Contribution of suggested alternatives according to main concerns –
Scenario 1 112

Fig. 5.24 Contribution of suggested alternatives according to sub-concerns –
Scenario 1 112

Fig. 5.25 Contribution of suggested alternatives according to performance
concern – Scenario 2 113

Fig. 5.26 Contribution of suggested alternatives according to performance
subconcern – Scenario 2 113

Fig. 5.27 Sensitivity analysis of Performance – Scenario 1 114

Fig. 5.28 Sensitivity analysis of Performance(Throughput) – Scenario 1 115

Fig. 5.29 Sensitivity analysis of Maintainability – Scenario 1 116

Fig. 5.30 Sensitivity analysis of Maintainability(Requirement) – Scenario 1 116

Fig. 5.31 Scoring percentage of ClusterServer local-scheme – Scenario 1 117

Fig. 5.32 Scoring percentage of ServiceOrder Provision pattern – Scenario 1 117

xi

Fig. 5.33 Scoring percentage of Three-tier proxy server architectural style –
Scenario 1 118

Fig. 6.1 GVPS use-case diagram 121

Fig. 6.2 GVPS typical component partitioning 123

Fig. 6.3 GVPS architectural description with interface identification 125

Fig. 6.4 GVPS architecture (left panel) and iXML specification (right panel) 125

Fig. 6.5 GVPS architecture component and their associated interfaces and
connectors 126

Fig. 6.6 Proxy pattern (S1) 130

Fig. 6.7 Proxy mapped services onto IProxy and IProxy IVD 131

Fig. 6.8 Contribution of suggested alternatives according to main concerns 132

Fig. 6.9 Contribution of suggested alternatives according to sub-concerns 132

Fig. 6.10 Sensitivity analysis applied to security concern 133

Fig. 6.11 The GVPS simulator main window 134

Fig. 6.12 Simulator I display Lancaster University map with “avpsSimul1_LU” tag
on left bottom panel 135

Fig. 6.13 Simulator II display Lancaster University map with “avpsSimul2_LU”
tag on left bottom panel 135

Fig. 6.14 Navigation event for a student car to Info Lab 21 137

Fig. 6.15 Student car navigates to Info Lab 21 parking area shows on IVD panel
of Simulator I 137

Fig. 6.16 Student car navigates to Info Lab 21 parking area shows on IVD panel
of Simulator II 138

Fig. 6.17 Visitor car navigates to Sport Centre parking area shows on IVD panel
of Simulator II 138

Fig. 6.18 Simulator I (PID 4016) configurations and environment 139

xii

Fig. 6.19 Simulator II (PID 3744) configurations and environment 140

Fig. 6.20 Simulator I (PID 4016) monitoring entering event 141

Fig. 6.21 Simulator II (PID 3744) monitoring entering event 141

Fig. 6.22 Simulator I (PID 4016) monitoring exiting event 143

Fig. 6.23 Simulator II (PID 3744) monitoring exiting event 143

Fig. 6.24 Simulator I (PID 4016) CPU profile 145

Fig. 6.25 Simulator II (PID 3744) CPU profile 145

Fig. 6.26 Simulator I (PID 4016) memory profile 146

Fig. 6.27 Simulator II (PID 3744) memory profile 146

Fig. 6.28 Student car arrives at the university entrance of IVD panel of Simulator I
(top) and Simulator II (bottom) 147

Fig. 6.29 Student navigates to Ash House parking area shown on IVD panel of
Simulator I 148

Fig. 6.30 The first visitor car navigates to Ruskin Library parking area and the
second visitor card navigates to Health Centre parking area shown on
IVD panel of Simulator II 148

Fig. 6.31 Student and visitor card leaving car park areas shown in Control Centre
panel of Simulator II 149

Fig. 6.32 Simulator I (PID 2212) monitoring entering event 150

Fig. 6.33 Simulator II (PID 2756) monitoring entering event 150

Fig. 6.34 Simulator I (PID 2212) monitoring exiting event 151

Fig. 6.35 Simulator II (PID 2756) monitoring exiting event 151

Fig. 6.36 Simulator I (PID 2212) CPU profile 153

Fig. 6.37 Simulator II (PID 2756) CPU profile 153

Fig. 6.38 Simulator I (PID 2212) memory profile 154

Fig. 6.39 Simulator II (PID 2756) memory profile 154

xiii

Fig. 6.40 Road obstruction menu 155

Fig. 6.41 Road obstruction at road 17 is shows on Control Centre panel of
Simulator II 155

Fig. 6.42 Road obstruction at road 17 and 38 is shows on Control Centre panel of
Simulator II 155

Fig. 6.43 Visitor car navigates to Ruskin Library using alternatives road is shown in
IVD panel of Simulator II 156

Fig. 6.44 Simulator I (PID 1712) monitoring entering event 157

Fig. 6.45 Simulator II (PID 2512) monitoring entering event 158

Fig. 6.46 Simulator I (PID 1712) monitoring exiting event 159

Fig. 6.47 Simulator II (PID 2512) monitoring exiting event 159

Fig. 6.48 Simulator I (PID 1712) CPU profile 160

Fig. 6.49 Simulator II (PID 2512) CPU profile 161

Fig. 6.50 Simulator I (PID 1712) memory profile 161

Fig. 6.51 Simulator II (PID 2512) memory profile 162

xiv

List of Tables

Table 3.1 Comparison of architectural analysis approaches 50

Table 4.1 DocManager component specification 64

Table 4.2 Scenario formulation template 69

Table 4.3 Scenario descriptions 70

Table 4.4 Component template 75

Table 4.5 Transform architecture use-case descriptions 80

Table 4.6 Service mapping rules 82

Table 4.7 Design template XML DTD description 84

Table 5.1 EDDIS viewpoints and requirements 88

Table 5.2 DocManager component specification 93

Table 5.3 EDDIS Scenario descriptions – Scenario 1 96

Table 5.4 EDDIS Scenario descriptions – Scenario 2 98

Table 5.5 ServiceOrder Provision template 100

Table 5.6 Architectural design alternatives contributions – Scenario1 104

Table 5.7 Comparison of EDDIS concerns and design alternatives contributions –
Scenario 1 110

xv

Table 6.1 GVPS viewpoints and requirements 122

Table 6.2 iXML description of CC_Console 124

Table 6.3 GVPS Scenario descriptions – Scenario 1 126

Table 6.4 Architectural design alternatives contributions 128

Table 6.5 Proxy pattern template 128

Table 6.6 Summary performance and memory consumption for Experiment
Scenario 1 144

Table 6.7 Summary performance and memory consumption for Experiment
Scenario 2 152

Table 6.8 Summary performance and memory consumption for Experiment
Scenario 3 160

xvi

Publications

Admodisastro, N. and Kotonya, G.: Usability Requirements for Architectural Analysis

Tool to Support CBD. In: Proc. of the 2nd International Conference on User

Science and Engineering (i-USer). IEEE Computer Society, 2011; 118-123.

Admodisastro, N. and Kotonya, G.: An Architecture Analysis Approach for

Supporting Black-box Software Development. In: Crnkovic, I., Gruhn, V. and

Book, M. (ed.) ECSA 2011. LNCS, vol. 6903: 180-189, Springer, Heidelberg,

2011.

Admodisastro, N. and Kotonya, G.: An Architectural Analysis Approach for Black-

box Component-Based Systems. In: Proceeding of the 2nd Annual GSTF

International Conference on Software Engineering (SE), 2010; 68-74 – Awarded

for Best Research Student Paper

Admodisastro, N. and Kotonya, G.: Architectural Analysis Approaches: A

Component-Based System Development Perspective. In: Mei, H. (ed.) ICSR

2008. LNCS, vol. 5030: 26-38, Springer, Heidelberg, 2008.

Admodisastro, N. and Kotonya, G.: Towards an Integrated Approach to Architectural

Analysis in Component-based Software Development. Poster in London Hopper

xvii

Colloquium of British Computer Society (BCS). 2007. London, United

Kingdom.

Admodisastro, N. and Kotonya, G.: An Integrated Approach to Architectural Analysis

in Component-based Software Development. Poster in Christmas Conference of

Faculty of Science & Technology. 2006. Lancaster University, Lancaster.

Admodisastro, N. and Kotonya, G.: Towards an Integrated Approach to Architectural

Analysis in Component-based Software Development, In: Proceeding of the

Work in Progress Session in the 32nd IEEE EuroMicro Conference (SEAA),

Dubrovnik, Croatia. 2006.

xviii

Table of Contents

Declaration i

Abstract ii

Acknowledgements iv

List of Figures vii

List of Tables xiv

Publications xvi

Chapter 1 Introduction 1

1.1 CBSE in Practice 3

1.2 Challenges for Developing Systems from Components 5

1.3 Motivation for Research 7

1.4 Objectives 9

1.5 Research Contributions 10

1.6 Thesis Structure 11

Chapter 2 Background 12

2.1 Software Architecture 13

xix

2.2 Architecture and System Quality 16

2.2.1 Achieving Qualities: Architectural Styles, Patterns, Custom, Metrics,

and Scenarios 18

2.3 Software Architecture Evaluation 20

2.4 Component-based Software Engineering Process 22

2.4.1 COMPOSE Model 24

2.4.2 Pressman Model 26

2.4.3 Brown Model 28

2.5 Summary 29

Chapter 3 Architectural Analysis in CBD 30

3.1 Design Challenges in CBD 30

3.1.1 Necessary Requirements for Architectural Analysis 32

3.2 Architectural Analysis Approaches 38

3.2.1 NFR-Framework 38

3.2.2 REDEPEND-REACT 40

3.2.3 ATAM 41

3.2.4 ASAAM 42

3.2.5 Chaining Framework 44

3.2.6 ARGUS-I 45

3.2.7 Odyssey-Adapt 46

3.2.8 Engineering Framework 48

3.3 Methods Summary 49

3.4 Summary 52

Chapter 4 Component-Based Software Architecture Analysis

Framework 54

4.1 The Framework 54

4.1.1 Weaving Requirements and Architectural Design 57

4.1.2 Architecture Parsing 61

xx

4.1.2.1 Constructing Baseline System Architecture 61

4.1.2.2 XMI/XML Parser 62

4.1.2.3 CSAFE Architecture Description Language – iXML 66

4.1.3 Formulating Analysis Scenarios 68

4.1.4 The Analysis 70

4.1.5 Trade-off Analysis and Rating – Negotiation 75

4.2 The Toolset 79

4.2.1 CSAFE Toolset Architecture 79

4.3 Summary 85

Chapter 5 Evaluation 1: Electronic Document Delivery Information

System 86

5.1 The Case Study 87

5.2 EDDIS Viewpoints & Requirements 87

5.2.1 Constructing the baseline EDDIS Architecture 91

5.3 The Analysis 92

5.3.1 Formulating EDDIS Analysis Scenarios 95

5.3.2 Analysing EDDIS Architecture 99

5.3.3 Revising EDDIS Architecture 105

5.4 Summary 118

Chapter 6 Evaluation 2: Guided Vehicle Parking System 119

6.1 The Case Study 120

6.2 GVPS Viewpoints & Requirements 121

6.3 The Analysis 124

6.3.1 Documenting the GVPS Architecture 124

6.3.2 Formulating GVPS Analysis Scenarios 126

6.3.3 Analysing GVPS Architecture 127

6.3.4 Refining GVPS Architecture 130

6.4 Runtime Comparison of GVPS Architectures 133

xxi

6.5 Summary 163

Chapter 7 Conclusion 163

7.1 Framework Objectives Revisited 163

7.3 Opportunities & Future Work 167

7.4 Reflection 169

Appendix A: iXML Schemas 172

A1. iXML Schema for Architecture Design 172

A2. iXML Schema for Design Template Description 175

A3. iXML Schema for Component Description 178

Appendix B: CSAFE Toolset Analysis & Design 180

B1. CSAFE Use-Case Descriptions & Sequence Diagrams 180

B2. CSAFE Class Diagrams 192

Appendix C: CSAFE Toolset User Manual 195

Appendix D: EDDIS Detail Specifications & Results 224

D1. Detail Requirements 224

D2. Service Descriptions 227

D3. Constraint Descriptions 230

D4. Concrete Component Descriptions 233

D5. SMART 241

D6. Reports 243

Appendix E: GVPS Detail Specifications & Results 248

E1. GVPS Software Requirements Specification 248

E2. iXML ADL Specification of GVPS 264

E3. SMART 272

xxii

Appendix F: Design Templates 273

Appendix G: Quality Descriptions 278

Glossary 281

References 283

1

Chapter 1

Introduction

Component-Based Software Engineering (CBSE) is a sub-discipline of software

engineering. However, it derives its motivation from traditional engineering. Britannica

encyclopaedia [Britannica10] defines engineering as a profession that is devoted to

designing, constructing, and operating the structure, machines, and other devices of

industry and everyday life. An important characteristic of traditional engineering rarely

builds whole systems from scratch; instead traditional engineering has established time-

tested principles to construct systems from pre-fabricated parts. For instance,

automotive engineering designs and produces cars by fitting together basic components

such as window, door, fender, engine etc. through an assembly line process [Auto10].

This is an essential characteristic of a mature engineering discipline. The main

advantage of this is that high quality systems can be produced more cheaply and

rapidly than custom-built systems since standard reusable components can be

massively produced and tested in different user contexts.

Component-based software system development typifies traditional engineering

philosophy by promoting the construction of systems from pre-fabricated software

components. Underlying this philosophy is the promise of accelerated, low cost

Chapter 1 Introduction

2

development and reliable software systems [Clements10]. However, the use of

components to build software systems is not a new idea. Software “componentization”

was first proposed in 1969 by Doug Mcllory [Wiki10] as a way of tackling the

“software crisis”. Similarly, according to Jacobson [Heineman01], more than 30 years

ago components called “blocks” were used to construct a telecommunications system.

The system became the largest commercial software success story in Sweden and

inspired many software engineers to use blocks to construct all kinds of applications. In

recent years CBSE has been transformed into a practical software development

approach by the emergence of commercial component technology and standards.

CBSE offers a different approach to the conventional software reuse in that it

encompasses architecture [Shaw96], design patterns [Gamma95], component

frameworks [Fayad97] and is constrained by the availability of suitable third party

components. In summary:

• Component-based design is a negotiated process that is subject not only to user

requirements, but also to the availability of suitable off-the-shelf software

components.

• A component is integrated with other components and/or frameworks via a

plug-and-play mechanism, thus components can be composed at run-time

without compilation. Component-based development is interface-centric.

Hiding the implementation part allows components to be composed without

the need to know their internal details.

• Components are associated with particular component models and

frameworks. This means that a component requires standardization of its

interface.

• Component can be acquired via market distribution and improved in quality

through market competition [Aoyama98].

Fig. 1.1 illustrates the different types of reusable development elements in CBSE.

Chapter 1 Introduction

3

Fig. 1.1 Components reside in software reuse [Aoyama97]

1.1 CBSE in Practice

The software industry has increasingly adopted a component-based approach to

software development. The software community has realized that CBSE can provide

tremendous benefit if harnessed properly. According to Feblowitz and Greenspan

[Feblowitz98], organisations developing software are turning to software components in

the hope of reducing the risks associated with software development. The underlying

factors behind the increasing use of software components include:

• Improved reliability.

• The possibility of attaining shorter time-to-market for products. Simply because

the buying organisations do not need to make everything from scratch.

• The quality of the component is regarded as being higher after undergone

extensive process reuse by customers, possibly even competitors. It is reported that

the reuse process allows the management to expect substantial gains, time to

market: reductions of 2 to 5 times, defect density: reductions of 5 to 10 times,

maintenance cost: reductions of 5 to 10 times, and overall software development

cost: reduction of around 15% to as much as 75% [Jacobson97].

Level of
abstraction

System

Subsystem

Subsystem

Class

Class

Class

Design White box Black box

Grey box

Architectural style

Software

Design patterns

Idioms
Class libraries

Templates

Abstract classes

Frameworks

Componentware

Component

Abstract classes

Chapter 1 Introduction

4

Organisations that have adopted CBSE have reported similar benefits. Bond et al.

[Bond05] describe their experience of implementing a distributed feature composition

framework (DFC) for a large international telephone company. The DFC is

component-based architecture for the development of complex telecommunication

services. The DFC architecture is designed to provide feature modularity and

structured feature composition. In the DFC, a request for service is satisfied by a

dynamically assembled graph of concurrent processes implementing feature functions

and a point-to-point connection. Bond et. al. describe their experience and the result

as extremely rewarding and a clear demonstration of the value of CBSE in

telecommunications. Upadhyaya [Upadhyaya08] describes a successful experience of

developing of a large component-based application that handles massive federal and a

United States state government labor market information data.

ABB, a global power and automation company, used a component-based approach

to develop the Open Control System (OCS) [Advant10], a large embedded product-

line system designed to suit different industrial applications that include systems for

power utilities, power plants and infrastructure, and the petroleum industry. The

National Electric Company of Japan (NEC) used component-based software

development to construct the HolonEnterprise [Aoyama01], a large distributed store

management and point-of-sales (POS) system to support the NEC’s chain of stores

across Japan. Other CBSE success stories are published in [Luer01].

However, despite these relative successes, component-based software engineering is

still hampered by the lack of practical methods and tools that support the reuse-driven

paradigm embodied in black-box components. Some of the key challenges are

discussed next.

Chapter 1 Introduction

5

1.2 Challenges for Developing Systems from
Components

Software components represent an attempt to exploit the advantages of genuinely

reusable software. Components promise potentially greater rewards because packaged

expertise can be purchased in an open market place. However, the limited visibility of

black-box components and the variability in application contexts means that the

specifications delivered with third party components are often incomplete or

inadequate. This in turn means that the correspondence between stakeholder

concerns and the system architecture, and the correspondence between the system

architecture and components is often unclear. Broadly, component-based system

development poses seven challenges:

• Component discovery and verification. Off-the-shelf software components have to

be discovered, understood and, sometimes adapted to work in a new

environment. For the development process to be successful, it must provide

mechanisms for discovering, verifying, adapting and ‘wiring’ plug-compatible

components.

• Balancing need and availability. There is a conceptual gap between the way we

articulate requirements in custom development and the reuse-driven paradigm

embodied in black-box component-based system development. The features

supported by commercial software solutions vary greatly in quality and complexity.

This together with the variability in application contexts means that specifications

delivered with black-box software are likely to be inadequate [Vidger96].

• Architecting the system. A typical component-based system architecture comprises

a set of components that have been purposefully designed and structured to

ensure that they fit together and have an acceptable match with a defined system

context. However, poor support for negotiation and lack of effective techniques for

defining, verifying, evolving and matching abstract designs to concrete components

make this a difficult task.

Chapter 1 Introduction

6

• Supporting diversity. The increasing complexity and diversity of software systems

means that it is unlikely that large systems will continue to be developed using a

purely component-oriented approach. Rather, a hybrid model of software

development is likely to emerge where components and other solutions such as

web services co-exist in the same system.

• Managing change. Traditional system maintenance involves observing and

modifying lines of code. However, in component-based development the main

unit of construction is often a black-box component or service. This limited

visibility to the component design presents fundamentally different change

management tasks and has major implications for the way we manage and evolve

composition-based systems [Kotonya05a].

• Poor standard descriptions. There are several modelling notations intended to

support component-based development. Perhaps the best known is the Unified

Modelling Language (UML) [Pilone05]. However, while the recent versions of

UML offer some support with constructs for modelling component-based systems,

these are largely intended to support custom development (UML does not

support the notion of component discovery and verification). UML component

diagrams are not intended to provide a logical decomposition of a software system

into reusable and combinable subsystems. In addition, UML modelling is largely

domain-driven, which usually leads to designs based on domain objects and non-

standard architectures. Lastly, UML provides no easy way of addressing

“compositional mismatches”.

• Poor tool support. Component-based development environments are typified by

tools such as WREN [Luer01], model driven approaches such as ASF+SDF [van

den Brand01] and component tools for Networked Embedded Systems (NEST)

[Volgyesi02]. Many of these include the ability to locate potential components

from component distribution sites and to incorporate selected components into

application design models. However, they provide little support requirements

formulation, negotiation, architecture analysis, design pattern reuse, or “glue-code”

Chapter 1 Introduction

7

generation, and no support for managing change. Model driven initiatives are

largely domain-specific and intended for developing reusable components, rather

than systems from pre-existing components.

The work described in this thesis is addresses challenges of developing viable

architectures for component-based systems.

1.3 Motivation for Research

Component-based System Development (CBD) focuses on the realization of systems

through integration of pre-existing components [Bass05,Crnkovic02,Medvidovic07]. A

component is reusable software element that exposes its functionalities (services)

through one or more interface and, can be independently deployed and composed

without modification [Heineman01]. There is also the possibility to acquire software

components from third parties, commonly known as Off-The-Shelf (OTS)

components [Li08] (e.g., commercial OTS components or COTS; free components

open source or FOSS [Feller02]; and web services [Papazoglou08]). Software

architecture plays an important role in CBD as it provides a framework for establishing

a match between available components and the system context. Architecture

contributes not only to the system documentation, it contributes to the integrity of the

component composition, maintenance, and evolution. However, one of the most

difficult problems in CBD is ensuring that the software architecture provides an

acceptable match with its intended application, business and evolutionary context

[Medvidovic07].

Unlike custom development where architectural design relies solely on detailed

requirements specification and where deficiencies in application context can be

corrected by ‘tweaking’ the source code, in CBD the typical unit of development is

often a black-box component whose source code is inaccessible to the developer.

Unfortunately, features supported by third party software components often vary

greatly in quality and complexity. In addition, the contexts in which the components

Chapter 1 Introduction

8

are used may also vary considerably. This complexity together with the variability in

application contexts means that the documentation supplied with software components

is often incomplete or inadequate. Additional analysis is often required to ensure that

an acceptable solution is achieved, and to address situations where unforeseen user

needs coincide with a component’s undocumented design assumptions. Architecture

analysis can provide an effective and relatively low-cost mechanism for addressing

these problems.

Architecture analysis can provide means to expose interface mismatches, assess

configurations with respect to specific structural and behavioural constraints and to

verify the adequacy of compositions with respect to the application context.

Architecture analysis can also provide a basis for developing “what-if” scenarios to

explore the implications of evolving a component-based system

[Kotonya05a,Dobrica02]. However, current architecture analysis approaches differ

widely with respect to their underlying models, analytical capabilities and ability to

support CBD making it difficult for developers to ascertain their effectiveness in

different application contexts [Hutchinson05,Abowd97]. Current architecture analysis

schemes vary from process embedded models that derive skeleton architectures by

matching non-functional requirements to architectural styles [Wallnau03], to

stakeholder-driven schemes that analyze architectures using multiple quality attributes

to identify and improve areas of highest risk [Kazman98], to aspect-oriented

approaches that use cross-cutting system properties to suggest improvements to system

architecture [Viera00].

A key challenge in developing black-box software systems is how to provide

developers with tools that allow them to derive suitable software architectures by

balancing aspects of stakeholder concerns with the architectural considerations and

capabilities embodied in software components. It is important to note that a

component-based system architecture is both an expression of required functionality

Chapter 1 Introduction

9

and the result of verifying the suitability of the components used. Getting the

architecture right, therefore, has a major impact on the quality of the final system.

This thesis describes CSAFE, a scenario-driven architecture analysis approach that

provides a framework for balancing aspects of stakeholder concerns with architectural

considerations and component solutions to derive viable system architectures. CSAFE

is process-pluggable to minimise process disruption and supports the analysis of

different architectural aspects.

1.4 Objectives
The aim of this research was to develop a pluggable architecture analysis framework

for component-based systems that integrated and extended the strengths of current

approaches. The framework was primarily intended for black-box development, but

would allow white box development in situations where black-box development was

not feasible. In summary the objectives of the research were:

1. To formulate a classification and comparison framework that could be used to

assess the efficacy of software architecture analysis approaches in black-box

development.

2. To use (1) to develop a scenario-driven architecture analysis framework to support

black-box component-based development. In addition to supporting the

requirements in (1), the framework should:

(i) Allow the system designer to adapt and tailor the design process to reflect the

system context and domain specific needs (i.e. be process-pluggable).

(ii) Provide explicit support for broad stakeholder involvement.

(iii) Provide support for pluggable architecture analysis.

(iv) Provide explicit support for trade-off analysis (i.e. negotiation).

(v) Provide support for standard design notations.

3. To develop an extensible toolset to support the architecture analysis framework

4. To evaluate the framework on non-trivial case studies.

Chapter 1 Introduction

10

1.5 Research Contributions

The contributions of this research are as follows:

1. The first contribution of this research is the formulation of a classification and

comparison framework for software architecture analysis approaches

[Admodisastro08]. The framework consists of eight key requirements that can be

used to design architectural analysis methods and assess their efficacy for

component-based development.

2. The second contribution is the development of Component-based Software

Architectural Analysis Framework (CSAFE), a scenario-driven, negotiation-based

architecture analysis framework for black-box component-based software

development [Admodisastro06].

3. The third contribution is development of an extensible toolset to support CSAFE.

The toolset supports diversity in analysis by supporting pluggable analysis that

allow different tools to be incorporated. The toolset also supports an extensible

XML repository of design templates and components that allows the system

designer to define analysis contexts that include design patterns, styles and

organisation-specific schemes.

4. The fourth contribution is the development of UML parser and the iXML

architecture description language to support the transformation and verification of

UML and iXML architecture descriptions. The parser transforms UML

architectures into processable specifications (i.e. iXML), and the ADL provides a

mechanism of verifying the correctness of iXML architectures.

5. The fifth contribution is the results of evaluating CSAFE in static and runtime

conditions. The first evaluation uses a real case study drawn from an Electronic

Document and Delivery Interchange System (EDDIS) project to demonstrate

CSAFE features and its practicability [Admodisastro10] and Guided Vehicle

Parking System. The second evaluation uses runtime system behaviour to validate

the efficacy of CSAFE architectural refinements.

Chapter 1 Introduction

11

1.6 Thesis Structure

The remainder of this thesis is organised as follows:

• Chapter 2 sets the context for the research by providing a background on

software architecture and its relation to CBSE. The notion of software

architecture and its relationship to system quality is discussed. The chapter

then discusses the importance of software architecture evaluation. The

chapter concludes with a discussion of current CBSE process models.

• Chapter 3 discusses design challenges in component-based system

development. The chapter uses the design challenges to identify the

necessary requirements for architecture analysis in CBD. The chapter

then uses the requirements to assess existing architecture analysis

approaches intended to support component-based development.

• Chapter 4 presents the proposed architecture analysis solution,

Component-Based Software Architectural Analysis Framework (CSAFE).

Various features of the framework including its underlying method and

toolset are presented.

• Chapter 5 presents the first of two CSAFE evaluations. The first evaluation

demonstrates the features of CSAFE and the practicability of the

framework using a case study drawn from an electronic document delivery

and interchange system project.

• Chapter 6 presents the second CSAFE evaluation. The second evaluation

focuses on the runtime validation of architectural refinements.

• Finally, chapter 7 provides some concluding thoughts and further work.

12

Chapter 2

Background

Like custom-developed systems, component-based systems must continue to satisfy

evolving stakeholder needs (i.e. stakeholders must remain confident that their

concerns are addressed in the design solution) and the system must adapt to an ever-

changing environment [Vidger01]. It is therefore crucial that system architects

understand how stakeholder concerns are addressed in the application, how they relate

to other system concerns and how changes in the system might affect them

[Saniabille01].

In component-based software systems the basic building block is a black-box

component, there is no code to act as “final documentation” of the system and any

inadequacy in component documentation may represent “lost information”. This

limited visibility of components represents a real risk for system architects when it

comes to tracking stakeholder concerns, understanding how well they are addressed in

the system design. Systematic architectural analysis can help ensure that risks resulting

from architectural adaptations and trade-offs do not adversely affect critical system

attributes. The analysis is likely to reveal not only how well an architecture satisfies a

Chapter 2 Background

13

particular context, but also how changes to specific quality attribute might affect other

quality concerns.

This section provides a background to software architecture. The relationship

between architecture and system quality, and architecture evaluation is discussed. The

section closes with a review of how the issue of system quality and architecture

evaluation is addressed in three representative component-based system development

models.

2.1 Software Architecture

The study of software architecture began in 1968 when Edsger Dijkstra pointed out

that it pays to be concerned with how software is partitioned and structured, as

opposed to simply programming [Clements96]. Today as software has become larger

and more complex, that assertion has been proven. A software system must have a

systematic representation that works as a blueprint to give the software engineer the

“big picture” before system details are committed to implementation [Stafford01a].

Although software architecture is often regarded as a high-level description of the

organization of a software system, it has been described in slightly different ways by

researchers in software engineering. Perry and Wolf [Perry92] provide the classical

definition of software architecture as a 3-tuple consisting of elements, form and

rationale. Over the years other researchers have extended and refined this classical

definition. Elements represent the systems building blocks (e.g. objects, components

and services). Elements may be considered at different levels of abstraction to manage

complexity and improve communication amongst system stakeholders. Form captures

the ways in which the system elements are organised in the architecture. It represents

the structure of individual architectural elements, and the manner in which they are

composed in the system. Lastly, form characterises the interactions and relationships of

the elements with their operating environment. Rationale represents the systems

Chapter 2 Background

14

designer’s intent, assumptions, subtle choices, external constraints, selected design

patterns and styles.

Shaw and Garlan [Shaw96] state that software architecture encompasses

components (e.g. database, middleware and ports), connectors to enable

communication, constraints to define how components can be integrated, and

semantic models to understand its overall properties. According to Clements

[Clements95] software architecture is a way to structure systems so that they can be

built from reusable components. Clements underscores the importance of architecture

in facilitating the component interconnection, rapid system evolution and reliable

analysis.

Philippe Kruchten [Kruchten95] uses a model composed 5 views to define software

architecture. The model is known the 4+1 architectural view model and comprises:

• the logical view, which is the object model of the design,

• the process view, which captures the concurrency and synchronization aspects

of the design,

• the physical view, which describes the mapping(s) of the software onto the

hardware and reflects its distributed aspect, the development view, which

describes the static organization of the software in its development environment.

The description of an architecture, and design decisions, is organized around these

four views, and then illustrated by a few selected use cases, or scenarios that become

the fifth view. For each view the set of elements to be used is defined (i.e. components,

containers and connectors). Each view is described by a blueprint using its own

particular notation. For each view also, the architects can pick a certain architectural

style, hence allowing the coexistence of multiple styles in one system.

Chapter 2 Background

15

Bass et al. [Bass05] define software architecture as:

“The structure or structures of a program or computing system, which comprises

software elements, the externally visible properties of those elements, and the

relationships among them.”

The importance of this definition is that it recognizes the need for multiple

representations to describe the architecture of a single system. Each of these

representations may have its own concept of elements and relationships. Furthermore,

Bass views architecture as an inherent property of all systems, meaning that all systems

have an architecture, even if it is not explicitly specified or even known. The work

described in this thesis adopts the architecture definition by Bass et al. [Bass05].

Architecture is critical to system quality. The architecture of the software system

can affect the system’s availability, safety, performance, security, efficiency, robustness

and maintainability. The particular style and structure chosen for a software system

may therefore depend on non-functional system requirements (NFRs). Sommerville

[Sommerville01] gives the example of a critical performance requirement that may

influence the system architecture should be designed to localise critical operations

within a small number of sub-system with as little communication as possible between

the sub-systems. This may mean using relatively large-grain components to reduce

component communications. On the other hand, if security were a critical

requirement, a layered structure for the architecture may be preferred with the most

critical assets protected in the innermost layers, and with a high level of security

validation applied to these layers. More important is the fact that quality attributes are

not mutually exclusive. The achievement of one quality attribute invariably impacts

positively or negatively on other quality attributes.

Chapter 2 Background

16

2.2 Architecture and System Quality

Bass et al. [Bass05] state that,

“Although functionality and other qualities are closely related, functionality often takes

not only the front seat in the development scheme, but the only seat. This is short-

sighted, however. Systems are frequently redesigned not because they are functionality

deficient but because they are difficult to maintain, port, or scale, or too slow, or have

been compromised by network hackers.”

This is a common scenario, qualities are rarely taken into account in most software

development processes. According to Clements [Clements95] these requirements are

not explicitly dealt with because of their complexity, usually informal statement, high

abstraction level, as well as the rare support of languages, methodologies, and tools for

them. The problem is more difficult for non-trivial systems with competing quality

requirements. For example, reliability and performance often exist in a state of mutual

tension, data replication to increase reliability will decrease the performance of the

system. The software engineer has to trade-off these attributes to achieve an acceptable

level of system quality.

Achieving acceptable quality must be considered throughout the design,

implementation and deployment of a system. There is no quality attribute that is

entirely dependent on design, nor is it entirely dependent on implementation or

deployment. Satisfactory results are a matter of getting the architecture as well as the

implementation right. Therefore two conclusions can be made. Firstly architecture is

critical to the realization of many qualities in a system, and these qualities should be

designed in and be evaluated at the architectural level. Secondly, architecture by itself is

unable to achieve complete system quality. However, it provides the foundation for

achieving quality, but this foundation will be of no avail if attention is not paid to the

system implementation.

Chapter 2 Background

17

Quality attributes can be classified in several ways. Bass et al. [Bass05] classify

quality attributes into three main categories: qualities of the system, business qualities,

and architectural qualities. Qualities of the system focus on considerations such as

availability, modifiability, security, usability and safety. While business qualities are

goals which frequently shape a system’s architecture, they include cost, schedule,

market, and marketing. Architectural qualities are directly related to the architecture

itself namely conceptual integrity, correctness and completeness, and buildability.

Architectural qualities represent the conceptual underlying theme that unifies the

design of the system at all levels. Whereas, correctness and completeness are essential

for the architecture to allow for all of the system’s requirements and runtime resource

constraints to be met, buildability allows the system to be completed by the available

team in a timely manner and to be open to certain changes as its development

progresses.

Therefore it is perhaps unsurprising that qualities can be classified according to a

number of “views” or “perspectives” (see Fig. 2.1). Each view comes from a particular

context (e.g. business analyst), any single view tends to give only a partial picture. The

views identified tend to be stereotypical, as such a distinction is commonly made within

software quality between the “user or client” and the “designer or supplier”. The views

are generally presented in adversarial pairs such as users versus designers. Satisfying the

non-functional requirements (NFRs) which may be synergistic or conflicting requires a

process of negotiation and trade-off.

Chapter 2 Background

18

Multi-Dimensional
Parameter

Functionality

Cost Timeliness

Functionality Cost

Timeliness

Corrrectness

Reliability

Security

Dimension of Quality

Fig. 2.1 Quality in multi-dimensional construct [Gillies96]

2.2.1 Achieving Qualities: Architectural Styles, Patterns,
Custom, Metrics, and Scenarios

An architectural pattern in software, also known as an architectural style [Bass05], is

analogous to an architectural style in building architecture, such as Gothic or Greek

Revival. It consists of a few key features and rules for combining them so that

architectural integrity is preserved. It is important to mention that not all researchers

agree that architectural style is the same as architectural pattern. The disagreement is

due to different level of granularity perceived by these researchers between

architectural pattern and architectural style. Architectural style is considers as a coarse-

grained pattern that provides an abstract design decisions for designing a software.

An architectural style is determined by:

• A set of elements types (e.g. data repository or a component that computes a

mathematical function).

• A topological layout of the elements indicating their interrelationships.

• A set of semantic constraints (e.g. filters in a pipe-and-filter style are pure data

transducers which incrementally transform their input stream into an output

stream, but do not control either upstream or downstream elements).

Chapter 2 Background

19

• A set of interaction mechanisms (e.g. layered, blackboard, object-oriented) that

determine the way elements are coordinated through the allowed topology.

A building architect, Christopher Alexander [Gamma95] once said, “Each pattern

describes a problem which occurs over and over again in our environment, and then

describes the core solution to that problem, in such a way that you can use this solution

a million times over, without ever doing it the same way twice”.

According to Lüders [Lüders00] architectural styles defined the vocabulary of the

design. Benefits of applying well-known or standardized architectural styles include

possibilities of design and code reuse, ease of understanding the architecture, and

increased interoperability. Having the same belief, Shaw and Garlan’s [Shaw96]

influential work attempted to catalogue a set of architectural patterns that are known as

architectural styles. This is analogous to design patterns [Gamma95] and code pattern

[Coplien97] at different level of abstraction.

The motivation for Shaw and Garlan’s project was the observation that high-level

abstraction for complex systems exist in software engineering as in other engineering

disciplines. These patterns occur regularly in system designs, but without systematic

cataloguing it prevents the software engineer from recognizing them, because in

different disciplines the same architectural pattern may be called different things. Fig.

2.2 shows how patterns are categorized into related groups in an inheritance hierarchy.

Event systems, for example, is a sub-style of independent elements, and has two sub-

patterns: implicit invocation and explicit invocation.

Another study by Perry and Wolf [Perry92] suggested the use of architectural style

for constraining the architecture and coordinating software architects. They proposed

that rationale, together with elements and form, constitutes the model architecture.

Perry and Wolf [Perry92] illustrated a number of interesting architectural points in

building architecture that have corresponding mappings in software architecture. This

Chapter 2 Background

20

is particularly true of architectural styles like network, hardware, and web-engineering

[Pressman09].

Data-Flow

Pipe & FiltersBatch
Sequential

Data-Centered

BlackboardRepository

Call/Return

LayeredMain Program
& Subroutine

Virtual Machine

Rule-Based
SystemIntrepreter

Object-
Oriented

Independent
Component

Event SystemsCommunicating
Process

Explicit
Invocation

Implicit
Invocation

Fig. 2.2 A sample catalogue of architectural patterns, organised by is-a relationship [Bass05]

2.3 Software Architecture Evaluation

Systematic architecture analysis can help ensure that risks resulting from architectural

adaptations and trade-offs do not adversely affect critical system quality attributes (e.g.

performance, security and modifiability). The analysis is likely to reveal not only how

well an architecture satisfies a particular quality attribute, but also how architectural

changes to improve one quality attribute might affect other quality attributes. These

decisions are likely to have a profound effect on the quality of the delivered system.

The architecture analysis process can not only reveal how well an architecture satisfies

particular quality attributes, it can also provide insight into how those attributes interact

and the implications of trading them off against each other.

Chapter 2 Background

21

Some benefits that accrue from holding early architectural evaluation [Bass05]

include:

1. Validation of requirements. Discussion and examination of how well an

architecture meets requirements often opens up the requirements for discussion.

Requirements creation, isolated from early design, usually results in conflicting

system properties. High performance, security, fault tolerance, and low cost are all

easy to demand, but difficult to achieve, and often impossible to achieve

simultaneously. Architecture evaluation can uncover the conflict and trade-offs,

and provide a forum for their negotiated resolution.

2. Forces preparation for the review. Requiring a representation before the evaluation

is done means that reviewees must document the system’s architecture. The

process of preparing for the evaluation is likely to expose problems that the

software architecture may have to address.

3. Captured rationale. A documented design rationale explaining the design choices

and their rationale is a critical part of the software system life cycle. Hence the

implications for design modifications can be assessed.

4. Early detection of problem with the existing architecture. The earlier in the life

cycle problems are detected, the cheaper it is to fix them. The problems that can

be found by an architecture evaluation include unreasonable (or expensive)

requirement, performance problems, and problems associated with potential

downstream modifications. In this way an architecture evaluation can provide early

insight into software system capability and limitations.

5. Improves architecture. Organizations that practice architecture evaluation as a

standard part of their development process report an improvement in the quality

of the architecture that is evaluated. As development organizations learn to

anticipate the questions that will be asked, the issues that will be raised, and the

documentation that will be required for evaluation, they naturally pre-position

themselves to maximize their performance on the evaluation. Architecture

evaluation results in better architecture not only after the fact, but before the fact as

Chapter 2 Background

22

well. Over time, an organization develops a culture that promotes good

architectural design.

6. Cost savings. A study of several large projects by AT&T reported that each project

manager perceived savings from architecture evaluation. Over an eight-year period,

projects receiving a full architecture evaluation reported an average 10% reduction

in project costs. Several consultants reported similar pragmatic benefits, more than

80% of their work was repeat business. One report showed how a large company

avoided a multi-million dollar purchase when the architecture of the global

information system they were procuring was found to be incapable of providing

the desired system attributes. In another case, involving a large engineering

relational database system, a project was cancelled after 20 million dollars had

been spent. The organization later learned that performance problems were

largely attributable to design decisions that made integration testing impossible.

In summary, architecture evaluation enhances system documentation through

explicit representation and documented design rationale. It provides a framework for

understanding how well an architecture addresses critical system concerns and for early

detection of software problems. While architecture evaluation does not guarantee high

quality or low cost, it is an effective tool for establishing aspects of the system for which

quality can be improved and budget risk reduced.

2.4 Component-Based Software Engineering Process

In order to understand architecture analysis for black-box component-based systems, it

is important to first understand the software engineering processes used to develop

components and component-based systems. The component-based software

engineering (CBSE) process can be viewed as two separate, but related processes

[Kotonya03]; development for reuse and development with reuse respectively. The

first is concerned with the application domains and the development of domain-

Chapter 2 Background

23

related components. The second process is concerned with assembling software

systems from prefabricated (off-the-shelf) components.

CBSE Processes

Development for
reuse

Development with
reuse

Component
certification

Component
procurement

Component
repository/

marketplace

Fig. 2.3 CBSE processes [Kotonya03]

1. Development for Reuse: The component development process is aimed at

developing generic and domain-specific components that can be made available

within organization or on the open market as commercial components. To

achieve successful software reuse, commonalities of related systems must be

discovered and represented in a form that can be exploited in developing similar

systems. Domain commonalities are used to develop models or software

components that can be used to develop models system in the domain. However,

developing a component is not easy as often the aim of the component developer

is not to satisfy a specific requirement, but to achieve widespread reuse.

2. Development with Reuse: Component-based system development (CBD) is

concerned with composing software systems from pre-fabricated component

[Kotonya4b]. Development with reuse is mainly intended to support black-box

development but should make allowances for white-box development in cases

where black-box development is not feasible. It is important to recognize that for

certain types of requirements and system, a black-box solution may not be

Chapter 2 Background

24

adequate or even appropriate. These two processes are related through

component distribution sources and market distribution sources (see Fig. 2.3).

This thesis is mainly concerned with architecture analysis for CBSE methods that

support development with reuse (i.e. for component-based system development). The

next section reviews component-based system development from the point of view of

three current development models.

2.4.1 COMPOSE Model

COMPOSE is an example of a process model that supports development with reuse

as shown in Fig. 2.4 [Kotonya4b, Kotonya07]. The development phase implements

the agenda set out in the planning phase. The first step in application development is

requirements definition. Often this starts with requirements elicitation, followed by

requirements ranking and modelling. This requirements process is constrained by the

availability of potentially suitable components as well the nature of the application.

Subsequently, the design stage partitions the service descriptions into abstract sub-

systems blocks with well-defined interfaces. Sub-systems are replaced with concrete

software components at the composition stage. Beyond this stage the system goes into

a management cycle. Like the requirements stage, the design stage proceeds in tandem

with the verification and planning phases, and may iterate to the requirements stage

from time to time.

The architectural design stage partitions required functionality (i.e. services and

constraints) into logical components, which can be composed using off-the-shelf

components and services. The discovery and verification phase is intended to ensure

that there is an acceptable match between available software components and the

system being built. The negotiation and planning phase implements the necessary

mechanisms for resolving conflicting system attributes and sets out the development

agenda.

Chapter 2 Background

25

Parts Repository

Verify availability of part

Verify viability of solution

Evaluate suitability of part

Analyse architecture

Test subsystem assembly

Development agenda

Negotiation strategy

Requirements definition

Compose system

- Define system context
- Identify system service

- Map services to abstract
 component
- Adapt component

Design pattern

Design style

Service
specification

Service
(e.g. WebService)

Black-box
component

Partition services (Design)

Planning and
Negotiation

M
anagem

ent

DevelopmentDiscovery and
Verification

Fig. 2.4 Component-based system development [Kotonya04b]

The verification phase is intended to ensure that there is an acceptable match

between selected software components and the system being built. At the requirements

stage, verification is used to establish the availability of suitable software components

and services, and the viability of a reuse-driven solution. At the design stage verification

is concerned with ensuring that the design matches the system context (e.g. system

characteristics such as requirements, cost, schedule, operating and support

environments). This requires architectural analysis and black-box testing.

In summary, COMPOSE is an approach for supporting the development of black-

box component-based systems from formulation through to deployment. COMPOSE

is supported by a constraint-based language known as Component Architecture

Description Language (CADL) [Kotonya08]. CADL provides support for partitioning

services into abstract component architectures, searching and verifying plug-compatible

black-box components, composing and adapting design-level components, and

visualising, mediating and validating component changes. COMPOSE does not

explicitly support architecture evaluation. However, it highlights the need for

architecture evaluation as a pluggable process during design verification.

Chapter 2 Background

26

2.4.2 Pressman Model

According to Pressman [Pressman09] two processes occur in parallel during the

CBSE process; domain engineering and component-based development (see Fig. 2.5).

The intent of domain engineering is to identify, construct, catalogue, and disseminate a

set of software components that have applicability to existing and future software in a

particular domain. An application domain is like a product family which has similar

functionality or intended functionality. The goal is to establish a mechanism by which

the software engineer can share these components in order to reuse them.

Domain engineering begins by identifying the domain to be analysed. This is

achieved by examining existing applications and by consulting experts on the type of

application that are aiming to develop. A domain model is then realised by identifying

operations and relationships that recur across the domain and are therefore candidates

for reuse. This model guides the software engineer to identify and categorise

components that will be subsequently implemented.

Component
Qualification

Component
Adaptation

Domain
Model

Structural
Model

Domain Engineering

Component-based Development

Repository
Reusable
Artefacts/

Components

Legends: Process Product FlowStore

Application
Software

Reusable
Component

Development

Software
Architecture

Development

Domain
Analysis

Component
Update

TestingComponent
Engineering

Architectural
DesignAnalysis

Component
Composition

Fig. 2.5 CBSE process model [Pressman09]

Chapter 2 Background

27

Pressman describes the CBD activity as consisting of three stages; qualification,

adaptation, and composition. Component qualification examines reusable

components by identifying the characteristic of their interfaces. The qualification stage

does not always provide the complete picture of whether a component will fit the

requirements and the architectural style. However, this is a process of discovery by the

software engineer to ensure a candidate component will perform the function

required, and whether it is compatible with the architectural styles of the system. The

three important characteristics looked at are performance, reliability and usability. The

adaptation stage is required because it is rare for the components to immediately

integrate with the system. Different strategies are used for adaptation such as grey-box

wrapping and black-box wrapping. Grey-box wrapping relies on the availability of a

component library that enables conflicts to be removed or masked. In situations where

the component source-code is not available, black-box wrapping is used to adapt the

component at the interface level.

The component composition stage integrates the components into a working

system. This is accomplished by way of an established infrastructure to bind the

components into an operational system. The infrastructure is often a library of

specialised components itself. It provides a standard for the coordination of

components and specific services that enable components to interact with one another

and perform tasks. Common component technologies include Sun’s Enterprise

JavaBeans (EJB), Microsoft’s .NET and CORBA’s CCM [Lau07].

In summary, the Pressman model does provide any obvious means for supporting

architectural evaluation. However, the model emphasis that as part of the qualification

process, the software engineer should ensure that candidate components perform the

required functions and are compatible with selected architectural styles. None of the

component technologies mentioned provide support for architecture evaluation.

Chapter 2 Background

28

2.4.3 Brown Model

Brown [Brown96] describes CBSE as primarily an assembly and integration process

that consists of five major stages; off-the-shelf components, qualification, adaptation,

assembling components into system, and system evolution (see Fig. 2.6). The first stage

is the process of identifying potential components that may be derived from local and

remote sources. At this stage little may be known about a component’s characteristic.

The information available may simply its name, parameter, and required operating

environment. The following component qualification stage explores detailed

component documentation and specification through discovery and evaluation.

Discovery identifies a component property such as its functionalities and interfaces as

well as its quality aspects. The evaluation phase involves feedback gathering from other

users of the components, and hands-on benchmarking and prototyping. The

component adaptation stage involves wrapping three types of components; white-box,

grey-box and black-box.

? ?

?

? ?

qualification to
discover interface
and fitness for use

adaptation to
remove
architectural
mismatch

composition into a
selected
architectural
styles

evolution to
updated
components

off-the-shelf
components

qualified
components

adapted
components

assembled
components

updated
components

States >

Activities/
transformations >

Fig. 2.6 Brown [Brown96] component-based development approach

Assembling components into system has the same objective as in the Pressman

model [Pressman09], however Brown emphasizes that component composition must

follow a selected architectural style. Lastly, system evolution is a process for repairing

component errors, where defective components are swapped for updated ones.

Similarly, when additional functionality is required, it is embodied in a new component

Chapter 2 Background

29

that is added to the system. Adding new functionality is a complex and time-consuming

task. Often wrappers must be rewritten, and side effects from changes found and

assessed.

In summary, the Brown model does not highlight the importance of an

architectural evaluation. Nevertheless, component composition is conducted in

coherence with selected architectural styles.

2.5 Summary

This chapter has provided a background to software architecture with the aim of

setting the context for architecture analysis. The chapter has discussed the importance

of architecture in software design and in component-based software design. The

relationship between architecture and system quality has been explored and different

ways of achieving quality in architecture discussed. The chapter has also explained

architecture evaluation and highlighted its benefits. Lastly, three well known

component-based software engineering models have been discussed and their poor

support for architecture evaluation highlighted.

30

Chapter 3

Architectural Analysis in CBD

The importance of architectural analysis in CBD raises the need to explore how we

can develop better analysis techniques and methods [Kotonya08]. The following

section discusses key design challenges in CBD and identifies the necessary

requirements for an architectural analysis approach in CBD [Admodisastro08]. The

requirements are then used to review architectural analysis approaches that support

CBD.

3.1 Design Challenges in CBD

A typical component-based system architecture comprises a set of components that

have been purposefully designed and structured to ensure that they have “pluggable”

interfaces and an acceptable match with a defined system context. However, the

blackbox nature of many software components means there is never a clean match

between system specifications and concrete software components. Services may

therefore have to be re-assigned, requirements renegotiated and components adapted

to achieve an acceptable match with the system context.

Chapter 3 Architectural Analysis in CBD

31

The design challenges in CBD can be summarized thus:

• Balancing application context with component availability. There is a conceptual

gap between the way we articulate requirements in custom development and the

reuse-driven paradigm embodied in black-box component-based system

development. The features supported by commercial software solutions vary

greatly in quality and complexity. This together with the variability in application

contexts means that specifications delivered with black-box software components

are almost always inadequate [Kotonya07]. There is need for architectural analysis

approaches that facilitate the mapping of requirements to component-based

system architectures by providing mechanisms that allow developers to balance

aspects of requirements, characteristics of application domains, business concern

and architectural considerations with the capabilities embodied in software

components [Medvidovic07].

• Pluggability. Blackbox components are generally not tailorable or “plug and play”.

In addition, components may have hidden design assumptions and constraints.

This has serious implications for exception handling and system quality

[Kotonya05a,Crnkovic02]. The design challenge here is twofold: First, to devise

ways to help the developer formulate appropriate analysis scenarios to expose

structural and behavioural mismatches, and secondly, to help the developer

identify and design appropriate adapters to ‘repair’ incompatibilities and safe-

guards to minimize unforeseen side effects in the system [Crnkovic02,Stafford01].

• Conflicting quality requirements. Service quality constraints vary and conflict

amongst themselves, and with system constraints. This makes them difficult to

track and resolve. The challenge for the design process is to provide ways of

assessing and addressing the adequacy of logical component configurations with

respect to service and system constraints [Kotonya07,Wallnau03].

• Evolution. Third party software components are subject to frequent upgrades.

This often leads to a disparity in customer-vendor evolution cycles and may result

in unplanned upgrades being forced on the customer. In custom development,

Chapter 3 Architectural Analysis in CBD

32

change impact equates to the potential to make different design and coding

decisions. However, for a system comprising black-box components, the decisions

potentially impacted by a change are associated with the system development

process, it is therefore necessary to generate information about this process as it

occurs [Kotonya05b]. The design challenge here is to minimise the risks

associated with change by helping system designers and integrators to understand

how proposed changes may affect not only the quality of the system, but its

lifecycle planning. The basis for this is effective traceability mechanisms that

capture the system development history and relationships between its various

artifacts.

• Early problem detection. A component-based system design is tightly connected to

the availability of components. In addition, it is constrained by the characteristics of

the application domain, business model and nature of the target platform (see Fig.

3.3). This means that design mistakes discovered late in system development may

be impossible or costly to fix as decisions may already have been made on

component selection. The design challenge here is to develop analysis schemes

that facilitate early and incremental problem detection.

3.1.1 Necessary Requirements for Architectural Analysis

We have distilled the design challenges discussed in Section 3.1 into eight key

requirements that can used to design architectural analysis methods and assess their

efficacy for CBD. We outline the requirements below:

1. Nature of Analysis. A pluggable analysis allows the developer to adapt and tailor

the design process to reflect the system context and to address domain specific

needs (see Fig. 3.1) [Obbink07,Klein99].

Chapter 3 Architectural Analysis in CBD

33

archagreed

System requirements
(services + constraints)

archrecommendations

reqservices+constraints

Architectural Design

Architectural Analysis

Fig. 3.1 Pluggable analysis

Fig. 3.2 illustrates the alternative embedded analysis. Because of its close binding

with the design process, embedded analysis often poses problems where evaluation

needs to be conducted for specific reasons such as safety analysis.

archagreed
System requirements

(services + constraints) Architectural Design +
Architectural Analysis

Fig. 3.2 Embedded analysis

2. Problem Detection. Early design problem detection cuts development costs and

improves system reliability. We categorize architectural analysis schemes according

to [Abowd97] as follows: early (no actual architecture exists at this stage, only

preliminary design decisions), middle (architecture exists in different stages of

completeness and problems associated with it can be identified) and post-

deployment (both architecture and system exist, an evaluation to check whether

the architecture matches the implementation can be performed).

3. Support for Diversity. The increasing complexity and diversity of software systems

means that it is unlikely that large systems will continue to be developed using a

purely component-oriented approach. Rather, a hybrid model of software

development is likely to emerge where components and other solutions such as

web services co-exist in the same system.

4. Support for Negotiation. The potential, and contextually achievable, benefits of

component use must be weighed against the match between requirements and

available functionality. The result is that component selection is a potentially very

Chapter 3 Architectural Analysis in CBD

34

complex, interdependent set of decision making problems. Support for

negotiation is therefore central to successful architectural design and analysis

[Hutchinson06]. As we discussed in Section 2, there is never a clean match

between system requirements and concrete software components. Different design

trade-offs may be required in a system architecture to achieve desired quality

attributes (see Fig. 3.3).

Architectural
Analysis

Requirements
(services = {s1, s2…sn},

constraints = {c1, c2,…cm} ≈
Req. = ∑ α(sn) + ∑ β(cm))

Application Domain
(e.g. business processes, local

and external system
constraints, life-cycle planning)

Components
(e.g. certification,

standards, resource
requirements, cost, source)

Fig. 3.3 Architectural analysis in CBD

5. Analysis Scenarios. Kurt Wallanau et al. [Wallnau02] describe the presence of a

component in the architectural design process as a dilution of control (see Fig. 3.4).

In a traditional software engineering approach a software architect makes

architectural decisions based on system requirements, constraints, and business

goals alone. After the system architecture plans are stabilized a set of components

are evaluated. This sort of approach is not suitable for component-based systems.

There may be no suitable components available to suit the specific needs of the

envisioned system. By choosing to use components an architect takes on

additional risk that he or she cannot control. In essence the component adds a

new source of control, thus diluting the control relationship between the

stakeholders’ needs and the system‘s requirements. The changes that might occur

to a component are more than that just its features and functional capabilities.

Component vendors make frequent decisions about which features remain and

which are removed from future release.

Chapter 3 Architectural Analysis in CBD

35

Requirements Expectations Exclusions

(Variable) desires
of stakeholders

Components found in the
marketplace

Genuine needs

Requirements
engineer’s
diminished
sphere of

control

Things that cannot
be obtained with

existing component
technology

Requirements
engineer’s

expanded sphere of
influence

Hot Spot

Fig. 3.4 Effect of components on spheres of control [Wallnau02]

Analysis scenarios are essential in helping the system designer understand how

proposed architectural configurations and system changes might affect not only the

quality and operation of system, but also its life-cycle planning

[Babar04a,Ekstedt02,Weiss01]. In summary, an architectural analysis method

should provide:

• Guidance for formulating and constructing analysis scenarios.

• Support for standard/portable descriptions of the system architecture (e.g.

UML and XML). Rami et al. [Rami03] have highlighted ADLs as a potential

instrument for supporting software architecture evaluation.

• Support for augmenting architectural descriptions with specific constraints and

other information to tailor the analysis to specific questions (e.g. quality

attributes, application domain characteristics and business concerns).

• Support for formulating “what if” analysis (static and dynamic) under

conditions of uncertainty that allow developers to describe scenarios to assess

the impact of competing designs.

• Support for evolution through qualitative and quantitative analysis that allow

designers and maintainers to develop change scenarios to assess the impact of

proposed changes.

• Support for stakeholder involvement in architectural analysis can help identify

and resolve conflicts, assess alternatives and build consensus on priority issues.

Fig. 3.5 shows the typical stakeholder roles in CBSE. Stakeholder may also

Chapter 3 Architectural Analysis in CBD

36

include other decision makers within and outside the organisation (e.g.

regulatory bodies).

Fig. 3.5 Component and application development processes – together with associated stakeholder roles

6. Assessment. Architectural assessment allows the developer to establish how well a

proposed system design satisfies its application and business contexts. The result of

the assessment process contributes towards regression testing, impact analysis and

traceability activities that may be conducted later in the development process.

There are several architecture assessment techniques including use-case scenarios,

conformance to patterns, metrics and organization-specific assessment techniques.

Use case scenarios provide information on system contexts and logical

connections [Jacobson97]. Design patterns and styles can be used to check if

architectures and configurations conform to certain structural and behavioural

characteristics [Babar07]. Metrics provide useful quantitative information related to

interface complexity, size, component dependency and other measurable system

attributes. In summary, an ideal assessment technique should reveal:

• Structural mismatches. Incompatibilities in the data exchanged between

components and verify architectural adherence to design heuristics and rules.

CBSE Processes

Development for
reuse

Development with
reuse

Component
certification

Component
procurement

- Specifier
- Architect/Designer
- Integrator/Composer
- Maintainer
- System user
- Project manager

- Domain/Requirement
 analyst
- Architect/Designer
- Implementer
- Maintainer
- Market analyst

- Local quality officer
- External certifier

- Component librarian
- Component vendor
- Component broker

Component
repository/

marketplace

Chapter 3 Architectural Analysis in CBD

37

• Quality mismatches. Inconsistencies and mismatches between quality

attributes and services and the system context. When we understand desired

service and system qualities before a system is built, the likelihood of selecting

or creating the right architecture is improved.

• Behaviour mismatches. Semantic mismatches between provided and required

interfaces and defects in dynamic component interaction.

It is important that assessment techniques support both qualitative and

quantitative analysis. Qualitative measurements provide a means for representing

quality concerns in a subjective evaluation which allows logical reasoning, whilst

quantitative analysis provides a mechanism to elicit subjective responses from the

stakeholders that provide empirical and measurable values.

7. Maturity. Maturity indicates the state of readiness of architectural analysis

approaches to be adopted in an organization. An important metric for measuring

maturity is validation results [Dobrica02,Babar04b]. We use a CMM-like

[Persse01] approach to categorize the maturity as follows: initial (approach has not

being validated), repeated (validation through limited complexity and domains with

consistent published results) and defined (validation through various complexity

and domains with consistent published results).

8. Tool support. Architectural analysis is a complex activity that involves the planning,

analysis, negotiation and assessment of large amounts of interrelated, often

conflicting information. A tool should provide support for extracting architectural

definition, storing architectural knowledge, analyzing architectural design decisions,

identifying trade-offs and offering alternatives [Babar04b,Obbink07,Kazman96,

Bashroush04].

In the next section we use these requirements to assess architectural analysis

approaches intended to support component-based development.

Chapter 3 Architectural Analysis in CBD

38

3.2 Architectural Analysis Approaches

3.2.1 NFR-Framework

Chung [Chung95a] proposes a process-embedded framework for generating

architectural fragments by evaluating non-functional requirements against stored design

knowledge. The approach is associated with a prototype tool called NFR-Assistant

[Tran99]. Fig. 3.6 shows the NFR-Framework process. In the approach, non-

functional requirements are represented as goals to be addressed and achieved during

the process of architectural design. Each goal is associated with a “type”, a parameter

list and importance (e.g. Modifiability [system: critical]).

involvement

uses
Method

Catalogues

Represent & Prioritize
Goals

Organize Goals and its
Relationships

(i.e. goal graph)

Manage tradeoffs
among architectural
design alternatives

(i.e. Correlation Rules)

Evaluate Goals
Achievement

Software Development

Software
Architect

Fig. 3.6 NFR-Framework people and activities

NFR goals have the property of potentially interacting with each other, in conflict or

in synergy. This property is used to systematically guide selection among architectural

design alternatives and to rationalize the overall architectural design process. Goals

(nodes) and goal relationships (links) also correspond to design alternatives, decisions,

and rationale. They are recorded and structured in a goal graph with link types

annotated as either “AND” and “OR”.

Chapter 3 Architectural Analysis in CBD

39

Architectural design knowledge and experience about specific NFRs is organized

into methods and made available to the software architect through systematic search.

These methods are categorized into three types as the follows:

1. Decomposition methods are used for refine or clarify NFRs. For example

performance can be decomposed into space and time.

2. Satisfying methods are used to organize knowledge about achieving NFRs goals

where they are embedded in the architectural design. For example, an implicit

function invocation style can be used to hide implementation details in order to

make an architectural design more extensible, thus contributing to goals that

required these NFRs.

3. Argumentation methods are used to organize principles and guidelines for making

design rationale for or against a design decision. Argumentation methods act as

determiners to verify which goals are most important to satisfy, and in selecting

among alternatives to satisfy NFR goals, especially in the context of time and effort

constraints.

Correlation rules that embed knowledge and experience about design trade-offs are

used by the software architect to select among architectural alternatives. For example,

correlation rules showing the contribution of architectural design alternatives for (+) or

against (-) specific NFRs. An entry with +− denotes an uncertain contribution, and

requires the software designer to consider the characteristics of the intended

application domain. Throughout the goal expansion process, the evaluation procedure

propagates upwards, via the label of nodes in the graph. The effect of each design

decision from child to parent nodes provides an assessment of the degree of goal

achievement. An assessment is carried out by relating this to the characteristics of the

intended application domain. NFR-Framework has been used and validated in

Information System domain namely Credit Card System, Health Insurance System

and Government Cabinet and Tax Appeals system [Chung95b].

Chapter 3 Architectural Analysis in CBD

40

3.2.2 REDEPEND-REACT

REDEPEND-REACT is an architectural analysis tool that supports the i* approach

which is represented in Strategic Dependency models (SD)

[Grau05,RedependReact07]. i* is an actor modeling language that is used to represent

software domains and actors (human, organization, hardware or other software). SD

describes a network of dependency relationships amongst various actors in an

organization context. Actors are represented by nodes; links between nodes represent

dependencies between actors. The depending actor is called Depender and the actor

who is depended upon is called the Dependee. The approach is shown in Fig. 3.7.

i* SD model design

i* SD properties
definition

Actor
Catalogue
Definition

Component
Catalogue
Definition

Evaluating
architecture(s)

(i.e. actor- & dependency-
based metrics)

Requirement
Engineer

Architecture
Expert

Market
Expert

Fig. 3.7 REDEPEND-REACT architectural analysis process

REDEPEND-REACT provides guidelines for formulating metrics over i* models

that a developer can use to perform architectural analysis. The metrics are selected

with respect to properties that are important to the system being modeled (e.g. security,

efficiency or accuracy). Metrics are defined in terms of the actors and dependencies in

the models, and the results of the evaluation are used to inform multiple component

Chapter 3 Architectural Analysis in CBD

41

selection. Metric measurement is performed using a MS Excel1 tool which allows the

user to define additional metrics and to modify actor values interactively. As the values

on the architectures are formulas based on these values, the results are automatically

updated. REDEPEND-REACT has been successfully used to analyse several

information management system case studies including; a Meeting Scheduler system,

an e-Learning system and an e-Business system.

3.2.3 ATAM

The Architecture Trade-off Analysis Method (ATAM) [Kazman98,Kurpjuweit02] is a

pluggable scenario-based approach. ATAM focuses on multiple quality attributes

(currently; modifiability, availability, security, and performance). It is aimed at locating

and analyzing trade-off points for areas of highest risk in the architecture. Attribute-

specific questions generated using scenarios of interest are used to identify possible

architectural solutions to achieve desired system quality attributes. The analysis

process derives three architectural decisions (i.e. sensitivity points, trade-off points and

risks) that have marked effect on one or more quality attributes. ATAM requires the

participation and mutual cooperation of three groups of stakeholders: an evaluation

team that is external to the project, project decision makers, and architecture

stakeholders.

The approach requires the architect to walk through each high-priority attribute-

specific scenario, showing how it affects the architecture (e.g. modifiability) and how the

architecture responds to it (e.g. for quality attributes such as performance, security and

availability). If the system has complex quality attribute requirements or is in a complex

and unusual domain, specialists may be needed to augment the expertise of the core

evaluation team. Along the way, the evaluation team documents the relevant

1 MS Excel is a trademark of the Microsoft Corporation

Chapter 3 Architectural Analysis in CBD

42

architectural decisions, and identifies and catalogues their risk, non-risks, sensitivity

points and trade-off.

Sensitivity points are parameters in the architecture to which some measurable

quality attribute is highly correlated. To find the trade-off, all important architectural

elements with multiple sensitivities are located. For example the number of copies of a

database might be a sensitivity point for both availability and performance. Fig. 3.8

shows how the ATAM activities are partitioned into four iterative phases. ATAM has

been extensively evaluated in different application domains including embedded

[Kazman98] and general information systems [Bass05].

PHASE 4
Trade-offs

PHASE 2
Arch. Views &

Scenario
Realization

PHASE 1
Scenario &
Req. Engi.

PHASE 3
Attribute Model

Building &
Analysis

1. Collect
 scenarios

2. Collect req./
 constraints/
 environment

3. Describe
 architectural
 views

4. Realize
 scenarios

5. Attribute-Specific
 Analyses

(best individual
theoretical
models)

 7. Identify
 trade-offs
6. Identify
 sensitivities

Action
plan

Fig. 3.8 ATAM activities [Kazman98]

3.2.4 ASAAM

Aspectual Software Architecture Analysis Method (ASAAM) is scenario-based

architecture analysis method that is able to identify concerns that can be easily localized

and specified in architectural abstraction, and identify concerns that crosscut various

architectural components [Tekinerdogan04]. For example, failure management

aspects, monitoring Aspects and operating system aspects are inherently crosscutting

concerns. The method is associated with a prototype tool called ASAAM-T.

Architectural analysis activities for ASAAM are shown in Fig. 3.9.

Chapter 3 Architectural Analysis in CBD

43

Scenario
Development

Architecture
Description

Scenario Interaction
Assessment &

Tangled Component
Identification

Individual Scenario
Evaluation &

Aspect Identification

Aspectual Refactoring
of Architecture

Refactoring of
Architecture

Fig. 3.9 ASAAM process [Tekinerdogan04]

ASAAM takes as input a problem description, requirements statement and

architecture descriptions. In scenario development stage, scenarios from various

stakeholders are collected, which represent both important uses and anticipated uses

of the software architecture. A scenario is considered as a brief description of some

anticipated or desired use of the system. ASAAM starts characterizing scenarios that

can be directly supported by the architecture (direct scenarios) and scenarios that

require the redesign of the architecture (indirect scenarios). Some scenarios, however,

can be scattered over different architectural components and their impacts are difficult

to localize in individual components.

ASAAM introduces a set of heuristic rules to identify these so-called aspectual

scenarios, and to derive architectural aspects based on domain model developed

through a domain analysis process. Based on detailed impact analysis for a given set of

scenarios, ASAAM provides a categorization of the architectural components into

cohesive components, composite components, and tentative tangled components.

Tentative tangled components are component that perform semantically distinct

scenarios and cannot be decomposed. The results of the detailed impact analysis can

be used in aspect-oriented design and aspect-oriented programming. ASAAM is at the

initial stage of maturity with no significant case studies.

Chapter 3 Architectural Analysis in CBD

44

3.2.5 Chaining Framework

Stafford et al. [Stafford01b] propose a static dependency analysis approach at

architectural level called chaining. The approach uses the Rapide ADL specification

[Luckham95]. Dependence analysis is widely used at implementation level to aid

program optimization (i.e. anomaly checking, program understanding, testing and

debugging). The chaining framework uses this technique to analyze architectural

designs by taking a broader view of dependence relationships that are more

appropriate to the concerns of architectures and their component interaction.

Dependence at the architectural level arises from the interconnections among

components and the constraints on their interaction. These relationships may involve

some form of control or data flow, but more generally they involve source structure

and behaviour. Source structure is related to the static source specification

dependencies, while behaviour is related to dynamic interaction dependencies.

The chaining framework provides analysis of structural and behavioural aspects of

system architecture using a tool called Aladdin [Stafford98]. The framework describes

three types of chaining (see Fig. 3.10):

1. Affected-by chains: Consists of the set of components and/or their elements

that could potentially affect an element of a component, C. These are elements

that C is affected by.

2. Affects chains: consist of the set of components and/or their elements that

could be affected by a component, C. These are elements that C affects.

3. Related-to chains: consists of the set of components and/or their elements that

may affect or be affected by an element of a component, C. This chain is the

combination of the affected-by and the affects chains for elements of

Component, C.

Chapter 3 Architectural Analysis in CBD

45

Table
Builder

Chain
Builder

queries queries

Rapide
Specification

Abstract Syntax
Tree

Tabular
Representation

Chains

Designer

Aladdin GUIAladdin TUI

Fig. 3.10 Chaining Framework

Aladdin generates a dependency table that is built from an abstract syntax tree that

represents the set of relationships that exist between pairs of elements in the

architecture. Aladdin also provides a set of queries over the chains (through both a

graphical and a textual user interface) that aid in answering dependency questions. By

performing analysis using these queries, anomalies can be revealed. However, only the

experience of software engineer can determine whether the anomalies are actual faults

in the specification. For instance, it is possible that an unused event has been included

in an interface because it is expected to be needed in the future, not because it is a

misconnection. The Chaining Framework at the initial stage of maturity which

evaluated using a small case study of a gas station system.

3.2.6 ARGUS-I

ARGUS-I [Vieira00] is a specification-based analysis tool which uses the C2-style

architecture description language [Medvidovic96] and augments it with component

behaviour specification using Statecharts. The ARGUS-I tool performs analysis at

Chapter 3 Architectural Analysis in CBD

46

component and architectural level. Component-level specification analysis allows for

static (i.e. interface inconsistencies and component-Statechart inconsistencies) and

dynamic analysis (i.e. enables the execution of component Statecharts). The analysis

process is shown in Fig. 3.11.

Component
Specification

Analysis

Architectural
Specification

Analysis

Architectural Element
Specification

“component/ connectors/
message event”

Architectural
Configuration
Specification

“topology”

Dynamic
Component

Analysis

Dynamic
Architecture

Analysis

Feedback

Architectural
Implementation

Fig. 3.11 ARGUS-I process [Vieira00]

Architecture-level specification checks are performed statically by verifying

structural and behavioural dependencies among components, and dynamically by

evaluating architecture configuration through simulation. The analysis capabilities of

Argus-I have been illustrated using a medium-sized Elevator Control System example.

3.2.7 Odyssey-Adapt

Odyssey-Adapt is a plug-in for the Odyssey IDE [Spagnoli06] that supports CBD in

both domain engineering and application processes. Most of the analysis is focused on

the component interface that is intended to support component adaptation and

composition during development. The approach uses three design patterns (proxy,

façade and adapter) to tackle component interface mismatches and structural

complexity.

Fig. 3.12 shows the analysis process. The approach defines two types of

dependencies between a provided and a required interface; assembly connector and

Chapter 3 Architectural Analysis in CBD

47

incompatibility dependency. An assembly connector dependency represents the actual

composition between two components through their interfaces. An incompatibility

dependency shows the relationship between two components that require some kind

of adaptation before their interface can be composed.

involvement

incompatibilities

provide

Design
patterns

Component Architecture
Modeling

Component Search
&

Specification Inspection

Component
Composition

Mismatch
Identification

Component
Adaptation

Designer

Fig. 3.12 Odyssey-Adapt

Whenever a provided and a required interface are related, Odyssey-Adapt triggers

the incompatibility detection function. Three types of incompatibilities are considered:

1. Structural. These are conflicts related to syntactic problems between a provided

and required interface. These include interfaces with different names, interfaces

with methods that differ in their signature, interfaces with different numbers of

method, and any combination of these three. They are automatically

discovered by a detection function that compares the specification of the

interfaces.

2. Behavioural. These are semantic mismatches between the provided and

required interface. This mismatch identification process is the responsibility of

the designer, which means that all conflicts are documented manually in an

incompatibilities note and tagged with the provided interface.

Chapter 3 Architectural Analysis in CBD

48

3. Hybrid. These are mismatches that occur from combination of structural and

behavioural incompatibility. This type of mismatch is automatically detected,

provided that the behavioural incompatibility has been previously marked.

Odyssey-Adapt is a relatively new approach and has not been validated on a

significant software system.

3.2.8 Engineering Framework

Becker et al. [Becker06] have proposed an adaptation process for detecting and

resolving component mismatches based on a taxonomy of design patterns. The

adaptation process is applied during architectural design, whenever an analysis of the

system indicates a mismatch between two constituent components. The taxonomy

contains five distinct classes of component mismatches; technical, signature, protocol,

concept and quality. These are associated with patterns that may overcome the

mismatches.

The adaptation process has five steps as follows (see Fig. 3.13):

1. Detect mismatches. Find the mismatch between the required and provided

interface.

2. Select measure to overcome the mismatch. Select from the established patterns

the one which is known to solve the specific mismatch.

3. Configure the measure. Often the pattern selected is fine-tuned as patterns are

described as abstract solutions to the problem. Therefore, utilize relevant

specification and query developer for additional input.

4. Predict the impact. Predict the impact of the solution on the existing setting.

5. Implement and test the solution. If the prediction indicates that the mismatch is

fixed, the solution is implemented, either by systematic construction or by using

generative technologies.

Chapter 3 Architectural Analysis in CBD

49

query
additional

input

Detect
Mismatches

Resolve
Mismatches

Configure
Measure

Predict
Impact

Implement &
Test Solution

Developer

Pattern &
Mismatches
Classification

Fig. 3.13 The process of adapting a component

The Engineering Framework has been partially evaluated using a small case study

of a water cooling system.

3.3 Methods Summary

The results of the assessment are summarised in Table 3.1. Briefly, the NFR-

Framework is an embedded, early problem detection approach that supports whitebox

development. It supports a negotiation process that is concerned solely with trading-off

non-functional attributes. Central to the negotiation process is the system architect. The

NFR-framework provides some limited help with formulating analysis scenarios and

allows the developer to uses quality attributes to explore and verify design goals. It is

tool supported and supports both qualitative and quantitative assessment.

C
hapter 3

A

rchitectural A
nalysis in C

B
D

50

Table 3.1 Comparison of architectural analysis approaches

ANALYSIS APPROACH
REQUIREMENT

NFR-
Framework

REDEPEND-
REACT

ATAM ASAAM Chaining
Framework

Argus-I Odyssey-
Adapt

Engineering
Framework

Nature of
Analysis

Pluggable        

Embedded        

Problem
Detection

Early        

Middle        

Post-deployment        

Diversity
Component1        

Hybrid        

Negotiation
Support
(Trade-off
analysis)

Help with formulation        

Quality attributes        

Business concerns        

Application domain characteristics        

Component features        

Analysis
Scenario

Help with formulation        

Support for augmentation        

Stakeholder
involvement

Project Manager        

Architect/ Designer        

Evaluator        

Component Provider        

‘What-if’ analysis        

Assessment

Structural


(Ql, Qt)


(Qt)


(Ql, Qt)


(Ql)


(Ql)


(Qt, Ql.)


(Ql)


(Ql)

Behavioural  


(Ql, Qt)


(Ql)


(Ql)


(Qt, Ql.)


(Ql)


(Ql)

Quality attributes


(Ql, Qt)


(Qt)


(Ql, Qt)


(Ql)
   

Maturity2        

Tool support        

 Supported/ 1Blackbox support/ 2Defined  Partially Supported/ 1Greybox support / 2Repetition  Not Supported/ 1Whitebox support / 2Initial
Qt. – Quantitative assessment Ql. – Qualitative assessments

Chapter 3 Architectural Analysis in CBD

51

The REDEPEND-REACT approach is a maturing, embedded approach that

supports blackbox development. The approach intended for early problem detection

and provides good support for negotiation. It also provides extensive help with

formulating analysis scenarios and involves three different system stakeholders in the

analysis. It is tool supported and provides good quantitative assessment for structural

and quality attributes analysis. It is significantly weak in behavioural analysis.

ATAM is a maturing approach that is pluggable, supports greybox development

and has extensive support for trade-off analysis (i.e. quality attributes and business

concerns). ATAM focuses on middle problem detection and provides good help with

formulating analysis scenarios. However, it provides only partial support for

augmenting of architectural descriptions and experimentation. It is tool supported, and

provides both qualitative and quantitative assessment for structural, behavioural and

quality attributes analysis.

The ASAAM is a pluggable, scenario-based method that supports whitebox

development. Like ATAM, it is a middle analysis method. It has relatively good

support for trade-off analysis (quality attributes and components), but poor support for

stakeholder involvement. It provides limited support for formulating analysis scenarios,

but good support for “what-if” analysis. It is tool supported provides qualitative

assessment for structural, behavioural and quality attributes analysis.

The chaining approach is a pluggable architectural analysis approach that supports

whitebox development. The approach is intended for middle problem detection. It

provides limited help with formulating analysis scenarios and relies on the experience

of the software engineer to verify behavioural anomalies. It is tool supported and

provides qualitative assessment for structural and behavioural analysis.

ARGUS-I is a relatively new, pluggable, middle approach that supports whitebox

development. ARGUS is tool supported and provides good qualitative and

Chapter 3 Architectural Analysis in CBD

52

quantitative assessment for structural and behavioural analysis. However, it provides

limited help with formulating analysis scenarios and has poor support for negotiation.

Odyssey-Adapt is a relatively new, embedded architectural analysis process for the

Odyssey development environment. It supports whitebox development and is

intended for middle problem detection. The analysis is largely structural and limited to

component interface mismatches. There is no provision in the method for analysing

non-functional properties and no support for negotiation. Limited support is provided

in method for formulating analysis scenarios. The resulting assessment is a qualitative

report detailing structural, behavioural and hybrid mismatches. However, the

behavioural mismatches are weakly identified and tackled.

The Engineering framework is an immature, pluggable, middle analysis method

that supports blackbox development. Its support for negotiation is limited to quality

attributes. The framework provides limited support for both structural and behavioural

aspects of design. The resulting assessment is qualitative. In our view, the Engineering

framework is still at an early stage of development. Its guidelines for component

adaptation are very generic and it relies heavily on designer experience to achieve

there’s considerable reliance on designer experience as the steps above indicate.

3.4 Summary

Many of the challenges in component-based development arise because

components already exist before the system is developed. The need to trade-off and

accept compromise is therefore central to the successful development of component-

based systems. However, current architecture analysis approaches provide poor

support for negotiation. The chapter also highlighted the poor support for diversity in

current architecture analysis approaches. Current approaches are largely designed to

support a particular type of analysis (e.g. structural or conformance checking) and often

for a specific application domain. However, the black-box nature of the software

Chapter 3 Architectural Analysis in CBD

53

components, and the variability in stakeholder concerns and application contexts,

means that there is value in diversity in analysis. Critically, none of the approaches

reviewed in this thesis support hybrid reuse-driven development, even though,

increasingly applications are being developed for which different types of reusable

software co-exist in the same system (e.g. OTS components and services).

Support for stakeholder involvement in architecture analysis can help identify

critical system concerns and conflicts, assess alternatives and build consensus on

priority issues. In current architecture analysis approaches, the role of architectural

design is left largely to the system designer. However, system stakeholders often

include decision makers within and outside the organisation (e.g. regulatory bodies).

Effective analysis must be able to identify, express and analyse concerns from different

system stakeholders.

Most of the existing architecture analysis techniques are based on proprietary

notations and provide limited support for converting architectures described standard

modelling notations such as UML. This means that many architectural designs have to

be described anew in the proprietary notation. Lastly, current architecture analysis

approaches are difficult to incorporate into existing design processes without significant

disruption or changes to the existing processes. It is important that an architecture

analysis approach causes as little disruption as possible to the existing process.

The chapter discussed architecture analysis problems in component-based

development and identified the necessary requirements for architectural analysis

approaches. The requirements have been used to assess eight existing architectural

analysis approaches intended to support component-based development. The results

of the assessment are summarised in Table 3.1 and published in [Admodisastro08].

54

Chapter 4

Component-based Software
Architecture Analysis Framework

In Chapter 3, I highlighted the poor support for component-based system design

issues in current architecture analysis approaches. I noted that most architecture

analysis approaches are designed to support custom rather than black-box software

development, making them inappropriate for addressing the unique design problems

posed by black-box development [Kotonya08]. This Chapter describes my proposed

solution, Component-based Software Architecture analysis FramEwork (CSAFE),

which is intended to address the problems discussed in Chapter 3.

4.1 The Framework

CSAFE is a scenario-driven, negotiation-based architecture analysis approach intended

to support black-box development. However, while CSAFE is primarily intended to

support black-box development, we recognise that there might be aspects of the system

for which a black-box solution is not feasible or appropriate. CSAFE supports custom

Chapter 4 Component-based Architecture Analysis Framework

55

development in such situations by treating abstract design components as placeholders

for custom development.

An iterative analysis process and an integral toolset underpin CSAFE. The analysis

process is supported by an architecture description language, iXML ADL, and

extensible repository of architecture design templates and component specifications.

The iXML ADL defines the architectural elements, their relationships and the rules

that govern valid architectural descriptions. The architecture design templates specify

configurations that embody specific design goals and best practice, while the

component specifications represent salient properties of concrete components. Lastly,

CSAFE is process-pluggable rather than embedded to minimise disruption to the

development process. Fig. 4.1 shows how CSAFE plugs into a typical development

process.

System requirements
(services + constraints)

archrecommendations

reqservices+constraints

archagreed
Architectural Design

CSAFE

Fig. 4.1 CSAFE and architectural design process

The CSAFE approach comprises 4 iterative steps as shown Fig. 4.2:

1. Identify system or sub-system architecture to analyse.

2. Formulate analysis scenario(s) by identifying and prioritising quality concerns as

goals to be addressed and achieved during architecture analysis.

3. Analyse architecture based on analysis scenario and available components.

4. Modify architecture according to recommendations

5. Repeat step (1) until done

Chapter 4 Component-based Architecture Analysis Framework

56

Analyse

Check
Structure

Check
Quality

Check
Conformance

Negotiate

Design
architecture

Formulate analysis
scenario

Requirements
(services & constraints)

Recommendations

iXML
specification

Trade-offs

Conflicting
aspects

Scenario

Parse
architecture

4

12

3

UML / iXML
Architecture

Fig. 4.2 Architecture analysis process

The architecture design stage is concerned with the construction of the system

architecture. The CSAFE analysis process accepts architectures expressed in the

standard UML component notation [Uml10] or in the iXML architecture description

language. iXML is an XML-based ADL developed to support analysis in CSAFE.

The iXML ADL is discussed in detail in section 4.1.2.3. Architectures expressed in

UML are converted into iXML specification to allow for machine processing. The

iXML ADL serves three purposes; first, it allows both pre-existing and new

architectures to be analysed. Secondly, it allows for a portable, platform independent

description of the system architecture. Lastly, it provides the system designer and other

stakeholders with a mechanism for augmenting architectural descriptions to explore

“what if” analysis.

Scenario formulation is essential in helping the system designer verify how closely a

proposed architectural solution matches desired system attributes, and to understand

how system changes might affect not only the quality and operation of the system, but

also its life-cycle planning. Analysis scenarios provide a means for augmenting

architectural descriptions with specific constraints and other information to tailor the

analysis to explore specific questions (e.g. quality attributes, application domain

characteristics and business concerns). Analysis scenarios also allow designers to

Chapter 4 Component-based Architecture Analysis Framework

57

formulate “what if” analysis under conditions of uncertainty to assess competing

designs and change impact.

The analysis process (step 4, in Fig. 4.2) allows the developer to establish how well a

particular system design satisfies its application and business contexts. The analysis

process uses standard and user-defined architecture design templates, component

specifications and a process of negotiation to identify an architectural configuration that

offers the best balance between critical stakeholder concerns and available component

functionality. The output of the analysis process is a report outlining potential

inconsistencies and mismatches, and recommendations for improving the architecture.

The next sections discuss each of the stages of the CSAFE process.

4.1.1 Weaving Requirements and Architectural Design

 In addition to analysing pre-existing architectures, CSAFE also allows the system

designer to derive architectures from scratch using a service-oriented requirements

method based on the notion of viewpoints that maps requirements onto the iXML

ADL. The requirements method has been adopted from [Kotonya04b] and adapted

to work with CSAFE [Admodisastro11a]. A viewpoint is a perspective of the software

architecture from a requirements or analysis standpoint (see Fig. 4.3).

domain expert

architect

ARCHITECTURE

Construction

Refinement
Verification

System
Concerns

Analysis
Viewpoints

Requirement
Viewpoints
services &
constraints

project manager

programmerinteractor

non-interactor

Fig. 4.3 Requirement and analysis viewpoints

Chapter 4 Component-based Architecture Analysis Framework

58

Requirements viewpoints identify requirements sources and analysis viewpoints

identify the human actors involved in the analysis of the architecture as follows:

• Requirement viewpoints represent sources of requirements. They are grouped

into Interactor and Non-interactor viewpoints. Interactor viewpoints comprise

operator and component viewpoints. Operator viewpoints map onto classes of

users who interact with the proposed system. Component viewpoints correspond

to software components and hardware devices that interface with the proposed

system. Non-interactor viewpoints are entities that do not interact directly with the

intended system, but which may express an interest in the system requirements.

Non-interactor viewpoints provide a mechanism for expressing critical ‘holistic’

requirements, which apply to the system as a whole. Fig 4.4 shows the typical

requirements types associated with the different classes viewpoint.

> Business goals {Organization viewpoint}
> Project concerns {Organization viewpoint}
> System quality concerns {Organization viewpoint}
> Legal requirements, Government certification
 requirements {Regulatory viewpoint}

> Services + Constraints on services
> Control information

Associated requirement types

Requirements

Operator

Component

Organisation

Regulatory

Interactor

[attribute1]

Non-Interactor

[attribute2]
….
[attributen]

Architect

[analysis scenario1]

Programmer

[analysis scenario2]
….
[analysis scenarion]

Project manager

Domain expert

Viewpoint

Analysis

Fig. 4.4 Abstract viewpoint structure

In this thesis a requirement is defined as a statement of system service or

constraint [Sommerville10]. Services represent expressions of functionality, both

required and offered and, crucially, expressed in a way that shows how available

Chapter 4 Component-based Architecture Analysis Framework

59

components satisfy what is required [Kotonya05a]. Constraints represent

stakeholder concerns such as component cost, certification, memory and platform

restrictions, or dependability requirements such as security, performance and

availability. They may also represent elements of interdependence that are

introduced to allow services to meet certain architectural considerations (e.g.

Service X and Service Y may not reside in the same component). Finally,

constraints may capture dependencies that are introduced to make certain

component choices acceptable in the current context, particularly with regard to

the outcome of negotiation and thus may hold important design rationale

information.

Modelling services from the point of view of viewpoints also exposes interesting

interrelationships between services and constraints and raises questions about how

best to address this in the architecture. In Fig. 4.5, for example, two viewpoints

express different availability constraints on the same service. Service 3 in actor

viewpoint 1.1 has an availability requirements of 98% or greater, while actor

viewpoint 1.2 has an availability requirement of only 50% for the same service.

Interactor viewpoint_1

Interactor viewpoint_1.2

Interactor viewpoint_1.1
Service_3 + availability 98%
Service 4

Service_3 + availability 50%

Service_1
Service_2

Same service between
different constraints intensity

Fig. 4.5 Service and constraints variability

A viewpoint template with the following structure:

Viewpoint id
Type

Role
Requirements

<A unique viewpoint identifier>
<Viewpoint type (e.g. operator, system, component, organisation,
regulatory etc.)>
<Role of the viewpoint in the system>
<Set of requirements generated by the viewpoint>

Chapter 4 Component-based Architecture Analysis Framework

60

A requirement template has the following structure:

Requirement id
Rationale
Description

<Requirement identifier>
<Justification for requirement>
<Natural language definition>|<Service description>|
<Other description>

Requirements can be considered at different levels of abstraction to allow for

scoping and are ranked according to the benefit they offer [Kotonya04a] as

follows:

o Essential (3): This means that the requirement is crucial, if they are to

adequately deliver commitments made on them by operators and

stakeholders.

o Important (2): This means that the requirement may prove extremely useful

in assisting and delivering its commitments.

o Useful (1): This means the requirement could prove useful but it is far more

likely to only be of use to a subset of operators and stakeholders.

During architecture analysis, requirement viewpoints can be used verify that

proposed changes do not adversely affect critical system functionality.

• Analysis viewpoints allow the stakeholders involved system design and

implementation to verify how well the architecture supports aspects of the system

that interest them. Analysis viewpoints are associated with analysis scenarios that all

the system designer to explore different architectural configurations, quality trade-

offs and component solutions. We have identified three analysis viewpoints; the

architect, programmer and stakeholder. The architect performs the analysis to

identify critical system qualities). The result of the analysis helps the architect to

propose architectural refinements that match the desired system qualities as closely

as possible. Programmer is concerned with ensuring the runtime composition is

structurally consistent while minimising changes that might adversely affect critical

system qualities. Stakeholders are decision makers who are responsible for the

project investment and domain experts who are knowledgeable in application

domain.

Chapter 4 Component-based Architecture Analysis Framework

61

4.1.2 Architecture Parsing

CSAFE supports two types of architecture description. The first uses UML to model

the system architecture. UML is an extensible general-purpose language for modelling

software systems. UML has been widely adopted by researchers and industry despite

contentions over its use in modelling architecture [Medvidovic02]. UML extensions

such as constraints, tagged values and stereotypes are used to extend the semantics of

UML modelling elements and to define UML modelling elements with new

semantics. However, many software architectures are still typically described using an

architecture description language (ADL) [Medvidovic00].

Many ADLs have been developed by academic and industrial communities,

including C2 [Medvidovic96], Acme [Garlan97], Darwin [Darwin95], Rapide

[Luckham95], xADL [Dashofy02], and others. Each of these vary in the modelling

notation used, the kinds of entities they describe, the properties they express about the

entities, and how the entities may be connected (e.g. C2 is used for highly distributed

software systems). However, to support independent architecture analysis that is not

tied to a particular language or methodology, we developed an integrated architecture

description language based on the markup language, XML [Xml10], called iXML.

iXML builds on xADL and extends it to support the notion of services, non-functional

requirements (e.g. constraint and its details) and inclusiveness of interface contracts

(e.g. property and constraint).

4.1.2.1 Constructing Baseline System Architecture

A CSAFE baseline architecture is constructed by partitioning service descriptions and

their associated constraints into abstract component (i.e. design-time components).

The mapping process is aided by the CSAFE toolset. Fig. 4.6 shows the graphical

process of mapping requirements to abstract components.

Chapter 4 Component-based Architecture Analysis Framework

62

The process offers several advantages without compromising the architecture

analysis process. These include; development traceability from requirements to

deployment, process documentation, flexible implementation (i.e. abstract

components can be treated as placeholders for custom development), easy mapping of

abstract components to UML component notation, and a framework for change

impact analysis. The process is discussed in more detail as part of the CSAFE

evaluation, in Chapter 5 and Chapter 6.

Vp2

Vp1

Vp3

Vp5

..

..

..

..

R1.1

R1.2

R1.3

R1.4

..R1.5

..R2.1

..R3.1

..R4.1

..R5.1

..R5.2

..R5.3

..R5.4

..R5.5

! !

!

!

!

! !

!

S1.1.1

!

S1.2.1

S1.3.1

!

!

S1.4.1

S1.5.1

S2.1.1

S3.1.1 S3.1.2

S4.1.1

C5.1.3

C5.2.1

C5.1.2

C1.1.1 C1.2.1 C1.3.1

C2.1.1 C2.1.2

C3.1.1 C3.1.2 C3.1.3

<<abstract>>
ValidManager

<<abstract>>
DocManager

<<abstract>>
AdminManager

<<web service>>
DocSupplier

<<web service>>
DocRegistry

S1.1.1

!
C3.2.1

Vp4

!
C5.3.1

!
C5.6.2

!

C5.2.2

!

C5.3.2

!
C5.6.3

S3.1.1 S3.1.2
S4.1.1

S1.2.1 S1.3.1 S1.4.1 S1.5.1

S2.1.1

S2.2.1

S2.3.1

S2.4.1 S2.2.1 S2.3.1 S2.4.1

Abstract components compositionServices / ConstraintsViewpoints

..R2.2

..R2.3

..R2.4

!
C5.4.1

!
C5.6.1

!
C5.1.5

!
C5.2.3

!
C5.5.1

!
C5.1.4

!
C3.3.1

!
C3.3.2

!

C5.1.1

!

! !
C4.1.1

C4.3.1

C4.2.1

!
C5.4.2

!! !
C4.1.1 C4.3.1C4.2.1

!
C5.1.4

!
C5.4.2

!
C3.3.2

!
C5.1.5

!
C5.2.3

!
C5.5.1

!

! !! !

C3.1.3

C1.1.1 C1.2.1 C1.3.1 C3.3.1

! !
C3.1.1 C3.2.1

!
C5.2.1

!
C5.3.1

!
C5.6.2

!

C5.1.1

!
C2.1.1

!

C5.1.2

!

C5.2.2

!

C5.3.2

!
C5.6.3

!
C2.1.2

!
C3.1.2

S1.2.1

S1.2.1

!
C5.1.3

!
C5.4.1

!
C5.6.1

Legends:

 Business Constraint Component Constraint Quality Constraint Service! ! !

Fig. 4.6 Service partitioning

4.1.2.2 XMI/XML Parser

The XMI/XML parser supports the early stage of CSAFE analysis by parsing

architecture specified in the UML notation or iXML ADL as illustrated in Fig. 4.7.

Architectures specified in UML are transformed to iXML ADL, whilst architectures

specified in iXML ADL are verified for correctness using the XML schema described

Chapter 4 Component-based Architecture Analysis Framework

63

in Appendix A1, Table A1.1. The parser incorporates semantic safeguards to verify

that components are properly connected and to the right components. The parses

process outputs are stored in the analysis repository. The system architecture,

architectural design templates and components specifications are all represented in the

same way using a standard XML schema.

Fig. 4.7 Process parsing and storing XMI/iXML specification

The XML schemas define the structures of architecture designs, design templates

and component specifications. For example, the XML schema for an architecture

design specifies the elements in the design specification, nested elements, attributes of

the elements, attribute values and value types. On the other hand the XML schema for

a design template may also specify the elements of the design template, category,

intent, context, motivation etc. The parser provides a uniform interface to the

underlying XMI/XML objects. This uniform representation facilitates easy retrieval of

different elements of the architecture design.

To illustrate the transformation process, consider the example of the UML

architecture description of an Electronic Document Delivery and Interchange System

(EDDIS) shown in Fig. 4.8. The complete system is discussed in detail as a case study

in Chapter 5.

Chapter 4 Component-based Architecture Analysis Framework

64

ValidManager

DocManagerAdminManager

DocumentRegistry

DocumentSupplier

IAuthorization

IRegistry

IManage ILogin IQuery

ISupplier

<<interface>>
IAuthorization

setLogin()
resetCondition()

<<interface>>
ISupplier

setOrder()

<<interface>>
IRegistry

setSearch()
setLocate()

<<interface>>
IQuery

search()
locate()
order()

<<interface>>
ILogin

validateUser()
logout()

<<interface>>
IManage

addUser()
delUser()
setAccess()

Fig. 4.8 EDDIS architectural description with interface identification

The DocManager component is responsible for coordinating and managing the

order and delivery of electronic documents from suppliers. It has four interfaces to

facilitate these services; IAuthorisation for accepting orders and validating recipients,

IRegistry for finding document identifiers and their locations, IQuery for searching and

locating documents and ISupplier for interacting with document suppliers. In addition,

the DocManager component may have several properties and constraints as shown in

Table 4.1. This information is part of the UML architecture description of EDDIS.

Table 4.1 DocManager component specification

Name DocManager

Type:Subtype Component

Description Users will have access to a set of services determined by the permissions associated
with their account. All users are allows for document search and locate. Only staff
library can place document order.
A document search will be initiated by a search criterion. The output will be a set of
document identifiers.
A document locate service will be initiated by a set of document identifiers and the
output shall be asset of location identifiers.

Properties - Component.Standard = null
- Component.Cost = null
- Component.Version = 0.2
- Component.Availability = inhouse

Chapter 4 Component-based Architecture Analysis Framework

65

- Component.Certification = No
- Component(In) = 4
- Component(Out) = 2
- Component.Services = IDiscovery, IOrder
- Business.Cost = Null
- Business.Schedule = Null
- Business.Platform = Windows XP
- Reliability.Availability = Nul
- Maintainability.Time = Null
- Maintainability.Requirement = user
- Maintainability.Technology = Null
- Performance.ResponseTime_UPL = 0.5 sec.
- Performance.ResponseTime_PL = 3 sec.
- Performance.Throughput_UPL = 150 trans. per sec.
- Performance.Throughput_PL = 75 trans. per sec.

Constraints - Performance of response time must less than or equals to 0.75 sec. under-peak-
load and less than or equals to 4 sec. peak-load.

- Performance of throughput must greater or equals to 150 trans. per sec. under-
peak-load and must greater or equals to 70 trans. per sec. peak-load.

- Maintainability of requirement must equals to user.
- Component of availability must equals to inhouse.
- Business of platform must equals to Windows XP.

Interfaces Provided -> IDiscovery, IOrder
Required -> IRegistry, ISupplier, ILogin

Fig. 4.9 shows a snippet of the resulting XMI specification of the DocManager

component with its associated constraints and textual descriptions after parsing. The

XMI specification includes components, their interfaces, properties, interconnections,

constraints and textual descriptions. The specification is stored in the analysis

repository.

<Component xmi.id="Im456fe435m1254d641e78mm7be8" name="DocManager" visibility="private"
isSpecification="false" isRoot="false" isLeaf="false" isAbstract="false" isActive="false">
<ModelElement.constraint>
<Constraint xmi.idref="I3003240am1254ec16e03mm7db6"/>
 <Constraint xmi.idref="I3003240am1254ec16e03mm7daa"/>
 <Constraint xmi.idref="Im7e3cc993m12665521f35mm7b27"/>
 <Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bef"/>
 <Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bed"/>
</ModelElement.constraint>
<ModelElement.taggedValue>
 <TaggedValue.dataValue>Users will have access to a set of services determined by the permissions
associated with their accounts. All users are allows for document search and locate. Only library staff
can place document order. A documents locate service will be initiated by a set of document
identifiers and the output shall be a set of location identifiers. A document search will initiated by a
search criterion and a list of databases to be searched. The output will be a set of document
identifiers.

Chapter 4 Component-based Architecture Analysis Framework

66

</TaggedValue.dataValue>
….
<ModelElement.taggedValue>
…..
</Component>

Fig. 4.9 XMI/XML specification of DocManager

4.1.2.3 CSAFE Architecture Description Language – iXML

The iXML ADL defines three primary architectural elements; component, interface,

and connector. In addition, the iXML ADL also defines property and constraint

elements that may be associated with the primary architectural elements. Fig. 4.10

shows the meta-model that provides definitions for iXML elements. The descriptions

of these elements are as following:

• Component. Denotes an encapsulated, distributable, and executable piece of

software that provides and receives services through well-defined interfaces.

o A component has a name @ identifiers (e.g. Order)
o A component has a stereotype (e.g. infrastructure, database, UI, web services etc.) and visibility

(e.g. private, public).
o A component may have a textual description of the component (e.g. Order component handles

customer’s order that include create order, search and display information).
o A component may have one or more constraints (e.g. Order component can only be connected

to EJB components).
o A component may have one or more properties (e.g. Order component is version 0.2)
o A component may have one or more interfaces of provided and required (e.g. Order: OrderEntry,

OrderableItem and Person). It is not necessary for all of provided and required interfaces to be
occupied.

o Components that are grouped together in ‘container’ component form a composite component.

• Interface. Defines a collection of one or more operations without their

implementation details. An interface can be either provided (i.e. characterizes the

services that the component offers to its environment) or required (i.e.

characterizes the services that the component expects from its environment).

Chapter 4 Component-based Architecture Analysis Framework

67

o Interface has a name @ identifier (e.g. IOrderEntry)
o Interface has a stereotype and visibility (e.g. public, private)
o An interface may have a description (e.g. IOrderEntry is Order component’s provided interface

that consists of three services of CreateOrder, AddOrder and ValidateDetails).
o A provided interface may provide one or more services.
o Interface may have one or more signatures that describe operations and their attributes (e.g.

IOrderEntry: AddOrder, AddOrder(item <int> , quantity <int>, total <int>)).
o An interface may have one or more constraints. A constraint can be either associated with a pre-

condition or post-condition that describes restriction that must be fulfilled before and after
connections to the interface.

o An interface may have one or more properties (e.g. IDoc interface is using standard Z39.50).

• Connector. Denotes the connection between two interfaces that defines that one

interface provides the services and that the other interface requires the services.

o A connector has a name @ identifier (e.g. Order->Customer).
o A connector has a stereotype (e.g. HTTP, TCP/IP, RPC, Database Connector etc.) and role (e.g.

Listener, Writer etc.)
o A connector may have a description (e.g. Order->Customer RPC feature TCP transport (RFC 793)

provides a reliable and stateful connection).
o A connector may have one or more constraints (e.g. Order component communicates with

Customer component must be connected via RPC).
o A connector may have one or more properties (e.g. Order->Customer is using RPC 793).
o Connector implicitly describes interconnection between two components.

Fig. 4.10 iXML architecture meta-model

Chapter 4 Component-based Architecture Analysis Framework

68

• Constraints. Correspond to non-functional requirements such as component cost,

standard, certification and platform restrictions, or dependability requirements

such as security, performance and reliability. A constraint may associate with a

component, an interface, a connector or a configuration.

o A constraint has a concern (e.g. Component) and its sub-concern (e.g. Standard).
o A connector may have a description (e.g. Document delivery service shall conforms to Z39.50

document retrieval standard.).
o A constraint has a type (e.g. pre-condition, post-condition or invariant).
o A constraint has a state that indicates the state of a property or variable (i.e.. equals (EL), not

equals (NE), greater than or equals (GE), greater than (GT), less than (LT) or less than or equals
(LE)).

o A constraint has a value (e.g. Z39.50)
o A constraint has a scope (e.g. Identifier of service affected by the constraint)

• Property. Are used to extend the specification of the element by defining

additional attributes that apply to architectural elements.

o A property has a concern (e.g. Performance) and its sub-concern (e.g. Response time).
o A property has a value (e.g. 4 seconds)

The iXML ADL inherits XML’s schema-based extensibility mechanism allowing

its rules to be extended to support specific needs. Thus, an extension may be written to

modify the elements that we have described above. As indicated in section 4.1.1, the

iXML ADL also supports the derivation of architectures from viewpoint requirements

(i.e. services and constraints).

4.1.3 Formulating Analysis Scenarios

Analysis scenarios are formulated after architectural transformation has taken place.

Analysis scenarios allow software designers and other system stakeholder to tailor the

analysis to explore how specific system concerns may be addressed. Analysis scenarios

provide system stakeholders with a means to augment architectural descriptions with

specific quality concerns and other architectural information as part of the analysis.

Designers can also formulate scenarios to explore “what if” analysis such as assessing

the impact of change and competing designs. Table 4.2 shows the elements of an

analysis scenario.

Chapter 4 Component-based Architecture Analysis Framework

69

Table 4.2 Scenario formulation template

Aspect Description

Concern A desired quality attribute that acts as goal to be addressed and achieved during
the process of architectural design. Concerns are associated with user
requirements, component expectations and business concerns. Concerns may be
categorized as follows:

• Requirement (e.g. performance, security, efficiency availability, maintainability),
• Component (e.g. certification, standards, resources etc.)
• Business (e.g. nature of support, trust, cost)

Sub-concern A lower level of concern that allows either qualitative or quantitative
measurement to be conducted.

Refinement Refinement expresses concern/sub-concern in more detail. For example, a broad
goal such as “modifiability” or “high throughput” is not specific enough
information to assess the suitability of a software architecture. A refinement is
expressed as :
Concern(Sub-concern) <relational operator> <value> unit

Conformity
condition

A condition that must be satisfied in order to ensure conformity to constraint or
design heuristic. Conformity conditions expressed using:

• Precondition – a condition that must be true before the associated scope is
executed.

• Postcondition – a condition that must be true after the associated scope is
executed.

• Invariant – a condition that must always evaluate to be true.
Scope Identifies services or components affected by a concern/sub-concern. Scope also

serves as a traceability mechanism by providing an understanding of
interrelationship between a service or a constraint, and architectural design.

Weighting Prioritises concerns. Values assigned to quality concerns are likely to vary with
application and organization. For the purpose of the evaluation described later in
this thesis, I have adopted a 3-level weighting scheme that relates the value of
required features to customer satisfaction and system operation. The weighting
scheme of High (H), Medium (M) and Low (L) is associated with quantitative values
of 3, 2 and 1:

• High denotes core quality concerns. Failure to provide these features means the
system will not meet customer needs.

• Medium denotes features that are important to the effectiveness and efficiency
of the system. Lack of inclusion of an important feature may affect customer or
user satisfaction.

• Low denotes features that are useful but not central to the system operation.
However, lack of inclusion of a useful feature will not have significant impact on
customer satisfaction.

Table 4.3 shows part of a typical scenario is formulation with concerns, sub-

concerns, and their refinement, type, weighting and the concern scope.

Chapter 4 Component-based Architecture Analysis Framework

70

Table 4.3 Scenario descriptions

Concern Sub-concern Description (Refinement) Wt. Scope

Component Availability
Component(Availability) equals to
web service

High accessLocate

Component Cost Component(Cost) less than to 500 High accessLocate

Component Availability
Component(Availability) equals to
web service

High accessOrder

Component Version
Component(Version) greater than or
equals to 0.3

Low
admin_
services

Component Certification
Component(Certification) equals to
yes

High
user_
validation

Component Version Component(Version) equals to 4.0 Medium
user_
validation

Maintainability Technology
Maintainability(Technology) equals
to updated

Medium
user_
validation

Maintainability Time
Maintainability(Time) less than or
equals to 12 months

Medium
user_
validation

Business Platform
Business(Platform) equals to
Windows 2000/XP

High System

Business Schedule Business(Schedule) equals to strict High System

Performance
Response
Time_PL

Performance(ResponseTime_UPL)
less than or equals to 0.75 seconds

High System

Performance
Response
Time_UPL

Performance(ResponseTime_PL) less
than or equals to 4 seconds

High System

Performance
Throughput_
PL

Performance(Throughput_PL)
greater than or equals to 150
transaction/per second

Medium System

4.1.4 Analysis

The analysis process is based on a flexible XML framework that allows the system

designer to integrate different analysis methods and tools (see Fig. 4.14). The tools are

used to check and suggest improvements to various aspects a software architecture at

design-time (i.e. mapping of services to design templates) and at compose-time (i.e.

mapping of abstract components to concrete components). Currently the analysis

process provides support for:

• Structure checking. Identifies mismatches between provided and required

interfaces and defects in dynamic component interaction.

Chapter 4 Component-based Architecture Analysis Framework

71

• Quality checking. Identifies inconsistencies and mismatches between desired

quality attributes (dependability, organisational, component, etc.) and the system

context.

• Conformance checking. Verifies architectural adherence to design heuristics and

styles

A typical analysis process begins with the mapping of analysis scenarios onto a

repository of architecture design templates as shown in Fig. 4.11. The aim of the

mapping process is to identify design templates whose contribution to specific quality

attributes match the quality thresholds identified in the analysis scenarios. The quality

scenarios generate query expressions that are combined with a set of rules to search the

repository for design templates that match their quality thresholds. The output of the

mapping process is a set of recommended design templates. The analysis process rates

each recommendation on how well it contributes to the quality concerns identified in

an analysis scenario.

Analysis

If <constraint/requirement>
 …...
 Design Template <design template instance>
 <property-guarantees>
 If <constraint>
 Design Template <design template instance>
 <property-guarantees>
 ……

Architectural analysis
scenario

(use services)

Design Template

Property guarantees
Usage rules

Property
validation+

Fig. 4.11 Analysis of design mapping

Architecture design templates are uniformly specified in XML for ease of matching

and to promote portability. Fig. 4.12 shows the elements of an architecture design

template.

Chapter 4 Component-based Architecture Analysis Framework

72

{Category} Type, i.e. style, design pattern, local scheme.
{Name} Denotes unique design template name.
{Also-Known-As} Other well-known names for the design template if any.
{Related-Template} Reference to other closely related design templates.
{Intent} The justification for design template
{Context} The situation in which the template may apply.
{Motivation} Describes template solution.
{Configuration} Specification of the template.
{Consequences (Contribution)} Specification of dependency and contribution that template may
possess shown in scoring factor:

• High – Strongly supported,

• Medium – Moderately supported

• Low – Weakly supported.

Fig. 4.12 Architecture design template

Architecture design templates have three major benefits. First, they help in

understanding and predicting the properties of design by offering a context for the

creation and application of design experience. Secondly, they reduce the effort needed

to understand another person’s design by reducing the number of new concepts to be

learned. Thirdly, they aid in creating and documenting a system design by providing

rationale for component composition.

The next stage in the analysis involves modifying the system architecture to take into

account the proposed recommendations. This is a two-stage process:

• First, the current system services are mapped onto the recommended architecture

design templates. This activity must take into any specified constraints and design

heuristics.

• Secondly, abstract components in the selected alternative architecture are mapped

onto concrete components.

The process of mapping system services onto architecture design templates is tool-

supported and involves selecting the relevant source component service and searching

within the design template for a matching service. When a matching service is found,

the destination component name appears and the service mapping is completed. The

process takes into account the dependencies between different services and the

Chapter 4 Component-based Architecture Analysis Framework

73

component interfaces. Fig. 4.13 shows a screenshot of the process in action where a

service called document_services is found provided by IRequest interface of

DocumentRequesterB and the service is subsequently mapped on the destination

component.

Fig. 4.13 Mapping a service onto a design template component

In cases where a matching service cannot be found, the system designer may map

the service manually using a re-factoring facility provided by the tool (see Fig. 4.14). Re-

factoring also allows the system designer to configure connectors, and instantiate

required and provided interfaces for the destination component while ensuring that

specified constraints are not violated.

Fig. 4.14 Re-factoring facility menu

Chapter 4 Component-based Architecture Analysis Framework

74

The algorithm of mapping services onto the recommended architecture design

templates are as follow:

Algorithm DesignTemplate<design template instance><property-guarantee>
Begin
 For each service do
 search designTemplate(service)
 If service = found then
 check interface.signature
 If signature match then
 For service.constraint[] do
 propertyValidation(constraint)
 match[true/false]
 End For
 If match = true then
 map service → dest.component
 End If
 Else If match = false then
 flag mismatches
 End Else if
 End If
 End If
 End For
End

The second stage of the process involves mapping abstract components to concrete

components. The analysis tool aids the process by indicating how well the mapping

fits, exposing mismatches and providing suggestions for further component selection.

Fig. 4.15 shows how the tool supports the process of mapping of an abstract

component, AdminManager, to three concrete components (i.e. AdminManager_1,

AdminManager_2 and AdminManager_3). Concrete component fitness is indicated

in percentage terms next to the concrete components. The mismatches associated with

each concrete component are also indicated.

Chapter 4 Component-based Architecture Analysis Framework

75

Fig 4.15 Mapping onto concrete component

Like architecture design templates, concrete component are also uniformly

specified in XML as shown in Table 4.4. Detailed specifications for the concrete

components used in this research are provided in Appendix A3.

Table 4.4 Component template

{Name} denotes a unique name for the component
{Type:Subtype} denotes the component with a particular behaviour and services its deliver
{Description} denotes a details explanation of the component
{Properties} denotes component’s concern and sub-concern and its values
{Constraints} a predicate imposed on one or more component properties
{Interfaces} denotes the interfaces specified on the component

4.1.5 Trade-off Analysis and Rating - Negotiation

Trade-off analysis is intended to support the process of balancing the architectural

considerations and stakeholder concerns with the available component functionality.

CSAFE supports trade-off analysis through the implementation of the Simple Multi-

Chapter 4 Component-based Architecture Analysis Framework

76

Attribute Rating Technique (SMART) [Shepetukha01]. SMART is a form of the

multi-attribute utility theory methods.

Although SMART has some similarities with other multi-attribute analysis

approaches such as the Analytic Hierarchical Process (AHP) [Saaty90], it does have its

own peculiarities. As with AHP, SMART contextualises the decision making process

to a decision maker and a set of previously identified options to be considered. Rather

than relying on pair-wise comparisons, an assumption of the SMART approach is that

performance against attributes can ultimately be measured, and a value assigned.

Although various mechanisms can be used to measure performance and assign values,

where appropriate, value functions can be used. This ability to capture a subtle,

perhaps subjective and possibly complex relationship between an option’s

performance according to a particular attribute and the value assigned to that

performance is a potential strength of SMART. Another is the weighting of the

attributes in order to recognise their relative priority. Together, these aspects allow

SMART to balance different strengths and weaknesses across options, and allow for a

degree of weighted trade-off.

SMART provides a means for assessing each of the quality concerns to reflect its

relative importance to the design decision. By refining the scores with the relative

weights of all quality concerns, the utility value or contribution for each alternative

solution can be computed. The utility function used in SMART [Shepetukha01] is

shown below; where 𝑤𝑖 is the scaling value (weight) assigned to the ith of m quality

concerns, 𝑠𝑖𝑗∗ is the utility for alternative j on criterion i, and n is number of alternative

solutions.

𝜇𝑗 = �𝑤𝑖

𝑚

𝑖=1

𝑠𝑖𝑗∗ �𝑤𝑖

𝑚

𝑖=1

� , 𝑗 = 1 … 𝑛,

A maximum score of 1 for the utility value indicates the highest probability of the

quality concerns being achieved. Whereas, the minimum of zero indicates the least

Chapter 4 Component-based Architecture Analysis Framework

77

acceptable trade-off. While high rating scores increase the likelihood of an architecture

design template being selected, specific analysis of its contribution to individual quality

concerns may be needed to provide better understanding of the results at every level.

Fig. 4.16 shows the example of three alternative architecture contributions to different

quality sub-concerns, generated by the CSAFE trade-off analysis.

Fig. 4.16 Contribution of suggested alternatives according to sub-concerns

In addition to trade-off analysis, CSAFE provides support for sensitivity at quality

concern and sub-concern levels. Sensitivity analysis may be needed to establish how

robust the choice of an architecture is to changes in the weights for quality concerns

identified in the analysis scenario. Conducting sensitivity analysis can help the system

designer understand how variations in the relative weights of critical quality concerns

might affect the suggested solutions, and may lead the designer to reconsider some of

the weights associated with the quality concerns. Sensitivity analysis shows that, in many

cases, large variations in the weights are often required before one option becomes

more attractive than another. It is therefore possible, in certain cases, to trade-off

quality concern weights without adversely affecting the system quality.

Chapter 4 Component-based Architecture Analysis Framework

78

The system designer performs sensitivity analysis by making systematic changes to

the relative weights of the quality concerns and observes how the variations affect the

contributions of the recommended solutions. Changes may involve:

• Varying concern (q) weights to minimum one at a time:

𝜇𝑗 = � 𝑤𝑖

𝑚!=𝑞

𝑖=1

𝑠𝑖𝑗∗ �𝑤𝑖

𝑚

𝑖=1

� , 𝑗 = 1 … 𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑤𝑞 = 0

• Varying concern (q) weights to maximum one at time:

𝜇𝑗 = � 𝑤𝑖

𝑚=𝑞

𝑖=1

𝑠𝑖𝑗∗ �𝑤𝑖

𝑚

𝑖=1

� , 𝑗 = 1 … 𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑤!𝑞 = 0

The results of the sensitivity analysis are a set of recommendations that comprise

change impact graphs and recommendations that guide the system designer to

improve the architecture design. Fig. 4.17 shows an example of a CSAFE sensitivity

analysis for the maintainability quality concern. The graph shows how the benefits

from three architectural alternatives vary with changes in the relative weighting of the

quality concern. At weighting value of 0.38, the architectural alternative, S2, provides

the best benefit and S1 the worst. At a weighting of 0.45, S3 provides the best benefit.

However, S2 remains generally unaffected by the changes.

Fig. 4.17 Sensitivity analysis of Maintainability

Chapter 4 Component-based Architecture Analysis Framework

79

4.2 The Toolset

CSAFE is supported by an integral toolset. The toolset was specified and designed

using the UML notation, and implemented in the Java programming language. An

overview of the toolset use cases is shown in Fig. 4.18. The complete use case

specification and object model for the toolset is provided in Appendix B.

CSAFE Toolset

Formulate
Scenario

Assess
Architecture

Analyse
Architecture

Rate
Design

Map
Design

Map
Component

Map
Service

<<extend>> <<extend>>

<<extend>>

<<extend>>

Maintain Component
Repository

Transform
Architecture

Maintain Design
Template Repository

Analysis
Repository

XMI/XML
Parser

Analysis
viewpoints

Construct
Architecture

<<include>>

Generates reportGenerate graphs

<<extend>><<extend>>

Domain
expert

Project
manager

System
architect

Programmer

Requirement
viewpoints

Interator Non-interator

Fig. 4.18 CSAFE toolset use-case diagram

4.2.1 CSAFE Toolset Architecture

The CSAFE toolset has six main components: The XMI/XML parser, scenario

formulator, analyser, iXML ADL, trade-off analyser and rater, and report generator.

These components are supported by an analysis repository containing the design

Chapter 4 Component-based Architecture Analysis Framework

80

template library, component library and architecture database. Fig. 4.19 shows

architecture of the CSAFE toolset.

Analysis Repository

Component
library

XMI/XML parser AnalyserScenario formulator Trade-off analyser
& rater

Report generator

Design template library (i.e. architectural styles,
design patterns, local schemes

Architecture
database

Structure
checker

Other
checker

Conformance
checker

Quality
checker

iXML ADL

Fig. 4.19 Architecture of CSAFE toolset

XMI/XML Parser

This supports the early stage of the CSAFE process by transforming architectures

expressed in UML to iXML ADL format, and by verifying architectures expressed in

iXML ADL. Table 4.5 and Fig. 4.20 show the sequence of the transformation and

the actors involved.

Table 4.5 Transform architecture use-case description

CSAFE: Transform Architecture

Actors System Designer, XMI/XML Parser, Analysis Repository
Description 1. System designer selects the XMI/XML architectural specification from

the analysis repository.
2. System designer enters project name and clicks OK.
3. The XMI/XML parser parses the architectural specification and checks

it against XML schema/DTD.
4. The XMI/XML parser creates a design schema for the architecture.
5. The XMI/XML parser stores the architectural vectors in analysis

repository.
6. The tool organizes the architectural elements into a tree hierarchy.

Data XMI/XML architectural specification
Stimulus System designer selects ‘New Project’ from CSAFE File menu
Response CSAFE parses and stores the architecture design in the analysis repository.
Alternative flow of
events

3.a. Invalid XMI/XML description. Indicate error message.

Chapter 4 Component-based Architecture Analysis Framework

81

System
Designer

display error message

display tree hierarchy

selects XMI/iXML specification

parse XMI/iXML specification

Alt

[XMI/XML Valid]

[XMI/XML Invalid]

store architectural elements

verify specification

create schema

XMI/XML
Parser Analysis Repository

returns specification

Fig. 4.20 Transform architecture sequence diagram

Scenario Formulator

The scenario formulator allows the system designer and other stakeholders to identify

and explicitly represent system quality concerns as goals to be addressed and achieved

during the process of architectural design. Product quality concerns can be associated

with any element of the system design. To facilitate scenario formulation, the tool

incorporates a process for weighting and ranking quality concerns based on the

scheme described in section 4.1.3. Data from analysis scenarios provide input to the

analysis and trade-off processes. A use case description of the scenario formulation

process is provided in Appendix B1.2. Analysis scenarios are stored in the analysis

repository.

Analyser

The analyser is responsible for mapping analysis scenarios onto architecture design

templates, and for transforming abstract system designs to concrete compositions. The

analyser incorporates a set of rules that relate quality concerns in analysis scenarios to

design templates to identify architectural solutions that best address the quality

Chapter 4 Component-based Architecture Analysis Framework

82

concerns. However, no single architectural solution can adequately address all the

quality concerns raised by stakeholders; every architectural solution is a trade-off of

competing quality concerns. The analyser rates each architectural solution for its

contribution to critical quality concerns.

Selected design templates are instantiated to facilitate service and component

mapping as discussed in Section 4.1.4. The process of mapping services to instantiated

design templates takes into account any specified constraints and design heuristics. The

analyser has a set of pre-defined rules to ensure the service mapping proceeds

correctly. Some of the rules are shown in Table 4.6. Lastly, the abstract components in

a selected alternative architecture are mapped onto concrete components. The

analyser flags warning messages for structural (including configuration) and property

mismatches found between the components. Analysis scenarios are stored in the

analysis repository. Use case descriptions of the mapping and rating processes is

provided in Appendix B1.4 – B1.7.

Table 4.6 Service mapping rules

No. Rule Description

1. If (service not found and interface’s design component is provided and constraints not
violated)
Then
(configured connectors between design component and abstract component)

2. If (service not found and design interface is ‘Required’)
Then
(violation: service not provided by abstract’s component)

3. If (service found and interface type match)
Then
(violation: attempting to connect component’s interfaces of ‘Provided’ -> ‘Provided’ or
‘Required’ -> ‘Required’)

4. If (service found and interface type not matching and abstract component interface is
‘Provided’ and constraints not violated)
 Then
(configured connectors between abstract component and design component)

5. If (service found and interface type not matching and abstract component interface is
‘Required’ and constraints not violated)
Then
(configured connectors between design component and abstract component)

Chapter 4 Component-based Architecture Analysis Framework

83

Trade-off Analyser - Negotiator

The trade-off analyser is responsible to assessing and rating competing architectural

solutions for their contributions to different quality concerns and different concrete

components configurations. The trade-off analyser generates results in tabular and

graph format for qualitative and quantitative analysis. Use case descriptions of the

assessment process are provided in Appendix B1.8 – B1.9.

Design Template Repository

The design template repository stores architectural design templates and the result of

analysis and composition. Fig. 4.21 shows the design template metamodel. The

repository contains facts about the design templates and rules that govern their correct

use.

Fig. 4.21 Design template metamodel

A snippet of the design template XML Data Type Description (DTD) is shown in

Table 4.7. A complete description is provided in Appendix A2, Table A2.1.

Chapter 4 Component-based Architecture Analysis Framework

84

Table 4.7 Design template XML DTD description

<!ELEMENT NXML (CATEGORY, RNAME, ALSOKNOWNAS, RELATEDRULES, INTENT, CONTEXT,
MOTIVATION, CONTRIBUTIONS, CONFIGURATION)>

<!sELEMENT CATEGORY (#PCDATA)>
<!ELEMENT RNAME (#PCDATA)>
<!ELEMENT ALSOKNOWNAS (#PCDATA)>
<!ELEMENT RELATEDRULES (RELATEDRULE.DESCRIPTION*)>
<!ELEMENT RELATEDRULE.DESCRIPTION EMPTY>
<!ATTLIST RELATEDRULE.DESCRIPTION RNAME CDATA #REQUIRED >
<!ELEMENT INTENT (#PCDATA)>
<!ELEMENT CONTEXT (#PCDATA)>
<!ELEMENT MOTIVATION (#PCDATA)>
<!ELEMENT CONTRIBUTIONS (CONTRIBUTION.DESCRIPTION*)>
<!ELEMENT CONTRIBUTION.DESCRIPTION (#PCDATA)>
<!ATTLIST CONTRIBUTION.DESCRIPTION QUALITY CDATA #REQUIRED
 SUBQUALITY CDATA #REQUIRED
 WEIGHT CDATA #REQUIRED>
<!ELEMENT CONFIGURATION (COMPONENT*, INTERFACE*, CONNECTOR*)>

Component Repository

The component repository is a machine searchable library of black-box components.

Most component repositories specify components using interface-description-

languages (IDLs), which are restricted to describing only structural properties. Our

approach uses an extensible constraint notation to express semantic properties of a

component, in addition to structural properties. Constraints are expressed using

concerns, sub-concerns, relational operators, conformity conditions (i.e. precondition,

post-condition, or invariant), values and services. The component metamodel is shown

in Fig. 4.22. A complete description is provided in Appendix A3, Table A3.1.

Chapter 4 Component-based Architecture Analysis Framework

85

Fig. 4.22 Component metamodel

Report Generator

Report generator is used to construct reports of the architecture analysis. The report

generator can be configured to generate tailored reports of the analysis to suit different

stakeholder interests.

4.3 Summary

This chapter has described CSAFE, the proposed architecture analysis approach for

supporting component-based black-box system development. The chapter has

explained how CSAFE fits into a general design process, outlined the steps in the

process and discussed each stage in the process. The chapter has explained the link

between CSAFE and requirements analysis, and shown how this can be used to

support initial architectural design. I have shown in this chapter how CSAFE provides

supports for diverse stakeholder involvement. I have also shown how CSAFE provides

explicit support for negotiation (i.e. trade-off analysis), support for standard modelling

notations such as UML and diversity in analysis. The chapter has also discussed the

CSAFE toolset architecture and its various components. Detailed use cases describing

the functionality of the toolset are provided in Appendix B. A detailed user guide for

CSAFE toolset is provided in Appendix C.

86

Chapter 5

Evaluation 1: Electronic Document
Delivery Information System

This chapter presents the first of two case studies used to evaluate the architectural

analysis framework (CSAFE) described in Chapter 4. The case study used in the

evaluation is derived from the specification of an actual Electronic Document Delivery

and Management System (EDDIS) [Kotonya07]. A summarised version of the

evaluation has been published in [Admodisastro11]. The objective of the first

evaluation is to demonstrate the key features of CSAFE and the practicability of the

framework. The evaluation demonstrates how CSAFE can be used to construct,

analyse and refine a software system architecture from requirements to system

composition. The evaluation is conducted using two different stakeholder scenarios to

demonstrate CSAFE’s support for broad stakeholder involvement in architectural

design and analysis.

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

87

5.1 The Case Study

The Electronic Document Delivery and Interchange Systems (EDDIS) is a web-based

library system for the UK Higher Education sector to help users obtain documents,

other library items not available at their local library. The main function of EDDIS is

to manage the process of identifying, locating, ordering and supplying electronic

documents. Users access to the system via web-based interface using valid usernames

and passwords. EDDIS users have access to a range of services determined by the

permissions associated with the accounts they hold. Each EDDIS node has an

administrator whose task is to set up and manage user accounts.

To obtain a document, an EDDIS user must place an order with the document

supplier. However, before a document order can be placed, the user must first obtain

the document identifiers and its location identifiers from a centralised document

registry. All document interchange between an EDDIS node and the document

supplier use the Z39.50 document retrieval protocol. When the ordered document

arrives on the EDDIS server it is automatically emailed to the requester as a PDF

document. EDDIS users can also order non-digital items. In this case, the physical

item is supplied to the library administrator who notifies the requester via email. The

next section describes a subset of the EDDIS requirements and shows how the

viewpoints approach described in Section 4 was used to elicit and partition them.

5.2 EDDIS Viewpoints and Requirements

The viewpoint approach described in Section 4 is used to elicit EDDIS requirements.

Five viewpoints are identified for the EDDIS user (Vp1), administrator (Vp2),

document_registry (Vp3), document_supplier (Vp4) and consortium (Vp5). Table 5.1

shows the EDDIS requirements associated with each viewpoint instance. These

requirements are associated with a number of services and constraints. The detailed

descriptions of services and constraints are provided in Appendix D2 and Appendix

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

88

D3 respectively. Services represent expressions of required functionality expressed in

way that shows the dependencies between the services.

Constraints represent stakeholder concerns such as component cost, component

certification, component memory and platform restrictions, or dependability

requirements such as security, performance and availability. They may also represent

elements of interdependence that are introduced to allow services to meet certain

architectural considerations. Finally, constraints may capture dependencies that are

introduced to make certain component choices acceptable in the current context,

particularly with regard to the outcome of negotiation and thus may hold important

design rationale information. Each requirement is ranked as described in Section 4.1.1

(i.e. as essential, important or useful) to determine its priority level.

Table 5.1 EDDIS viewpoints and requirements

Viewpoint Requirement
ID Role/Type ID Description Service Ranking
Vp1 EDDIS_User

(Operator)
R1.1 EDDIS users shall be able to login on to

the system via a Web-based interface
using valid usernames and passwords.

S1.1.1
S1.2.1

Essential

R1.2 Once logged in, EDDIS users will have
access to a set of services determined by
the permissions associated with their
accounts.

S1.2.1 Important

R1.3 EDDIS shall allow users to search and
identify documents, which interest them.
A document search will be initiated by a
search criterion and a list of databases to
be searched. The output will be a set of
document identifiers.

S1.3.1

Essential

R1.4 EDDIS shall allow users to determine the
location of documents. A documents
locate service will be initiated by a set of
document identifiers and the output
shall be a set of location identifiers.

S1.4.1 Essential

R1.5 EDDIS user shall allow users to order
documents. A document order will be
initiated by a set of document and
location identifiers. The output will be a
set of order identifiers and
electronic/hardcopy documents.

S.1.5.1 Important

Vp2 EDDIS_
Administrator
(Operator)

R2.1 EDDIS shall provide facilities for setting
up and managing user accounts.

S2.1.1 Important

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

89

Viewpoint Requirement
ID Role/Type ID Description Service Ranking
 R2.2 EDDIS shall allow admin to create

account for EDDIS user. Creating a new
account require user name, matrix/staff
no. and user level e.g. Undergraduate,
Postgraduate and Staff.

S2.2.1 Essential

R2.3 EDDIS shall allow admin to delete EDDIS
user account. An account delete require
matrix or staff no.

S2.3.1 Important

R2.4 EDDIS shall allow admin to assign access
level for EDDIS user.

S2.4.1 Essential

Vp3 Document_
Registry
(Component)

R3.1 EDDIS shall be able to access a
centralized document registry to obtain
document and location identifiers using
the Z39.50 document retrieval standard.

S3.1.1
S3.1.2

Important

Vp4 Document_
Supplier
(Component)

R4.1 The document order client will be use
the Z39.50 document retrieval standard.

S4.1.1 Important

Vp5 EDDIS_
Consortium
(Organisation)

R5.1 The system shall run on Microsoft
Windows 2000 and Windows XP.

 Essential

R5.2 The system shall be develop according to
schedule and cost estimated.

 Important

R5.3 The system shall ensure that a
reasonable level of performance is
maintained across the services at all
times.

 Important

R5.4 The system shall ensure that availability
of service is given to EDDIS users
accordingly.

 Essential

R5.5 The system shall ensure that it is easy to
maintain that allow for graceful
replacements or extensions of
components.

 Useful

Fig. 5.1 shows the use-cases associated with high-level service descriptions that

represent the underlying EDDIS functionality. These can be combined with other

forms of modelling such as interaction diagrams (see Fig. 5.2) and statecharts to

provide a more detailed description of the system behaviour. However, for

component-based systems, detailed requirements specifications are often counter-

productive as they tend preclude possible component solutions [Admodisastro06].

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

90

EDDIS

Document
Supplier

EDDIS
Administrator

Document
Registry

User_validation

Document_ services

Document_
search

Document_
locate

EDDIS
User

Acct_
accesslevel

Acct_
remove

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<uses>>

<<uses>>

Admin_services

Document_
order

Acct_
create

Fig. 5.1 EDDIS use-case diagram

Validation_services Document_services Document_registry Document_supplier

authorise_access()
[login ∈ valid login]

search(sc,D)
[D ⊆Pdb]

enter(username,password

locate(di,C)
[C ∈ Pdb]

order(document_ids,location_ids)
[Ssupp ∈ Psupp]

resetAccessCondition()

logout()

login = username-password pair
validLogin = set of valid username-password pairs
D = set of selected databases
Pdb = set of user permissible databases
sc = search criterion
C = set of selected catalogues
Pcat = set of user permissible catalogues
Ssupp = set of selected suppliers
Psupp = set of user permissible suppliers

EDDIS User

logout()

validateUser
(username,password)

Fig. 5.2 Sequence diagram for EDDIS services

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

91

5.2.1 Constructing the baseline EDDIS Architecture

The input to the architecture analysis process is the software system architecture. A

baseline architecture is constructed for the EDDIS by partitioning its service

descriptions and their associated constraints into abstract components. Fig. 5.3 shows

the result of partitioning of the EDDIS requirements onto five design-time

components using the approach described in Section 4.1.2. The process takes into

account the system and service constraints, and dependencies between the services.

Vp2

Vp1

Vp3

Vp5

..

..

..

..

R1.1

R1.2

R1.3

R1.4

..R1.5

..R2.1

..R3.1

..R4.1

..R5.1

..R5.2

..R5.3

..R5.4

..R5.5

! !

!

!

!

! !

!

S1.1.1

!

S1.2.1

S1.3.1

!

!

S1.4.1

S1.5.1

S2.1.1

S3.1.1 S3.1.2

S4.1.1

C5.1.3

C5.2.1

C5.1.2

C1.1.1 C1.2.1 C1.3.1

C2.1.1 C2.1.2

C3.1.1 C3.1.2 C3.1.3

<<abstract>>
ValidManager

<<abstract>>
DocManager

<<abstract>>
AdminManager

<<web service>>
DocSupplier

<<web service>>
DocRegistry

S1.1.1

!
C3.2.1

Vp4

!
C5.3.1

!
C5.6.2

!

C5.2.2

!

C5.3.2

!
C5.6.3

S3.1.1 S3.1.2
S4.1.1

S1.2.1 S1.3.1 S1.4.1 S1.5.1

S2.1.1

S2.2.1

S2.3.1

S2.4.1 S2.2.1 S2.3.1 S2.4.1

Abstract components compositionServices / ConstraintsViewpoints

..R2.2

..R2.3

..R2.4

!
C5.4.1

!
C5.6.1

!
C5.1.5

!
C5.2.3

!
C5.5.1

!
C5.1.4

!
C3.3.1

!
C3.3.2

!

C5.1.1

!

! !
C4.1.1

C4.3.1

C4.2.1

!
C5.4.2

!! !
C4.1.1 C4.3.1C4.2.1

!
C5.1.4

!
C5.4.2

!
C3.3.2

!
C5.1.5

!
C5.2.3

!
C5.5.1

!

! !! !

C3.1.3

C1.1.1 C1.2.1 C1.3.1 C3.3.1

! !
C3.1.1 C3.2.1

!
C5.2.1

!
C5.3.1

!
C5.6.2

!

C5.1.1

!
C2.1.1

!

C5.1.2

!

C5.2.2

!

C5.3.2

!
C5.6.3

!
C2.1.2

!
C3.1.2

S1.2.1

S1.2.1

!
C5.1.3

!
C5.4.1

!
C5.6.1

Legends:

 Business Constraint Component Constraint Quality Constraint Service! ! !

Fig. 5.3 EDDIS service partitioning

The partitioned services are then mapped onto a UML component model as

shown in Fig. 5.4. In addition to enhancing the system documentation, the partitioning

and mapping process provide traceability back to requirements formulation. It was

decided that functionality for the AdminManager, ValidManager and DocManager

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

92

would be provided using off-the-shelf components while DocumentRegistry and

DocumentSupplier would be provided by web services.

ValidManager

DocManagerAdminManager

DocumentRegistry

DocumentSupplier

IAuthorization

IRegistry

IManage ILogin IQuery

ISupplier

<<interface>>
IAuthorization

setLogin()
resetCondition()

<<interface>>
ISupplier

setOrder()

<<interface>>
IRegistry

setSearch()
setLocate()

<<interface>>
IQuery

search()
locate()
order()

<<interface>>
ILogin

validateUser()
logout()

<<interface>>
IManage

addUser()
delUser()
setAccess()

Fig. 5.4 EDDIS architectural description with interface identification

5.3 The Analysis

The architecture analysis process begins with the transformation of the UML

description of EDDIS into a machine proccessable iXML specification. The CSAFE

parser supports the transformation process by parsing and storing EDDIS architectural

elements in an analysis repository, which is accessible by other CSAFE tools. It

provides a uniform interface to the underlying XML object model that represents

elements of the architecture (i.e. architectural structure with its descriptions, services,

interfaces, constraints and properties). Table 5.2 shows the original DocManager

component specification, and Fig. 5.5 shows part of the XMI/XML transformation of

the DocManager
1

 component.

1 The description has been simplified but does not affect connotation of the content.

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

93

Table 5.2 DocManager component specification

Name DocManager

Type:Subtype Component

Description Users will have access to a set of services determined by the permissions
associated with their account. All users are allows for document search and locate.
Only staff library can place document order.
A document search will be initiated by a search criterion. The output will be a set of
document identifiers.
A document locate service will be initiated by a set of document identifiers and the
output shall be asset of location identifiers.

Properties - Component.Standard = null
- Component.Cost = null
- Component.Version = 0.2
- Component.Availability = inhouse
- Component.Certification = No
- Component(In) = 4
- Component(Out) = 2
- Component.Services = IDiscovery, IOrder
- Business.Cost = Null
- Business.Schedule = Null
- Business.Platform = Windows XP
- Reliability.Availability = Nul
- Maintainability.Time = Null
- Maintainability.Requirement = user
- Maintainability.Technology = Null
- Performance.ResponseTime_UPL = 0.5 sec.
- Performance.ResponseTime_PL = 3 sec.
- Performance.Throughput_UPL = 150 trans. per sec.
- Performance.Throughput_PL = 75 trans. per sec.

Constraints - Performance of response time must less than or equals to 0.75 sec. under-peak-
load and less than or equals to 4 sec. peak-load.

- Performance of throughput must greater or equals to 150 trans. per sec. under-
peak-load and must greater or equals to 70 trans. per sec. peak-load.

- Maintainability of requirement must equals to user.
- Component of availability must equals to inhouse.
- Business of platform must equals to Windows XP.

Interfaces Provided -> IDiscovery, IOrder
Required -> IRegistry, ISupplier, ILogin

<Component xmi.id="Im456fe435m1254d641e78mm7be8" name="DocManager"
visibility="private" isSpecification="false" isRoot="false" isLeaf="false" isAbstract="false"
isActive="false">
<ModelElement.constraint>
<Constraint xmi.idref="I3003240am1254ec16e03mm7db6"/>
 <Constraint xmi.idref="I3003240am1254ec16e03mm7daa"/>
 <Constraint xmi.idref="Im7e3cc993m12665521f35mm7b27"/>
 <Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bef"/>
 <Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bed"/>
 <Constraint xmi.idref="Im76dd02a2m12668f792b5mm7beb"/>

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

94

 <Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bdf"/>
 <Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bdd"/>
 </ModelElement.constraint>
<ModelElement.taggedValue>
 <TaggedValue.dataValue>Users will have access to a set of services determined by the
permissions associated with their accounts. All users are allows for document search and locate.
Only library staff can place document order. A documents locate service will be initiated by a set
of document identifiers and the output shall be a set of location identifiers. A document search
will initiated by a search criterion and a list of databases to be searched. The output will be a set
of document identifiers.
</TaggedValue.dataValue>
….
<ModelElement.taggedValue>
…..
</Component>

Fig. 5.5 XMI/XML specification of DocManager

Fig. 5.6 shows how the process is supported in the toolset and how the final result is

organised. The root of the tree represents the overall system architecture. The nodes

of the tree represent the system components. Each component has a set of interfaces

and connectors. Each architectural element is also associated with an optional set of

properties and constraints. Part of the XMI/XML specification of the system is shown

in the right pane.

Fig. 5.6 Parsed EDDIS architecture (left pane) and EDDIS XMI/XML source file (right pane)

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

95

The EDDIS architecture tree comprises five components; AdminManager,

DocManager, DocumentRegistry, DocumentSupplier and ValidManager (see Fig. 5.6,

left pane). The architecture tree shows the component nodes expanded to reveal

provided and required interfaces. A provided interface is associated with service(s), for

example, IManage provides services; acct_create, acct_remove, acct_setAccess, and

admin_services. Lastly, the parser also captures other architectural element

information such as type, description, signatures, role, properties and constraints as

shown in Fig. 5.7.

Fig. 5.7 DocManager component specification (right pane)

5.3.1 Formulating EDDIS Analysis Scenarios

After architectural transformation has taken place, analysis scenarios may be

formulated. Analysis scenarios are a simple yet effective way to represent quality

concerns as goals to be addressed and achieved during the process of architectural

analysis. Quality concerns relate to non-functional requirements (NFRs). They reflect

concerns such as system dependability, project cost, schedule and effort, and

component concerns such as availability, certification, support and compatibility.

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

96

CSAFE allows system designers to create scenarios to perform structural,

conformance and quality checks as well as “what-if” analysis. For the purpose of this

analysis we have formulated two different scenarios. The first scenario is formulated

from the Requirement Viewpoints to improve the maintainability, performance and

reliability (i.e. availability) of EDDIS. The second scenario is formulated from the

Programmer viewpoint, who is interested to improve only performance of EDDIS.

The analysis scenarios may be selective (i.e. component or service level) or global

(system level). Table 5.3 and Table 5.4 show the concerns identified for the scenarios.

Scope identifies aspects of the system affected by a particular concern. Detailed

descriptions of these quality concerns are provided in Appendix G.

Table 5.3 EDDIS Scenario descriptions – Scenario 1

Concern Sub-concern Description (Refinement) Scope Wt.

Component Availability Component(Availability) equals
to web service

accessLocate High

Component Certification Component(Certification) equals
to yes

accessLocate Medium

Component Cost Component(Cost) less than to
500

accessLocate Low

Component Standard Component(Standard) equals to
Z39.50

accessLocate High

Reliability Availability Reliability(Availability) greater
than or equals to 60

accessLocate High

Component Availability Component(Availability) equals
to web service

accessOrder High

Component Certification Component(Certification) equals
to yes

accessOrder Medium

Component Cost Component(Cost) less than to
650 yearly

accessOrder Medium

Component Standard Component(Standard) equals to
Z39.50

accessOrder High

Maintainability Time Maintainability(Time) less than or
equals to 18 months

accessOrder High

Reliability Availability Reliability(Availability) greater
than or equals to 65%

accessOrder Medium

Component Availability Component(Availability) equals
to web service

accessSearch High

Component Certification Component(Certification) equals
to yes

accessSearch Medium

Component Cost Component(Cost) less than to
500

accessSearch Low

Component Standard Component(Standard) equals to
Z39.50

accessSearch High

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

97

Concern Sub-concern Description (Refinement) Scope Wt.

Reliability Availability Reliability(Availability) greater
than or equals to 60

accessSearch High

Component Availability Component(Availability) equals
to inhouse

admin_
services

Low

Component Version Component(Version) greater than
or equals to 0.3

admin_
services

Low

Maintainability Requirement Maintainability(Requirement)
equals to user

admin_
services

Low

Component Availability Component(Availability) equals
to inhouse

document_
services

Low

Component In Component(In) less than or
equals to 5

document_
services

Medium

Component Standard Component(Standard) equals to
Z39.50

document_
services

High

Maintainability Requirement Maintainability(Requirement)
equals to user

document_
services

Low

Maintainability Time Maintainability(Time) less than or
equals to 18 months

document_
services

Low

Component Availability Component(Availability equals to
inhouse

user_
validation

Medium

Component Certification Component(Certification) equals
to yes

user_
validation

High

Component Version Component(Version) equals to
4.0

user_
validation

Medium

Maintainability Technology Maintainability(Technology)
equals to updated

user_
validation

Medium

Maintainability Time Maintainability(Time) less than or
equals to 12 months

user_
validation

Medium

Business Cost Business(Cost) equals to strict System Medium
Business Platform Business(Platform) equals to

Windows 2000/XP
System High

Business Schedule Business(Schedule) equals to
strict

System Medium

Performance Response
Time_PL

Performance(ResponseTime_UPL
) less than or equals to 0.75
seconds

System High

Performance Response
Time_UPL

Performance(ResponseTime_PL)
less than or equals to 4 seconds

System High

Performance Throughput_
PL

Performance(Throughput_PL)
greater than or equals to 150
transaction/per second

System Medium

Fig. 5.8 shows the scenario derived for the programmer viewpoint (i.e. Scenario 2).

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

98

Fig. 5.8 Creating a new analysis scenario ‘Scenario 2’

Table 5.4 EDDIS Scenario descriptions – Scenario 2

Concern Sub-concern Description (Refinement) Scope Wt.

Performance Response
Time_PL

Performance(ResponseTime_UPL
) less than or equals to 0.75
seconds

System High

Performance Response
Time_UPL

Performance(ResponseTime_PL)
less than or equals to 4 seconds

System High

Performance Throughput_
PL

Performance(Throughput_PL)
greater than or equals to 150
transaction/per second

System High

Component Availability Component(Availability) equals
to web service

accessLocate High

Component Certification Component(Certification) equals
to yes

accessLocate Medium

Component Cost Component(Cost) less than to
500

accessLocate Low

Component Standard Component(Standard) equals to
Z39.50

accessLocate High

Component Availability Component(Availability) equals
to web service

accessOrder High

Component Certification Component(Certification) equals
to yes

accessOrder Medium

Component Cost Component(Cost) less than to
650 yearly

accessOrder Medium

Component Standard Component(Standard) equals to
Z39.50

accessOrder High

Component Availability Component(Availability) equals
to web service

accessSearch High

Component Cost Component(Cost) less than to
500

accessSearch Low

Component Standard Component(Standard) equals to
Z39.50

accessSearch High

Component Availability Component(Availability) equals
to inhouse

document_
services

Low

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

99

 Fig. 5.9 show part of the analysis scenario for the document_services service in

Scenario 1. The constraints associated with the service and their weightings are shown

in the right pane. The bottom left form in the right pane provides a refinement of the

selected constraint. The scale information shows indicates lowest and highest possible

weighting value for the constraint. The tool uses this information to generate query

statements that are used by the mapping processes to locate matching architectural and

component solutions.

Fig. 5.9 Formulating scenario for document_services – Scenario 1

5.3.2 Analysing EDDIS Architecture

The analysis begins with the mapping of a scenario onto architectural design templates

as described in Section 4.1.4 (see Fig. 5.10 and Fig. 5.11 for Scenario 1 and Scenario 2

respectively). The output of the scenario mapping process is a set of architectural

design templates that best match the qualities and the quality thresholds identified in

the analysis scenario. Architectural design templates include design patterns,

architectural style and local organisation-defined design schemes. The flexibility

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

100

provided by CSAFE means that organisations can add their own custom design

templates, design patterns and heuristics.

Fig. 5.10 Mapping EDDIS formulated scenarios of Scenario 1 onto Design Template Library

Fig. 5.11 Mapping EDDIS formulated scenarios of Scenario 2 onto Design Template Library

Table 5.5 shows a typical in-house design template called ServiceOrder Provision.

Table 5.5 ServiceOrder Provision template

Category Local scheme
Name ServiceOrder Provision
Also-Known-As Order Provision
Related-Rules -
Intent A document may require service of search, locate and order. There is a

need to restrict the order service to reside in a component, which consists
service search and locate. The program’s requirements imply constraints on

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

101

the order in which threads should access the resources.
Context When document manager require search, locate and order services,

restricted document order in a separate execution is good a strategy.
Suppose you are designing an application to manage a document for an
online digital library. A component obtain document and location
identifiers from an centralize document registry before placing a document
order. Document orders are placed with the document supplier
component.

Motivation DocumentManager may require services of DocumentServer which consists
of ISearch and ILocate, and DocumentServer which consists of IOrder.

Configuration

Consequences Performance.ResponseTime = {the rules provides a way to control, 2}

Performance.Throughput = {the rules provides a way to control, 2
Maintainability.Time = {provided a systematic allocation towards
maintenance time for the document main services, 3}
Maintainability.Requirement = {allows the document server maintain the
order service more effectively, 3}
Reliability.Availability = {the rule provides a better way to control the
availability of related services. Which allow longer duration of order service
to be served, 3}

Fig. 5.12 shows three recommended architectural solutions generated as a result of

the concerns identified in Analysis Scenario 1. The suggested architectural solutions

are Cluster-Server pattern, Three-tier proxy server architectural style and ServiceOrder

provision architectural style. The recommendations are described in detail in

Appendix F. The analysis process rates the architectural design templates based on

how well they contribute or lend themselves to critical quality concerns identified in the

analysis scenario. When the design templates are rated, they are moved to a solution

state where they are instantiated to define the particular variation in the context of

EDDIS solutions. The designer notes are entered with the solutions to rationalise the

design decisions taken by the system designer. In the case where a recommended

design does not contribute to a quality concern a “Not Applicable (N/A)” remark is

entered.

C
hapter 5

 E
valuation 1:E

lectronic D
ocum

ent D
elivery Inform

ation System

102

Fig. 5.12 Recommended solutions – Scenario 1

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

103

Fig. 5.13 shows the ClusterServer pattern dependency and contributions that the

template may posses with its scoring values. The figure also shows the design template

configuration and XML specification in the design template library.

Fig. 5.13 ClusterServer pattern with its contributions2, configuration and specification

The rationale for each recommended architectural solution is provided below:

• Service-Order Provision. This architectural style represents a local (in-house)

design solution for an online digital library that may require document search,

locate and order services. The architectural style enforces the separation of search

and locate services, which reside in the same component, from the order service.

This may imply that there are constraints on the order in which threads access the

2 The toolset allows the system designer to record a list of concern/sub-concern and retrieve back thru button click,

detail descriptions is described in Appendix F.

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

104

resources. However, separation of order services may slightly affect performance

of the application response time and throughput. The design improves

maintainability by providing a systematic allocation towards maintenance time for

the main services, and allowing the document server to maintain the order service

more effectively. This architectural style improves system availability by controlling

the provision of the order service.

• Cluster-Server pattern [Msdn10]. This design enables the system to maintain good

performance while improving availability by using active redundancy and

automatic restart during failover. However, cluster-server complexity is likely to

compromise system maintainability.

• Three-tier proxy server architectural style [Bass05]. This is typical reference

architecture for a modern web-based system. A tier is a partitioning of functionality

that may be allocated to a separate hardware. This improves maintainability while

hiding the complexity of distributed processing. Requests from individual browsers

may first arrive at a proxy server, which exists to improve the performance of the

Web-based system. These servers cache frequently accessed Web pages that users

may retrieve without having to access the Web site. They are typically located close

to the users often on the same network, so that they save significant

communication and computation resources. Proxy servers are also used to restrict

users’ access to certain Web sites.

Table 5.6 shows how the three alternative designs contribute to the critical quality

concerns.

Table 5.6 Architectural design alternatives contributions – Scenario 1

Concerns Sub-Concerns Architectural Design Alternatives
 CS SOP TPS

Performance Response time Medium Medium Medium
 Throughput Medium Medium Medium
Reliability Availability High High Medium
Maintainability Requirement Low High High

 Technology Low N/A High
 Time Low High High

Legends: CS – ClusterServer SOP – ServiceOrder Provision TPS – Three-tier proxy server

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

105

5.3.3 Revising EDDIS Architecture

The final step involves modifying the EDDIS system architecture to reflect the

recommended architectural solutions. The modified architectures will then be rated

for their relative contributions to the quality concerns. Fig. 5.14(i) to Fig. 5.14(iii) show

the separate EDDIS architectures based on the three design templates. The

modification to the original architecture is shown in the boxed area. The mapping

process is explained next.

ValidManager

DocumentRequsterAAdminManager

DocumentRegistry1

DocumentSupplier

IAuthorization

IAccess1

IManage ILogin
IRequestA

ISupplier DocumentRegistry..n

ClusterServer

IAccess2

IDiscovery

IRegistry

<<subsystem>>
_ClusterServer

<<interface>>
IManage

addUser()
delUser()
setAccess()

<<interface>>
ILogin

validateUser()
logout()

<<interface>>
IAuthorization

setLogin()
resetCondition() <<interface>>

ISupplier

setOrder()

<<interface>>
IRequestA

search()
locate()

<<interface>>
IAccess1

setSearch()
setLocate()

<<interface>>
IAccess2

setSearch()
setLocate()

<<interface>>
IRegistry

setLocate()

<<interface>>
IDiscovery

setSearch()

Fig. 5.14(i) ClusterServer pattern (S1)

ValidManager

DocumentRequesterBAdminManager

DocumentRegistry

DocumentProvider

IAuthorization

<<subsystem>>
ServiceOrder_Provision

ISearch

IManage ILogin IRequestB

IOrder

ILocate

<<interface>>
IManage

addUser()
delUser()
setAccess()

<<interface>>
ILogin

validateUser()
logout()

<<interface>>
IAuthorization

setLogin()
resetCondition()

<<interface>>
IRequestB

search()
locate()
order()

<<interface>>
ISearch

setSearch()

<<interface>>
ILocate

setLocate()

<<interface>>
IOrder

setOrder()

Fig. 5.14(ii) Service-Order Provision local-scheme (S2)

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

106

Browser

Application_Logic

ProxyServer DocumentDatabase

IRequestC

IDatabase

ValidManager

DocManager

AdminManager

IAuthorization

IManage

ILogin

IEncryption

<<subsystem>>
Three-tier Proxy

<<interface>>
IAuthorization

setLogin()
resetCondition()

<<interface>>
IRequestA

search()
locate()
order()

<<interface>>
IManage

addUser()
delUser()
setAccess()

<<interface>>
ILogin

validateUser()
logout()

<<interface>>
IRequestC

access()

<<interface>>
IDatabase

setSearch()
setLocate()
setOrder()

Fig. 5.14(iii) Three-tier proxy server architectural style (S3)

CSAFE assists in modifying the initial architecture into the recommended solutions

using a two-step process:

• Firstly, it maps the existing system architecture services onto the design

template’s abstract components. This is done taking into account any specified

constraints and design heuristics.

• Secondly, it maps the abstract components onto suitable and available concrete

components.

Fig. 5.15 shows how the CSAFE toolset aids in the mapping of EDDIS architecture

services onto the abstract components of the design templates. In this example,

document_services service is mapped onto the DocumentRequesterB component of

the ServiceOrder Provisioning design template. Clicking on the abstract component

returns a list of services from which document_services is selected. When the mapping

is complete, the abstract component DocumentRequesterB is associated with four

services including document_locate, document order, document_search and

document_services. The toolset provides a visualisation of these associations (refers to

Fig. 5.15).

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

107

Fig. 5.15 Mapping document_service onto DocumentRequestB abstract component

If a desired service is not found in the design template, service mapping can still be

performed through a refactoring facility provided by tool. Refactoring allows manual

mapping and component reconfiguration. Fig. 5.16 shows an example of refactoring

that reconfigures the ValidManager component in the initial EDDIS architecture for

the ServiceOrder Provision design template. Fig. 5.17 shows an association diagram of

the AdminManager and its services after being reconfigured for the ServiceOrder

Provision design template using refactoring.

Fig. 5.16 Refactoring ValidManager onto the ServiceOrderProvision

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

108

Fig. 5.17 AdminManager abstract component with associated services

The second step composes the abstract EDDIS architectures by mapping their

abstract components onto concrete components in the repository. The tool provides a

quantitative indication of how well each mapping fits and provides further suggestion

for component selection. Mismatches are flagged and indicated in colours that

correspond to the severity of the mismatches levels (e.g. low, medium or high

warning). The severity is borne by the weight assigned during the formulated analysis

scenarios which prioritise the concerns. Fig. 5.18 shows the result of mapping the

AdminManager abstract component to AdminManager_3 concrete component which

has a 66% match. The fitness percentage is calculated based on number of matches

divided by number of the component selected concerns. For example,

AdminManager_3 matches two divided by three concerns of the AdminManager

abstract component. These represent the required component version, which should

be greater or equals to 0.3, and the maintainability concern, which equals to user.

AdminManager_3’s version and maintainability are 0.4 and user. While the

component’s availability property is specified as COTS instead of inhouse. Detailed

specifications of the concrete components are available in Appendix C6.

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

109

Fig 5.18 Mapping onto concrete component

The structural checker completes the composition process by ensuring structural

compatibility between the abstract and the selected concrete component. For example,

Fig. 5.19 shows potential mismatches found by the checker between AdminManager

and AdminManager_3. The checker flagged two error messages: the first indicates the

addUser signature of IManage provided interface has an incompatible method

signature, and the second indicates the deleteUser signature of IManage provided

interface has an incompatible parameter type. Nevertheless, the decision is left to the

system designer either to proceed with the composition, or to maintain a temporary

placeholder for the abstract component until a suitable concrete component is found.

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

110

Fig 5.19 Structural mismatch found between AdminManager and AdminManager_3

Lastly, the design alternatives are assessed by comparing the quality concerns

identified in the analysis scenario against the contributions of the design alternatives.

Table 5.7 and Fig. 5.20 show the result of the comparison for Scenario 1. While Fig.

5.21 shows the result of the comparison for Scenario 2.

Table 5.7 Comparison of EDDIS concerns and design alternatives contributions – Scenario 1

Scenario 1
S1:
CS

S2:
SOP

S3:
TPS Concern

Mean
Wt.

Sub concern Wt. Scope

Performance High Response
time_upl

Medium S1.2.1 Medium Medium Medium

 Response
time_pl

Medium S1.2.1 Medium Medium Medium

 Throughput Medium S1.2.1 Medium Medium Medium
Reliability High Availability High S1.3.1 High High Medium
 Availability High S1.4.1 High High Medium
 Availability Medium S1.5.1 High High Medium
Maintainability Medium Requirement Low S1.2.1 Low High High
 Requirement Low S2.1.1 Low High High
 Technology Medium S1.1.1 Low N/A High
 Time Medium S1.1.1 Low High High
 Time High S1.5.1 Low High High
 Time Low S1.2.1 Low High High

Legends: CS – ClusterServer SOP – ServiceOrder Provision TPS – Three-tier proxy server

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

111

Fig. 5.20 Assessing quality concerns and architecture design solutions - Scenario 1

Fig. 5.21 Assessing quality concerns and architecture design solutions - Scenario 2

The Fig. 5.22 and Fig. 5.23 show the weighted contributions of the different design

alternatives for Scenario 1
3

. S1 offers the poorest solution as it has an overall quality

contribution score of 0.641. Of the remaining, S2 has the better score of 0.818 and S3

a slightly lower score of 0.793. Although, S2 looks like the best design, it may not

necessarily be chosen. For example, the cost of implementing the system using S2 may

be beyond the organisation’s budget. To decide on the most acceptable architecture,

stakeholders need to explore how each suggested design relates to critical EDDIS sub-

concerns (see Fig. 5.24).

3 Details weighting and scoring values are compiled in Appendix D, Table D5.1

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

112

Fig. 5.22 Contribution of suggested alternatives according to overall – Scenario 1

Fig. 5.23 Contribution of suggested alternatives according to main concerns – Scenario 1

Fig. 5.24 Contribution of suggested alternatives according to sub-concerns – Scenario 1

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

113

The Fig. 5.25 shows the weighted contributions of the different design alternatives

for Scenario 2
4

. In Scenario 2, all the three design alternatives offer an equivalent

quality contribution score of 0.666. The contributions at sub-concern level are also

equivalent (see Fig. 5.26). However, the programmer concern for performance is only

moderately addressed by all the alternative designs.

In this particular case, the preferred architectural solution is selected from the design

alternatives in Scenario 1 as the alternatives offer the same contribution for

performance in Scenario 2. However, in cases where design alternatives offer varying

contributions for different scenarios, further negotiation (trade-offs) may be required to

resolve the competing scenarios and establish an acceptable compromise. This may

involve weighting the stakeholder scenarios.

Fig. 5.25 Contribution of suggested alternatives according to performance concern – Scenario 2

Fig. 5.26 Contribution of suggested alternatives according to performance sub-concerns – Scenario 2

4 Details weighting and scoring values are compiled in Appendix D, Table D5.2

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

114

Sensitivity analysis

As part of the evaluation, two sensitivity analyses were conducted for Scenario 1 to

examine how robust the choice of architectural solution was to changes in the relative

weightings of critical quality concerns. The first sensitivity analysis examined how the

benefit value of the alternative designs might be affected by relative changes in the

weight of performance. The second sensitivity analysis examined how value of benefits

offered by the alternative designs might be affected by relative changes in the weight of

maintainability. Before changes the relative weights for the different quality concerns

were: maintainability, 0.38; performance, 0.31; and reliability, 0.31.

Fig. 5.27 shows how the value of benefits for the architectural design alternatives

varies with changes in the weight placed on performance. If performance had a weight

of zero, the three performance sub-concerns would also have zero weights. After re-

normalisation, this would result in weights of 0.44 and 0.56 for reliability and

maintainability, respectively. At this point, S2 offers the highest level of benefits

followed by S3. S1 has the lowest benefit value. At the other extreme, if performance

had a weight of 100 (and therefore maintainability and reliability weights of zero) all the

three alternatives designs would have gradual decreasing aggregate benefit values of

0.66. However, since performance has a weight of 0.31, the software designer might

consider S2 and S3 marginally attractive solutions.

Fig. 5.27 Sensitivity analysis of Performance – Scenario 1

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

115

CSAFE also supports sensitivity analysis at sub-concern level. The sensitivity analysis

graph for the throughput, a sub-concern of performance, is shown in Fig. 5.28. The

design alternatives, S2 and S3, become more attractive when throughput is assigned a

weight of 0.07. The system designer would need to conduct similar analysis for other

sub-concerns of performance to complete the verification.

Fig. 5.28 Sensitivity analysis of Performance(Throughput) – Scenario 1

The second sensitivity analysis examines focuses on maintainability. Fig. 5.29 shows

how the value of benefits for the architectural design alternatives varies with changes in

the weight placed on maintainability. If maintainability had a weight of zero, this would

imply that the six maintainability sub-concerns would also have zero weights. After re-

normalisation, this would leave weights of 0.50 and 0.50 for performance and

reliability, respectively. This would mean, for example, that S1 and S2 would have an

aggregate benefit value of 0.833.

At the other extreme, if maintainability had a weight of 100 (and therefore

performance and reliability a weight of zero) S3 would have an aggregate benefit value

of 1.0. The line joining these points shows the value of benefits for S2, for

maintainability weights between 0 and 100. As can be seen, S2 has the highest value of

benefits as long as the weight placed on maintainability is less than 0.44. If the weight is

above this level then S3 has the highest level of benefits. However, since a weight of

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

116

0.36 was assigned to maintainability, it would take a fairly moderate change in this

weight before S3 was worth considering. No changes in the weighting attached to

maintainability would make the other design alternatives achieve the highest value of

benefits, and the software designer can be reasonably confident about selecting S2.

Fig. 5.29 Sensitivity analysis of Maintainability – Scenario 1

Fig. 5.30 shows the sensitivity analysis graph for the EDDIS requirement concern,

which is a sub-concern of maintainability. Again the suggested alternatives, S2 and S3,

have very close scores for weights between 0 and 100.

Fig. 5.30 Sensitivity analysis of Maintainability(Requirement) – Scenario 1

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

117

Another useful comparative analysis tool provided by CSAFE is the ability to

compare weighted quality concerns (i.e. as identified in analysis scenarios) with rating

values of suggested architectural design alternatives. The comparison charts are shown

in Fig. 5.31 –5.33. The left column shows the scenario ratings of quality concerns, and

the right column the contribution ratings of the ClusterServer pattern, ServiceOrder

Provision and Three-tier proxy server architectural styles.

Fig. 5.31 Scoring percentage of ClusterServer pattern – Scenario 1

Fig. 5.32 Scoring percentage of ServiceOrder Provision local-scheme – Scenario 1

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

118

Fig. 5.33 Scoring percentage of Three-tier proxy server architectural style – Scenario 1

The detailed report of the results and analysis process generated by the CSAFE tool

is available in Appendix D6.

5.4 Summary

This chapter demonstrated the key features and practicability of CSAFE using a subset

of requirements extracted from the specification of a real software project, EDDIS. In

addition, the evaluation was conducted in the context of two different stakeholder

analysis scenarios to demonstrate CSAFE’s support for broad stakeholder involvement

in architectural design and analysis.

The evaluation started with the description of the case study. This was followed by

the construction of the baseline architecture for EDDIS. The baseline architecture

was then analysed according to the to the steps in the CSAFE approach. The analysis

begun with transformation of EDDIS architectural design to iXML ADL followed by

the formulation of two analysis scenarios. The analysis scenarios were used to generate

design templates that were in turn used to revise the baseline EDDIS architecture.

Lastly, the alternative designs were mapped concrete components and assessed for

contributions to the quality concerns identified in the analysis scenarios.

 119

Chapter 6

Evaluation 2: Guided Vehicle
Parking Systems

This chapter describes second evaluation of CSAFE. The first evaluation provided a

practical demonstration of the CSAFE features discussed in chapter 4, and showed

how the approach could be used to improve the quality of software architecture

through a process of analysis and refinement. However, the assessment of architectural

refinements in the first evaluation was based solely on static analysis. The assessment

the refinements relied largely on the documented relationships between design

templates and system quality properties. The second evaluation focuses on runtime

evaluation to validate architectural refinements. The evaluation assesses the effect of

architectural refinements by comparing the runtime behaviour of an existing system

against its refined version. The architectural refinements evaluated in the case study

are intended to improve the system efficiency and performance. The case study used

in this evaluation is derived from an undergraduate software engineering project run at

Lancaster University for computer science students. The project is organised around a

group of 4-5 students and runs for 25 weeks. The aim of the project is to develop a

Chapter 6 Evaluation 2: Guided Vehicle Parking System

120

simulated Guided Vehicle Parking System (GVPS) to provide drivers entering the

university campus with accurate and timely information on parking. The case study

uses the results from the best GVPS project of the year 2006/2007.

The evaluation starts with the description of the GVPS case study. This is followed

by a summarised discussion of the architectural analysis performed on the GVPS and

a discussion of the architectural solution adopted. The evaluation concludes with a

discussion of three experiments conducted to gauge the effectiveness of the CSAFE

refinements on the GVPS runtime architecture.

6.1 The Case Study

The GVPS consists of two main sub-systems: an In-Vehicle Display (IVD) and a

Control Centre sub-system. The IVD allows drivers entering the university campus to

be assigned the best available parking space, closest to their destination. Drivers select

their destination on the IVD as they enter the campus. The IVD communicates with a

central server to display a map of campus roads and car parks, highlighting the route to

be taken to the selected destination. The IVD also indicates the correct direction to be

taken at junctions and roundabouts, both visually and audibly. The IVD informs

drivers of road closures and indicates alternative routes when appropriate. When

leaving the university, the IVD provides directions back to the exit. The Control

Centre sub-system is used by GVPS system administrators to register vehicles, to

monitor the status of vehicles and car parks, and to close and open sections of road for

emergency or maintenance.

Fig. 6.1 shows the use-cases associated with high-level service descriptions of the

GVPS functionality. In the system design these represent services that are later

partitioned into abstract, design-time components. The use cases have been extracted

from the student project document [Summers06]. Detailed GVPS requirements are

provided in Appendix E1.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

121

G S

Traffic

GVPS
Driver

Manage car park

Wrong turning

Search parking

Navigate route

View Vehicle
Status

Setup connection

GVPS
Administrator

Login

Exit parking

Broadcast
traffic messages

Manage
obstruction

Manage map

Manage driver

GVPS
Member

Login

Fig. 6.1 GVPS use-case diagram

6.2 GVPS Viewpoints and Requirements

The viewpoint approach described in Chapter 4 was used to structure and partition the

GVPS requirements. Table 6.1 identifies the viewpoints associated with the GVPS and

their requirements. The GVPS requirements are derived from four viewpoints: driver

(Vp1), administrator (Vp2), traffic (Vp3) and Consortium (Vp4). A driver is a person

who interacts with the In Vehicle Display (IVD). The IVD helps the driver to navigate

the campus roads to locate suitable parking and to exit the campus. A driver is either

member of Lancaster University staff or a visitor. University members are required to

register their vehicles with the GVPS management to ensure appropriate parking areas

are assigned to them (based on permit type).

Chapter 6 Evaluation 2: Guided Vehicle Parking System

122

An unrecognised vehicle is assumed to be a driver of type visitor and is assigned a

temporary ID. A temporary ID allows a driver to park in visitor areas only. However, a

visitor may indicate a disability requirement, in which case the driver is assigned a

disabled visitor space. An administrator is a person who is responsible for managing

the GVPS system. An administrator’s responsibilities include: driver registration,

vehicle monitoring, parking areas monitoring and road management. An administrator

is able to view all the vehicles on campus roads using the GVPS. The consortium

represents the organisation commissioning the GVPS. The consortium includes

Lancaster University and the project financiers. Traffic represents the traffic sensors on

the campus roads (e.g. traffic lights and traffic signs).

Table 6.1 GVPS viewpoints and requirements

Viewpoint Requirement
ID Role/Type ID Description Service Ranking
Vp1 GVPS_Driver

(Operator)
R1.1 To enable drivers either holding a car

permit or visitor to access GVPS 24/7.
S1.1.1

Important

R1.2 To be able drivers to logon to the system
using valid RFID or vehicle registration
number.

S1.2.1 Essential

R1.3 To guide the driver of the vehicle to a
designated parking place (given as a
particular car park) as close to the
destination as possible.

S1.3.1 Essential

R1.4 The display in the vehicle shall show the
position of the vehicle on a map.

S1.4.1 Essential

R1.5 To guide the driver of the vehicle to an
exit.

S1.5.1 Essential

R1.6 To inform drivers of traffic messages
according to driver location and distance
to an incident

S1.6.1 Important

R1.7 To inform drivers of when a wrong turning
is made and to re-calculate route

S1.7.1 Essential

Vp2 GVPS_
Administrator
(Operator)

R2.1 To enable the admininsrator to access
GVPS 24/7 in a secure way.

S2.1.1 Essential

R2.2 To manage driver accounts i.e.
add/delete/update accounts.

S2.2.1 Essential

R2.3 To manage road maps i.e. add/delete map. S2.3.1 Essential
R2.4 To manage car parks on campus by

providing their status.
S2.4.1 Important

R2.5 To enable closure of sections of road in
case of emergency or maintenance.

S2.5.1 Important

R2.6 To monitor the status of all vehicles
accessing GVPS.

S2.6.1 Essential

Chapter 6 Evaluation 2: Guided Vehicle Parking System

123

Viewpoint Requirement
ID Role/Type ID Description Service Ranking
Vp3 Traffic

(Component)
R3.1 The IVD client shall act as an observer for

traffic signal broadcast.
S3.1.1 Important

Vp4 GVPS_
Consortium
(Organisation)

R4.1 The system shall ensure a reasonable level
of performance is maintained across the
services at all times.

 Essential

R4.2 The system shall provide 24/7 access. Useful
R4.3 The system shall enforce authentication

policies to avoid loss of data integrity or
confidentiality

 Essential

R4.4 The system shall promote XML data map
format and driver independence on map
resources.

 Important

R4.5 The system shall be developed according
to agreed schedule and cost estimate.

 Useful

Fig. 6.2 shows the partitioning of GVPS services derived from viewpoints Vp1–Vp4.

The constraints are indicated with different colours to distinguish their types.

 Legends:

 Business Constraint Component Constraint Quality Constraint Service! ! !

Viewpoints

Vp2

Vp1

Vp3

Vp4

..

..

..

..

R1.1

R1.2

R1.3

R1.4

..R1.5

..R2.1

..R3.1

..R4.1

..R4.2

..R4.3

..R4.4

..R4.5

!

!

!

!

S1.1.1

S1.2.1

S1.3.1

S1.4.1

S1.5.1

S2.1.1

S3.1.1

C1.1.1

C2.1.1

C3.1.1

C4.1.1

<<abstract>>
ControlCentre

<<abstract>>
Database

<<abstract>>
IVD

<<abstract>>
Map

S2.2.1

S2.3.1

S2.4.1

Abstract components compositionServices / Constraints

..R2.2

..R2.3

..R2.4

! !
C5.1.1 C5.2.1

..R1.6
S1.6.1

..R1.7

S2.5.1
..R2.5

S2.6.1
..R2.6

!
C6.2.1

!
C6.1.1

S2.1.1 S2.2.1 S2.3.1

S1.7.1

S2.4.1

!
C2.1.1

!
C3.1.2

!
C6.3.1

!
C6.3.1

!
C5.3.1

!
C5.4.1

S2.5.1

S2.6.1

S1.1.1 S1.2.1 S1.3.1 S1.5.1 S1.7.1

S1.2.2 S1.3.2 S2.1.2

!
C6.3.1

! !
C5.1.1 C5.2.1

!
C5.3.1

!
C5.4.1

!
C6.2.1

!
C6.1.1

!
C4.1.1

!
C1.1.1

!
C2.1.1

!
C3.1.2

!
C3.1.1

S1.4.1 S1.6.1

S1.2.2

S1.3.2

S2.1.2

S2.3.2

S2.3.2

S2.6.2

S2.6.2 S3.1.1

S2.6.3

S2.6.3

S2.3.3

S2.3.3

Fig. 6.2 GVPS typical component partitioning

Chapter 6 Evaluation 2: Guided Vehicle Parking System

124

6.3 The Analysis

6.3.1 Documenting the GVPS Architecture

In this case study, GVPS architecture was fully specified using the iXML ADL, Table

6.2 shows a snippet of the iXML description for CC_Console. The complete iXML

specification is provided in Appendix E2. The GVPS architecture is shown in Fig. 6.3

[Summers06].

Table 6.2 iXML description of CC_Console

<component name.id = 'CC_Console' type = '' visibility = 'private'>
<component.description>
CC_Console component is for administrative users who can monitor the status of each vehicle and car park on
campus, and enable closure of sections of road in case of emergency or maintenance.
</component.description>
<component.interface name.idref = 'IDataCentre' port.idref = 'r'/>
<component.interface name.idref = 'IMapCC' port.idref = 'r'/>
<component.interface name.idref = 'IControlCentre' port.idref = 'p'/>
<component.interface name.idref = 'IRouteObs' port.idref = 'p'/>
<component.connector name.idref = 'IDataCentre -> CC_Console'/>
<component.connector name.idref = 'IMapCC -> CC_Console'/>
 <component.constraint concern = 'Security' subconcern = 'Integrity' type = 'invariant' state = 'EL' value = '
authentication_policies' scope = 'Login'/>
<component.constraint concern = 'Component' subconcern = 'Persistent' type = 'precondition' state = 'EL'
value = 'SQL Server' scope = 'ManageDriver'/>
<component.constraint concern = 'Component' subconcern = 'Persistent' type = 'precondition' state = 'EL'
value = 'SQL Server' scope = 'ManageMap'/>
<component.property concern = 'Component' subconcern = 'Availability' value = 'inhouse'/>
</component>

Chapter 6 Evaluation 2: Guided Vehicle Parking System

125

IDataCentre

IDataMap

IControlCentre

IRouteObs

IMapIVD

<<interface>>
IVehicle

connect();
loginIVD();
searchParking();
exit();
reroute();

<<interface>>
IMapIVD

calculateRoute();
drawRoute();
trafficCast();

<<interface>>
IDataIVD

authenticate();
assignParking();

CC_Console

Map

avpsDB

IVD_Console

IDataIVD

<<interface>>
IDataMap

getEntities();
getCoord();

IMapCC

<<interface>>
IDataCentre

parseMap();
validate();
queryDriver();
queryParking();

<<interface>>
IRouteObs

routeObstruction();

<<interface>>
IControlCentre

login();
updateDriver();
updateMap();
viewStatus();

IVehicle

<<interface>>
IMapCC

connectWaypoint();
showVehicle();
trafficTracker();

Fig. 6.3 GVPS architectural description with interface identification

The transformed GVPS architecture is shown in Fig. 6.4. The nodes with gvps as

root represent the composite component, Navi, which encapsulates four other

components: CC_Concole, IVD_Console, Map and avpsDB. The System Design

node corresponds to the overall GVPS specification. The corresponding component

services and interfaces can be seen in Fig. 6.5.

Fig. 6.4. GVPS architecture (left panel) and iXML specification (right panel)

Chapter 6 Evaluation 2: Guided Vehicle Parking System

126

Fig. 6.5 GVPS architecture components and their associated interfaces and connectors

6.3.2 Formulating GVPS Analysis Scenarios

The GVPS requirement specification, GVPS actors and stakeholders discussions were

used to elicit and organize the quality concerns for analysis scenarios. The analysis

scenario formulated for this evaluation is shown in Table 6.3 (i.e. Scenario 1). The

concerns reflect system construction constraints and user expectation of how the

system services should be provided. The concerns are weighted to reflect their value in

the system from the perspective of requirement viewpoints i.e. interator and non-

interator.

Table 6.3 GVPS Scenario descriptions – Scenario 1

Concern Sub-concern Description (Refinement) Wt. Scope
Flexibility Expendability Flexibility (Expendability) equals to

xml-based
Medium DrawMap

Business Platform Business(Platform) equals to
Windows Mobile

Medium Exit

Security Integrity Security(Integrity) equals to
authentication policies

High Login

Security Integrity Security(Integrity) equals to
authentication policies

High LoginIVD

Component Standard Component(Standard) equals to
PassiveTag

High LoginIVD

Business Platform Business(Platform) equals to
Windows Mobile

Medium LoginIVD

Root (project name)

Subsystem

Connectors between components
in a subsystem

Component

Provided Interface

Services of the interface

Chapter 6 Evaluation 2: Guided Vehicle Parking System

127

Concern Sub-concern Description Wt. Scope
Component Persistent Component(Persistent) equals to

SQL Server
Medium ManageDriver

Component Version Component(Version) greater than
to 2.0

High ManageDriver

Component Persistent Component(Persistent) equals to
SQL Server

Medium ManageMap

Business Platform Business(Platform) equals to
Windows Mobile

Medium SearchParking

Reliability Availability Reliability(Availability) equals to
24/7

Low SetupConn

Performance ResponseTime
_UPL

Performance(ResponseTime_UPL)
less than or equals to 0.5 seconds

High System

Performance ResponseTime
_PL

Performance(ResponseTime_PL)
less than or equals to 4 seconds

High System

Business Cost Business(Cost) equals to moderate Low System
Business Schedule Business(Schedule) equals to

moderate
Low System

Business Component
Model

Business(ComponentModel) equals
to JavaBeans

Medium System

Component Availability Component(Availability) equals to
inhouse

Medium TrafficSignal

Business Platform Business(Platform) equals to
Windows Mobile

Medium WrongTurning

Efficiency Memory Efficiency (Processor) equals or less
than to 20% threshold

High VehicleTracker

Efficiency Processor Efficiency(Memory) equals or less
than 75% threshold

High VehicleTracker

6.3.3 Analysing GVPS Architecture

The GVPS use services that consume significant system resources such route plotting,

map displaying and vehicle monitoring. The GVPS also performs high-volume

transactions for clients accessing its resource components. The original GVPS

architecture creates all map objects upfront whenever a new vehicle is added to the

map rather than on-demand. This results in many unnecessary navigational threads

consuming system resources. This in-turn impacts adversely on the GVPS

performance. There is need for a better resource-aware configuration to manage

object creation and method invocation in the GVPS. The current GVPS configuration

also offers poor security features. It provides little access and authentication control for

the transactions between client and resource components. Lastly, the current

configuration offers little flexibility as it has strong coupling between its components.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

128

The mapping of the GVPS analysis scenario onto architectural design templates

generated two possible architectural solutions: the ClusterServer pattern and the Proxy

pattern. The design template detail descriptions are provided in Appendix F. Table

6.4 shows the contributions of the recommended design templates. Based on their

contributions to the GVPS quality concerns, the Proxy pattern was selected to refine

GVPS architecture. Although, Proxy pattern has a “Not Applicable” entered for the

reliability concern, it has a high contribution for efficiency, security and performance,

and a medium contribution for flexibility. The ClusterServer pattern scores poorly for

security and flexibility, and only moderately well for performance and efficiency. A

detailed description of the Proxy pattern properties is shown in Table 6.5.

Table 6.4. Architectural design alternatives contributions

Concerns Sub-Concerns Architectural Design Alternatives
 ClusterServer Proxy

Efficiency Memory Medium High
Processor Medium High

Flexibility Expendability N/A Medium
Reliability Availability High N/A
Security Integrity Low High
Performance ResponseTime Medium High

Table 6.5 Proxy pattern template

Category Pattern
Name Proxy
Also-Known-As Surrogate
Related-Rules Decorator, Adapter
Intent The pattern makes the clients of a component communicate with a representative

rather than to the component itself. Introducing such a placeholder can serve
many purposes, including enhanced efficiency, easier access and protection from
unauthorised access.

Context Proxy is applicable whenever there is a need for more versatile or sophisticated
reference a component. Some common situations in which the pattern is
applicable:
1. Remote proxy – where clients of remote components should be shielded from

network addresses and inter-process communication protocols.
2. Protection proxy – where components must be protected from unauthorised

access
3. Cache proxy – where multiple simultaneous access to a component must be

synchronised
4. Counting proxy – where accidental deletion of components must be prevented

or usage statistic collected
5. Virtual proxy – where the processing or loading of a component might costly,

while partial information about the component might be sufficient

Chapter 6 Evaluation 2: Guided Vehicle Parking System

129

6. Firewall Proxy – where local clients should be protected from the outside world
Motivation One reason for controlling access to a component is to defer the full cost of its

usage until we actually need it. Until that point we can use some light objects
(proxies) exposing an identical interface as the heavy objects to the Client. When
the proxy is accessed it forwards the request to the real subject. This ability to
control the access to a component can be required for a variety of reasons:
caching, access control, synchronisation, lazy creation, remote access.

Configuration

Consequences Efficiency.Memory = {The proxy provides space optimisation through caching and

lazy construction when the cost of data access and rendering is reduce, H}
Efficiency.Proccesor = {The proxy provides time optimisation through caching and
lazy construction when the cost of data access and rendering is reduce, H}
Performance.ResponseTime = {A virtual proxy helps to implements a ‘load-on-
demand strategy’ that avoid unnecessary loads and usually speeds up the
application, however complex implementation would cause less efficiency due to
indirection, M}
Reusability.Modularity = {The proxy provides weak coupling between clients and
subsystems, M}
Flexibility.Expendability = {A remote proxy decoupling clients from the locations of
remote server components, H}
Security.Integrity = {Protection proxy and smart references allow additional
housekeeping tasks when a component is accessed, H}

There is strong rationale for selecting the Proxy pattern

[Buschmann96,Khosravi04]. The pattern can be implemented as a virtual or

protection proxy to improve performance, security and enhance the functionality of

the GVPS, it can also be implemented to create resource-hungry objects on demand to

manage system resources. The Subject component i.e. Map and avpsDB is a

resource-hungry component that we wish to use more efficiently. The proxy

component acts as a surrogate, holding a private instance of a subject component as

required. The client components, IVD_Console and CC_Console, execute actions on

the proxy whose results are passed to the Subject component. The results from the

Subject's members are returned to the client via the proxy. The AbstractBase

component is shared by the proxy component and its subject component. The base

Chapter 6 Evaluation 2: Guided Vehicle Parking System

130

component defines any standard members that will be implemented by proxy

component and subject components. Therefore, the virtual proxy can effectively delay

the creation of a rich environment. Secondly, the proxy enhances access security by

ensuring that only authenticated components can access the database. The protection

proxy component acts as a layer between these components and the database.

6.3.4 Refining GVPS Architecture

Based on the Proxy pattern, the original GVGS architecture (see Fig. 6.3) was revised

as shown in Fig. 6.6. The modifications, which also involve mapping the GVPS

services to on the Proxy pattern components, are shown in the boxed area.

<<interface>>
IControlCentre

login();
updateDriver();
updateMap();
viewStatus();

<<interface>>
IVehicle

connect();
loginIVD();
searchParking();
exit();
reroute();

<<interface>>
IData

validate();
parseMap();
queryDriver();
queryParking();
authenticate();
assignParking();

<<interface>>
IMap

showVehicle();
trafficTracker();
calculateRoute();
drawRoute();
trafficCast();

<<interface>>
IProxyIVD

authenticate();
assignparking();
calculateRoute();
drawRoute();
trafficCast();

<<interface>>
IBase

connectWaypoint();

<<interface>>
IProxyCC

validate();
parseMap();
queryDriver();
queryParking();
connectWaypoint();
showVehicle();
trafficTracker();

<<interface>>
IRouteObs

routeObstruction();

<<interface>>
IDataMap

getEntities();
getCoord();

IProxyCC

IControlCentre

IMap

CC_Console

IVD_Console

Proxy

Map

avpsDB

AbstractBase

IVehicle
IProxyIVD

IData

IBaseIRouteObs

IDataMap

Fig. 6.6 Proxy pattern (S2)

The visualisation of the mapping process is shown in Fig. 6.7. The services

ValidationAdmin, ParseMap, ManageParking and etc. are mapped onto IProxy and

Chapter 6 Evaluation 2: Guided Vehicle Parking System

131

IProxyIVD of Proxy abstract component. The mapping to concrete components was

conducted as described in Chapter 4 (Section 4.1.4).

Fig. 6.7 Proxy mapped services onto IProxy and IProxyIVD

The weighted contributions of the two design alternatives
1

 are shown in Fig. 6.8.

The Proxy pattern alternative (S2) offers an overall quality contribution score of 0.824

(i.e. efficiency 0.26, flexibility is 0.13, performance is 0.17, reliability is 0.00 and

security 0.26). The ClusterServer pattern (S1) offers lower contribution score of 0.521

(i.e. efficiency 0.17, flexibility is 0.00, performance is 0.17, reliability is 0.09 and

security 0.9). The S1 and S2 contributions are further refined to show their

contributions at sub-concern level (see Fig. 6.9).

1 Details weighting and scoring values are compiled in Appendix E3, Table E3.1

Chapter 6 Evaluation 2: Guided Vehicle Parking System

132

Fig. 6.8 Contribution of suggested alternatives according to main concerns

Fig. 6.9 Contribution of suggested alternatives according to sub-concerns

A sensitivity analysis completes the analysis by examining the robustness of the

selected architectural solution to changes in the identified quality concerns. A software

designer may, for example, be concerned about the weight of security (i.e. 0.26)

relative to efficiency (i.e. 0.26), flexibility (i.e. 0.13), performance (i.e. 0.26) and

reliability (i.e. 0.09), and might want to know how changes in these weights might affect

the contributions of the alternative designs. Fig. 6.10 shows how the value of benefits

for the design alternatives varies with changes in security. If security had a weight of

zero, this would imply that the two security sub-concerns would also have zero weights.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

133

After re-normalisation, weights would be 0.35 for efficiency, 0.35 for performance,

0.18 for flexibility and 0.12 for reliability. This would cause S2 to have an aggregate

benefit value of 0.765. If security had a weight of 100 (and therefore efficiency,

flexibility, performance and reliability a weight of zero) S2 would have an aggregate

benefit value of 1.0. Sensitivity analysis conducted for security concern as shown in Fig.

6.10 indicate that the Proxy pattern is the more viable alternative design. The

ClusterServer pattern may be considered when security concern is zero, or less

important, as its contribution only slightly lower than that of the Proxy pattern.

However, the uncertainty of using Proxy pattern reduces when the weight of the

security concern increases.

Fig. 6.10 Sensitivity analysis applied to security concern

6.4 Runtime Comparison of GVPS Architectures

This section describes an experiment to compare the runtime performance and

resource consumption of the original and refined GVPS architectures. The

architectures were implemented to simulate the GVPS in operation. Each

implementation comprised the In-Vehicle-Device (IVD) sub-system and the Control

Chapter 6 Evaluation 2: Guided Vehicle Parking System

134

Centre. The GVPS implementation of the original architecture was named Simulator I

and the refined architecture implementation, Simulator II. The simulators were

implemented using JavaBeans technology [Java10] and constructed according to the

architectures shown in Fig. 6.3 and Fig. 6.6.

The basic GUI design for the GVPS simulators is shown in Fig. 6.11–Fig. 6.13.

However, Simulator II implements more functionality as it addresses more GVPS

requirements [Cs10] than Simulator I. For example, Simulator II allows parking

spaces to be allocated by vehicle type (e.g. car, disabled and van/lorry) and user type

(e.g. Staff, Student, Visitor), whereas Simulator I allocates spaces only according to

vehicle type. Simulator II also improves the map display by labelling both buildings

and parking areas as shown in Fig. 6.13.

Fig. 6.11 The GVPS simulator main window

Chapter 6 Evaluation 2: Guided Vehicle Parking System

135

Fig. 6.12 Simulator I display Lancaster University map with ‘avpsSimul1_LU’ tag on left bottom panel

Fig. 6.13 Simulator II display Lancaster University map with ‘avpsSimul2_LU’ tag on left bottom panel

Chapter 6 Evaluation 2: Guided Vehicle Parking System

136

6.4.1 Methodology

The experiments were conducted using Java VisualVM [Java11]. The two simulators

were configured to run the same data comprising different numbers of vehicles and

different road conditions. The simulations were tracked using the basic VisualVM

runtime information such as process id (PID), their main class, arguments passes to

java process, JVM version, JDK home, JVM flags and arguments, and system

properties.

Six experiments, representing three data scenarios, were conducted for each

simulator. Each experiment observed the system behaviour when vehicles entered the

campus in search of parking spaces (entering event), and when vehicles left their

parking spaces to exit the campus (exiting event). Data on performance and resource

consumption (i.e. memory usage, CPU time, heap memory, number of loaded

classes) and the number of threads running during entering and exiting events was

collected and analysed for each scenario. The memory profiler and CPU profiler were

used to assess where the application spend most time and which objects consumed

most memory during the entering and exiting events.

Experiment Scenario 1: One student vehicle and one visitor vehicle
under normal road conditions

The objective of this experiment was to compare the behaviour of the two

architectures under relatively low load conditions with normal road conditions (i.e. no

road closures). The experiment scenario consisted of running an auto-navigation file

that specified a student vehicle of type car and a destination of the InfoLab 21 (see Fig.

6.14 – Fig. 6.16), then adding a visitor vehicle of type car whose destination was the

Sport Centre (see Fig. 6.17). After a short while, the vehicles exited from their parking

areas and proceeded to leave the campus.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

137

Fig. 6.14 Navigation event for a student car to Info Lab 21

Fig. 6.15 Student car navigates to Info Lab 21 parking area shows on IVD panel of Simulator I

Chapter 6 Evaluation 2: Guided Vehicle Parking System

138

Fig. 6.16 Student car navigates to Info Lab 21 parking area shows on IVD panel of Simulator II

Fig. 6.17 Visitor car navigates to Sport Centre parking area shows on IVD panel of Simulator II

Chapter 6 Evaluation 2: Guided Vehicle Parking System

139

Fig. 6.18 and Fig. 6.19 show Simulator I and Simulator II executing Experiment

Scenario 1. Simulator I is packaged as avpsSimulator1.jar and its main method is

located in the avpscc bean. Simulator II is packaged as avps3.jar and its main method

is located in the ControlCentre bean. Both simulators are running on a local host and

using the Java Runtime Environment (JRE) version 6. Detailed system properties for

the simulators are displayed on the right lower panels.

Fig. 6.18. Simulator I (PID 4016) configurations and environment

Chapter 6 Evaluation 2: Guided Vehicle Parking System

140

Fig. 6.19 Simulator II (PID 3744) configurations and environment

Performance and resource analysis for Experiment Scenario 1

The result of monitoring the performance and resource consumption of the two

simulators is shown in Fig. 6.20 and Fig. 6.21. The left upper panel shows the

percentage of CPU time used (orange line) and the garbage collector (GC) activity

(blue line). The heap graph located in the right upper panel shows information on

memory consumption and memory pools. The memory used includes the memory

occupied by all objects including reachable and unreachable objects. The used area

turns red when the memory used exceeds the memory usage threshold. The Heap

graphs shows memory usage for current heap size, which indicates number of Kbytes

currently, occupied by the heap and maximum heap size that indicates the maximum

number of Kbytes occupied by the heap.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

141

Fig. 6.20 Simulator I (PID 4016) monitor entering event

Fig. 6.21 Simulator II (PID 3744) monitor entering event

The classes graph located in the right lower panel displays an overview of the total

number of classes loaded in memory (orange line) and the shared classes (blue line)

versus time. The total classes loaded indicate the total number of classes loaded into

Chapter 6 Evaluation 2: Guided Vehicle Parking System

142

memory since JVM started, including those subsequently unloaded. Lastly, the total

classes unloaded represents the number of classes unloaded from memory since the

JVM started. The Threads graphs located on the left lower panel provides an overview

of the number of live and daemon threads versus time in the application's JVM. The

threads graph (orange line) represents the current number of live daemon threads plus

non-daemon threads. The blue graph indicates the current number of live daemon

threads and total number of threads started since JVM started (i.e. daemon, non-

daemon, and terminated).

The CPU, heap, classes and thread graphs for Simulator I (see Fig. 6.20) and

Simulator II (see Fig. 6.21) correspond to the entering event. Simulator I shows that

this event uses 1.6% of CPU time and 79,507,184 bytes of memory while loading

2,762 classes and has a total of 23 live threads. Conversely, Simulator II uses 0.0% of

CPU time and 56,536,504 bytes while loading more classes; 3,185 classes and a total of

23 live threads. In the heap graphs, the memory consumption shows two expected

spikes. The first spike occurs after running the auto-navigation file for the student

vehicle and the second spike occurs after adding a new vehicle.

At approximately 360 seconds, the exiting event is triggered. The results show that

Simulator I uses 3.0% of CPU time and 67,933,744 bytes of memory, which involves

4,622 classes and 27 live threads (see Fig. 6.22). Simulator II shows a markedly better

performance and significantly less memory consumption for the same event. It is also

worth mentioning that Simulator II is running 13% more classes than Simulator I.

Simulator II uses 1.6% of CPU time and 44,644,992 bytes of memory while loading

5,237 classes and 26 live threads (see Fig. 6.22). In the heap graphs memory

consumption shows two expected spikes. The first spike occurs when the first vehicle

exits its parking area and the second when the second vehicle exits its parking area.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

143

Fig. 6.22 Simulator I (PID 4016) monitor exiting event

Fig. 6.23 Simulator II (PID 3744) monitor existing event

The performance and memory consumption results for Simulator I and Simulator

II in Experiment Scenario 1 are summarised in Table 6.6. The results show that

Chapter 6 Evaluation 2: Guided Vehicle Parking System

144

Simulator II performed significantly better than Simulator I. Although Simulator II ran

more classes and threads, Simulator II has significantly lower CPU usage and memory

consumption than Simulator I. The proxy design pattern adopted for the refined

GVPS architecture manages complex and resource hungry components such as Map

and avpsDB more effectively than the original GVPS architecture.

Table 6.6 Summary performance and memory consumption for Experiment Scenario 1

 CPU Usage Heap (bytes) Classes Threads

Entering event Simulator I 1.6% 79, 507, 184 2, 762 23
Simulator II <0.0% 56, 536, 504 3, 185 23

Exiting event Simulator I 3.0% 67, 933, 744 4, 622 27
Simulator II 1.6% 44, 644, 992 5, 237 26

CPU and memory profiles for Experiment Scenario 1

Profiling the simulators is valuable for exploring where the application spends most of

its time and for establishing which objects consume most memory. Profiling can also

expose potential memory leaks. Fig. 6.24 and Fig. 6.25 show the CPU profile for

Simulator I and Simulator II in Experiment Scenario 1 during entering event. The

profile lists all the methods called during the event and the time consumed by the

methods. Simulator I shows that AWT-EventQueue-) the application spends almost

all of its time on three methods. Simulator II (Fig 6.24) shows that for Thread-5 and

AWT-EventQueue-0, which have several methods, only the one method run 100% of

the time.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

145

Fig. 6.24 Simulator I (PID 4016) CPU profile

Fig. 6.25 Simulator II (PID 3744) CPU profile

Memory profiles for the entering event, for Simulator I and II in Experiment

Scenario 1, are shown in Fig. 6.26 and Fig. 6.27. The profiles provide detailed

memory consumption for all objects involved in the entering event. In Simulator I, the

Chapter 6 Evaluation 2: Guided Vehicle Parking System

146

highest memory consumption is 17.9%, for object char[]. In Simulator II the highest

memory consumption for object char[] is 16.5%. All the other objects in Simulator II

consume significantly less memory than the objects in Simulator I.

Fig. 6.26 Simulator I (PID 4016) Memory profile

Fig. 6.27 Simulator II (PID 3744) memory profile

Chapter 6 Evaluation 2: Guided Vehicle Parking System

147

Experiment Scenario 2: Two student vehicles and three visitor vehicles
under normal road conditions

The objective of the second experiment was to compare the behaviour of the two

architectures under increased load conditions (i.e. 2.5 times the load in Experiment

Scenario 1). The experiment used five vehicles; two student vehicles and three visitor

vehicles under normal roads conditions. The student vehicles of type car navigated to

the Ash House (see Fig. 6.28 and Fig. 6.29). Two visitor vehicles navigated to the

Ruskin Library (see right side of Fig. 6.30) and one visitor vehicle navigated to the

Health Centre (see left side of Fig. 6.30). After a short while, the vehicles exited from

their parking areas and proceeded to leave the campus (see Fig. 6.31).

Fig. 6.28 Student car arrives at the university entrance on IVD panel of Simulator I (top) and Simulator II (bottom)

Chapter 6 Evaluation 2: Guided Vehicle Parking System

148

Fig. 6.29 Student car navigates to Ash House parking area shown on IVD panel of Simulator I

Fig. 6.30 The first visitor car navigates to Ruskin Library parking area and the second visitor car navigates to Health

Centre parking area shown on IVD panel of Simulator II

Chapter 6 Evaluation 2: Guided Vehicle Parking System

149

Fig. 6.31 Student and visitor cars leaving car park areas shown in Control Centre panel of Simulator II

Performance and resource analysis for Experiment Scenario 2

The VisualVM CPU, heap, classes and thread graphs, corresponding to the GVPS

entering event, are shown in Fig. 6.32 (Simulator I) and Fig. 6.33 (Simulator II).

Simulator I shows that the entering event uses 2.4% of CPU time and consumed

97,109,032 bytes of memory while loading 2,721 classes and has a total of 28 live

threads. Conversely, Simulator II uses 0.7% of CPU time and consumed 92,927,384

bytes while loading more classes and threads; 3,175 classes and 30 live threads. In the

heap graphs, the memory consumption shows five spikes that occurred after adding

two student vehicles and three visitor vehicles. The result for both simulators in

Experiment Scenario 2 shows more memory consumptions compared to Experiment

Scenario 1, although the classes loaded are fewer. This may be due to the fact that both

the simulators in Experiment Scenario 2 running more threads, which require more

resources. Nevertheless, Simulator II still shows significantly better performance and

memory consumption in Experiment Scenario 2 than Simulator I.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

150

Fig. 6.32 Simulator I (PID 2212) monitoring entering event

Fig. 6.33 Simulator II (PID 2756) monitoring entering event

In Experiment Scenario 2 the exiting event is triggered at approximately 750

seconds (see Fig. 6.34 and Fig. 6.35). The results show that Simulator I uses 2.2% of

Chapter 6 Evaluation 2: Guided Vehicle Parking System

151

CPU time and 100,625,744 bytes of memory that involves 4,556 classes and 33 live

threads. Simulator II uses 1.5% of CPU time and 93,155,208 bytes of memory while

loading 5,214 classes and 34 live threads. In the heap graphs, the memory

consumption shows five spikes. These occur as the five vehicles exit their parking

areas.

Fig. 6.34 Simulator I (PID 2212) monitoring exiting event

Fig. 6.35 Simulator II (PID 2756) monitoring exiting event

Chapter 6 Evaluation 2: Guided Vehicle Parking System

152

The performance and memory consumption results for Simulator I and Simulator

II in Experiment Scenario 2 are summarised in Table 6.7. The results show that

Simulator II performed significantly better than Simulator I. Although Simulator II

run more classes and threads, it has lower CPU usage and memory consumption

compared to Simulator I. In the entering event Simulator II uses almost 3.5 times less

CPU time than Simulator I, and almost 5Mbytes less in memory. In the exiting event

Simulator II uses 1.5 times less CPU time than Simulator I, and almost 7Mbytes less

in memory

Table 6.7 Summary performance and memory consumption for Experiment Scenario 2

 CPU Usage Heap (bytes) Classes Threads

Entering event Simulator I 2.4% 97, 109, 032 2, 721 28
Simulator II 0.7% 92, 927, 384 3, 175 30

Exiting event Simulator I 2.2% 100, 625, 744 4, 556 33
Simulator II 1.5% 93, 155, 208 5, 214 34

CPU and memory profiles for Experiment Scenario 2

The CPU and memory profiles during the entering event, for Simulator I and

Simulator II, are shown in Fig. 6.36 and 6.37. Once again Simulator I shows that

application spends almost all its time on a few methods in the AWT-EventQueue-are.

In Simulator II, the application its time on several methods in the Thread-5, AWT-

EventQueue-0 and RMI-TCP-Connection.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

153

Fig. 6.36 Simulator I (PID 2212) profiling CPU

Fig. 6.37 Simulator II (PID 2756) profiling CPU

The memory profiles for the entering event, for Simulator I and II, are shown in

Fig. 6.38 and Fig. 6.39. Simulator I consistently shows significantly higher memory

Chapter 6 Evaluation 2: Guided Vehicle Parking System

154

consumption for almost all objects compared to Simulator II. Some Simulator I

objects such as int[] (33,216 bytes), have more double the memory consumption of

their corresponding counterparts in Simulator II (16,472 bytes).

Fig. 6.38 Simulator I (PID 2212) profiling memory

Fig. 6.39 Simulator II (PID 2756) profiling memory

Chapter 6 Evaluation 2: Guided Vehicle Parking System

155

Experiment Scenario 3: Two student vehicles, three visitor vehicles and
two road closures

The objective of this experiment was to add complexity, in addition to increased load.

The compares the behaviour of the two architectures a load of five vehicles; two

student vehicles and three visitor vehicles, and two road closures. The requested

destinations are the same as in Experiment Scenario 2. The student vehicles of type

car are navigating to the Ash House, while two visitor vehicles are navigating to the

Ruskin Library. One visitor vehicle is navigating to the Health Centre. However, there

is the added complexity of two road closures (i.e. road id 17 and 38), which obstruct

the direct route to Ruskin library (see Fig. 6.40 – 6.43). The closure has the effect of

forcing the GVPS to compute a new shortest route to the Ruskin library.

Fig. 6.40 Road obstruction menu

Fig. 6.41 Road obstruction at road 17 is shows on Control Centre panel of Simulator II

Chapter 6 Evaluation 2: Guided Vehicle Parking System

156

Fig. 6.42 Road obstruction at road 17 and 38 is shows on Control Centre panel of Simulator II

Fig. 6.43 Visitor car navigates to Ruskin Library using alternative road is shown in IVD panel of Simulator II

Chapter 6 Evaluation 2: Guided Vehicle Parking System

157

Performance and resource analysis for Experiment Scenario 3

The CPU, heap, classes and thread graphs for the entering event, for Simulator I and

Simulator II, are shown in Fig. 6.44 and Fig. 6.45. For Simulator I, the event uses

1.6% of CPU time and 100,965,680 bytes of memory while loading 2,739 classes, and

has a total of 28 live threads. Conversely, Simulator II uses 0.7% of CPU time and

94,998,656 bytes while loading 3,196 classes and 30 live threads. The memory

consumption in the heap graphs show five spikes occurring after adding the same

number of vehicles as in Experiment Scenario 2. Both simulators in Experiment

Scenario 3 load more classes and threads than Experiment Scenario 1 and

Experiment Scenario 2. Hence, the memory consumption in Experiment Scenario 3,

for the entering event is the higher than in Experiment Scenario 1 and Experiment

Scenario 2.

Fig. 6.44 Simulator I (PID 1712) monitoring entering event

Chapter 6 Evaluation 2: Guided Vehicle Parking System

158

Fig. 6.45 Simulator II (PID 2512) monitoring entering event

The exiting event is triggered at approximately 750 seconds (see Fig. 6.46 and Fig.

6.47). The results show that Simulator I uses 2.4% of CPU time and 122,706,184

bytes of memory, which involves 4, 595 classes and 31 live threads. Simulator II uses

1.5% of CPU time and 119,025,464 bytes of memory while loading 5, 270 classes and

33 live threads. In the heap graphs, the memory consumption shows five spikes.

These occur when the five vehicles exit their parking areas.

Chapter 6 Evaluation 2: Guided Vehicle Parking System

159

Fig. 6.46 Simulator I (PID 1712) monitoring exiting event

Fig. 6.47 Simulator II (PID 2512) monitoring exiting event

The results for Experiment Scenario 3 are summarised in Table 6.8. Once again

the results show that Simulator II has performed significantly better than Simulator I

Chapter 6 Evaluation 2: Guided Vehicle Parking System

160

despite running more classes and threads. Simulator II has lower CPU usage and

lower memory consumption compared to Simulator I.

Table 6.8 Summary performance and memory consumption for Experiment Scenario 3

 CPU Usage Heap (bytes) Classes Threads

Entering event Simulator I 1.6% 100, 965, 680 2, 739 28
Simulator II 0.7% 94, 998, 656 3, 196 30

Exiting event Simulator I 2.4% 122, 706, 184 4, 595 31
Simulator II 1.5% 119, 025, 494 5, 270 33

CPU and memory profiles for Experiment Scenario 3

Fig. 6.48 and Fig. 6.49 show the CPU profile for Simulator I and Simulator II in

Experiment Scenario 3 during entering event. Simulator I shows that the application

spends almost all its time in the AWT-EventQueue-0 class. In Simulator II (Fig 6.49),

the application spends most of its time in the Thread-5 and AWT-EventQueue-0

classes.

Fig. 6.48 Simulator I (PID 1712) profiling CPU

Chapter 6 Evaluation 2: Guided Vehicle Parking System

161

Fig. 6.49 Simulator II (PID 2512) profiling CPU

Memory profiles for the entering event for Simulator I and II in Experiment

Scenario 3 are shown in Fig. 6.50 and Fig. 6.51. Simulator I shows significantly higher

memory consumption for almost all objects compared to Simulator II. The object int[]

of Simulator I, for example, has a memory consumption of bytes 58,128 bytes

compared to Simulator II, where it’s consumption is only 2,088 bytes.

Fig. 6.50 Simulator II (PID 1712) profiling memory

Chapter 6 Evaluation 2: Guided Vehicle Parking System

162

Fig. 6.51 Simulator II (PID 2512) profiling memory

6.5 Summary

This chapter has provided a runtime evaluation of CSAFE. The evaluation used a real

case study derived from an undergraduate software engineering group project. The

evaluation assessed the effect of CSAFE efficiency and performance refinements on

the runtime behaviour of a system by comparing the original system with its refined

version. In all cases the results validated the effectiveness of CSAFE by showing

significant improvements in performance and resource consumption for the refined

system.

163

Chapter 7

Conclusions

This chapter begins with an evaluation of the Component-based Software Architecture

analysis FramEwork (CSAFE), a scenario-driven, negotiation-based architecture

analysis approach that intended to provide a viable framework for architectural analysis

in CBD. The evaluation compares the research achievements with the objectives

outlined in the introduction chapter. The chapter then provides a discussion of future

research directions, which have arisen during the development and evaluation of the

framework. The chapter concludes the thesis with a summary of the research

problems of developing an effective architecture analysis framework for CBD, the

issues with existing research efforts, and the key contributions put forward in this thesis.

7.1 Framework Objectives Revisited

This section discusses how CSAFE has addressed the research objectives stated in the

thesis introduction. These research objectives are to allow the system designer to adapt

and tailor the design process to reflect the system context and domain specific needs,

to provide support for pluggable architecture analysis, provide explicit support for

Chapter 7 Conclusions

164

trade-off analysis, to provide support for standard design notations, and develop an

extensible toolset to support the architecture analysis framework. How each objective

has been addressed is now discussed:

1. Formulate a classification and comparison framework for architecture analysis

approaches. This objective has been achieved by identifying the design challenges

in component-based development and distilling them into a set of necessary

requirements for architecture analysis methods. The set of necessary requirements

has been used to develop a framework for assessing architecture analysis

approaches, which in turn, has been successfully used to assess current architecture

analysis methods [Admodisastro08].

2. Develop a scenario-driven architecture analysis framework to support black-box

component-based development. This objective has been achieved by the

development of Component—based Software Architecture analysis FramEwork

(CSAFE). CSAFE competently addresses the design challenges outlined in

Chapter 3 and has been successfully evaluated on both static and runtime case

studies [Admodisastro10, Admodisastro11a, Admodisastro11b]. CSAFE supports

the following features:

• Is process-pluggable to minimise development process disruption and to

afford system designers flexibility in the way they conduct architecture

analysis to take into account application context needs. Output from the

existing design process forms the input to the CSAFE process. The

recommendations from architecture analysis process are fed back into the

normal design process. This means that system designs do not have to

modify their development process significantly to accommodate CSAFE.

• Explicitly supports broad system stakeholder involvement in architecture

analysis through analysis scenarios allow system stakeholders to tailor the

analysis to explore specific design questions. CSAFE also maintains

Chapter 7 Conclusions

165

traceability with the rest of the development process allowing for pluggable

“what-if” analysis of design and evolution changes using analysis scenarios.

• Provides support for pluggable analysis to allow for diversity in analysis.

Currently, the CSAFE analysis process illustrated with three types of

checking, which include structure, behavioural, and conformance, for

which different tools may be used.

• Supports for negotiation (i.e. trade-off analysis) is provided in the

framework through the implementation of the Simple Multi-Attribute

Rating Technique (SMART), which is a form of the multi-attribute utility

theory methods. Trade-off analysis supports the process of balancing

stakeholder concerns and architectural considerations with the available

component functionality.

• Supports architectures described in UML and those described in the

iXML ADL. CSAFE incorporates a parser to translate UML architecture

descriptions to iXML ADL, and a verifier for iXML architecture

descriptions. The iXML ADL serves three purposes; first, it allows both

pre-existing and new architectures to be analysed. Secondly, it allows for a

portable, platform independent description of the system architecture.

Lastly, it provides the system designer with a mechanism for augmenting

architectural descriptions to explore “what if” analysis. The system

architecture, architectural design templates and components specifications

are all represented in the same way using a standard XML schema.

• Is primarily intended to support black-box component-based

development. However, the approach recognises that there might be

aspects of a system for which black-box development is not feasible or

appropriate. In such cases, CSAFE supports custom development by

treating abstract design components as placeholders for custom

development. CSAFE supports hybrid component-based development in

recognition that that component-based systems are increasingly hybrid

Chapter 7 Conclusions

166

integrations of off-the-shelf components and web services. The evaluation

in described Chapter 5 uses components and a web service.

3. Develop an extensible toolset to support the architecture analysis framework. This

objective has been achieved through the development of an extensive CSAFE

toolset that has six main components: The XMI/XML parser, scenario

formulator, analyser, iXML ADL, trade-off analyser and rater, and report

generator. These components are supported by an analysis repository containing

the design template library, component library and architecture database. The

primary aim of the toolset is to support the architecture analysis process. The

CSAFE toolset achieves this by:

• Providing explicit support for the involvement of system stakeholders and

supporting the formulation analysis scenarios that explore specific design

questions

• Supporting the analysis of architectures specified in UML

• Supporting diversity in analysis through pluggable analysis, to allow

different forms of architecture analysis to be conducted

• Supporting an extensible XML repository of design templates and

components that allows the system designer to define analysis contexts that

include design patterns, styles and organisation-specific schemes.

• Providing explicit support for negotiation through the trade-off analyser

and support assessment of proposed solutions

The efficacy of the toolset is clearly demonstrated in the EDDIS case study

described in Chapter 5 [Admodisastro10] and GVPS case study described in

Chapter 6.

4. Evaluate the architecture analysis framework on a non-trivial case study. This

objective has been achieved by clearly demonstrating the efficacy of CSAFE in two

non-trivial design settings. Chapter 5 used the requirements of an actual Electronic

Document Delivery and Interchange system (EDDIS) to demonstrate the key

Chapter 7 Conclusions

167

features of CSAFE and the practicability of the framework. The evaluation

demonstrated how CSAFE can be used to construct, analyse and refine a software

system architecture from requirements to system composition. The second

evaluation focused on runtime evaluation to validate architectural refinements.

The evaluation assesses the effect of architectural refinements by comparing the

runtime behaviour of an existing system against its refined version, in three

different scenarios. In all cases the results validated the effectiveness of CSAFE by

showing significant improvement in performance and resource consumption for

the refined system.

7.3 Opportunities and Future Work

This section discusses ideas for future research stemming from the development and

evaluation of the CSAFE. Each research direction is discussed in turn:

• Improving service and component mapping process. The service and component

mapping process can be significantly improved semantically by the adoption of an

ontology for describing properties and capabilities of services and concrete

components. Current system services are mapped onto the recommended

architecture design templates, and abstract components are mapped onto concrete

components using semantic reasoning. An ontology can provide the semantic

information for conducting more efficient mapping and analysis.

• Enhancing negotiation support. The framework supports negotiation using the

SMART technique. CSAFE could explore other methods for conducting

negotiation. For example, in addition to SMART, the Analytic Hierarchical

Process technique (AHP) is also widely used in multi-attribute decision-making.

The enhancement can be implemented in CSAFE as pluggable negotiation,

allowing different trade-off analysis tools to be used. Different negotiation

techniques vary in the wider decision factors that they consider. Supporting

Chapter 7 Conclusions

168

flexibility in negotiation may allow aspects such as uncertainty and risk to be

incorporated in the analysis.

• Extending analysis process checkers. Currently the CSAFE analysis process

provides support for structure, quality and conformance checking. The output of

the analysis process is a report outlining potential inconsistencies and mismatches,

and recommendations for improving the architecture. The analysis could be

extended to support behaviour checking by extending iXML ADL to support

component behaviour specification. This would provide the basis dynamic analysis

of architecture design.

• Incorporating component metrics in assessment. Component metrics provide

useful quantitative information related to interface complexity, code size,

component dependency and other measurable system attributes. There are

numerous metrics available at the code level and some researchers also have

worked on the design metrics. However, current literature shows there are few

metrics at architectural level, and much less for black-box development. The

quantitative evaluation using component metrics would be a useful addition to the

decision-making process. Therefore, a study might be conducted to identify and

incorporate useful component metrics to support the assessment process.

• Dealing with large and complex system. For CSAFE to be scalable it needs to

demonstrate that it can cope with the analysis of large and complex systems. The

prototype toolset has demonstrated that CSAFE can effectively analyse non-trivial

system architectures. However, the evaluations described here represent only a

small class of systems and a handful of scenarios. It is important that CSAFE is

validated on larger, more complex applications, and more quality scenarios.

Through further validations, the maturity of CSAFE will improve. Maturity

indicates the state of readiness of CSAFE to be adopted in an organization.

Chapter 7 Conclusions

169

7.4 Reflection

The importance of architecture in reuse-driven development is widely recognized

[Bass05, Crnkovic02, Medvidovic07]. Architecture provides a framework for

establishing a match between available components and the system context. It is a key

part of the system documentation; it enforces the integrity of component composition

and provides a basis for managing change. However, one of the most difficult

problems in component-based system development (CBD) is ensuring that the

software architecture provides an acceptable match with its intended application,

business and evolutionary context. Unlike custom development where architectural

design relies solely on detailed requirements specification and where deficiencies in

application context can be corrected by ‘tweaking’ the source code, in component-

based system development the typical unit of development is often a black-box

component whose source code is inaccessible to the developer. Getting the

architecture right is therefore key to ensuring quality in a component-based system.

In this thesis we highlighted how architecture analysis can provide the developer

with a means to assess design configurations and to verify the adequacy of

compositions with respect to stakeholder concerns. Architecture analysis can also

provide a basis for developing “what-if” scenarios to explore the implications of

evolving a system [Kotonya05a, Dobrica02]. However, a study by [Admodisastro08]

showed that current architecture analysis approaches differ widely with respect to their

underlying models and ability to support black-box software development making it

difficult for system designer to assess their efficacy in different application contexts.

The study also showed that there is significant disparity in the analytical capabilities and

user validation of the approaches.

The need to trade-off and accept compromise is therefore central to the successful

development of component-based systems. However, current architecture analysis

approaches provide poor support for negotiation. This thesis has highlighted the poor

Chapter 7 Conclusions

170

support for diversity in current architecture analysis approaches. Current approaches

are largely designed to support a particular type of analysis and often for a specific

application domain. Critically, none of the approaches reviewed in this thesis support

hybrid reuse-driven development, even though, increasingly applications are being

developed for which different types of reusable software co-exist in the same system.

In current architecture analysis approaches, the role of architectural design is left

largely to the system designer. However, system stakeholders often include decision

makers within and outside the organisation and their involvement in architecture

analysis can help identify critical system concerns and conflicts, assess alternatives and

build consensus on priority issues.

This thesis has presented two key research contributions. The first key research

contribution of this thesis is the formulation of a classification and comparison

framework for software architecture analysis approaches. The framework consists of

eight key requirements that can be used to design architectural methods and assess

efficacy for component-based development. The second key contribution is

development and evaluation of Component-based Software Architectural Analysis

Framework (CSAFE), a scenario driven, negotiation-based architecture analysis

framework for black-box component-based software development. It is important to

mention that while CSAFE is primarily intended to support black-box development,

we recognise that there may be aspects of the system for which a black-box solution is

not feasible. CSAFE supports white-box development in such situations by treating

abstract components as placeholders for custom development.

This thesis has highlighted the importance of architectural analysis in component-

based software development. Systematic architectural analysis can help ensure that

risks resulting from architectural adaptations and trade-offs do not adversely affect

critical system qualities. The analysis is likely to reveal not only how well an

architecture satisfies a particular application context, but also how change to specific

quality attributes might affect other quality concerns. The work does not pretend that it

Chapter 7 Conclusions

171

has addresses all the problems posed by black-box component-based system design.

However, it is believe that the work has made significant contribution in understanding

and addressing those problems.

172

Appendix A:

iXML Schemas

A1. iXML Schema for Architecture Design
Description

iXML schema for architecture design is shown in Table A1.1.

Table A1.1 iXML schema for architecture

<!ELEMENT NXML (COMPONENT*, INTERFACE*, CONNECTOR*)>

<!ELEMENT COMPONENT (COMPONENT.DESCRIPTION, COMPONENT.INTERFACE*,
COMPONENT.CONNECTOR*, COMPONENT.COMPOSITE*, COMPONENT.CONSTRAINT*,
COMPONENT.PROPERTY*)>
<!ATTLIST COMPONENT NAME.ID CDATA #REQUIRED
 TYPE CDATA #IMPLIED

 VISIBILITY CDATA #REQUIRED>

<!ELEMENT COMPONENT.DESCRIPTION (#PCDATA)>

<!-- INTERFACE PORT: P (PROVIDED) OR R (REQUIRED) INTERFACE -->
<!ELEMENT COMPONENT.INTERFACE EMPTY>
<!ATTLIST COMPONENT.INTERFACE NAME.IDREF CDATA #REQUIRED
 PORT.IDREF CDATA #REQUIRED>

<!--LIST CONNECTOR ONLY FROM REQUIRE COMPONENT -->
<!ELEMENT COMPONENT.CONNECTOR EMPTY>
<!ATTLIST COMPONENT.CONNECTOR NAME.IDREF CDATA #REQUIRED>

Appendix A iXML Schemas

173

<!--LIST COMPOSITE FOR NESTED COMPONENT OR SUBSYSTEM -->
<!ELEMENT COMPONENT.COMPOSITE EMPTY>
<!ATTLIST COMPONENT.COMPOSITE NAME.IDREF CDATA #REQUIRED>

<!-- CONSTRAINT STATE: NE, LE, LT, GE, GT OR EL -->
<!-- CONSTRAINT TYPE: PRECONDITION, POSTCONDITION OR INVARIANT -->
<!ELEMENT COMPONENT.CONSTRAINT EMPTY>
<!ATTLIST COMPONENT.CONSTRAINT CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 STATE CDATA #REQUIRED
 TYPE CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 SCOPE CDATA #REQUIRED>

<!ELEMENT COMPONENT.PROPERTY EMPTY>
<!ATTLIST COMPONENT.PROPERTY CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 VALUE CDATA #REQUIRED>

<!ELEMENT INTERFACE (INTERFACE.DESCRIPTION, INTERFACE.SERVICE*, INTERFACE.OPERATION*,
INTERFACE.CONSTRAINT*, INTERFACE.PROPERTY*)>
<!ATTLIST INTERFACE NAME.ID CDATA #REQUIRED
 TYPE CDATA #IMPLIED
 PORT CDATA #IMPLIED

 VISIBILITY CDATA #REQUIRED >

<!ELEMENT INTERFACE.DESCRIPTION (#PCDATA)>

<!--LIST SERVICE FOR PROVIDED INTERFACE -->
<!ELEMENT INTERFACE.SERVICE EMPTY>
<!ATTLIST INTERFACE.SERVICE NAME CDATA #IMPLIED>

<!ELEMENT INTERFACE.OPERATION (OPERATION.PARAM*)>
<!ATTLIST INTERFACE.OPERATION NAME CDATA #IMPLIED
 RET CDATA #IMPLIED>

<!ELEMENT OPERATION.PARAM EMPTY>
<!ATTLIST OPERATION.PARAM NAME CDATA #IMPLIED
 TYPE CDATA #IMPLIED>

<!ELEMENT INTERFACE.CONSTRAINT EMPTY>
<!ATTLIST INTERFACE.CONSTRAINT CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 TYPE CDATA #REQUIRED
 STATE CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 SCOPE CDATA #REQUIRED>

<!ELEMENT INTERFACE.PROPERTY EMPTY>
<!ATTLIST INTERFACE.PROPERTY CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 VALUE CDATA #REQUIRED>

<!ELEMENT CONNECTOR (CONNECTOR.REQUIRED, CONNECTOR.PROVIDED, CONNECTOR.CONSTRAINT*,
CONNECTOR.PROPERTY*)>

Appendix A iXML Schemas

174

<!ATTLIST CONNECTOR NAME.ID CDATA #IMPLIED
 TYPE CDATA #IMPLIED
 ROLE CDATA #IMPLIED>

<!ELEMENT CONNECTOR.PROVIDED (PROVIDED.COMPONENT, PROVIDED.INTERFACE)>
<!ELEMENT CONNECTOR.REQUIRED (REQUIRED.COMPONENT, REQUIRED.INTERFACE)>

<!ELEMENT PROVIDED.COMPONENT EMPTY>
<!ATTLIST PROVIDED.COMPONENT NAME.IDREF CDATA #REQUIRED>

<!ELEMENT PROVIDED.INTERFACE EMPTY>
<!ATTLIST PROVIDED.INTERFACE NAME.IDREF CDATA #REQUIRED>

<!ELEMENT REQUIRED.COMPONENT EMPTY>
<!ATTLIST REQUIRED.COMPONENT NAME.IDREF CDATA #REQUIRED>

<!ELEMENT REQUIRED.INTERFACE EMPTY>
<!ATTLIST REQUIRED.INTERFACE NAME.IDREF CDATA #REQUIRED>

<!ELEMENT CONNECTOR.CONSTRAINT EMPTY>
<!ATTLIST CONNECTOR.CONSTRAINT CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 STATE CDATA #REQUIRED
 TYPE CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 SCOPE CDATA #REQUIRED>

<!ELEMENT CONNECTOR.PROPERTY EMPTY>
<!ATTLIST CONNECTOR.PROPERTY CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 VALUE CDATA #REQUIRED>

Appendix A iXML Schemas

175

A2. iXML Schema for Design Template Description

iXML schema for design template is shown in Table A2.1.

Table A2.1 iXML schema for design template

<!ELEMENT NXML (CATEGORY, RNAME, ALSOKNOWNAS, RELATEDRULES, INTENT, CONTEXT,
MOTIVATION, CONTRIBUTIONS, CONFIGURATION)>

<!--CATEGORY: PATTERN, STYLE, LOCAL SCHEME -->
<!ELEMENT CATEGORY (#PCDATA)>
<!ELEMENT RNAME (#PCDATA)>
<!ELEMENT ALSOKNOWNAS (#PCDATA)>
<!ELEMENT RELATEDRULES (RELATEDRULE.DESCRIPTION*)>

<!ELEMENT RELATEDRULE.DESCRIPTION EMPTY>
<!ATTLIST RELATEDRULE.DESCRIPTION RNAME CDATA #REQUIRED >

<!ELEMENT INTENT (#PCDATA)>
<!ELEMENT CONTEXT (#PCDATA)>
<!ELEMENT MOTIVATION (#PCDATA)>
<!ELEMENT CONTRIBUTIONS (CONTRIBUTION.DESCRIPTION*)>

<!-- CONSEQUENCES WEIGHT: H(HIGH), M(MEDIUM) OR L(LOW) -->
<!ELEMENT CONTRIBUTION.DESCRIPTION (#PCDATA)>
<!ATTLIST CONTRIBUTION.DESCRIPTION QUALITY CDATA #REQUIRED
 SUBQUALITY CDATA #REQUIRED
 WEIGHT CDATA #REQUIRED>

<!ELEMENT CONFIGURATION (COMPONENT*, INTERFACE*, CONNECTOR*)>

<!ELEMENT COMPONENT (COMPONENT.DESCRIPTION, COMPONENT.INTERFACE*,
COMPONENT.CONNECTOR*, COMPONENT.COMPOSITE*, COMPONENT.CONSTRAINT*,
COMPONENT.PROPERTY*)>
<!ATTLIST COMPONENT NAME.ID CDATA #REQUIRED
 TYPE CDATA #IMPLIED

 VISIBILITY CDATA #REQUIRED >

<!ELEMENT COMPONENT.DESCRIPTION (#PCDATA)>

<!-- INTERFACE PORT: P (PROVIDED) OR R (REQUIRED) INTERFACE -->
<!ELEMENT COMPONENT.INTERFACE EMPTY>
<!ATTLIST COMPONENT.INTERFACE NAME.IDREF CDATA #REQUIRED
 PORT.IDREF CDATA #REQUIRED>

<!--LIST CONNECTOR ONLY FROM REQUIRE COMPONENT -->
<!ELEMENT COMPONENT.CONNECTOR EMPTY>
<!ATTLIST COMPONENT.CONNECTOR NAME.IDREF CDATA #REQUIRED>

<!--LIST COMPOSITE FOR NESTED COMPONENT OR SUBSYSTEM -->
<!ELEMENT COMPONENT.COMPOSITE EMPTY>
<!ATTLIST COMPONENT.COMPOSITE NAME.IDREF CDATA #REQUIRED>

Appendix A iXML Schemas

176

<!-- CONSTRAINT STATE: NE, LE, LT, GE, GT OR EL -->
<!-- CONSTRAINT TYPE: PRECONDITION, POSTCONDITION OR INVARIANT -->
<!ELEMENT COMPONENT.CONSTRAINT EMPTY>
<!ATTLIST COMPONENT.CONSTRAINT CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 STATE CDATA #REQUIRED
 TYPE CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 SCOPE CDATA #REQUIRED>

<!ELEMENT COMPONENT.PROPERTY EMPTY>
<!ATTLIST COMPONENT.PROPERTY CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 VALUE CDATA #REQUIRED>

<!ELEMENT INTERFACE (INTERFACE.DESCRIPTION, INTERFACE.SERVICE*, INTERFACE.OPERATION*,
INTERFACE.CONSTRAINT*, INTERFACE.PROPERTY*)>
<!ATTLIST INTERFACE NAME.ID CDATA #REQUIRED
 TYPE CDATA #IMPLIED
 PORT CDATA #IMPLIED

 VISIBILITY CDATA #REQUIRED >

<!ELEMENT INTERFACE.DESCRIPTION (#PCDATA)>

<!--LIST SERVICE FOR PROVIDED INTERFACE -->
<!ELEMENT INTERFACE.SERVICE EMPTY>
<!ATTLIST INTERFACE.SERVICE NAME CDATA #IMPLIED>

<!ELEMENT INTERFACE.OPERATION (OPERATION.PARAM*)>
<!ATTLIST INTERFACE.OPERATION NAME CDATA #IMPLIED
 RET CDATA #IMPLIED>

<!ELEMENT OPERATION.PARAM EMPTY>
<!ATTLIST OPERATION.PARAM NAME CDATA #IMPLIED
 TYPE CDATA #IMPLIED>

<!ELEMENT INTERFACE.CONSTRAINT EMPTY>
<!ATTLIST INTERFACE.CONSTRAINT CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 TYPE CDATA #REQUIRED
 STATE CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 SCOPE CDATA #REQUIRED>

<!ELEMENT INTERFACE.PROPERTY EMPTY>
<!ATTLIST INTERFACE.PROPERTY CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 VALUE CDATA #REQUIRED>

<!ELEMENT CONNECTOR (CONNECTOR.REQUIRED, CONNECTOR.PROVIDED, CONNECTOR.CONSTRAINT*,
CONNECTOR.PROPERTY*)>
<!ATTLIST CONNECTOR NAME.ID CDATA #IMPLIED
 TYPE CDATA #IMPLIED
 ROLE CDATA #IMPLIED>

Appendix A iXML Schemas

177

<!ELEMENT CONNECTOR.PROVIDED (PROVIDED.COMPONENT, PROVIDED.INTERFACE)>
<!ELEMENT CONNECTOR.REQUIRED (REQUIRED.COMPONENT, REQUIRED.INTERFACE)>

<!ELEMENT PROVIDED.COMPONENT EMPTY>
<!ATTLIST PROVIDED.COMPONENT NAME.IDREF CDATA #REQUIRED>

<!ELEMENT PROVIDED.INTERFACE EMPTY>
<!ATTLIST PROVIDED.INTERFACE NAME.IDREF CDATA #REQUIRED>

<!ELEMENT REQUIRED.COMPONENT EMPTY>
<!ATTLIST REQUIRED.COMPONENT NAME.IDREF CDATA #REQUIRED>

<!ELEMENT REQUIRED.INTERFACE EMPTY>
<!ATTLIST REQUIRED.INTERFACE NAME.IDREF CDATA #REQUIRED>

<!ELEMENT CONNECTOR.CONSTRAINT EMPTY>
<!ATTLIST CONNECTOR.CONSTRAINT CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 STATE CDATA #REQUIRED
 TYPE CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 SCOPE CDATA #REQUIRED>

<!ELEMENT CONNECTOR.PROPERTY EMPTY>
<!ATTLIST CONNECTOR.PROPERTY CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 VALUE CDATA #REQUIRED>

Appendix A iXML Schemas

178

A3. iXML Schema for Component Description

iXML schema for component is shown in Table A3.1.

Table A3.1 iXML schema for component

<!ELEMENT NXML (COMPONENT*, INTERFACE*)>

<!ELEMENT COMPONENT (COMPONENT.DESCRIPTION, COMPONENT.INTERFACE*,
COMPONENT.CONSTRAINT*, COMPONENT.PROPERTY*)>
<!ATTLIST COMPONENT NAME.ID CDATA #REQUIRED
 TYPE CDATA #IMPLIED

 VISIBILITY CDATA #REQUIRED>

<!ELEMENT COMPONENT.DESCRIPTION (#PCDATA)>

<!-- INTERFACE PORT: P (PROVIDED) OR R (REQUIRED) INTERFACE -->
<!ELEMENT COMPONENT.INTERFACE EMPTY>
<!ATTLIST COMPONENT.INTERFACE NAME.IDREF CDATA #REQUIRED
 PORT.IDREF CDATA #REQUIRED>

<!-- CONSTRAINT STATE: NE, LE, LT, GE, GT OR EL -->
<!-- CONSTRAINT TYPE: PRECONDITION, POSTCONDITION OR INVARIANT -->
<!ELEMENT COMPONENT.CONSTRAINT EMPTY>
<!ATTLIST COMPONENT.CONSTRAINT CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 STATE CDATA #REQUIRED
 TYPE CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 SCOPE CDATA #REQUIRED>

<!ELEMENT COMPONENT.PROPERTY EMPTY>
<!ATTLIST COMPONENT.PROPERTY CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 VALUE CDATA #REQUIRED>

<!ELEMENT INTERFACE (INTERFACE.DESCRIPTION, INTERFACE.SERVICE*, INTERFACE.OPERATION*,
INTERFACE.CONSTRAINT*, INTERFACE.PROPERTY*)>
<!ATTLIST INTERFACE NAME.ID CDATA #REQUIRED
 TYPE CDATA #IMPLIED
 PORT CDATA #IMPLIED

 VISIBILITY CDATA #REQUIRED >

<!ELEMENT INTERFACE.DESCRIPTION (#PCDATA)>

<!--LIST SERVICE FOR PROVIDED INTERFACE -->
<!ELEMENT INTERFACE.SERVICE EMPTY>
<!ATTLIST INTERFACE.SERVICE NAME CDATA #IMPLIED>

<!ELEMENT INTERFACE.OPERATION (OPERATION.PARAM*)>
<!ATTLIST INTERFACE.OPERATION NAME CDATA #IMPLIED
 RET CDATA #IMPLIED>

Appendix A iXML Schemas

179

<!ELEMENT OPERATION.PARAM EMPTY>
<!ATTLIST OPERATION.PARAM NAME CDATA #IMPLIED
 TYPE CDATA #IMPLIED>

<!ELEMENT INTERFACE.CONSTRAINT EMPTY>
<!ATTLIST INTERFACE.CONSTRAINT CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 TYPE CDATA #REQUIRED
 STATE CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 SCOPE CDATA #REQUIRED>

<!ELEMENT INTERFACE.PROPERTY EMPTY>
<!ATTLIST INTERFACE.PROPERTY CONCERN CDATA #REQUIRED
 SUBCONCERN CDATA #REQUIRED
 VALUE CDATA #REQUIRED>

180

Appendix B:

CSAFE Toolset Analysis & Design

B1. CSAFE Use-Case Descriptions & Sequence
Diagrams

CSAFE use-case descriptions are shown in Table B1.1 – B1.13 and sequence

diagrams are shown in Fig. B1.1 – B1.13.

Table B1.1 Transform architecture use-case description

CSAFE: Transform Architecture
Actors System Designer, XMI/XML Parser, Analysis Repository
Description

1. System designer browses and selects XMI/XML architectural
specification from Analysis Repository.

2. System designer enters project name and clicks OK.
3. The XMI/XML parser parses the architectural specification and checks

against XML schema/DTD.
4. The XMI/XML parser creates design schema.
5. The XMI/XML parser stores architectural vectors in analysis repository.
6. The tool organizes architectural elements in tree hierarchy and each

element detail description is display on the description form.
Data XMI/XML architectural specification
Stimulus System designer selects ‘New Project’ from CSAFE File menu
Response CSAFE parses and stores architecture design in to analysis repository.
Alternative flow of
events

3.a. Invalid XMI/XML description. Indicate error message.

Appendix B CSAFE Toolset Analysis & Design

181

System
Designer

display error message

display tree hierarchy

selects XMI/iXML specification

parse XMI/iXML specification

Alt

[XMI/XML Valid]

[XMI/XML Invalid]

store architectural elements

verify specification

create schema

XMI/XML
Parser Analysis Repository

returns specification

Fig. B1.1 Transform architecture sequence diagram

Table B1.2 Formulate scenario use-case description

CSAFE: Formulate Scenario

Actors System Designer, Analysis Repository
Description 1. System designer enters scenario descriptions (i.e. name, author and

comment). A date and time automatically captures.
2. System designer clicks ‘OK’.
3. The tool create new scenario in the analysis repository and display a

new a scenario template on Elicit & Prioritise display.
4. System designer selects a node (composite component, service,

interface or connector) from tree project and the constraint description
is shows on the Elicit & Prioritise display.

5. Then the system designer can starts to weight each of the constraint
description.

6. The system designer clicks ‘Save’ and the weighting values are store in
Analysis Repository.

Data New scenario and weighting values
Stimulus System designer selects ‘New Scenario’ from CSAFE toolbar
Response CSAFE stores new project info. and constraint’s weighting values in to project

repository.
Alternative flow of
events

1.a. Duplicate scenario name. Indicate error message.

Appendix B CSAFE Toolset Analysis & Design

182

ScenarioFormulator Analysis Repository
System

Designer

enters scenario desc.
store scenario desc.

scenario ‘OK’
display scenario form

enters weighting values
store weighting values

Scenario ‘not OK’

display error message

Alt

[Scenario Invalid]

[Scenario Valid]

Fig. B1.2 Formulate scenario sequence diagram

Table B1.3 Analyse architecture use-case description

CSAFE: Analyse Architecture

Actor System Designer, Analysis Repository
Description 1. System designer executes mapping design use-case.

2. System designer selects conformance checker and retrieves analysis
data from Analysis Repository.

3. The tool executes rating design use-case.
4. System designer selects quality checker and retrieves analysis data from

Analysis Repository.
5. The tool executes mapping services use-cases and executes mapping

component use-cases
6. System designer selects structural checker and retrieves analysis data

from Analysis Repository.
Data Formulates scenarios
Stimulus System designer selects mapping form
Response Results of conformance, quality and structural checker.
Relationship Extend: Mapping design, Rating design, Mapping services, Mapping component
Alternative flow of
events

-

Appendix B CSAFE Toolset Analysis & Design

183

verify structural

Conformance
Checker

Quality
Checker

Structural
Checker

display results

mapping service

mapping services & components

mapping design

verify conformance

display results

verify quality

mapping rating

display results

System
Designer

Analysis
Repository

assess analysis data

pass query data

assess analysis data

assess analysis data

pass query data

pass query data

Fig. B1.3 Analyse architecture sequence diagram

Table B1.4 Map design use-case description

CSAFE: Map Design
Actor System designer, Analysis Repository
Description 1. System designer selects scenario name, quality concerns and design

template categories.
2. The system design form submits this request to design control which

then queries desired concerns and matching categories from design
template repository.

3. The query results are passes to design control which then conduct
comparison and matching.

4. The matching results are store in analysis repository and a success
message is display to the designer.

Data Quality concerns and design template category (i.e. Pattern, Local or Style)
Stimulus System designer selects design mapping template.
Response CSAFE stores design templates results in to project repository.
Alternative flow of
events

3.a. Matching design template not found. Indicate error message.

Appendix B CSAFE Toolset Analysis & Design

184

compare & match

DesignMap DesignTemplate
Library

System
Designer

query quality concerns

selects, scenario name,
quality concerns &

categories

Alt

[Mapping Unsuccessful]

[Mapping Sucessful]

pass query results

display success mesage

Analysis
Repositoyy

store results

display error mesage

Fig. B1.4 Map design sequence diagram

Table B1.5 Rate design use-case description

CSAFE: Rate Design
Actor System Designer, Analysis Repository
Description 1. System designer selects scenario name, rating control submits the

requests to analysis repository and retrieves mapping results.
2. Rating control then retrieves the design contributions from design

template repository and passes the results to rating form to display
rating for each design template.

3. Then the system designer instantiated desired alternatives designs and
its justifications.

4. These architectural instantiation are store in architecture database.
Data All related design templates.
Stimulus System designer selects rate map template.
Response CSAFE stores desired design template and its justification.
Alternative flow of
events

-

Appendix B CSAFE Toolset Analysis & Design

185

RateMap DesignTemplate
Repository

System
Designer

query design contributions

select scenario

pass query results

Analysis
Repository

display alternatives
design rating

selects alternative
design & enters desc

instantiate architecture

query mapping results

pass query results

Architecture
Database

Fig. B1.5 Rate design sequence diagram

Table B1.6 Map services use-case description

CSAFE: Map Services

Actor System Designer, Analysis Repository
Description 1. System designer enters scenario name and service control requests

results of selected design templates from architecture database.
2. Then, the system designer selects required alternative design and

service control requests related design components from design
template repository to be displayed in the list.

3. The system designer selects a service to map, again service control
query design component details and submits the results back to the
control.

4. Then, service control compare and match the selected service onto
appropriate design component.

5. The results are store in architecture database and submit to service
form to be displayed onto a panel by establishes a link between the
service and the design component.

Data Service (Non-functional requirement)
Stimulus System designer selects service map template
Response CSAFE stores component mapping results and a link is display onto a panel in

the service form
Alternative flow of
events

3.a. Matching design template not found. Indicate error message.

Appendix B CSAFE Toolset Analysis & Design

186

compare & match

ServiceMap DesignTemplate
Repository

System
Designer

query design’s component

selects alternative design

Alt

[Manual mapping]

[Auto mapping]

pass query results

display mapping link

Analysis
Repository

store results

display ‘no found’ mesage

display results

selects service

query design’s service

pass query results

selects service & design
component

store results

compare & match

display mapping link

query mapping results

pass query results
display results

selects scenario name

Fig. B1.6 Map services sequence diagram

Table B1.7 Map component use-case description

CSAFE: Map Components

Actor System Designer, Analysis Repository
Description 1. System designer enters scenario name and component control requests

results of selected design templates from architecture database.
2. Then, the designer selects required alternative design and component

control requests related design components from architecture database
to be displayed in list on component form.

3. The system designer selects a component to map, component control
query design component details and submits the results back to the
control.

4. Then, service control compare and match the selected design
component onto concrete component.

5. The results are store in architecture database and submit to component
form to be displayed onto a panel by establishes a tag between the
design component and the concrete component.

Data Design component

Appendix B CSAFE Toolset Analysis & Design

187

Stimulus System designer selects component map template
Response CSAFE stores component mapping results and a tag is display in the

component form
Alternative flow of
events

4.a. Matching component not found. Indicate error message.

compare & match

ComponentMap Component
Library

System
Designer

query component

selects design component
& constraints

Alt

[Mapping Unsuccessful]

[Mapping Sucessful]

pass query results

display success mesage

Analysis
Repository

store results

display error mesage

query design’s component

selects alternative
design

pass query results
display results

query mapping results

pass query results

enters scenario name

Fig. B1.7 Map components sequence diagram

Table B1.8 Assess architecture use-case description

CSAFE: Assess Architecture

Actor System Designer, Analysis Repository
Description 1. System designer enters scenario name and assess control requests

formulated scenarios and its results from analysis repository.
2. Then, assess control submits a query for design contributions to

template design library.
3. The query results are passes back to assess control.
4. Subsequently, mean values are calculated and the results are passes to

assess template to be displayed.
Data Scenario name

Appendix B CSAFE Toolset Analysis & Design

188

Stimulus System designer selects assess template
Response Analysis overall results are calculated and displayed.
Alternative flow of
events

-

System
Designer

AssessArch Analysis
Repository

query scenarios

selects scenario

pass query results

calculate & display
values/mean values

TemplateDesign
Repository

query design contributions

pass query results

Fig. B1.8 Assess architecture sequence diagram

Table B1.9 Generate graphs use-case description

CSAFE: Generate Graphs
Actor System Designer, Analysis Repository
Description 1. System designer selects contribution level (e.g. level 1: best

architectural designs, level 2: concern, level 3: sub-concern).
2. ContrGraph request data from Analysis Repository and calculate these

dataset.
3. Contribution bar chart is display on assessment template.
4. System designer selects architectural design.
5. ScoreGraph request data from Analysis Repository and calculate these

dataset.
6. Scores pie charts are display on assessment template.
7. System designer selects architectural design.
8. TradeOffGraph request data from Analysis Repository and calculate

these dataset.
9. Component trade-off line chart is display on assessment template.

Data Contribution graph dataset, Score graph dataset and Trade-off dataset.
Stimulus System designer selects graph (i.e. contribution, scores, trade-off)
Response Graph display on assessment template
Alternative flow of
events

-

Appendix B CSAFE Toolset Analysis & Design

189

ContrGraph ScoreGraph
System

Designer
selects level

request contr. values

display contr. bar chart

TradeOffGraph Analysis
Repository

selects arch. alt

display arch alt. scores pie
charts

selects arch alt.
request trade-off values

display component trade-off
line chart

calculate dataset

calculate dataset

calculate dataset

submit contr. values

request score. values

submit score values

submit trade-off values

Fig. B1.9 Generate graphs sequence diagram

Table B1.10 Assess architecture use-case description

CSAFE: Generate report

Actor System Designer, Analysis Repository
Description 1. System designer selects a scenario.

2. Report request architectural design alternatives details from
architecture database.

3. Report display report to the system designer.
4. System designer requests to print the report.
5. Report raster and print the report.

Data Architectural design alternatives configurations
Stimulus System designer selects report template
Response Architectural design alternatives report is generated
Alternative flow of
events

-

Appendix B CSAFE Toolset Analysis & Design

190

Report Architecture
Database

System
Designer

selects scenario
request architectural details

submit results

display report

prints report

raster and print
report

Fig. B1.10 Generate report sequence diagram

Table B1.11 Maintain rules repository use-case description

CSAFE: Maintain Rules Repository

Actor System Designer, XMI/XML Parser
Description 1. System designer browses and selects XMI/XML design template

specification and clicks OK.
1. The XMI/XML parser parses the rule specification and checks against
XMI/XML schema.

2. The XMI/XML parser stores rule descriptions in rules repository
3. The tool organizes the rule in tree hierarchy and each element detail

description is display on the description form.
Data XMI/XML design template specification
Stimulus System designer selects design template manager template
Response Design template library is updated
Alternative flow of
events

1.a. The system designer selects a design template node. A confirmation
message is display and upon confirmation the rule is removes from
design template library.

Appendix B CSAFE Toolset Analysis & Design

191

DesignTemplate
Manager

XMI/XML
Parser

DesignTemplate
Library

display template tree
hierarchy

store design template vectors

selects XMI/XML
specification

parse XMI/XML specification

verify specification

Alt

[Delete template]

selects template

pass delete query

confirm delete?

enters confirmation

update template
tree hierarchy

returns specification

enters confirmation

submits request

Fig. B1.11 Maintain Rules Repository sequence diagram

Table B1.12 Maintain Component Repository use-case description

CSAFE: Maintain Component Repository

Actor System Designer, XMI/XML Parser
Description 1. System designer browses and selects XMI/XML component specification

and clicks OK. The parser parses the component specification and
checks against XMI/XML schema.

2. The XMI/XML parser stores component descriptions in component
repository

3. The tool organizes the component in tree hierarchy and each element
detail description is display on the description form.

Data XMI/XML component specification
Stimulus System designer selects component manager template
Response Component library is updated
Alternative flow of
events

1.a. The system designer selects a component node. A confirmation message
is display and upon confirmation the component is removes from
component library.

Appendix B CSAFE Toolset Analysis & Design

192

System
Designer

ComponentManager XMI/XML
Parser

Component
Repository

display component tree
hierarchy

store component vectors

selects XMI/XML
specification

parse XMI/XML specification

verify specification

Alt

[Delete component]
selects component

pass delete query

confirm delete?

enters confirmation

update component
tree hierarchy

submits selection query

returns specification

enters confirmation

Fig. B1.12 Maintain Component Repository sequence diagram

B2. CSAFE Class Diagrams

CSAFE class diagram are shown in Fig. B2.1 – B.2.2.

A
ppendix B

C
SA

FE
 T

oolset A
nalysis &

 D
esign

193

 Fig. B2.1 CSAFE toolset project boundary and control class diagram

A
ppendix B

C
SA

FE
 T

oolset A
nalysis &

 D
esign

194

Fig. B2.2 CSAFE toolset project entity class diagram

195

Appendix C:

User Manual CSAFE Toolset

Copyright © 2011 by Admodisastro. Permission is granted to use, modify, and distribute this
document.

User Manual

for

 CSAFE Toolset

Version 1.0

Prepared by Novia Admodisastro

Lancaster University

User Manual for CSAFE Toolset Page ii

Table of Contents
Table of Contents ... ii
Revision History ... ii
1. Introduction ... 1

1.1 Purpose ... 1
1.2 Intended Audience and Reading Suggestions ... 1

2. System Requirements .. 1
3. System Features ... 2

3.1 Main Windows ... 2
3.2 Toolbar Menus .. 2
3.3 Managing Component Library ... 3
3.4 Managing Design Template Library ... 7
3.5 Updating Quality Index List ... 15
3.6 Generating iXML Template ... 17
3.7 Starting an Architectural Analysis Project ... 19
3.8 About and Helps ... 24

Revision History
Name Date Reason For Changes Version

User Manual for CSAFE Toolset Page 1

1. Introduction

1.1 Purpose

This document describes detailed user manual for Component-based Software
Architectural analysis FramEwork (CSAFE) Toolset. The CSAFE toolset has
been developed to be as intuitive and easy to use as possible. Most functions
in the system are obvious however this user manual aims to give a guide to
performing the most common functions in the system.

1.2 Intended Audience and Reading Suggestions

This is a guidelines document meant for CSAFE users that may involve system
architect, project manager, domain expert and programmer.

The following are the system and system features covered by this User
Manual:

1. System requirements (hardware and software)
2. System features

2. System Requirements
CSAFE Toolset is written entirely in Java and therefore is platform
independent. To successfully start and run CSAFE Toolset the following
hardware and software require:

1. Java 5 is strongly recommended for Windows, Linux and Mac OS X
platforms.

2. A specific operating system is not required. However, it has been
predominantly developed and tested on Windows.

3. Database – MySQL Server 5.1 is used to access and to process data in
the database.

4. Processor – 500MHz or higher processor (or compatible processor).
5. Memory – 512 MB RAM or higher
6. Hard Disk – 2 GB or higher

User Manual for CSAFE Toolset Page 2

3. System Features

3.1 Main Windows

CSAFE main window consists of three parts: menu toolbar, a project area and a
workspace area as shown in Fig. 1. The Project area contains a tree view of the
system architecture which includes components, connectors, interfaces and so
on.

The workspace area is tabbed with the specification and scenario panes, where
the specification pane is use to display the architecture elements description and
the scenario formulation pane is use to view and access formulated scenario.

Fig. 1. CSAFE main window

3.2 Toolbar Menus

The menu toolbar provides quick access to used project configuration,
architectural analysis managements and tool tutorials through File Menu,
Report Menu, Tools Menu and Help Menu (refers to Fig. 2).

Menu
toolbar

Project area

Workspace
area

User Manual for CSAFE Toolset Page 3

Fig. 2. File menu, Report menu, Tools menu and Help menu

3.3 Managing Component Library

Concrete software components specifications could be view and updates in the
component library by clicking:

That brings up the Component Library window (refers to Fig. 3) which display
a list of components on the left side and the component details of the right side.

Fig. 3. Component Library window

A new component could be added by clicking:

Component
list

Component
details

User Manual for CSAFE Toolset Page 4

This would display the ‘New Component’ dialog that requests for the
component XML specification and name as shown in Fig. 4.

Fig. 4. ‘New Component’ dialog

Clicking the ‘Browse’ button assessing the component specification file where
a file filter is implements to keep unwanted files from appearing in the directory
listing (refers to Fig. 5.)

Fig. 5. Filter files for component specification

Error message are flagged by the XMI/XML parser when mismatched occurs
such as duplicated component name, component specification is non-
conformance to XML schema and etc. (refers to Fig. 6 and Fig. 7).

Fig. 6. Error message of component with duplicated name

Fig. 7. Error message of non-conformance XML schema

User Manual for CSAFE Toolset Page 5

A component could be deleted by selecting the component node on the tree and
clicking:

and a delete dialog is display to confirm deletion as in Fig 8. After selecting
‘Yes’, the component is removed from the component tree.

Fig. 8. Delete confirmation dialog

Component details such as its descriptions, properties, constraints and
specification can be viewed by selecting a component node, for example the
AdminManager_1 details is shown in Fig. 9 – Fig.12.

Fig. 9. AdminManager_1 descriptions

User Manual for CSAFE Toolset Page 6

Fig. 10. AdminManager_1 properties

Fig. 11. AdminManager_1 constraints

User Manual for CSAFE Toolset Page 7

Fig. 12. AdminManager_1 specification

3.4 Managing Design Template Library

Design template which consists of patterns, styles and local-schemes could be
view and updates in the design template library by clicking:

That brings up the Design Template Library window (refers to Fig. 13) which
display a list of design template which organised by its categories on the left
side and the design template details of the right side.

User Manual for CSAFE Toolset Page 8

Fig. 13. Design template library window

A new design template could be added by clicking:

This would display the ‘New Design Template’ dialog that requests for the
design template XML specification, name and category as shown in Fig. 14.

Fig. 14. ‘New Design Template’ dialog

Clicking the ‘Browse’ button assessing the design template specification file
where a file filter is implements to keep unwanted files from appearing in the
directory listing (refers to Fig. 15.)

Design
template
details

Design
template list

User Manual for CSAFE Toolset Page 9

Fig. 15. Filter files for design template specification

Clicking ‘OK’ button in ‘New Design Template’ dialog added the design
template to the template tree (refers to Fig. 16) considering that parsing is
implemented successfully (no error).

Fig. 16. ClusterServer pattern is organise in the design template tree

Error message are flagged by the XMI/XML parser when mismatched occurs
such as for example duplicated design template name, design template
specification is non-conformance to XML schema and etc. (refers to Fig. 17 –
Fig. 20).

User Manual for CSAFE Toolset Page 10

Fig. 17. Error message of design template with duplicated name

Fig. 18. Error message of non-conformance XML schema

Fig. 19. Error message when missing template element in the specification

Fig. 20. Error message when XMI/XML schema was not found

A design template could be deleted by selecting the design template node on the
tree and clicking:

and a delete dialog is display to confirm deletion as in Fig 21. After selecting
‘Yes’, the design template is removed from the template tree.

User Manual for CSAFE Toolset Page 11

Fig. 21. Delete confirmation dialog

Design template details such its descriptions, contributions (non-functional
properties), configuration and specification can be viewed by selecting a
template node. For example Fig. 22 shows an example of ClusterServer design
template descriptions.

If the design template is described using iXML description, its descriptions and
contributions are automatically captured from the specification. However, if it
is being described using XMI then these details are fills in manually. Fig. 22
shows ClusterServer pattern which being described using XMI, its descriptions
are enter manually and follow by clicking ‘Apply’ button.

Fig. 22. ClusterServer pattern descriptions

Related Rules field is disabled, a value in enters by clicking:

User Manual for CSAFE Toolset Page 12

This will open the ‘Design Template’ dialog, where we can choose reference to
other closely related design templates as shown in Fig. 23.

Fig. 23. ‘Design Template’ dialog

The second tab the dependency and contribution that template may possess
shown in weighting factor. An example given is ClusterServer pattern as shown
in Fig. 24.

Fig. 24. ClusterServer pattern contributions

Again, since ClusterServer pattern is described in XMI its contributions are
manually entered. Concern and sub-concern fields are disabled, values for these
fields are enters by clicking:

User Manual for CSAFE Toolset Page 13

This will open the ‘Quality Descriptions’ dialog, where we can choose related
concern and sub-concern for the template and clicks ‘OK’ as shown in Fig. 25.
Weighting factor of this contribution is selected from a weight drop down box
as in Fig. 26.

Fig. 25. Contribution of design template

Fig. 26. Assigning weighting value for the contribution

The third tab the structural which illustrates template configuration. An
example is ClusterServer pattern as shown in Fig. 27.

Weighting
factor

User Manual for CSAFE Toolset Page 14

Fig. 27. ClusterServer pattern structural

Clicking

display ‘Open’ dialog which allows structural file to be retrieved as in Fig. 28.

Fig. 28. Open dialog browse template structure file

The forth tab shows the design template specification. An example is
ClusterServer pattern as shown in Fig. 29.

User Manual for CSAFE Toolset Page 15

Fig. 29. ClusterServer pattern specification

3.5 Updating Quality Index List

List of quality could be view and updates in the Quality Index by clicking:

This brings up Quality Index window as in Fig. 30 that listed a quality
descriptions such as its concern, sub-concern, unit name, unit type and notes.

Fig. 30. Quality index window

User Manual for CSAFE Toolset Page 16

A new quality detail could be added into the list by clicking:

This will instantly provide a pop-up ‘New Quality’ dialog which requests for
few details to be entered such as concern, sub-concern, unit name – optional
(e.g. months, GBP etc.), unit type and notes – optional (refers to Fig. 31). We
can type the first few letters of the concern and sub-concern, and the
autocomplete will finish the entry (refers in Fig. 32).

Fig. 31. Quality unit type numeric, verbal or boolean

Fig. 32. Autocomplete feature for concern and sub-concern fields

Deleting a quality from the list is achieved in the same way by clicking:

User Manual for CSAFE Toolset Page 17

A delete confonfirmation dialog is display, and upon accepting ‘Yes’ the
quality will be removed from the list.

3.6 Generating iXML Template

iXML metamodel for architecture design and design template could be
explored by clicking:

That brings up iXML template window as in Fig. 33 that described the
metamodels including explanation of its elements. Template metamodel is
displayed when design template is selected from the drop down list (Fig. 34).

Fig. 33. iXML template window

User Manual for CSAFE Toolset Page 18

Fig. 34. iXML metamodel of design template

Architecture design and design template elements are shown respectively as in
Fig. 35 and Fig. 36.

Fig. 35. Architecture design elements

Architecture
design
elements

User Manual for CSAFE Toolset Page 19

Fig. 36. Design template elements

Clicking

would allows the metamodel description to be saved (refers to Fig. 37).

Fig. 37. Generates iXML template

3.7 Starting an Architectural Analysis Project

CSAFE provides two ways of conducting architectural analysis. The first takes
as input an existing architecture and improves it through a process of structural,

Design
template
elements

User Manual for CSAFE Toolset Page 20

quality and conformance analysis. The second assumes no architecture exists
and uses the approach as a way of identifying possible starting architectural
templates

Let starts with the first way, where an architecture design exists and going to be
retrieved by clicking:

This opens a ‘New Project’ dialog which requires location of architecture
design specification and project name as in Fig. 38.

Fig. 38. ‘New Project’ dialog

Fig. 39 is an extension of locating process when Browse button it clicked. The
Open dialog returns architecture specification path from a computer directory.
File filter again is implemented, the filter only display XMI or XML
architecture design specification format.

Fig. 39. Browse architecture design specification

User Manual for CSAFE Toolset Page 21

If ‘New Project’ goes OK, meaning the parser successfully parsed the
specification, a tree view of the architecture is displayed in the project area as in
Fig. 40

Fig. 40. Tree view of architecture design

The list of symbols employed by the interface is described below:

:required

:provided

:private

:public

However, when mismatched occurs an error message is flagged by the parser.
Examples of errors include missing referenced elements (e.g. service,
component etc.), mismatched connector configuration, reference schema not
found, specification is non-conformance to XML schema and etc. (refers to Fig.
41 – Fig. 43).

Fig. 41. Error message of non-conformance XML schema – tag found not being defined

Fig. 42. Error message of missing architecture element – referenced service not in specification

Root (project name)

Connectors between subsystems
Subsystem; may consists more that one in system
design
Connectors between components in a subsystem

Component
Interface

Services of the
interface

User Manual for CSAFE Toolset Page 22

Fig. 43. Error message of mismatch configuration – referenced connector between components not
valid

The second way for conducting an analysis is where we assume no architecture
exists, clicks:

This opens the ‘New Architecture Wizard’ window (refers to Fig. 44). The
wizard consists of two steps; firstly searching for suitable design templates as
according to system goals, and secondly choose an appropriate design template
and generates an architecture specification.

Fig. 44. New Architecture Wizard window

Clicks

to enters system goals in to the quality design list. This would display ‘Quality
Descriptions’ dialog as in Fig. 45.

User Manual for CSAFE Toolset Page 23

Fig. 45. Quality description dialog

Removing goal from the list is achieved by clicking;

When ‘Search’ button is clicks, searching is conducted. Status message is
flagged (Fig. 46) and the results are displayed on lower panel (Fig. 47). Proceed
‘Next’ to Step 2.

Fig. 46. Search result status message

Fig. 47. Wizard step 1

Search
results

User Manual for CSAFE Toolset Page 24

Step 2 of the wizard requires project name to be entered and an architecture
alternative to be selected (Fig. 48). Upon clicking ‘Finish’ the toolset generates
specification for the selected design template under that project name. The
project architecture design could be retrieved from Open dialog as in Fig. 49.

Fig. 48. Wizard step 2

Fig. 49. Open dialog retrived generated speicication

3.8 About and Helps

CSAFE toolset provides assistant thru Help menu. Clicks:

User Manual for CSAFE Toolset Page 25

brings Help window that firstly explained about CSAFE toolset (refers to Fig.
50). Simply proceed assiatnt by clicking next navigation button on the top panel
to view contents of CSAFE tutorials Fig. 50. Fig. 51 is an example of step by
step instruction for creating a new project.

Fig. 50. Help window and CSAFE tutorial contents

Fig. 51. Step by step tutorial

User Manual for CSAFE Toolset Page 26

A quick information about CSAFE i.e version and contacts could be viewed by
clicking:

This opens the About screen as in Fig. 52.

Fig. 52. About screen

224

Appendix D:

EDDIS Detail Specifications &

Results

D1. Detail Requirements

EDDIS details requirements are described in Table D1.1.
Table D1.1 EDDIS details requirements

Viewpoint Requirement

ID Role/Type ID Description Rationale Ranking

Vp1 EDDIS_User
(Operator)

R1.1 EDDIS users shall be able to
login on to the system via a
Web-based interface using valid
usernames and passwords.

To provide a
universal access to
EDDIS services

Essential

R1.2 Once logged in, EDDIS users will
have access to a set of services
determined by the permissions
associated with their accounts.

To provide a
simple mechanism
for managing user
account

Important

R1.3 EDDIS shall allow users to search
and identify documents, which
interest them. A document
search will initiated by a search
criterion and a list of databases
to be searched. The output will
be a set of document identifiers.

Basic EDDIS
functionality

Essential

Appendix D EDDIS Detail Specifications & Results

225

Viewpoint Requirement

ID Role/Type ID Description Rationale Ranking

 R1.4 EDDIS shall allow users to
determine the location of
documents. A documents locate
service will be initiated by a set
of document identifiers and the
output shall be a set of location
identifiers.

Basic EDDIS
functionality

Essential

R1.5 EDDIS user shall allow users to
order documents. A document
order will be initiated by a set of
document and location
identifiers. The output will be a
set of order identifiers and
electronic/hardcopy documents.

Basic EDDIS
functionality

Important

Vp2 EDDIS_
Administrator
(Operator)

R2.1 EDDIS shall provide facilities for
setting up and managing user
accounts.

To provide a
central EDDIS
administration
management.

Important

R2.2 EDDIS shall allow admin to
create account for EDDIS user.
Creating a new account require
user name, matrix/staff no. and
user level e.g. Undergraduate,
Postgraduate and Staff.

Basic EDDIS
administration
functionality

Essential

R2.3 EDDIS shall allow admin to
delete EDDIS user account. An
account delete require matrix or
staff no.

Basic EDDIS
administration
functionality

Important

R2.4 EDDIS shall allow admin to
assign access level for EDDIS
user.

Basic EDDIS
administration
functionality

Essential

Vp3 Document_
Registry
(Component)

R3.1 EDDIS shall be able to access a
centralized document registry to
obtain document and location
identifiers using the Z39.50
document retrieval standard.

Document
retrieval standard
used in document
registry

Important

Vp4 Document_
Supplier
(Component)

R4.1 The document order client will
be use the Z39.50 document
retrieval standard.

Document
retrieval standard
used by document
suppliers

Important

Vp5

EDDIS_
Consortium
(Organisation)

R5.1 The system shall run on
Microsoft Windows 2000 and
Windows XP.

Most users are
likely to use a
Windows-based
PC to access EDDIS
services.

Essential

R5.2 The system shall be develop
according to schedule and cost
estimated.

Under relatively
strict delivery date
and budget.

Important

Appendix D EDDIS Detail Specifications & Results

226

Viewpoint Requirement

ID Role/Type ID Description Rationale Ranking

 R5.3 The system shall ensure that a
reasonable level of performance
is maintained across the services
at all times.

To ensure that a
reasonable level of
performance is
given to users.

Important

 R5.4 The system shall ensure that
availability of service is given to
EDDIS users accordingly.

To ensure that a
reliable service is
given to users.

Essential

R5.5 The system shall ensure that it is
easy to maintain that allow for
graceful replacements or
extensions of components.

To ensure EDDIS
services are easily
maintainable
according to
requirements.

Useful

Appendix D EDDIS Detail Specifications & Results

227

D2. Service Descriptions

EDDIS service descriptions are shown in Table D2.1 – D2.6.

Table D2.1 User_validation service description

EDDIS: S1.1.1 User_validation
Actors EDDIS_User, EDDIS_Administrator
Description 1. EDDIS request login

2. EDDIS operators enters a login
3. Verify login against a set of username-password pairs in the database
4. If login is valid:

4.1 System initialise operator account permission
else

4.2 System prompts the operator to re-enter login with three attempts.
Entry conditions 1. Login ∈ set of valid username-password pairs
Exit conditions 1. System reset use account permission

2. Closes operator account
Constraints 1. Service shall be maintained in 12 months time or less.

2. Service shall be maintained using updated technology.
3. Service shall be provided using only certified components.
4. Service shall be provided by inhouse components.
5. Service shall be provided using version 4.0 or greater components.

Table D2.2 Document_services service description

EDDIS: S1.2.1 Document_services
Actors EDDIS_User
Uses User_validation
Extends Document_search, Document_locate, Document_order
Description 1. EDDIS user enters a username and password

2. If username and password are valid:
2.1 System initialise user account permissions
2.2 Display the services available to the user
else
2.3 System prompts the user to re-enter username and password

Entry conditions 1. Valid username
2. Valid password

Exit conditions 1. System reset use account permission
2. Closes user account

Constraints 1. Service shall have response time under peak load equals to or less than
0.75 seconds.

2. Service shall have response time peak load equals to or less than 4
seconds.

3. Service shall have throughput peak load equals to or less than 150 per
second

4. Service shall be maintained according to user requirement.
5. Service shall be maintained in 18 months time or less.
6. Service shall be provided by inhouse components.
7. Service shall conform to Z39.50 document retrieval standard.
8. Service is provided by component which has 5 provided interfaces or

less.

Appendix D EDDIS Detail Specifications & Results

228

Table D2.3 Admin_services service description

EDDIS: S2.1.1 Admin_services
Actors EDDIS_Administrator
Uses User_validation
Description 1. EDDIS user enters a username and password

2. If username and password are valid:
2.1 Display administrator managing options.
2.2 If create, add EDDIS user info
2.3 If delete, delete EDDIS user info
2.4 If manage, set EDDIS user access level
else
2.5 System prompts the user to re-enter username and password

Entry conditions 1. Valid username
2. Valid password

Exit conditions 1. Closes administrator account
Constraints 2. Service shall be maintained according to user requirement.

3. Service shall be provided by in-house components.
4. Service shall be provided using version 0.3 or greater components.

Table D2.4 Document_search service description

EDDIS: S1.3.1 Document_search
Actors EDDIS_User, Document_Registry
Description 1. EDDIS user enters search criterion and a set of document databases

2. If document is found a set of document identifiers is displayed else a
“document not found” message is displayed

3. Search criterion is retained in user workspace for future searches
Entry conditions 1. Document_search ∈available_services

2. Document databases ⊆ set of user permissible databases.
Exit conditions 1. System access conditions are reset
Constraints 1. Service conforms to Z39.50 document retrieval standard.

2. Service shall have an availability of 60 % or more between 8:00hr –
22:00hr Monday to Friday.

Table D2.5 Document_locate service description

EDDIS: S1.4.1 Document_locate
Actors EDDIS_User, Document_Registry
Description 1. EDDIS user enters document identifier and a set of catalogues

2. If location is found a set of locations identifiers is displayed else a
“location not found” message is displayed

3. Location identifiers is retained in user workspace for future locates
Entry conditions 1. Document_locate ∈available_services

2. Document catalogues ⊆ set of user permissible catalogues
Exit conditions 1. System access conditions are reset

Constraints 1. Service conforms to Z39.50 document retrieval standard.

2. Service shall have an availability of 60 % or more between 8:00hr –
22:00hr Monday to Friday.

Appendix D EDDIS Detail Specifications & Results

229

Table D2.6 Document_order service description

EDDIS: S1.5.1 Document_order
Actors EDDIS_User, Document_Supplier
Description 1. EDDIS user enters document identifier and location identifiers

2. If order is successful a set of order identifiers and electronic documents
is displayed else a “document is not available” is displayed

3. Order is retained in user workspace for future order references

Entry conditions 1. Document_order ∈available_services
2. Set of selected suppliers ⊆ set of user permissible suppliers

Exit conditions 1. System access conditions are reset

Constraints 1. Service conform to Z39.50 document retrieval standard
2. Document order must be accompanied by a signed copyright

acceptance form.
3. Service shall be maintained in 18 months time or less.
4. Service shall have an availability of 45% between 8:00hr – 18:00hr

weekday Monday to Friday.

Appendix D EDDIS Detail Specifications & Results

230

D3. Constraint Descriptions

EDDIS constraint descriptions are shown in Table D3.1.

Table D3.1 EDDIS constraint descriptions

Concern Sub-concern ID Description Rationale Scope

1-Performance 1-Response
time under
peak load

C.1.1.1 Under-peak load
transaction
complete is
equals or less
than 0.75
seconds

To ensure that a
reasonable level
of performance is
given to users.

document
_services

2-Response
time peak load

C.1.2.1 During peak load
transaction
complete is
equals or less
than 4 seconds.

To ensure that a
reasonable level
of performance is
given to users.

document
_services

3-Throughput
peak load

C.1.3.1 At peak load
system is able to
complete 150
transactions per
second.

To ensure that a
reasonable level
of performance is
given to users.

document
_services

2-Reliability 1-Availability C.2.1.1 System service
has an availability
of 60 % or more
between 8:00hr –
22:00hr Monday
to Friday.

To ensure
sufficient access
time.

document
_search,
document
_locate;
document
_registry

C.2.1.2 System service
has an availability
of 45% between
8:00hr – 18:00hr
weekday Monday
to Friday.

To ensure
sufficient access
time.

document
_order;
document
_supplier

3-Maintainability
(Trigger)

1-Time C.3.1.1 Maintainable
every 12 months
or less.

Critical
components

user_
validation

C.3.1.2

Maintainable
every 18 months
or less.

Moderate
components

document
_order;
document
_supplier

C.3.1.3

Maintainable
every 18 months
or less.

Moderate
components

document
_services

2-Technology C.3.2.1 Adapting to
current
technologies.

Security
technology
updated.

user_
validation

3-Requirement C.3.3.1

Configuration
based on user
requests.

To ensure
services
gracefully replace
or extendable.

document
_services

Appendix D EDDIS Detail Specifications & Results

231

Concern Sub-concern ID Description Rationale Scope

 C.3.3.2 Configuration
based on user
requests.

To ensure
services
gracefully replace
or extendable.

admin_
services

4-Business

1-Cost C.4.1.1 System
development
according to cost
estimated

Under strict
budget

System

2-Schedule C.4.2.1 System
development
according to
schedule
estimated.

Under strict
delivery date

System

3-Platform C.4.3.1 The system shall
run on Microsoft
Windows 2000
and Windows XP

Most users are
likely to use a
Windows-based
PC to access
EDDIS services

System

5-Component 1-Availability C.5.1.1

Document_suppli
er subscribe to
available web
services

Materials
provided by 3rd
party which not
available in local
library

document
_registry

C.5.1.2

Document_regist
ry subscribe to
available web
services

Materials
provided by 3rd
party which not
available in local
library

document
_supplier

C.5.1.3

System services is
in-house build

Components
available in local
library.

user_
validation,

C.5.1.4 System services is
in-house build

Components
available in local
library.

admin_
services

C.5.1.5 System services is
in-house build

Components
available in local
library.

document
_services

2-Standard C.5.2.1

Service conforms
to Z39.50
document
retrieval
standard.

Document
retrieval standard
used in
document
registry

document
_registry

C.5.2.2 Service conforms
to Z39.50
document
retrieval
standard.

Document
retrieval standard
used in
document
supplier

document
_supplier

C.5.2.3 Service conform
to Z39.50
document
retrieval standard

Document
retrieval standard
used in
document
registry/supplier

document
_services

Appendix D EDDIS Detail Specifications & Results

232

Concern Sub-concern ID Description Rationale Scope

 3-Cost C.5.3.1 Subscription cost
less than 500GBP
yearly

Under strict
budget

document
_registry

C.5.3.2 Subscription cost
less than 650GBP
yearly

Under strict
budget

document
_supplier

4-Version C.5.4.1 Component
version is greater
than or equals to
4.0.

Updated services user_
validation

C.5.4.2 Component
version is greater
than or equals to
0.3

Updated services admin_
services

5-In C.5.5.1 The service
requires five or
less services.

To reduce EDDIS
document
services
complexity

document
_services

6-Certification C.5.6.1

Trusted services
are required

To provide
reliable user
access.

user_
validation

C.5.6.2

Trusted services
are required

To provide
reliable
document
discovery.

document
_registry

C.5.6.3 Trusted services
are required

To provide
reliable
document
provider.

document
_supplier

Appendix D EDDIS Detail Specifications & Results

233

D4. Concrete Component Descriptions

Concrete component descriptions described as the following:

AdminManager_1

Properties:
Component(Version) 0.2
Component(Availability) Cots
Maintainability(Requirement) User
Interfaces:
IManage: Admin_services, acct_create, acct_remove, acct_setaccess
addUser name:String, id:String, category:integer
deleteUser id:String
setAccess id:String

AdminManager_2

Properties:
Component(Version) 0.4
Component(Availability) Inhouse
Maintainability(Requirement) User
Interfaces:
IManage: Admin_services, acct_create, acct_remove, acct_setaccess
addUser name:String, id:integer, category:integer
deleteUser id:integer
setAccess id:integer

AdminManager_3

Properties:
Component(Version) 0.4
Component(Availability) Inhouse
Maintainability(Requirement) User
Interfaces:
IManage: Admin_services, acct_create, acct_remove, acct_setaccess
addUser name:String, id:integer, category:integer
deleteUser id:integer
setAccess id:integer

Browser_1

Properties:
Component(Version) 2.0
Maintainability(Technology) updated
Maintainability(Requirement) user

Appendix D EDDIS Detail Specifications & Results

234

ClusterServer_1

Properties:
Component(Availability) inhouse
Component(Certification) no
Component(Version) 1.0
Component(Services) accessSearch, accessLocate
Component(Standard) Z39.50
Interfaces:
IRegistry: accessLocate
setLocate docID:integer
IDiscovery: accessSearch
setSearch author:String, title:String

ClusterServer_2

Properties:
Component(Availability) inhouse
Component(Certification) no
Component(Version) 2.0
Component(Services) accessSearch, accessLocate
Component(Standard) Z39.50
Interfaces:
IRegistry: accessLocate
setLocate docID:integer
IDiscovery: accessSearch
setSearch author:String, title:String

DocumentDatabase_1

Properties:
Component(Availability) web service
Component(Certification) no
Component(Version) 2.0
Component(Services) accessSearch, accessLocate, accessOrder
Component(Standard) Z39.50
Component(Cost) 400
Maintainability(Requirement) vendor
Reliability(Availability) 45
Maintainability(Technology) updated
Maintainability(Requirement) vendor
Maintainability(Time) 12
Interfaces:
IDatabase: accessSearch, accessLocate, accessOrder
setSearch author:String, title:String
setLocate docID:String
setOrder locID:String

Appendix D EDDIS Detail Specifications & Results

235

DocumentRequesterA_1

Properties:
Component(Version) 0.2
Component(Availability) inhouse
Component(In) 4
Component(Out) 2
Component(Standard) Z39.50
Maintainability(Time) 24
Maintainability(Requirement) user
Reliability(Availability) 55
Performance(ResponseTime_UPL) 0.5
Performance(ResponseTime_PL) 4
Performance(Throughput_PL) 125
Interfaces:
IRequestA: setSearch, setLocate
Search author:String, title:String
Locate docID:String

DocumentRequesterA_2

Properties:
Component(Version) 0.2
Component(Availability) inhouse
Component(In) 4
Component(Out) 2
Component(Standard) Z39.50
Maintainability(Time) 18
Maintainability(Requirement) user
Reliability(Availability) 65
Performance(ResponseTime_UPL) 0.5
Performance(ResponseTime_PL) 3.5
Performance(Throughput_PL) 160
Interfaces:
IRequestA: setSearch, setLocate
Search author:String, title:String
Locate docID:String

DocumentRequesterB_1

Properties:
Component(Version) 0.2
Component(Availability) inhouse
Component(In) 4
Component(Out) 2
Component(Standard) Z39.50
Maintainability(Time) 24
Maintainability(Requirement) user
Reliability(Availability) 55
Performance(ResponseTime_UPL) 0.5
Performance(ResponseTime_PL) 4

Appendix D EDDIS Detail Specifications & Results

236

Performance(Throughput_PL) 125
Interfaces:
IRequestB: document_services, document_search, document_locate, document_order
Search author:String, title:String
Locate docID:String
Order locID:String

DocumentRequesterB_2

Properties:
Component(Version) 0.2
Component(Availability) inhouse
Component(In) 4
Component(Out) 2
Component(Standard) Z39.50
Maintainability(Time) 18
Maintainability(Requirement) user
Reliability(Availability) 65
Performance(ResponseTime_UPL) 0.5
Performance(ResponseTime_PL) 3.5
Performance(Throughput_PL) 160
Interfaces:
IRequestB: document_services, document_search, document_locate, document_order
Search author:String, title:String
Locate docID:String
Order locID:String

DocumentSupplier_1

Properties:
Component(Availability) web service
Component(Certification) yes
Component(Standard) Z39.50
Component(Cost) 600
Component(Version) 4.1
Component(Services) accessOrder
Reliability(Availability) 85
Maintainability(Technology) updated
Maintainability(Requirement) vendor
Interfaces:
ISupplier: accessOrder
setOrder locID:String

DocumentSupplier_2

Properties:
Component(Availability) web service
Component(Certification) yes
Component(Standard) Z39.50
Component(Cost) 500

Appendix D EDDIS Detail Specifications & Results

237

Component(Version) 4.1
Component(Services) accessOrder
Reliability(Availability) 85
Maintainability(Technology) updated
Maintainability(Requirement) vendor
Interfaces:
ISupplier: accessOrder
setOrder locID:integer

DocumentRegistry_1

Properties:
Component(Availability) web service
Component(Certification) No
Component(Version) 2.0
Component(Services) accessSearch,accessLocate
Component(Standard) Z39.50
Component(Cost) 400
Maintainability(Requirement) Vendor
Reliability(Availability) 75
Interfaces:
ISearch: accessSearch
setSearch author:String, title:String
ILocate: accessLocate
setLocate docID:integer

DocumentRegistry_2

Properties:
Component(Availability) web service
Component(Certification) No
Component(Version) 2.0
Component(Services) accessSearch,accessLocate
Component(Standard) Z39.50
Component(Cost) 700
Maintainability(Requirement) Vendor
Reliability(Availability) 75
Interfaces:
ISearch: accessSearch
setSearch author:String, title:String
ILocate: accessLocate
setLocate docID:integer

DocumentRegistry1_1

Properties:
Component(Availability) web service
Component(Certification) No
Component(Version) 2.0
Component(Services) accessSearch,accessLocate
Component(Standard) Z39.50
Component(Cost) 400

Appendix D EDDIS Detail Specifications & Results

238

Maintainability(Requirement) Vendor
Reliability(Availability) 75
Interfaces:
IAccess: accessSearch, accessLocate
setSearch author:String, title:String
setLocate docID:integer

DocumentRegistry...n_1

Properties:
Component(Availability) web service
Component(Certification) No
Component(Version) 2.0
Component(Services) accessSearch,accessLocate
Component(Standard) Z39.50
Component(Cost) 700
Maintainability(Requirement) Vendor
Reliability(Availability) 75
Interfaces:
IAccess: accessSearch, accessLocate
setSearch author:String, title:String
setLocate docID:String

DocumentProvider_1

Properties:
Component(Availability) web service
Component(Certification) yes
Component(Standard) Z39.50
Component(Cost) 500
Component(Version) 4.1
Component(Services) accessOrder
Reliability(Availability) 85
Maintainability(Technology) updated
Maintainability(Requirement) vendor
Interfaces:
IOrder: accessOrder
setOrder locID:String

DocumentProvider_2

Properties:
Component(Availability) web service
Component(Certification) No
Component(Standard) Z39.80
Component(Cost) 750
Component(Version) 4.1
Component(Services) accessOrder
Reliability(Availability) 85
Maintainability(Technology) Updated

Appendix D EDDIS Detail Specifications & Results

239

Maintainability(Requirement) Vendor
Interfaces:
IOrder: accessOrder
setOrder locID:String

ProxyServer_1

Properties:
Component(Certification) Yes
Maintainability(Technology) Updated
Maintainability(Requirement) User
Interfaces:
IRequestC: confConn
Access

ValidManager_1

Properties:
Component(Availability) Inhouse
Component(Certification) Yes
Component(In) 3
Component(Out) 3
Component(Version) 2.0
Component(Services) user_validation,acct_permission
Business(Platform) Windows 2000/XP
Maintainability(Time) 10
Maintainability(Technology) updated
Interfaces:
ILogin: User_validation
validateUser username:String, pwd:String
Logout
IAuthorization: Acct_permission
setLogin isLogin:Boolean
resetCondition

ValidManager_2

Properties:
Component(Availability) inhouse
Component(Certification) yes
Component(In) 3
Component(Out) 3
Component(Version) 2.0
Component(Services) user_validation,acct_permission
Maintainability(Time) 18
Maintainability(Technology) updated
Interfaces:
ILogin: User_validation
validateUser username:String, pwd:String
Logout

Appendix D EDDIS Detail Specifications & Results

240

IAuthorization: Acct_permission
setLogin isLogin:Boolean
resetCondition

A
ppendix D

E
D

D
IS D

etail Specifications &
 R

esults

241

D5. SMART

Quality concern weights and design template contributions calculated using SMART in Table D5.1 for Scenario 1 of

EDDIS.

Table D5.1 SMART for EDDIS - Scenario 1

Concern Sub-Concern Scope
S1: ClusterServer

(CS)
S2: Service-Order Provision

(SOP)
S3: Three-tier proxy server

(TPS)

s. s* µ s. s* µ s. s* µ

Performance ResponseTime_UPL S1.2.1 2 0.08 0.20 0.641 2 0.08 0.21 0.818 2 0.08 0.21 0.795

ResponseTime_PL S1.2.1 2 0.08 2 0.08 2 0.08

Throughput_PL S1.2.1 2 0.05 2 0.05 2 0.05

Reliability Availability S1.3.1 3 0.12 0.30 3 0.12 0.31 2 0.08 0.21

Availability S1.4.1 3 0.12 3 0.12 2 0.08

Availability S1.5.1 3 0.08 3 0.08 2 0.05

Maintainability Requirement S1.2.1 1 0.01 0.14 3 0.04 0.30 3 0.04 0.38

Requirement S2.1.1 1 0.01 3 0.04 3 0.04

Technology S1.1.1 1 0.03 0 0.00 3 0.08

Time S1.1.1 1 0.03 3 0.08 3 0.08

Time S1.5.1 1 0.04 3 0.12 3 0.12

Time S1.2.1 1 0.01 3 0.04 3 0.04

A
ppendix D

E
D

D
IS D

etail Specifications &
 R

esults

242

Quality concern weights and design template contributions calculated using SMART in Table D5.2 for Scenario 2 of

EDDIS.

Table D5.2 SMART for EDDIS - Scenario 2

Concern Sub-Concern Scope
S1: ClusterServer

 (CS)
S2: Service-Order Provision

(SOP)
S3: Three-tier proxy server

(TPS)

s. s* µ s. s* µ s. s* µ

Performance ResponseTime_UPL S1.2.1 2 0.22 0.66 0.666 2 0.22 0.667 0.666 2 0.22 0.667 0.666

ResponseTime_PL S1.2.1 2 0.22 2 0.22 2 0.22

Throughput_PL S1.2.1 2 0.22 2 0.22 2 0.22

Appendix D EDDIS Detail Specifications & Results

243

D6. Reports

Report snippets of the results and analysis process generated by the toolset are

shown in Fig. D6.1. Full reports extracted from the report pane for Scenario 1 is

shown in Table D6.1.

Fig. D6.1 ServiceOrder Provision reports

Table D6.1 Full reports extracted from report pane for Scenario 1

Scenario: scenario 1

--

Template Name: ClusterServer
Notes:
This design enables the system to maintain good performance while improving availability by using active
redundancy and automatic restart during failover. However, cluster-server complexity is likely to compromise
system maintainability.

Appendix D EDDIS Detail Specifications & Results

244

(subsystem connectors:)
DocumentSupplier -> ISupplier -> DocumentRequesterA
ValidManager -> IAuthorization -> DocumentRequesterA
ValidManager -> IAuthorization -> AdminManager

(subsystem:) AdminManager : null [%]
(interfaces:)
 (provided) IManage : public
 ::acct_create
 ::acct_remove
 ::acct_setaccess
 ::Admin_services
 (required) IAuthorization : public

(subsystem:) DocumentSupplier : null [%]
(interfaces:)
 (provided) ISupplier : public
 ::accessOrder

(subsystem:) ValidManager : null [%]
(interfaces:)
 (provided) IAuthorization : public
 ::Acct_permission
 (provided) ILogin : public
 ::User_validation

(subsystem:) _ClusterServer : null [%]
(connectors:)
ClusterServer -> IDiscovery -> DocumentRequesterA
ClusterServer -> IRegistry -> DocumentRequesterA
DocumentRegistry1 -> IAccess -> ClusterServer
DocumentRegistry...n -> IAccess2 -> ClusterServer

(components:)
ClusterServer : <concrete> null [%]
(interfaces:)
 (provided) IDiscovery : private
 ::accessSearch
 (provided) IRegistry : private
 ::accessLocate
 (required) IAccess : private
 (required) IAccess2 : private

DocumentRegistry...n : <concrete> null [%]
(interfaces:)
 (provided) IAccess2 : private
 ::accessLocate
 ::accessSearch

DocumentRegistry1 : <concrete> null [%]
(interfaces:)
 (provided) IAccess : private
 ::accessLocate
 ::accessSearch

DocumentRequesterA : <concrete> null [%]
(interfaces:)
 (provided) IRequestA : public
 ::document_locate

Appendix D EDDIS Detail Specifications & Results

245

 ::document_search
 (required) IAuthorization : public
 (required) IDiscovery : private
 (required) IRegistry : private
 (required) ISupplier : public

--

Template Name: ServiceOrderProvision
Notes:
This template represents a local (in-house) design solution for an online digital library that may require
document search, locates and order services. The template enforces the separation search and locate services
which reside in the same component, from the order service. This may imply that there are constraints on the
order in which threads should access the resources. The design improves maintainability of time and
requirement by providing a systematic allocation towards maintenance time for the document main services
and allowing the document server to maintain the order service more effectively. The rule also provides a better
way to control the availability by allowing longer duration of order service to be served. However, separation of
order services may slightly affect performance of response time and throughput.

(subsystem connectors:)
ValidManager -> IAuthorization -> DocumentRequesterB
ValidManager -> IAuthorization -> AdminManager

(subsystem:) AdminManager : AdminManager_3 [66 %]
(mismatches:)
 >> mismatch:. Component(Availability) must be equals to inhouse.
 The actual value for Component(Availability) for AdminManager_3 is cots
 >> OK:: The actual value for Component(Version) for AdminManager_3 is 0.4
 >> OK:: The actual value for Maintainability(Requirement) for AdminManager_3 is user
(interfaces:)
 (provided) IManage : public
 ::acct_create
 ::acct_remove
 ::acct_setaccess
 ::Admin_services
 (required) IAuthorization : public

(subsystem:) ServiceOrder_Provision : null [%]
(connectors:)
DocumentProvider -> IOrder -> DocumentRequesterB
DocumentRegistry -> ISearch -> DocumentRequesterB
DocumentRegistry -> ILocate -> DocumentRequesterB

(components:)
DocumentProvider : <concrete>DocumentSupplier_2 [83 %]
(mismatches:)
 >> OK:: The actual value for Component(Standard) for DocumentSupplier_2 is Z39.50
 >> OK:: The actual value for Component(Availability) for DocumentSupplier_2 is web service
 >> OK:: The actual value for Component(Cost) for DocumentSupplier_2 is 500 GBP
 >> OK:: The actual value for Component(Certification) for DocumentSupplier_2 is yes
 >> OK:: The actual value for Reliability(Availability) for DocumentSupplier_2 is 85 %
(interfaces:)
 (provided) IOrder : private
 ::accessOrder

DocumentRegistry : <concrete>DocumentRegistry1_1 [80 %]
(mismatches:)
 >> mismatch:: Component(Certification) must be equals to yes.
 The actual value for Component(Certification) for DocumentRegistry1_1 is no
 >> OK:: The actual value for Component(Cost) for DocumentRegistry1_1 is 400 GBP
 >> OK:: The actual value for Component(Standard) for DocumentRegistry1_1 is Z39.50

Appendix D EDDIS Detail Specifications & Results

246

 >> OK:: The actual value for Component(Availability) for DocumentRegistry1_1 is web service
 >> mismatch:: Component(Certification) must be equals to yes.
 The actual value for Component(Certification) for DocumentRegistry1_1 is no
 >> OK:: The actual value for Component(Standard) for DocumentRegistry1_1 is Z39.50
 >> OK:: The actual value for Component(Availability) for DocumentRegistry1_1 is web service
 >> OK:: The actual value for Component(Cost) for DocumentRegistry1_1 is 400 GBP
 >> OK:: The actual value for Reliability(Availability) for DocumentRegistry1_1 is 75 %
 >> OK:: The actual value for Reliability(Availability) for DocumentRegistry1_1 is 75 %
(interfaces:)
 (provided) ILocate : private
 ::accessLocate
 (provided) ISearch : private
 ::accessSearch

DocumentRequesterB : <concrete> null [%]
(mismatches:)
 >> mismatch:: Component(Certification) must be equals to yes.
 The actual value for Component(Certification) for DocumentRegistry1_1 is no
 >> OK:: The actual value for Component(Cost) for DocumentRegistry1_1 is 400 GBP
 >> OK:: The actual value for Component(Standard) for DocumentRegistry1_1 is Z39.50
 >> OK:: The actual value for Component(Availability) for DocumentRegistry1_1 is web service
 >> mismatch:: Component(Certification) must be equals to yes.
 The actual value for Component(Certification) for DocumentRegistry1_1 is no
 >> OK:: The actual value for Component(Standard) for DocumentRegistry1_1 is Z39.50
 >> OK:: The actual value for Component(Availability) for DocumentRegistry1_1 is web service
 >> OK:: The actual value for Component(Cost) for DocumentRegistry1_1 is 400 GBP
 >> OK:: The actual value for Reliability(Availability) for DocumentRegistry1_1 is 75 %
 >> OK:: The actual value for Reliability(Availability) for DocumentRegistry1_1 is 75 %
(interfaces:)
 (provided) IRequestB : public
 ::document_locate
 ::document_order
 ::document_search
 ::document_services
 (required) IAuthorization : public
 (required) ILocate : private
 (required) IOrder : private
 (required) ISearch : private

(subsystem:) ValidManager : null [%]
(interfaces:)
 (provided) IAuthorization : public
 ::Acct_permission
 (provided) ILogin : public
 ::User_validation

--

Template Name: Three-tier proxy server
Notes:
This is typical reference architecture for a modern web-based system. A tier is a partitioning of functionality that
may be allocated to a separate hardware (i.e. web browsers client, web server and database server). This
improves maintainability while hiding the complexity of distributed processing. Requests from individual
browsers may first arrive at a proxy server, which exists to improve the performance of the Web-based system.
These servers cache frequently accessed Web pages that users may retrieve them without having to access the
Web site. They are typically located close to the users, often on the same network, so that they save significant
communication and computation resources. Proxy servers are also used to restrict users’ access to certain Web
sites. In this case the proxy server is acting somewhat like a firewall.

(subsystem connectors:)
ValidManager -> IAuthorization -> AdminManager

Appendix D EDDIS Detail Specifications & Results

247

ValidManager -> IAuthorization -> DocManager

(subsystem:) Three-tier Proxy : null [%]
(connectors:)
ProxyServer -> IRequestC -> Browser
Application_Logic -> IEncryption -> ProxyServer
Document_Database -> IDatabase -> Application_Logic

(components:)
Application_Logic : <concrete> null [%]
(interfaces:)
 (provided) IEncryption : private
 (required) IDatabase : private

Browser : <concrete> null [%]
(interfaces:)
 (required) IRequestC : private

Document_Database : <concrete> null [%]
(interfaces:)
 (provided) IDatabase : private
 ::accessLocate
 ::accessOrder
 ::accessSearch

ProxyServer : <concrete> null [%]
(interfaces:)
 (provided) IRequestC : private
 ::document_services
 (required) IEncryption : private
 (required) ILogin : private
 (required) IManage : private
 (required) IQuery : private

--

248

Appendix E:

GVPS Detail Specifications &
Results

E1. GVPS Software Requirements Specification

Copyright © 2011 by Admodisastro. Permission is granted to use, modify, and distribute this
document.

Software Requirements
Specification

for

 Guided Vehicle Parking
System

Version 1.0

Prepared by Novia Admodisastro

Lancaster University

Software Requirements Specification for Guided Vehicle Parking System Page ii

Table of Contents
Table of Contents ... ii
Revision History ... ii
1. Introduction .. 1

1.1 Purpose ... 1
1.2 Intended Audience and Reading Suggestions .. 1
1.3 Product Scope ... 1

2. Overall Description .. 2
2.1 Operating Environment .. 2
2.2 Design and Implementation Constraints .. 2
2.3 Assumptions and Dependencies ... 2
2.4 Priority of Requirements .. 2
2.5 Abbreviations ... 3

3. Requirements .. 3
3.1 Vehicle Requirements .. 3
3.2 GVPS Requirements ... 3
3.3 Non-Functional Requirements .. 4
3.4 Summary ... 5

4. Service Descriptions ... 7
5. Constraint Descriptions ... 11
Appendix 1: Lancaster University Car Parking Specification 13

Revision History
Name Date Reason For Changes Version

Software Requirements Specification for Guided Vehicle Parking System Page 1

1. Introduction

1.1 Purpose

This document describes detailed requirement specification for a Guided
Vehicle Parking System (GVPS) for Lancaster University. The objective is to
provide drivers with accurate and timely parking information and thus reduce
their travel times while decreasing number of cars searching for empty spaces.

The GPVS consist of two main components which are In-Car Display (ICD)
and Control Centre.

ICD allow a user driving a car to enter the university campus, and simply be
selecting a destination on their in-car screen, be assigned to the best available
space on the closest possible car park to their destination. When leaving the
university, the system, will also provide directions and back to the exit.

ICD communicate with the central server and display a map of the campus
roads and car parks, highlighting the route to be taken and showing the correct
direction to be taken at junctions and roundabouts both visually and audio. ICD
also informs users of different traffics messages according to its locations and
distance to an incident, such as traffic signs, and road-works and indicates
alternative routes as appropriate.

The system also provides a Control Centre for administrative users who can
monitor the status of each vehicle and car park on campus, and enable
closure of sections of road in case of emergency or maintenance.

1.2 Intended Audience and Reading Suggestions

This is a technical document meant for system developers and users.

1.3 Product Scope

As Lancaster University is piloting the GVPS for other UK institutions, it must
be designed to read in common traffic and structural details found on a
university campus including road layout, buildings, and parking spaces.
Appendix 1 provides Lancaster University parking specification.

Software Requirements Specification for Guided Vehicle Parking System Page 2

2. Overall Description

2.1 Operating Environment

The system shall operate on the Windows XP platform. It requires Microsoft
SQL Server 2000 to host the database tables and a Ethernet LAN for client-
server access to the database server.

2.2 Design and Implementation Constraints

Because of the existing windows platform and forthcoming Windows Local
Area Network (LAN), the system shall be developed using Component-Based
Software Development (CBSE) approach using JavaBeans component model.
This will leverage existing expertise held by the developers. The database
tables will be hosted on Microsoft SQL Server 2000 and accessed via JDBC.

2.3 Assumptions and Dependencies

For the system to run effectively, a database server must be installed on a
server machine. This server machine must be accessible across a LAN. We
are assuming that we will have a LAN running and server machine to host the
database.

2.4 Priority of Requirements

Within in this document, all requirements are categorised under three priority
levels:
• ESSENTIAL (3): This means that the requirement is crucial for all GVPS

components (IVD, Control Centre and/or Simulator), if they are to
adequately deliver commitments made on them by operators and
stakeholders.

• IMPORTANT (2): This means that the requirement may prove extremely
useful in assisting GVPS in delivering their commitments i.e. reducing the
amount effort required by the organisation’s staff by increasing the level of
automation.

• USEFUL (1): This means the requirement could prove useful in processing
IVD, Control Centre and/or Simulator requests, but it is far more likely to
only be of use to a subset of GVPS operators and stakeholders.

Software Requirements Specification for Guided Vehicle Parking System Page 3

2.5 Abbreviations

Abbreviations Description
GVPS Guided Vehicle Parking System
LAN Local Area Network

CBSE Component-Based Software Development
Prio. Priority
RFID Radio Frequency Identification Tags

3. Requirements

3.1 Vehicle Requirements

• Access to the campus wireless network
• Onboard computer with small LCD display, input device and voice

synthesis capability.
• An onboard GPS system with accuracy of 2m. (can be read by onboard

computer).
• Odometer with accuracy better than 1m in 50m. (can be read by onboard

computer).

3.2 GVPS Requirements

3.2.1 ICD

• Connect; To enable drivers either holding a car permit or visitor to access
GVPS 24/7.

• Login; The GVPS will automatically identify the vehicle by means of a
RFID tag embedded in the campus parking permits, or display
identification page for visitor.
o Permit holder: Earlier registration require them to provide detail as the

following:
1. Driver name
2. Vehicle registration no.
3. Vehicle type (i.e. Car – C, Disabled – D, or Van/Lorry – O)
4. Permit type (i.e. Staff – F or Student – S)
They will be assigned:
1. RFID (auto generate ID)

o Visitor (V): Vehicle without permit will automatically identify as a visitor
vehicle and will be assigned a temporary ID.
1. Vehicle registration no.

Software Requirements Specification for Guided Vehicle Parking System Page 4

2. Vehicle type (i.e. CV, DV, or OD)
• Destination; To enable drivers to enter their campus destination at an

entrance and calculate provide routing according to shortest route.
• Guide; To guide the driver of the vehicle to a designated parking place

(given as a particular car park) as close to the destination as possible,
taking into account the type of vehicles (C, D, or O) and driver categories
(F, S or V).

• Exit; To guide the driver of the vehicle to an exit.
• Traffic messages; To informs drivers of different traffics messages

according to its locations and distance to an incident, such as traffic signs
(refer Appendix A), and road-works and indicates alternative routes as
appropriate.

• Wrong turning; To informs drivers of wrong turning is made and re-
calculate route.

• Display; The display in the vehicle will show the position of the vehicle on
a map and provide timely guidance to direct the driver to the designated
parking space. The GUI will also allow the user to interact as deemed
necessary.

3.2.2 Control Centre

• Login; To enable admin to access GVPS 24/7 in a secure environment.
• Driver accounts; To manage driver accounts.
• Map; To manage map including to parse the map.
• Vehicle status; To monitor the status of all vehicles that accessing GVPS.
• Car parks; To monitor car parks on campus.
• Road closure; To enable closure of sections of road in case of emergency

or maintenance.
• Display; To provide visualization tracking for all vehicle accessing GVPS.

3.3 Non-Functional Requirements

The main non-functional categories associated with the system(s) include:
• Efficiency; GVPS shall efficiently manage to scarce computational

resources (i.e. CPU cycles and memory) to handle high consumptions
tasks e.g. drawing and displaying map, and monitoring vehicles.

• Performance; GVPS shall provides reasonable level of performance IVD
and control centre to receiving and sending data.

• Reliability; GVPS shall allow driver for 24/7 access.
• Security; GVPS shall provides a secure environment for admin and control

privacy.
• Flexibility; GVPS shall be expendable for any other UK institutions.
• Documentation / Online help;
• Training;

Software Requirements Specification for Guided Vehicle Parking System Page 5

3.4 Summary

The GVPS requirements are summarize as in Table 3.1. These requirements
represent viewpoints of GVPS operators, component and stakeholder.

1. GVPS Operators:
• Driver; Driver is a person whom interested to access In Vehicle

Display (IVD). IVD helps them to navigate the road campus to find
a car park and to exit campus. Driver is either member of Lancaster
University or visitor.
Driver type member is require to register his/her vehicle to the
GVPS management to ensure appropriate parking space (based on
permit type) is been assigned.
Unrecognised vehicle is assume as Driver type visitor and being
assign a temporary ID which only allow him/her for visitor parking
space. However, visitor can indicate disability requirement.

• Admin; Admin is a person whom responsible to manage GVPS
system such as vehicle handling, parking space handling, road
obstruction handling, assigning car park to driver and able to view
all vehicle connecting GVPS.

2. GVPS Components:
• Traffics; Existing component that consist of dynamic traffic signal

from campus such as traffic lights and speed detector.
3. GVPS Stakeholders:

• Consortium; Consortium is Lancaster University whom invested in
GVPS and wanted the system to be delivered in certain duration of
time. The consortium may represent domain characteristic and
constraints that may influence the system requirements.

Table 3.1. GVPS requirements summary

Viewpoint Requirement
ID Role/Type ID Description Rationale Ranking
Vp1 GVPS_Driver

(Operator)
R1.1 To enable drivers either holding a

car permit or visitor to access
GVPS 24/7.

To provide
connection to GVPS
server.

2

R1.2 To be able to logon to the system
using valid RFID or registration
number.

To provide an
access to IVD
services.

3

R1.3 To guide the driver of the vehicle
to a designated parking place
(given as a particular car park) as
close to the destination as
possible.

Basic IVD
functionality

3

R1.4 The display in vehicle will show
the position of the vehicle on a
map.

Basic IVD
functionality

3

R1.5 To guide the driver of the vehicle
to an exit.

Basic IVD
functionality

3

R1.6 To informs drivers of different
traffics messages according to its
locations and distance to an
incident

To provide an alert
to the driver.

2

R1.7 To informs drivers of wrong To guide driver on 3

Software Requirements Specification for Guided Vehicle Parking System Page 6

turning is made and re-calculate
route

track to destination.

Vp2 GVPS_
Administrator
(Operator)

R2.1 To enable admin to access
GVPS 24/7 in a secure
environment.

To provide an
access to Control
Centre services.

3

R2.2 To manage driver accounts i.e.
add/delete/update accounts.

To provide a
mechanism to
manage registered
vehicles.

3

R2.3 To manage map i.e. add/delete
map.

To provide a
mechanism to
manage map.

3

R2.4 To manage car parks on campus
by providing the status of car
parks.

To provide a
mechanism to
monitor the status of
car parks in campus

2

R2.5 To enable closure of sections of
road in case of emergency or
maintenance.

To provide a notice
for any road
obstruction

2

R2.6 To monitor the status of all
vehicles accessing GVPS.

To provide a
mechanism to track
status of all vehicle.

3

Vp3 GVPS_
Traffics
(Component)

R3.1 The IVD client will act as an
observer for traffics signal
broadcast.

To provide real time
traffics message to
the driver.

2

Vp4 GVPS_
Consortium
(Organisation)

R4.1 The system shall efficiently
manage scarce computational
resources (i.e. CPU cycles and
memory).

GVPS shall manage
resources for high
consumptions tasks
(i.e. drawing and
displaying map, and
monitoring vehicles)
systematically.

3

R4.2 The system shall ensure a
reasonable level of performance
is maintained across the services
at all times.

GVPS shall provide
reasonable level of
performance IVD
and control centre to
receiving and
sending data.

3

R4.3 The system shall provide 24/7
access.

GVPS shall be
accessible by driver
to find car parking
and admin to
monitor parking
areas.

1

R4.4 The system shall enforce
authentication policies to avoid
loss of data integrity or
confidentiality

The network should
provide a secure
environment and
control privacy.

3

R4.5 The system shall promote XML
data map format and driver
independence on map resources.

GVPS shall be
flexible and reusable
to be adopted for
any other UK
institutions
GVPS map shall be
easily interpreted
and upgraded to be
adopted for any
other UK institutions.

2

R4.6 The system shall be develop
according to schedule and cost
estimated.

 1

Software Requirements Specification for Guided Vehicle Parking System Page 7

4. Service Descriptions
GVPS service descriptions are shown in Table 4.1 – 4.13.

Table 4.1 SetupConnection service description
GVPS: S1.1.1 SetupConnection
Actors GVPS_Driver
Description 1. GVPS driver find connection

2. If connection is valid then
2.1 If map not exist

 2.1.1 GVPS driver load new map and assign map ID
 2.1.2 System initialise server connection
 2.2 else if map exist
 2.2.1 Choose and load map
 2.2.2 System initialise server connection
 2.3 else
 2.3.1 prompt an error message – connection cannot be established

Entry conditions 1. Valid connection
2. Valid vehicle registration

Exit conditions 1. System reset vehicle
2. Closes server connection

Constraints 1. The service shall be available on Microsoft Mobile platform
2. Service shall have a reasonable level of performance at all times
3. The service shall have 24/7 access availability.

Table 4.2 LoginIVD service description

GVPS: S1.2.1 LoginIVD; S1.2.2 Validate
Actors GVPS_Driver
Description 1. System prompt vehicle registration page

2. If RFID tag is valid
2.1 System initialise driver system permissions
2.2 Display the services available to the driver
else
2.3 Driver enter vehicle registration no and type (C-V, D-V, or O-V)
2.4 System assigned temporary ID
else
2.5 System prompts an error message

Entry conditions 1. Valid RFID or Vehicle Registration No.
Exit conditions 1. System access conditions is reset

2. Closes user account.
Constraints 1. RFID is conforms to standard passive tag protocol.

2. The service shall be easy to maintain to current technology and
requirements.

Table 4.3 SearchParking service description

GVPS: S1.3.1 SearchParking; S1.3.2 Request Parking
Actors GVPS_Driver
Description 1. GVPS driver enters destination (building/department) name

2. If destination is found then
2.1 If vehicle is type D then

2.1.1 A nearest parking space to the destination D type will be
reserved

else if vehicle is type C and eligibility is F
2.1.2 A nearest parking space to the destination C type with

eligibility F will be reserved
else if vehicle is type C and eligibility is S

2.1.3 A nearest parking space to the destination type C with S
eligibility will be reserve

Software Requirements Specification for Guided Vehicle Parking System Page 8

 else if vehicle is type C and eligibility is V
2.1.4 A nearest parking space to the destination type C with V

eligibility will be reserve
else if vehicle is type O and eligibility is F

2.1.5 A nearest parking space to the destination type O with F
eligibility will be reserved

else if vehicle is type O and eligibility is S
2.1.6 A nearest parking space to the destination type O with S

eligibility will be reserved
 else if vehicle is type O and eligibility is V

2.1.1 A nearest parking space to the destination type O with V
eligibility will be reserved

3. Shortest path to the destination will be calculated
4. Car park is reserved until users release destination.

Entry conditions 1. Vehicle_RFID ∈available_RFID
2. Map databases ⊆ set of user permissible databases

Exit conditions 1. System access conditions is reset
Constraints 1. Car space allocation is restricted with vehicle type, eligibility and

availability.
2. Shortest path taking into consideration of route alternative when road

obstruction occurs.

Table 4.4 NavigateRoute service description
GVPS: S1.4.1 NavigateRoute
Actors GVPS_Driver
Description 1. If map found,

1.1 Map and its entities is display
else
1.2 prompt error message “map not found!”

2. Display vehicle location in a map
3. Re-draw vehicle movements on the map.

Entry conditions 1. Vehicle_RFID ∈available_RFID
2. Map databases ⊆ set of user permissible databases

Exit conditions 1. System access conditions is reset
Constraints 1. Map is given in coordinate (x,y) in txt file.

Table 4.5 Exit service description

GVPS: S1.5.1 Exit
Actors GVPS_Driver
Include IVD_Console
Description 1. GVPS driver selects exit south or north.

2. If exit destination is valid
2.1 Shortest path to the exit will be calculated.
2.2 Car space is release.
else
2.3 An error message “invalid exit” is display.

Entry conditions 1. Vehicle_RFID ∈available_RFID
2. Map databases ⊆ set of user permissible databases

Exit conditions 1. System access conditions is reset
Constraints 1. Service conforms to communication server protocol standard.

Table 4.6 Traffic service description
GVPS: S.1.6.1 BroadcastTrafficSignal
Actors Traffic, GVPS_Driver
Description 1. System observe signal from Traffic or ControlCentre.

2. If signal message from Traffic is valid
2.1 Checked traffic signs message
2.2 Broadcast appropriate message to GVPS Driver.
else
2.3 An error message “invalid signal” is display.

Software Requirements Specification for Guided Vehicle Parking System Page 9

Entry conditions 1. Vehicle_RFID ∈available_RFID
2. Map databases ⊆ set of user permissible databases

Exit conditions 2. System access conditions is reset
Constraints 3. The service shall have a reasonable level of performance of broadcasting

traffic messages.
4. The service shall able to read standard signal broadcast by Traffic.

Table 4.7 WrongTurning service description

GVPS: S1.7.1 WrongTurning
Actors GVPS_Driver
Description 1. If system navigation not equals to destination

1.1 Prompt message “wrong route”
1.2 Re-calculate shortest path from location to destination

2. Prompt new routing to the GVPS driver.
Entry conditions 1. Vehicle_RFID ∈available_RFID

2. Map databases ⊆ set of user permissible databases
Exit conditions 1. System access conditions is reset
Constraints -

Table 4.8 Login service description

GVPS: S2.1.1 Login; S2.1.2 ValidateAdmin
Actors GVPS_Administrator
Description 3. GVPS admin request for login

4. GVPS admin enters a username and password
5. Verify login against a set of username-password pairs in the database
6. If username and password are valid:

4.1 System initialise user account permissions
4.2 Display the services available to the user
else
4.3 System prompts the user to re-enter username and password with
three attempts.

Entry conditions 2. Valid username
3. Valid password

Exit conditions 3. System access conditions is reset
4. Closes user account.

Constraints 1. The service shall provide a reasonable level of security.
2. The service shall be easy to maintain to current technology and

requirements.

Table 4.9 ManageDriver service description
GVPS: S2.2.1 ManageDriver
Actors GVPS_Administrator, GVPS_Member
Description 1. GVPS admin manage for driver account

2. If add driver then system request driver:
Driver name – provide char(25)
Car plat number – provide alphanumneric(7)
Parking permit type – select from combo box
Vehicle permit – select from combo box

3. If remove driver
3.1 system request search driver

4. If driver is found
4.1 delete driver details from database

5. If search driver then
5.1 system request driver name or car plat number

6. If driver is found
6.2 driver details is displayed
else
6.2 display message “driver not found”

Software Requirements Specification for Guided Vehicle Parking System Page 10

Entry conditions 1. Manage_map ∈available_services
2. Vehicle databases ⊆ set of permissible databases

Exit conditions 1. System access conditions is reset
Constraints 1. Parking permit type A or B

2. Vehicle permit type C, D, or O

Table 4.10 ManageMap service description
GVPS: S2.3.1 ManageMap; S2.3.2 ParseMap; S2.3.3 Map Entities
Actors GVPS_Administrator
Description 1. GVPS admin search for campus map.

2. GVPS admin browse map directory
3. If map is found

3.1 System parse map entities and display map
else
3.2 error message displayed “Map not found”

4. Map directory is retained in user workspace for future locates
Entry conditions 1. Manage_map ∈available_services

2. Vehicle databases ⊆ set of permissible databases
Exit conditions 1. System access conditions is reset
Constraints 1. Map entities is in *.txt file.

2. The service should allow flexibility and reusability to parse different type of
map entities.

Table 4.11 ManageParking service description

GVPS: S2.4.1 ManageParking
Actors GVPS_Administrator
Description 1. GVPS admin monitor parking status in university campus

2. If a vehicle assigned to a car park,
2.1 parking space is reduce to 1

3. If a vehicle exit from a car park,
3.1 parking space is increase to 1

4. Car parks and its parking spaces are retained in working space.
Entry conditions 1. Manage_map ∈available_services

2. Vehicle databases ⊆ set of permissible databases
Exit conditions 1. System access conditions is reset
Constraints -

Table 4.12 ManageObstruction service description

GVPS: S2.5.1 ManageObstruction
Actors GVPS_Administrator
Description 1. GVPS admin manage road obstruction in university campus.

2. If obstruction
2.1 GVPS admin enters a set of obstructed road segments and notify

IVD
3. If obstruction resolved

3.1 GVPS admin remove the road segments and notify IVD.
Entry conditions 1. Manage_map ∈available_services

2. Vehicle databases ⊆ set of permissible databases
Exit conditions 1. System access conditions is reset
Constraints -

Table 4.13 ViewVehicleStatus service description

GVPS: S2.6.1 ViewVehicleStatus; S2.6.2 VehicleTracker; S2.6.3 TrafficTracker
Actors GVPS_Administrator
Description 1. If map found,

1.1 Map and its entities is display
else
1.2 Prompt error message “map not found!”

Software Requirements Specification for Guided Vehicle Parking System Page 11

2. Display vehicles location in a map
3. Re-draw each vehicle movements on the map.

Entry conditions 1. Manage_map ∈available_services
2. Vehicle databases ⊆ set of permissible databases

Exit conditions 1. System access conditions is reset
Constraints 1. Map is given in coordinate (x,y) in txt file.

2. The service shall be effectively managed.

5. Constraint Descriptions
GVPS constraint descriptions are shown in Table 5.1.

Table 5.1 GVPS constraint descriptions

Concern Sub-concern ID Description Rationale Scope
1-Efficiency 1-Memory C1.1.1 The system shall

efficiently manage
consumptions of
memory.

To ensure bottle
neck and effective
resource
management.

S2.6.2

2-Processor C1.2.1 The system shall
efficiently manage high
consumptions of
processor.

To ensure bottle
neck and effective
resource
management.

S2.6.2

2-Performance 1-Response
time

C.2.1.
1

GVPS shall allow
provide reasonable
level of performance
IVD and Control Centre
to receive and send
data

To ensure that a
reasonable level of
performance is
given to drivers and
admin

System

3-Reliability 1-Availability C3.1.1 GVPS shall allow
driver for 24/7 access.

To ensure
sufficient GVPS
access time.

S1.1.1

4-Security 1-Integrity C4.1.1 GVPS shall provide a
secure environment for
admin access.

Secure control
centre for admin

S2.1.1

C4.1.2 GVPS shall provide a
secure environment for
control privacy

Secure RFID for
drivers

S1.2.1

5-Flexibility 1-
Expendability

C5.1.1 GVPS shall be flexible
to be adopted for any
other UK institutions

Must be able to
read common
traffic and map
structural details.

S2.3.1

6-Business 1-Cost C6.1.1 System development
according to cost
estimated

Under medium
budget

System

2-Schedule C6.2.1 System development
according to schedule
estimated.

Under normal
delivery date

System

3-Platform C6.3.1 The system shall run
on Microsoft Windows
Mobile

Sufficient support
for intended
purpose

S1.2.1
S1.3.1
S1.5.1
S1.7.1

4-Component
Model

C6.4.1 The system shall
develop using
JavaBeans component
model

Leverage existing
expertise held by
the developers.

System

Software Requirements Specification for Guided Vehicle Parking System Page 12

7-Component 1-Availability C7.1.1 GVPS_Traffic
subscribe to available
traffics components.

Using existing
component in
navigation system

S1.6.1

2-Standard C7.2.1 RFID is conform to
standard passive tag
control

Vehicle navigation
standard for
accessing IVD.

S1.2.1

3-Persistent C7.3.1 The database hosted
on Ms. SQL Server
2000 accessed via
JDBC

Sufficient support
for intended
purpose

S2.2.1
S2.3.1

Software Requirements Specification for Guided Vehicle Parking System Page 13

Appendix 1: Lancaster University Car Parking
Specification
• Car parks monitored: 23
• Parking spaces monitored: 500
• Type of vehicles:

o Car (C)
o Car-disabled (D)
o Van/Lorry (O)

• Permits and eligibility:
o Staff (F)
o Students (S)
o Others: Visitor (V) – All visitor’s vehicle (that is any vehicle not

displaying a staff, students or contractor parking permit) will require
either a pay and display ticket when parked on campus.

• Car parks locations:
o Alexandra Park Drive 30

spaces
o Bowland Ave. 15 spaces
o Bowland Avenue 28 spaces
o Cartmel West Ave. 15 spaces
o Farrer Avenue 72 spaces
o Fylde Ave 15 spaces
o Gillow Ave. 15 spaces
o Graduate North Ave. 20

spaces
o John Creed Ave. 10 spaces
o Library Ave. 15 spaces
o Lonsdale South Ave. 20

spaces
o Management School 12

spaces

o North Drive 20 spaces
o North East Drive 20 spaces
o North West Drive 20 spaces
o Physics Ave. 20 spaces
o Rossendale Ave. 20 spaces
o South Bowland Ave East 15

spaces
o South Drive 20 spaces
o South Drive 56 spaces
o South East Drive 36 spaces
o Tower Ave. 10 spaces
o Whewell Building 6 spaces

• Visitor car parks are in the following locations:
o Farrer Avenue 72 spaces
o South Drive 56 spaces
o Bowland Avenue 28 spaces
o Management School 12 spaces
o Whewell Building 6 spaces

• The map entities:
o Car parks and spaces as describe above.
o Roads: 56 roads segments
o Traffic signs

i) Traffic lights
ii) Pedestrian
iii) Bus stops

Software Requirements Specification for Guided Vehicle Parking System Page 14

o Entrances:
i) A6 North Entrance

o Buildings:
Ash House
Biological and Environmental
Science
Bowland Annex
Bowland College
Bowland Hall South
Bowland Hall North
Bowland Lecture Theatre
Bowland North
Bowland Tower
Bowland Tower East
Bowland Tower South
Central Workshops and Stores
CETAD
Chaplaincy Centre
Computer Services
Conference Centre
County College
County South
County West
Engineering Building
Faraday Building
Former Cartmell College
Former County College
Furness College
Furness Residences
Fylde College

Fylde Residences
George Fox Building
Great Hall and Peter Scott
Gallery
Grizedale College
Health Centre
InfoLab21
Jack Hylton Music Rooms
John Creed Buiding
Lancaster Environment Centre
LEC Workshops
Library
LUTV - Round House
Management School
Nuffield Theatre
Pendle Bar
Pendle College
Physics Building
Post Office
Pre-school Centre
Reception Building
Ruskin Library
Slaidburn House
Sports Centre
University House
Whewell Building

Campus map is as Fig. A1.1:

Fig. A1.1. Lancaster campus map

Appendix E GVPS Details Specifications & Results

264

E2. iXML ADL Specification of GVPS

GVPS architecture detailed specification is shown in Table E2.1.

Table E2.1. iXML ADL Specification of GVPS

<?xml version = '1.0' encoding = 'UTF-8' ?>
<!DOCTYPE iXML SYSTEM "/Documents and Settings/norwy/NetBeans_projects/csafe/iXML.dtd">
<iXML>
<component name.id = 'CC_Console' type = '' visibility = 'private'>
<component.description>
CC_Console component is for administrative users who can monitor the status of each vehicle and car
park on campus, and enable closure of sections of road in case of emergency or maintenance.
</component.description>
<component.interface name.idref = 'IDataCentre' port.idref = 'r'/>
<component.interface name.idref = 'IMapCC' port.idref = 'r'/>
<component.interface name.idref = 'IControlCentre' port.idref = 'p'/>
<component.interface name.idref = 'IRouteObs' port.idref = 'p'/>
<component.connector name.idref = 'IDataCentre -> CC_Console'/>
<component.connector name.idref = 'IMapCC -> CC_Console'/>
<component.constraint concern = 'Security' subconcern = 'Integrity' type = 'invariant' state = 'EL' value
= 'authentication_policies' scope = 'Login'/>
<component.constraint concern = 'Component' subconcern = 'Persistent' type = 'precondition' state =
'EL' value = 'SQL Server' scope = 'ManageDriver'/>
<component.constraint concern = 'Component' subconcern = 'Persistent' type = 'precondition' state =
'EL' value = 'SQL Server' scope = 'ManageMap'/>
<component.property concern = 'Component' subconcern = 'Availability' value = 'inhouse'/>
</component>
<component name.id = 'IVD_Console' type = '' visibility = 'private'>
<component.description>
ICD_Console component provides services to the driver to navigate campus to and from parking space
using a valid registration number or RFID tag.
</component.description>
<component.interface name.idref = 'IVehicle' port.idref = 'p'/>
<component.interface name.idref = 'IDataIVD' port.idref = 'r'/>
<component.interface name.idref = 'IMapIVD' port.idref = 'r'/>
<component.interface name.idref = 'IRouteObs' port.idref = 'r'/>
<component.connector name.idref = 'IRouteObs -> IVD_Console'/>
<component.connector name.idref = 'IDataIVD -> IVD_Console'/>
<component.connector name.idref = 'IMapIVD -> IVD_Console'/>
<component.constraint concern = 'Component' subconcern = 'Standard' type = 'precondition' state =
'EL' value = 'PassiveTag' scope = 'LoginIVD'/>
<component.constraint concern = 'Security' subconcern = 'Integrity' type = 'invariant' state = 'EL' value
= 'authentication_policies' scope = 'LoginIVD'/>
<component.constraint concern = 'Reliability' subconcern = 'Availability' type = 'precondition' state =
'GT' value = '100' scope = 'SetupConn'/>
<component.constraint concern = 'Business' subconcern = 'Platform' type = 'invariant' state = 'EL' value

Appendix E GVPS Details Specifications & Results

265

= 'Windows Mobile' scope = 'LoginIVD'/>
<component.constraint concern = 'Business' subconcern = 'Platform' type = 'invariant' state = 'EL' value
= 'Windows Mobile' scope = 'SearchParking'/>
<component.constraint concern = 'Business' subconcern = 'Platform' type = 'invariant' state = 'EL' value
= 'Windows Mobile' scope = 'Exit'/>
<component.constraint concern = 'Business' subconcern = 'Platform' type = 'invariant' state = 'EL' value
= 'Windows Mobile' scope = 'WrongTurning'/>
<component.property concern = 'Component' subconcern = 'Standard' value = ' PassiveTag'/>
<component.property concern = 'Component' subconcern = 'Availability' value = 'Inhouse'/>
<component.property concern = 'Business' subconcern = 'Platform' value = 'Windows Mobile'/>
</component>
<component name.id = 'avpsDB' type = '' visibility = 'private'>
<component.description>
The component provides persistent storage of driver, vehicle and campus entities.
</component.description>
<component.interface name.idref = 'IDataCentre' port.idref = 'p'/>
<component.interface name.idref = 'IDataIVD' port.idref = 'p'/>
<component.interface name.idref = 'IDataMap' port.idref = 'p'/>
<component.property concern = 'Component' subconcern = 'Persistent' value = 'SQL Server'/>
<component.property concern = 'Component' subconcern = 'Availability' value = 'inhouse'/>
</component>
<component name.id = 'Map' type = '' visibility = 'private'>
<component.description>
The component provides services to visualise campus entities including traffic signal
</component.description>
<component.interface name.idref = 'IMapIVD' port.idref = 'p'/>
<component.interface name.idref = 'IMapCC' port.idref = 'p'/>
<component.interface name.idref = 'IDataMap' port.idref = 'r'/>
<component.connector name.idref = 'IDataMap -> Map'/>
<component.constraint concern = 'Component' subconcern = 'Availability' type = 'invariant' state = 'EL'
value = ' inhouse' scope = 'TrafficSignal'/>
<component.constraint concern = 'Flexibility' subconcern = 'Expendability' type = 'invariant' state = 'EL'
value = 'xml-based' scope = 'DrawMap'/>
<component.constraint concern = 'Efficiency' subconcern = 'Memory' type = 'postcondition' state = 'LE'
value = '20' scope = ' VehicleTracker '/>
<component.constraint concern = 'Efficiency' subconcern = 'Processor' type = 'postcondition' state =
'EL' value = '75' scope = 'VehicleTracker'/>
<component.property concern = 'Component' subconcern = 'ComponentModel' value = 'JavaBeans'/>
</component>
<component name.id = 'Navi' type = 'subsystem' visibility = 'public'>
<component.description>Subsystem</component.description>
<component.composite name.idref = 'CC_Console'/>
<component.composite name.idref = 'IVD_Console'/>
<component.composite name.idref = 'avpsDB'/>
<component.composite name.idref = 'Map'/>
<component.constraint concern = 'Business' subconcern = 'Schedule' type = 'invariant' state = 'EL'
value = 'moderate' scope = 'System'/>
<component.constraint concern = 'Business' subconcern = 'Cost' type = 'invariant' state = 'EL' value =
'moderate' scope = 'System'/>
<component.constraint concern = 'Business' subconcern = 'ComponentModel' type = 'precondition'

Appendix E GVPS Details Specifications & Results

266

state = 'EL' value = 'JavaBeans' scope = 'System'/>
<component.constraint concern = 'Performance' subconcern = 'ResponseTime_UPL' type =
'postcondition' state = 'LE' value = '0.5' scope = 'System'/>
<component.constraint concern = 'Performance' subconcern = 'ResponseTime_PL' type =
'postcondition' state = 'LE' value = '4' scope = 'System'/>
</component>
<interface name.id = 'IDataCentre' type = '' port = 'p' visibility = 'private'>
<interface.description>avpsDB provides this interface to CC_Console</interface.description>
<interface.service name = 'ValidateAdmin'>
<service.operation name.idref = 'validate'/>
</interface.service>
<interface.service name = 'ParseMap'>
<service.operation name.idref = 'parseMap'/>
</interface.service>
<interface.service name = 'ManageParking'>
<service.operation name.idref = 'queryDriver'/>
<service.operation name.idref = 'queryParking'/>
</interface.service>
<interface.operation name = 'parseMap' ret = ''>
<operation.param name = 'map' type ='String'/>
<operation.param name = 'entities' type ='vector'/>
</interface.operation>
<interface.operation name = 'validate' ret = ''>
<operation.param name = 'username' type ='String'/>
<operation.param name = 'pwd' type ='String'/>
</interface.operation>
<interface.operation name = 'queryDriver' ret = ''>
<operation.param name = 'driverID' type ='String'/>
<operation.param name = 'vehicleID' type ='String'/>
</interface.operation>
<interface.operation name = 'queryParking' ret = ''>
<operation.param name = 'parkAreaID' type ='integer'/>
</interface.operation>
</interface>
<interface name.id = 'IDataCentre' type = '' port = 'r' visibility = 'private'>
<interface.description>CC_Console requires this interface</interface.description>
<interface.operation name = 'parseMap' ret = ''>
<operation.param name = 'map' type ='String'/>
<operation.param name = 'entities' type ='vector'/>
</interface.operation>
<interface.operation name = 'validate' ret = ''>
<operation.param name = 'username' type ='String'/>
<operation.param name = 'pwd' type ='String'/>
</interface.operation>
<interface.operation name = 'queryDriver' ret = ''>
<operation.param name = 'driverID' type ='String'/>
<operation.param name = 'vehicleID' type ='String'/>
</interface.operation>
<interface.operation name = 'queryParking' ret = ''>
<operation.param name = 'parkAreaID' type ='integer'/>

Appendix E GVPS Details Specifications & Results

267

</interface.operation>
</interface>
<interface name.id = 'IDataIVD' type = '' port = 'p' visibility = 'private'>
<interface.description>avpsDB provides this interface to IVD_Console</interface.description>
<interface.service name = 'ValidateDriver'>
<service.operation name.idref ='authenticate'/>
</interface.service>
<interface.service name = 'RequestParking'>
<service.operation name.idref ='queryParking'/>
</interface.service>
<interface.operation name = 'authenticate' ret = ''>
<operation.param name = 'vehicleNo' type ='String'/>
<operation.param name = 'rfidNo' type ='String'/>
</interface.operation>
<interface.operation name = 'queryParking' ret = 'integer'>
<operation.param name = 'dest' type ='String'/>
</interface.operation>
</interface>
<interface name.id = 'IDataIVD' type = '' port = 'r' visibility = 'private'>
<interface.description>IVD_Console requires this interface</interface.description>
<interface.operation name = 'authenticate' ret = ''>
<operation.param name = 'vehicleNo' type ='String'/>
<operation.param name = 'rfidNo' type ='String'/>
</interface.operation>
<interface.operation name = 'queryParking' ret = 'integer'>
<operation.param name = 'dest' type ='String'/>
</interface.operation>
</interface>
<interface name.id = 'IMapCC' type = '' port = 'p' visibility = 'private'>
<interface.description>Map provides this interface to CC_Console </interface.description>
<interface.service name = 'DrawMap'>
<service.operation name.idref = 'connectWaypoint'/>
</interface.service>
<interface.service name = 'TrafficTracker'>
<service.operation name.idref = 'trafficTracker'/>
</interface.service>
<interface.service name = 'VehicleTracker'>
<service.operation name.idref = 'showVehicle'/>
</interface.service>
<interface.operation name = 'showVehicle' ret = ''>
<operation.param name = 'vehicleID' type ='String'/>
</interface.operation>
<interface.operation name = 'connectWaypoint' ret = ''>
<operation.param name = 'coord' type ='String'/>
</interface.operation>
 <interface.operation name = 'trafficTracker' ret = ''>
</interface.operation>
</interface>
<interface name.id = 'IMapCC' type = '' port = 'r' visibility = 'private'>
<interface.description>CC_Console requires this interface</interface.description>

Appendix E GVPS Details Specifications & Results

268

<interface.operation name = 'showVehicle' ret = ''>
<operation.param name = 'vehicleID' type ='String'/>
</interface.operation>
<interface.operation name = 'connectWaypoint' ret = ''>
<operation.param name = 'coord' type ='String'/>
</interface.operation>
<interface.operation name = 'trafficTracker' ret = ''>
</interface.operation>
</interface>
<interface name.id = 'IMapIVD' type = '' port = 'p' visibility = 'private'>
<interface.description>Map provides this interface to IVD_Console</interface.description>
<interface.service name = 'NavigateRoute'>
<service.operation name.idref = 'calculateRoute'/>
<service.operation name.idref = 'drawRoute'/>
</interface.service>
<interface.service name = 'TrafficSignal'>
<service.operation name.idref = 'traffiCast'/>
</interface.service>
<interface.operation name = 'calculateRoute' ret = ''>
<operation.param name = 'dest' type ='String'/>
</interface.operation>
<interface.operation name = 'drawRoute' ret = ''>
<operation.param name = 'coord' type ='String'/>
</interface.operation>
<interface.operation name = 'traffiCast' ret = ''>
</interface.operation>
</interface>
<interface name.id = 'IMapIVD' type = '' port = 'r' visibility = 'private'>
<interface.description>IVD_Console requires this interface</interface.description>
<interface.operation name = 'calculateRoute' ret = ''>
<operation.param name = 'dest' type ='String'/>
</interface.operation>
<interface.operation name = 'drawRoute' ret = ''>
<operation.param name = 'coord' type ='String'/>
</interface.operation>
<interface.operation name = 'traffiCast' ret = ''>
</interface.operation>
</interface>
<interface name.id = 'IRouteObs' type = '' port = 'p' visibility = 'private'>
<interface.description>Map provides this interface to IVD_Console</interface.description>
<interface.service name = 'ManageObstruction'>
<service.operation name.idref = 'routeObstruction'/>
</interface.service>
<interface.operation name = 'routeObstruction' ret = ''>
<operation.param name = 'route' type ='vector'/>
</interface.operation>
</interface>
<interface name.id = 'IRouteObs' type = '' port = 'r' visibility = 'private'>
<interface.description>IVD_Console requires this interface</interface.description>
<interface.operation name = 'routeObstruction' ret = ''>

Appendix E GVPS Details Specifications & Results

269

<operation.param name = 'route' type ='vector'/>
</interface.operation>
</interface>
<interface name.id = 'IDataMap' type = '' port = 'p' visibility = 'private'>
<interface.description>Map provides this interface to IVD_Console</interface.description>
<interface.service name = 'ManageEntities'>
<service.operation name.idref ='getEntities'/>
<service.operation name.idref ='getCoord'/>
</interface.service>
<interface.operation name = 'getEntities' ret = ''>
</interface.operation>
<interface.operation name = 'getCoord' ret = ''>
</interface.operation>
</interface>
<interface name.id = 'IDataMap' type = '' port = 'r' visibility = 'private'>
<interface.description>IVD_Console requires this interface</interface.description>
<interface.operation name = 'getEntities' ret = ''>
</interface.operation>
<interface.operation name = 'getCoord' ret = ''>
</interface.operation>
</interface>
<interface name.id = 'IControlCentre' type = '' port = 'p' visibility = 'public'>
<interface.description>CC_Console provides this interface</interface.description>
<interface.service name = 'Login'>
<service.operation name.idref ='login'/>
</interface.service>
<interface.service name = 'ManageDriver'>
<service.operation name.idref ='updateDriver'/>
</interface.service>
<interface.service name = 'ManageMap'>
<service.operation name.idref ='updateMap'/>
</interface.service>
<interface.service name = 'ViewVehicleStatus'>
<service.operation name.idref ='viewStatus'/>
</interface.service>
<interface.operation name = 'login' ret = ''>
<operation.param name = 'username' type ='String'/>
<operation.param name = 'pwd' type ='String'/>
</interface.operation>
<interface.operation name = 'updateDriver' ret = ''>
<operation.param name = 'driverID' type ='String'/>
<operation.param name = 'vehicleID' type ='String'/>
</interface.operation>
<interface.operation name = 'updateMap' ret = ''>
<operation.param name = 'mapID' type ='String'/>
<operation.param name = 'mapEntity' type = 'vector'/>
</interface.operation>
<interface.operation name = 'viewStatus' ret = ''>
<operation.param name = 'coord' type ='String'/>
</interface.operation>

Appendix E GVPS Details Specifications & Results

270

</interface>
<interface name.id = 'IVehicle' type = '' port = 'p' visibility = 'public'>
<interface.description>IVD_Console provides this interface</interface.description>
<interface.service name = 'SetupConn'>
<service.operation name.idref = 'connect' />
</interface.service>
<interface.service name = 'LoginIVD'>
<service.operation name.idref = 'loginIVD' />
</interface.service>
<interface.service name = 'SearchParking'>
<service.operation name.idref = 'searchParking' />
</interface.service>
<interface.service name = 'Exit'>
<service.operation name.idref = 'exit' />
</interface.service>
<interface.service name = 'WrongTurning'>
<service.operation name.idref = 'reroute' />
</interface.service>
<interface.operation name = 'connect' ret = 'vector'>
<operation.param name = 'mapName' type ='String'/>
</interface.operation>
<interface.operation name = 'loginIVD' ret = ''>
<operation.param name = 'vehicleNo' type ='String'/>
<operation.param name = 'rfidNo' type ='String'/>
</interface.operation>
<interface.operation name = 'searchParking' ret = 'integer'>
<operation.param name = 'dest' type ='String'/>
</interface.operation>
<interface.operation name = 'exit' ret = 'boolean'>
<operation.param name = 'parkID' type ='integer'/>
<operation.param name = 'exitGate' type ='integer'/>
</interface.operation>
<interface.operation name = 'reroute' ret = ''>
<operation.param name = 'coord' type ='String'/>
</interface.operation>
</interface>
<connector name.id = 'IDataCentre -> CC_Console' type = '' role = ''>
<connector.required>
<required.component name.idref = 'CC_Console'/>
<required.interface name.idref = 'IDataCentre'/>
</connector.required>
<connector.provided>
<provided.component name.idref = 'avpsDB'/>
<provided.interface name.idref = 'IDataCentre'/>
</connector.provided>
</connector>
<connector name.id = 'IDataIVD -> IVD_Console' type = '' role = ''>
<connector.required>
<required.component name.idref = 'IVD_Console'/>
<required.interface name.idref = 'IDataIVD'/>

Appendix E GVPS Details Specifications & Results

271

</connector.required>
<connector.provided>
<provided.component name.idref = 'avpsDB'/>
<provided.interface name.idref = 'IDataIVD'/>
</connector.provided>
</connector>
<connector name.id = 'IMapCC -> CC_Console' type = '' role = ''>
<connector.required>
<required.component name.idref = 'CC_Console'/>
<required.interface name.idref = 'IMapCC'/>
</connector.required>
<connector.provided>
<provided.component name.idref = 'Map'/>
<provided.interface name.idref = 'IMapCC'/>
</connector.provided> </connector>
<connector name.id = 'IMapIVD -> IVD_Console' type = '' role = ''>
<connector.required>
<required.component name.idref = 'IVD_Console'/>
<required.interface name.idref = 'IMapIVD'/>
</connector.required>
<connector.provided>
<provided.component name.idref = 'Map'/>
<provided.interface name.idref = 'IMapIVD'/>
</connector.provided>
</connector>
<connector name.id = 'IDataMap -> Map' type = '' role = ''>
<connector.required>
<required.component name.idref = 'Map'/>
<required.interface name.idref = 'IDataMap'/>
</connector.required>
<connector.provided>
<provided.component name.idref = 'avpsDB'/>
<provided.interface name.idref = 'IDataMap'/>
</connector.provided>
</connector>
<connector name.id = 'IRouteObs -> IVD_Console' type = '' role = ''>
<connector.required>
<required.component name.idref = 'IVD_Console'/>
<required.interface name.idref = 'IRouteObs'/>
</connector.required>
<connector.provided>
<provided.component name.idref = 'CC_Console'/>
<provided.interface name.idref = 'IRouteObs'/>
</connector.provided></connector>
</iXML>

A
ppendix E

G
V

PS D
etails Specifications &

 R
esults

272

E3. SMART

Quality concern weights and design template contributions calculated using SMART in Table E3.1 for Scenario 1 of GVPS.

Table E3.1 SMART for GVPS - Scenario 1

Concern Sub-Concern Scope
S1: ClusterServer Pattern S2: Proxy Pattern

s. s* µ s. s* µ

Efficiency Memory S2.6.2 2 0.09 0.17 0.521 3 0.13 0.26 0.824

Processor S2.6.2 2 0.09 3 0.13

Flexibility Expendability S1.2.1 N/A 0.00 0.00 3 1.00 0.17

Performance ResponseTime_UPL S1.2.1 2 0.67 0.24 2 0.67 0.24

ResponseTime_PL S1.2.1 2 0.67 2 0.67

Reliability Availability S1.5.1 3 1.00 0.12 0 0.00 0.00

Security Integrity S1.2.1 1 0.06 0.12 3 1.00 0.35

Integrity S2.1.1 1 0.06 3 1.00

273

Appendix F:

Design Templates

Design templates of ClusteServer pattern, Proxy pattern, ServiceOrderProvision local

scheme, Three-tier proxy server architectural style are shown in Table F1.1 – F1.4

Table F1.1 ClusterServer template

Category Pattern
Name ClusterServer
Also-Known-
As

-

Related-Rules -
Intent This patterns cluster starts off with Server Clustering, which focuses on using server

clusters to design an infrastructure tier that meets specific availability and scalability
requirements. A server cluster is two or more servers that are interconnected to
form a unified virtual computing resource.

Context Clustering servers increases the availability of a system by ensuring that if a server
becomes unavailable because of failure or planned downtime, another server in the
cluster can assume the workload, ensuring that the application remains available to
users. Clustering also enhances scalability by supporting more users at the current
level of performance or by improving application performance for the current users.

Motivation An enterprise application has to meet ever-increasing operational demands,
including higher availability, improved performance, and the ability to maintain
these demands as the load on applications increases. This creates the need for
application and supporting infrastructure designs that maximize scalability and
availability.

Appendix F Design Templates

274

Configuration

Consequences Performance.Response time = {ClusterServer is maintaining performance., M}
Performance.Throughput = { ClusterServer is maintaining performance., M}
Reliability.Availability = {ClusterServer is improving availability using active
redundancy and automatic restart during failover., H}
Maintainability.Requirement = {ClusterServer complexity may compromise system
maintainability., L}
Maintainability.Technology = {ClusterServer complexity may compromise system
maintainability., L}
Maintainability.Time = {ClusterServer complexity may compromise system
maintainability., L}
Security.Integrity = {Clustering onto two or more server may comprise integrity of
data., L}
Efficiency.Memory = {ClusterServer provides space optimisation through resources
sharing, M}
Efficiency.Proccesor = {ClusterServer provides time optimisation through resources
sharing, M}

Table F1.2 Proxy pattern template

Category Pattern
Name Proxy
Also-Known-As Surrogate
Related-Rules Decorator, Adapter
Intent The pattern makes the clients of a component communicate with a representative

rather than to the component itself. Introducing such a placeholder can serve many
purposes, including enhanced efficiency, easier access and protection from
unauthorised access.

Context Proxy is applicable whenever there is a need for more versatile or sophisticated
reference a component. Some common situations in which the pattern is
applicable:
1. Remote proxy – where clients of remote components should be shielded from

network addresses and inter-process communication protocols.
2. Protection proxy – where components must be protected from unauthorised

access
3. Cache proxy – where multiple simultaneous access to a component must be

synchronised
4. Counting proxy – where accidental deletion of components must be prevented or

usage statistic collected
5. Virtual proxy – where the processing or loading of a component might costly,

while partial information about the component might be sufficient

Appendix F Design Templates

275

6. Firewall Proxy – where local clients should be protected from the outside world
Motivation One reason for controlling access to a component is to defer the full cost of its

usage until we actually need it. Until that point we can use some light objects
(proxies) exposing an identical interface as the heavy objects to the Client. When
the proxy is accessed it forwards the request to the real subject. This ability to
control the access to a component can be required for a variety of reasons: caching,
access control, synchronisation, lazy creation, remote access.

Configuration

Consequences Efficiency.Memory = {The proxy provides space optimisation through caching and

lazy construction when the cost of data access and rendering is reduce, H}
Efficiency.Proccesor = {The proxy provides time optimisation through caching and
lazy construction when the cost of data access and rendering is reduce, H}
Performance.ResponseTime = {A virtual proxy helps to implements a ‘load-on-
demand strategy’ that avoid unnecessary loads and usually speeds up the
application, however complex implementation would cause less efficiency due to
indirection, M}
Reusability.Modularity = {The proxy provides weak coupling between clients and
subsystems, M}
Flexibility.Expendability = {A remote proxy decoupling clients from the locations of
remote server components, H}
Security.Integrity = {Protection proxy and smart references allow additional
housekeeping tasks when a component is accessed, H}

Table F1.3 ServiceOrder Provision template

Category Local scheme
Name Service-Order Provision
Also-Known-As Order Provision
Related-Rules -
Intent A document may require a search, locate and order service. This design template

ensures that the order service resides in a component that is separate from search
and locate services.

Context When the document manager requires search, locate and order services, restricting
document order in a separate execution is good a strategy. A requestor component
can obtain document and location identifiers from a centralized document registry
before placing a document order. Document orders are placed with the document
supplier component.

Motivation DocumentManager may require services of DocumentServer which consists of
ISearch and ILocate, and DocumentServer which consists of IOrder.

Appendix F Design Templates

276

Configuration

Consequences Performance.ResponseTime = {contributes flexibility in the communication with

document provider , M}
Performance.Throughput = {contributes flexibility in the communication with
document provider, M}
Maintainability.Time = {contributes towards maintenance time for the document
main services, H}
Maintainability.Requirement = {allows the document server maintain the order
service more effectively, H}
Reliability.Availability = {improves the availability of related services which allows
longer duration of order service to be served, H}

Table F1.4 Three-tier proxy server template

Category Style
Name Three-tier proxy server
Also-Known-
As

Three-Tier Client/Server Architecture

Related-Rules -
Intent A tier is a partitioning of functionality that may be allocated to a separate physical

machine (i.e. web browsers client, web server and database server) which improves
maintainability while hiding the complexity of distributed processing.

Context When we have to design applications for distributed enterprise information systems
where usually some desktop components will access or modify shared resources,
mostly located within a non-active database.

Motivation Partition application functionality into three tiers: front-end clients, application
servers (domain server) and a database storage. The front-end clients tier consists of
cosmponents unique to every user include application specific logic & the user
interface. The application server tier, supported by a multi-user environment, holds
the shared parts of application & bussiness logic. This tier needs services like
transaction, concurrency control & security. The task of the database storage tier is to
manage persistency of certain data/info and to execute the database transaction.

Appendix F Design Templates

277

Configuration

Consequences Performance.ResponseTime = {The requests from individual browsers may first arrive

at a proxy server, which exists to improve the performance of the Web-based system,
M}
Performance.Throughput = {The proxy server is typically located close to the users,
often on the same network, so that they save tremendous amount of both
communication and computation resources, M}
Reliability.Availability = {Functionality routine accessibility, M}
Maintainability.Requirement = {A tier is a partitioning of functionality improves
maintainability while hiding the complexity of distributed processing, H}
Maintainability.Technology = {A tier is a partitioning of functionality improves
maintainability of technology require, H}
Maintainability.Time = {The partitioning of functionality allows components loosely
coupling hence improve time to maintains it, H}
Security.Integrity = {The proxy server is also used to restrict users’s access to certain
Web sites. In this case the proxy server is acting somewhat like a firewall, H}

278

Appendix G:

Quality Descriptions

Quality descriptions are shown in Table G.1.

Table G.1 Quality descriptions

Concern SubConcern Unit
Type*

Unit
Name

Notes

Performance ResponseTime_upl N Seconds Performance of response time under-
peak load.

Performance ResponseTime_pl N Seconds Performance of response time during
peak load.

Performance Throughput_upl N Trans/per
second

Performance of throughput under-
peak load.

Performance Throughput_pl N Trans/per
second

Performance of throughput during
peak load.

Reliability Availability N % Reliability of availability according to
service access time.

Maintainability Requirement V Maintainability of requirement refers
to the role of stakeholder who is able
to request for maintaining
architectural components.

Maintainability Time N Months Maintainability of time refers to
elapse time for maintaining the
architectural components.

Maintainability Technology V Maintainability of technology refers
to technology require for maintaining
architectural components.

Component Standard V Component standard protocol

Component Cost N GBP Component cost charge yearly

Appendix G Quality Descriptions

279

Concern SubConcern Unit
Type*

Unit
Name

Notes

Component Version N Component version

Component Availability V Component availability

Component Certification B Component certification

Component In N Required Component required interfaces

Component Out N Provided Component provided interfaces

Component Services V Component tagged services

Business Cost V Business cost intensity

Business Schedule N Months Business schedule intensity

Business Platform V Business platform

Security Integrity V Security of integrity refers to the
extent to which access to software or
data by unauthorised persons can be
controlled.

Flexibility Expendability V Flexibility of expendability refers to
the degree and effort to which the
program can be extended.

Reusability Modular V Reusability of modular refers to the
functional independence of program
components.

Efficiency Memory N % Efficiency of memory refers to the
scarce resource is effectively uses.

Efficiency Processor N % Efficiency of memory refers to the
scarce resource is effectively uses.

Legends: N – Numeric V – Verbal B – Boolean

Quality Definitions

Quality definitions described below are adopted from [Iso01][McCall77]:

• Efficiency – Efficiency is refers to the level of use of scarce computational

resources such CPU cycles and memory.

o Memory: Memory involves space and time spent using the resources.

o Processor: Processor involves space and time spent using the resources.

• Performance – Performance is about timing, events occur and the system must

respond to them.

o Response Time: Managing the interprocess communication volume and data

access frequencies

Appendix G Quality Descriptions

280

o Throughput: The speed with which a component processes data.

• Reliability – Reliability is concerned with system failure and its associated

consequences. A system failure occurs when the system no longer deliver

consistent with its specification.

o Availability: Availability is concerned with the proportion of elapsed time that

the component is able to be used.

• Maintainability – Maintainability refers to the change which can occur to any aspect

of a system.

o Requirement: Maintainability of requirement refers to the role of stakeholder

who is able to request for maintaining architectural components.

o Time: Maintainability of requirement refers to elapse time for maintaining the

architectural components.

o Technology: Maintainability of requirement refers to technology require for

maintaining architectural components.

• Flexibility – Flexibility refers to the effort required to modify an operational

program (or part thereof).

o Expendability – Flexibility of expendability refers to the degree and effort to

which the program can be extended.

• Reusability – Reusability is the ease with which an existing component can be

reused

o Modularity – Reusability of modularity refers to the functional independence

of program components.

• Security – The ability to prevent unauthorized access to program or data

o Integrity – Security of integrity refers to the extent to which access to software

or data by unauthorised persons can be controlled.

281

Glossary

ADL Architecture Description Language

AHP Analytic Hierarchical Process

ASAAM Aspectual Software Architecture Analysis Method

ATAM Architecture Trade-off Analysis Method

CADL Component Architecture Description Language

CBD Component-based System Development

CBSE Component-based Software Engineering

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CSAFE Component-based Software Architecture analysis FramEwork

DFC Distributed Feature Composition

EDDIS Electronic Document Delivery Interchange System

EJB Enterprise JavaBeans

FOSS Free cOmponentS Open Source

282

GC Garbage Collector

GUI Graphical User Interface

GVPS Guided Vehicle Parking System

IVD In-Vehicle-Device

JDK Java Development Kit

JVM Java Visual Machine

NEC National Electronic Company

NFR Non-Functional Requirement

OCS Open Control System

OTS Off-The-Shelf

PID Process ID

POS Point-Of-Sales

SMART Simple Multi-Attributes Rating Technique

XML Extensible Markup Language

283

References

[Abowd97] Abowd, G., Bass, L., Clements, P., Kazman, R. and Northrop, L.:

Recommended Best Industrial Practice for Software Architectural

Evaluation. Technical Report CMU/SEI-96-TR-025. Pittsburgh, PA,

Software Engineering Institute. Carnegie Mellon University. 1997.

[Admodisastro06] Admodisastro, N. and Kotonya, G.: Towards an Integrated Approach

to Architectural Analysis in Component-based Software Development.

Proceeding of the Work in Progress Session in the 32nd IEEE

EuroMicro Conference. 2006.

[Admodisastro08] Admodisastro, N. and Kotonya, G.: Architectural Analysis

Approaches: A Component-Based System Development Perspective.

Proceeding of the International Conference on Software Reuse

(ICSR). Springer-Verlag, Berlin Heidelberg, 2008; LNCS 5030: 26-38.

[Admodisastro10] Admodisastro, N. and Kotonya, G.: An Architectural Analysis

Approach for Black-box Component-Based Systems. Proceeding of

the 2nd GSTF International Conference on Software Engineering (SE),

Phuket, Thailand. 2010; 68-74.

[Admodisastro11a] Admodisastro, N., Kotonya, G.: An Architecture Analysis Approach

for Supporting Black-box Software Development. Proceeding of the

References

284

European Conference on Software Architecture. Springer-Verlag,

Heidelberg, 2011; LNCS 6903: 180-189.

[Admodisastro11b] Admodisastro, N. and Kotonya, G.: Usability Requirements for

Architectural Analysis Tool to Support CBD. Proceeding of the 2nd

International Conf. User Science and Engineering (i-USer). IEEE

Computer Society, 2011; 118-123.

[Advant10] Advant: ABB Control Systems. Available:

http://www.abb.com/controlsystems, 2010.

[Aoyama 01] Aoyama, M.: CBSE in Japan and Asia. In G. T. Heineman and W.T.

Council, Component-Based Software Engineering: Putting the Pieces

Together. Addison-Wesley. 2001.

[Aoyama98] Aoyama, M.: New Age of Software Development: How Component-

based Software Engineering Changes the Way of Software

Development. International Workshop on Component-Based

Software Engineering, 1998.

[Auto10] Auto: Automotive-Articles. Available:

http://www.innerauto.com/Automotive_Articles/, 2010.

[Babar04a] Babar, M.A. and Gorton, I.: Comparison of Scenario-Based Software

Architecture Evaluation Methods. Proceeding of the Asia-Pacific

Software Engineering (APSEC). IEEE Computer Society, Washington

D.C., 2004; 600-607. DOI: 10.1109/APSEC.2004.38.

[Babar04b] Babar, M. A., Zhu, L. and Jeffery, R.: A Framework for Classifying and

Comparing Software Architecture Evaluation Methods. Proceeding of

the 2004 Australian Software Engineering Conference (ASWEC).

IEEE Computer Society, 2004; 309-318. DOI:

10.1109/ASWEC.2004.1290484.

[Babar07] Babar, M. A. and Gordon, I.: A Tool for Managing Software

Architecture Knowledge. Proceeding of the 2nd Workshop on

SHAring and Reusing architectural Knowledge Architecture,

Rationale, and Design Intent (SHARK). IEEE Computer Society,

2007; 11-17. DOI: 10.1109/SHARK-ADI.2007.1

http://www.abb.com/controlsystems
http://www.innerauto.com/Automotive_Articles/
http://dx.doi.org/10.1109/SHARK-ADI.2007.1

References

285

[Barbacci05] Barbacci, M.R.: SEI Architecture Analysis Techniques and When to

Use Them. CMU/SEI-2001-TN-005. Carnegie Mellon Software

Engineering Institute. 2005.

[Bashroush04] Bashroush, R., Spence, I., Kilpatrick, P. and Brown, T. J.: Towards

and Automated Evaluation Process for Software Architectures.

IASTED on Software Engineering, 2004; 418: 182.

[Bass05] Bass, L., Clements, P. and Kazman, R.: Software Architecture in

Practice. 2nd Ed. SEI Series in Software Engineering. Addison Wesley.

2005.

[Becker06] Becker, S., Brogi, A., Gorton, I., Overhage, S. and Romanovsky, A.

and Tivoli, M.: Towards an Engineering Approach to Component

Adaptation. R. H. Reussner et al. (Eds.): Architecting Systems.

Springer-Verlag, Berlin Heidelberg 2006; LNCS 3938: 193-215. DOI:

10.1007/11786160.

[Bond05] Bond, G.W., Cheung, E., Goguen, H.H., Hanson, K.J., Henderson,

D., Karam, G.M., Purdy, K.H., Smith, T.M., Zave, P.: Experience

with Component-Based Development of a Telecommunication

Service. Proceeding of the ACM Sigsoft Symposium on Component-

Based Software Engineering (CBSE). Springer-Verlag, Berlin

Heidelberg, 2005; LNCS 3489: 298-305.

[Britannica10] Encyclopædia Britannica: Science & Technology: Engineering.

Available:

http://www.britannica.com/EBchecked/topic/187549/engineering,

2010.

[Brown96] Brown, A. and Wallnau, K.: Engineering of Component-based

System. Proceedings of the 2nd IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS), 1996; 7-15.

[Buschmann96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.

Pattern-Oriented Software Architecture: System of Patterns. Vol. 1.

Wiley Series in Software Design Pattern, Wiley. 1996.

[Chung95a] Chung, L., Nixon, B. and Yu, E.: An Approach to Building Quality

into Software Architecture. Proceeding of the Conference of the

http://www.britannica.com/EBchecked/topic/187549/engineering
http://www.google.co.uk/url?sa=t&rct=j&q=ieee%20international%20conference%20on%20engineering%20of%20complex%20computer%20systems&source=web&cd=2&ved=0CDYQFjAB&url=http%3A%2F%2Fwww.iceccs.org%2F2011%2F&ei=WebsTt25OoeW8QOOqMWRCg&usg=AFQjCNFILu6Bgw___S1Ol5KHnjYJ_dhuKA
http://www.citeulike.org/user/bkohler/author/Buschmann:F
http://www.citeulike.org/user/bkohler/author/Meunier:R
http://www.citeulike.org/user/bkohler/author/Rohnert:H
http://www.citeulike.org/user/bkohler/author/Sommerlad:P
http://www.citeulike.org/user/bkohler/author/Stal:M

References

286

Centre for Advanced Studies on Collaborative Research (CASCON).

IBM Press, Canada, 1995; 13-25.

[Chung95b] Chung, L. and Nixon, B. A.: Dealing with Non-Functional

Requirements: Three Experimental Studies of Process-Oriented

Approach. Proceeding of International Conference on Software

Engineering (ICSE). ACM Press 1995; 25-37. DOI:

10.1145/225014.225017.

[Clements95] Clements, P.: From Subroutines to Subsystems: Component-Based

Software Development. The American Programmer, 1995; 8(11).

[Clements96] Clements, P., and Northrop, L.: Software Architecture: An Executive

Overview. CMU Technical report CMU/SEI-96-TR-003. Pittsburgh,

PA, Software Engineering Institute. Carnegie Mellon University. 1996.

[Coplien97] Coplien, J.O.: Idioms and Patterns as Architectural Literature. IEEE

Software: Special Issue on Objects, Patterns and Architectures, 1997;

14(1): 36-42.

[Crnkovic02] Crnkovic, I., Larsson, M. (Editors): Building Reliable Component-

Based Software Systems. Artech House Publisher. 2002.

[Cs10] CS240: Group Project Software Design/Project Skills. Available:

http://www.comp.lancs.ac.uk/~andreas/Teaching_AUM.htm , 2010

[10/21/2010].

[Darwin95] Darwin J. M., Dulay, N., Eisenbach, S., and Kramer, J.: Specifying

Distributed Software Architectures. Proceeding of the 5th European

Software Engineering Conference (ECSA). 1995; 137-153.

[Dashofy02] Dashofy, E.M.,Hoek, A.v.d., and Taylor, R.N. An Infrastructure for

the Rapid Development of XML-based Architecture Description

Languages. Proceedings of the 24th International Conference on

Software Engineering (ICSE). 2002; 266-276.

[Dobrica02] Dobrica, L. and Eila, N.: A Survey on Software Architecture Analysis

Methods. IEEE Transaction on Software. Engineering. 2002; 28(7):

638-653. DOI: 10.1109/TSE.2002.1019479.

[Ekstedt02] Ekstedt, M. and Johnson, P.: Exploring Architectural Analysis

Credibility from a Developer Perspective. Proceeding on the

http://www.comp.lancs.ac.uk/~andreas/Teaching_AUM.htm

References

287

Australasian Workshop on Software and System Architecture

(AWSA). 2002. DOI: 10.1.1.16.1268

[Fayad97] Fayad, M. and Schmidt, D. C.: Object-Oriented Application

Frameworks. Communications of the ACM, 1997; 40(10): 32-38.

[Feblowitz98] Feblowitz, M. D. and Greenspan, S. J.: Scenario-Based Analysis of

COTS Acquisition Impacts. Requirements Engineering, 1998; 3(3-4):

182-201.

[Feller02] Feller, J. and Fitzgerald, B.: Understanding Open Source Software

Development. Addison-Wesley. 2002.

[Gamma95] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley

Professional. 1995.

[Garlan97] Garlan, D., Monroe, R., and Wile, D.: ACME: An Architecture

Description Interchange Language. Proceedings of the 1997

Conference of the Centre for Advanced Studies on Collaborative

Research (CASCON), 1997; 169-183.

[Gillies96] Gillies, A.: Software Quality: Theory and Management. International

Thomson Computer Press. 1996.

[Grau05] Grau, G., Franch, X., Maiden, N. A. M.: REDEPEND-REACT: an

Architecture Analysis Tool. Proceeding IEEE International

Conference on Requirement Engineering (RE). IEEE Computer

Society 2005; 455-456. DOI: 10.1109/RE.2005.55.

[Heineman01] Heineman, G. T. and Council, W.T.: Component-Based Software

Engineering: Putting the Pieces Together. Addison-Wesley. 2001.

[Hutchinson05] Hutchinson, J., and Kotonya, G.: Patterns and Component-Oriented

System Development. Proceeding of the EuroMicro Conf. on SEAA,

2005; 126-133.

[Hutchinson06] Hutchinson, J., and Kotonya, G.: A Review of Negotiation Techniques

in Component-Based Software Engineering. Proceeding of the

EuroMicro Conf. on SEAA. IEEE Computer Society, Washington

D.C. 2006; 152-159. DOI: 10.1109/EUROMICRO.2006.12

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=sr_1_1?s=books&ie=UTF8&qid=1287494035&sr=1-1

References

288

[Iso01] International Standard: ISO/IEC 9126-1. Institute of Electrical and

Electronic Engineers, Part 1,2,3: Quality Model. Available:

http://www.iso.ch [2001]

[Jacobson97] Jacobson, I., Griss, M. and Jonsson, P.: Software Reuse: Architecture

Process and Organization for Business Success. Addison-Wesley,

Reading. 1997.

[Java10] Java SE Desktop Technologies. Introducing Java Beans. Available:

http://java.sun.com/developer/onlineTraining/Beans/Beans1/ [2010]

[Java11] Java SE Documentation, Java VisualVM. Available:

http://download.oracle.com/javase/6/docs/technotes/guides/visualvm/in

dex.html [2011]

[Kazman96] Kazman, R.: Tool Support for Architecture Analysis and Design. Joint

Proceedings of the 2nd International Software Architecture Workshop

(ISAW-2) & International Workshop on Multiple Perspectives in

Software Development on SIGSOFT 1996 Workshops. ACM Press.

New York, USA, 1996; 94-97. DOI: 10.1145/243327.243618

[Kazman98] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H. and

Carriere, J.: The Architectural Tradeoff Analysis Method. Proceeding

of IEEE International Conference on Engineering of Complex

Computation System (ICECCS), 1998; 68-78. DOI:

10.1109/ICECCS.1998.706657.

[Khosravi04] K. Khosravi, and Y.G. Guéhéneuc. Quality Model for Design Patterns.

Summer 2004.

[Klein99] Klein, M. and Kazman, R.: Attribute-Based Architectural Styles.

Technical Report CMU/SEI-99-TR-22. Pittsburgh, PA, Software

Engineering Institute. Carnegie Mellon University. 1999.

[Kotony03] Kotonyo, G., Sommerville, I. and Hall, S.: Towards a Classification for

Component-Based Software Engineering Research. Proceeding of the

29th IEEE EuroMicro Conference. 2003; 43-52.

[Kotonya04a] Kotonya, G. and Hutchinson, J.: Viewpoints for Specifying

Component-Based Systems. Component-Based Software Engineering,

Proceeding of the 7th International Symposium on Component-Based

http://www.iso.ch/
http://java.sun.com/developer/onlineTraining/Beans/Beans1/
http://download.oracle.com/javase/6/docs/technotes/guides/visualvm/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/visualvm/index.html

References

289

Software Engineering (CBSE). Springer-Verlag, Berlin, 2004; LNCS

3054: 114-121.

[Kotonya04b] Kotonya, G., Hutchinson, J. and Bloin, B.: COMPOSE: Method for

Formulating and Architecting Component and Service–Oriented

Systems. In Z. Stojanovic, and A. Dahanayake, eds., Service-Oriented

Software System Engineering: Challenges and Practices. Idea Group

Inc. 2004.

[Kotonya05a] Kotonya, G, Hutchinson, J. Managing Change in COTS-Based

Systems. Proceeding of the IEEE International Conference on

Software Maintenance (ICSM). IEEE Computer Society, Washington

D.C., 2005; 69-78. DOI: 10.1109/ICSM.2005.61.

[Kotonya05b] Kotonya, G. and Hutchinson, J.: Analysing the Impact of Change in

COTS-Based Systems. Proceeding of the ICCBSS. Springer-Verlag,

Heidelberg, 2005; LNCS: 3412: 212-222. DOI: 10.1007/b105900

[Kotonya07] Kotonya, G, Hutchinson, J. A.: Service-Oriented Approach for

Specifying Component-Based Systems. Proceeding of the ICCBSS.

Springer-Verlag, Heidelberg, 2007; LNCS 3412: 150-162. DOI:

10.1109/ICCBSS.2007.4

[Kotonya08] Kotonya, G.: An Architecture-Centric Development Environment for

Black-Box Component-Based Systems. Proceeding of the European

Conference on Software Architecture (ECSA). Springer-Verlag,

Heidelberg, 2008; LNCS 5292: 98-113.

[Kung-Kiu04] Kung-Kiu, L: Component-Based Development Case Studies. World

Scientific, 2004.

[Kurpjuweit02] Kurpjuweit, S.: A Family Tools to Integrate Software Architecture

Analysis and Design. PhD Thesis. Software Engineering Institute.

Carnegie Mellon University, USA. 2002.

[Lau07] Lau, L. and Wang, Z.: Software Component Model. IEEE

Transaction on Software Engineering; 2007; 33(10): 709-124.

[Li08] Li, J. et al.: A State-of-the-Practice Survey of Risk Management in

Development with Off-the-Shelf Software Components. IEEE

Transactions on Software Engineering, 2008; 34(2).

http://www.ecsa2008.cs.ucy.ac.cy/
http://www.ecsa2008.cs.ucy.ac.cy/

References

290

[Luckham95] Luckham, D. C. et al.: Specification and Analysis of System

Architecture Using Rapide. IEEE Transactions on Software

Engineering, 1995; 21(6): 336-354. DOI: 10.1109/32.385971.

[Lüders00] Lüders, F.: Architectural Styles in Component-Based Software

Engineering. Seminar in Component-Based Software Engineering:

State of the Art. Mälarden University. Västerås, Sweden. 2000.

[Luer01] Luer, C., and Rosenblum S. D.: WREN an Environment for

Component-Based Development. ACM SIGSOFT Software

Engineering Notes, 2001; 26(5): 207-217.

[McCall77] J.A. McCall, P.K. Richards, and G.F. Walters: Factors in Software

Quality. RADC-TR-77-369. US Department of Commerce, 1977.

[Medvidovic00] Medvidovic, N. and Taylor, R. N.: A Classification and Comparison

Framework for Software Architecture Description Languages. IEEE

Transaction Software Engineering, 2000; 26(1): 70-93.

[Medvidovic02] Medvidovic, N. et al.: Modeling Software Architectures in the Unified

Modeling Language. ACM Transactions on Software Engineering and

Methodology, 2002; 11(1): 2-57.

[Medvidovic07] Medvidovic, N. and Dashofy, E.M.: Moving Architectural Description

from Under the Technology Lamppost. Information and Software

Technology, 2007; 49(1): 12-31. DOI: 10.1016/j.infsof.2006.08.006.

[Medvidovic96] Medvidovic, N., Oreizy, P., Robbins, J. E. and Taylor, R. N.: Using

Object-Oriented Typing To Support Architectural Design in the C2

Style. Proceeding of ACM SIGSOFT’96: 4th Symposium on the

Foundations of Software Engineering. ACM Press, New York 1996;

24-32. DOI: 10.1145/250707.239106.

[Msdn10] MSDN: Performance and Reliability Pattern. Available:

http://msdn.microsoft.com/en-us/library/ff648802.aspx, 2010 [Jan. 01,

2011].

[Obbink07] Obbink, H, Kruchten, P, Kozaczynski, W, Hilliard, R, Ran, A.,

Postema, H., Lutz, D., Kazman, R., Tracz, W., Kahane, E.: Software

Architecture Review and Assessment (SARA) Report. Available:

http://dx.doi.org/10.1016/j.infsof.2006.08.006
http://doi.acm.org/10.1145/250707.239106
http://msdn.microsoft.com/en-us/library/ff648802.aspx

References

291

http://kruchten.com/philippe/architecture/SARAv1.pdf [6 December

2007]

[Papazoglou08] Papazoglou, M.P.: Web Services: Principles and Technology. Prentice-

Hall. 2008.

[Perry92] Perry, D.E., and Wolf, A. L.: Foundations for the Study of Software

Architecture. ACM SIGSOFT Software Engineering Notes, 1992;

17(4): 40-52.

[Persse01] Persse, J. R.: Implementing the Capability Maturity Model. Wiley,

New York. 2001.

[Pilone05] Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. Oreilly. 2005.

[Pressman09] Pressman, R.: Software Engineering: A Practitioner’s Approach. 7th Ed.

McGraw Hill. 2009.

[Rami03] Rami, B., and Wolfgang, E.: Evaluating Software Architectures:

Development, Stability and Evolution. Proceeding of ACS/IEEE

International Conference on Computer System and Applications

(AICCSA). IEEE Computer Society Press 2003; 47-56. DOI:

10.1109/AICCSA.2003.1227480.

[RedependReact07] REDEPENDREACT: The REDEPEND-REACT Homepage.

Available: http://www.lsi.upc.es/~ggrau/REDEPEND-

REACT/index.html [2 December 2007].

[Saaty90] Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New

York. 1990.

[Saniabille01] Saniabille, R., Favre, J-M., and Ledru, Y.: Helping Various

Stakeholders to Understand a Very Large Component-Based Software.

Proceeding of the 27th IEEE EuroMicro, 2001; 104-111.

[Shaw96] Shaw, M. and Garlan, D.: Software Architecture: Perspectives on an

Emerging Discipline. Prentice Hall. 1996.

[Shepetukha01] Shepetukha, Y., and Olson, D. L.: Comparative Analysis of

Multiattribute Techniques Based On Cardinal and Ordinal Inputs.

Mathematical Computing Modelling, 2001: 34: 229-241.

[Sommerville10] Sommerville, I.: Software Engineering. 9th Ed. Addison-Wesley. 2010.

References

292

[Spagnoli06] Spagnoli, L., Almeida, I., Becker, K., Blois, A. P., and Werner, C.:

Adaptation and Composition within Component Architecture

Specification. Proceeding of the International Conference on Software

Reuse (ICSR). Springer-Verlag, Berlin Heidelberg, 2006; LNCS 3140:

142-155. DOI: 10.1007/11763864.

[Stafford01a] Stafford, J., and Wolf, A.: Software Architecture. pp. 371-388. In G. T.

Heineman and W.T. Council, Component-Based Software

Engineering: Putting the Pieces Together. Addison-Wesley. 2001

[Stafford01b] Stafford, J.A., Richardson, D.J. and Wolf, A. L.: Architecture-Level

Dependence Analysis for Software Systems. International Journal of

Software Engineering & Knowledge Engineering. 2001; 11(4): 431-451.

DOI: 10.1.1.40.6873.

[Stafford98] Stafford, J. A., Richardson, D. J. and Wolf, A. L.: Aladdin: A Tool for

Architecture-Level Dependence Analysis of Software Systems.

Technical Report CU-CS-858-98. University of Colorado, 1998.

[Summers06] M. Summers, 240 Report. Technical Report. Computing Department,

Lancaster University. 2006.

[Tekinerdogan04] Tekinerdogan, B.: ASAAM: Aspectual Software Architecture Analysis

Method. Proceeding on Working IEEE/IFIP Conference on Software

Architecture (WICSA). IEEE Computer Science, Washington, D.C.,

2004; 5-14. DOI: 10.1109/WICSA.2004.1310685

[Tran99] Tran, Q. and Chung, L.: NFR-Assistant: Tool Support for Achieving

Quality. Proceeding of IEEE Symposium on Application – Specific

System and Software Engineering and Technical (ASSET). IEEE

Computer Society, 1999; 284-289. DOI:

10.1109/ASSET.1999.756782

[Uml01] Unified Modeling Language. UML® Resource Page. Last updated on,

2010. Available: http://www.uml.org/, 2010 [Oct. 21, 2010]

[Upadhyaya08] Upadhyaya, B.P.: Component Based Software Development - An

Industrial Experience with a Labour Market Information System.

Proceedings of 19th Australian Software Engineering Conference

(ASWEC), 2008; 497-506.

http://doi.ieeecomputersociety.org/10.1109/WICSA.2004.1310685
http://www.britannica.com/EBchecked/topic/187549/engineering

References

293

[van den Brand01] van den Brand, M.G.J., Heering, J., de Jong, H.A., de Jonge, M.,

Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju,

J.J., Visser, E., Visser, J.: The ASF+SDF Meta-Environment: a

Component-Based Language Development Environment. Proceedings

of 10th International Conference on Computational Complexity (CCC),

2001; 365-370.

[Vieira00] Vieira, M. E. R., Dias, M. S., and Richardson, D. J.: Analyzing

Software Architecture with Argus-I. Proceeding of the International

Conference Software Engineering (ICSE). ACM Press, New York,

USA, 2000; 758-761. DOI: 10.1109/ICSE.2000.870489.

[Vigder01] Vigder, M.: The Evolution, Maintenance and Management of

Component-Based Systems. pp. 527-539. In G. T. Heineman and

W.T. Council, Component-Based Software Engineering: Putting the

Pieces Together. Addison-Wesley. 2001.

[Vigder96] Vigder, M., Gentleman, M., Dean, J.: COTS Software Integration:

State of the Art. Institute for Information Technology. National

Research Council. 1996.

[Volgyesi02] Volgyesi, P., Ledeczi, A.: Component-Based Development of

Networked Embedded Applications. Proceedings of 28th IEEE

EuroMicro Conference on Component-Based Software Engineering,

2002; 68-73.

[Wallnau02] Wallnau, K.C., Hissam, S.A. and Seacord, R.C.: Building System from

Commercial Components. SEI Series in Software Engineering.

Addison-Wesley, Reading. 2002.

[Wallnau03] Wallnau, K.C.: Volume III: A Technology for Predicable Assembly

from Certifiable Components. Technical Report CMY/SEI-2003-TR-

009. Pittsburgh, PA, Software Engineering Institute. Carnegie Mellon

University. 2003.

[Weiss01] Weiss, M.: Patterns and Non-Functional Requirements. Technical

Paper. Carleton University. 2001.

[Wikipedia10] Wikipedia: Software Component. Available:

http://www.wikipedia.org/wiki/Software_component, 2010.

http://www.wikipedia.org/wiki/Software_component

References

294

[Xml10] XML and XMI. CORBA®, XML and XMI®. Last updated on

Available: http://www.omg.org/technology/xml/index.htm, 2010 [June

25, 2009].

http://www.omg.org/technology/xml/index.htm

	1 FrontCover
	Novia Admodisastro
	PhD in Computing
	Computing Department
	Lancaster University
	/
	A thesis submitted for the degree of Doctor of Philosophy
	October 2011

	2 ToC
	CH1 Introduction_FINAL
	1.1 CBSE in Practice
	1.2 Challenges for Developing Systems from Components
	1.3 Motivation for Research
	1.4 Objectives
	1.5 Research Contributions
	1.6 Thesis Structure

	CH2 Background_FINAL
	2.1 Software Architecture
	2.2 Architecture and System Quality
	2.2.1 Achieving Qualities: Architectural Styles, Patterns, Custom, Metrics, and Scenarios
	2.3 Software Architecture Evaluation
	2.4 Component-Based Software Engineering Process
	2.4.1 COMPOSE Model
	2.4.2 Pressman Model
	2.4.3 Brown Model
	2.5 Summary

	CH3 Background_FINAL
	3.1 Design Challenges in CBD
	3.1.1 Necessary Requirements for Architectural Analysis
	3.2 Architectural Analysis Approaches
	3.2.1 NFR-Framework
	3.2.2 REDEPEND-REACT
	3.2.3 ATAM
	3.2.4 ASAAM
	3.2.5 Chaining Framework
	3.2.6 ARGUS-I
	3.2.7 Odyssey-Adapt
	3.2.8 Engineering Framework
	3.3 Methods Summary
	3.4 Summary

	CH4 Framework_FINAL
	4.1 The Framework
	4.1.1 Weaving Requirements and Architectural Design
	4.1.2 Architecture Parsing
	4.1.2.1 Constructing Baseline System Architecture
	4.1.2.2 XMI/XML Parser
	4.1.2.3 CSAFE Architecture Description Language – iXML
	4.1.3 Formulating Analysis Scenarios
	4.1.4 Analysis
	4.1.5 Trade-off Analysis and Rating - Negotiation
	4.2 The Toolset
	4.2.1 CSAFE Toolset Architecture
	XMI/XML Parser

	1. System designer selects the XMI/XML architectural specification from the analysis repository.
	2. System designer enters project name and clicks OK.
	3. The XMI/XML parser parses the architectural specification and checks it against XML schema/DTD.
	4. The XMI/XML parser creates a design schema for the architecture.
	5. The XMI/XML parser stores the architectural vectors in analysis repository.
	6. The tool organizes the architectural elements into a tree hierarchy.
	Scenario Formulator
	Analyser
	Trade-off Analyser - Negotiator
	Design Template Repository
	Component Repository
	Report Generator

	4.3 Summary

	CH5 EvaluationEDDIS_FINAL
	5.1 The Case Study
	5.2 EDDIS Viewpoints and Requirements
	5.2.1 Constructing the baseline EDDIS Architecture
	5.3 The Analysis
	5.3.1 Formulating EDDIS Analysis Scenarios
	5.3.2 Analysing EDDIS Architecture
	5.3.3 Revising EDDIS Architecture
	Sensitivity analysis
	5.4 Summary

	CH6 EvaluationGVPS_FINAL
	6.1 The Case Study
	6.2 GVPS Viewpoints and Requirements
	6.3 The Analysis
	6.3.1 Documenting the GVPS Architecture
	6.3.2 Formulating GVPS Analysis Scenarios
	6.3.3 Analysing GVPS Architecture
	6.3.4 Refining GVPS Architecture
	6.4 Runtime Comparison of GVPS Architectures
	6.4.1 Methodology
	Experiment Scenario 1: One student vehicle and one visitor vehicle under normal road conditions
	Performance and resource analysis for Experiment Scenario 1
	CPU and memory profiles for Experiment Scenario 1
	Experiment Scenario 2: Two student vehicles and three visitor vehicles under normal road conditions
	Performance and resource analysis for Experiment Scenario 2
	CPU and memory profiles for Experiment Scenario 2
	Experiment Scenario 3: Two student vehicles, three visitor vehicles and two road closures
	Performance and resource analysis for Experiment Scenario 3
	CPU and memory profiles for Experiment Scenario 3
	6.5 Summary

	CH7 Conclusion_FINALR1
	7.1 Framework Objectives Revisited
	7.3 Opportunities and Future Work
	7.4 Reflection

	Appendix A. iXML Schemas
	A1. iXML Schema for Architecture Design Description
	A2. iXML Schema for Design Template Description
	A3. iXML Schema for Component Description

	Appendix B. CSAFEToolset Analysis & Design
	B1. CSAFE Use-Case Descriptions & Sequence Diagrams
	1. System designer browses and selects XMI/XML architectural specification from Analysis Repository.
	2. System designer enters project name and clicks OK.
	3. The XMI/XML parser parses the architectural specification and checks against XML schema/DTD.
	4. The XMI/XML parser creates design schema.
	5. The XMI/XML parser stores architectural vectors in analysis repository.
	6. The tool organizes architectural elements in tree hierarchy and each element detail description is display on the description form.
	1. System designer enters scenario descriptions (i.e. name, author and comment). A date and time automatically captures.
	2. System designer clicks ‘OK’.
	3. The tool create new scenario in the analysis repository and display a new a scenario template on Elicit & Prioritise display.
	4. System designer selects a node (composite component, service, interface or connector) from tree project and the constraint description is shows on the Elicit & Prioritise display.
	5. Then the system designer can starts to weight each of the constraint description.
	6. The system designer clicks ‘Save’ and the weighting values are store in Analysis Repository.
	1. System designer executes mapping design use-case.
	2. System designer selects conformance checker and retrieves analysis data from Analysis Repository.
	3. The tool executes rating design use-case.
	4. System designer selects quality checker and retrieves analysis data from Analysis Repository.
	5. The tool executes mapping services use-cases and executes mapping component use-cases
	6. System designer selects structural checker and retrieves analysis data from Analysis Repository.
	1. System designer selects scenario name, quality concerns and design template categories.
	2. The system design form submits this request to design control which then queries desired concerns and matching categories from design template repository.
	3. The query results are passes to design control which then conduct comparison and matching.
	1. System designer selects scenario name, rating control submits the requests to analysis repository and retrieves mapping results.
	2. Rating control then retrieves the design contributions from design template repository and passes the results to rating form to display rating for each design template.
	3. Then the system designer instantiated desired alternatives designs and its justifications.
	4. These architectural instantiation are store in architecture database.
	1. System designer enters scenario name and service control requests results of selected design templates from architecture database.
	2. Then, the system designer selects required alternative design and service control requests related design components from design template repository to be displayed in the list.
	3. The system designer selects a service to map, again service control query design component details and submits the results back to the control.
	4. Then, service control compare and match the selected service onto appropriate design component.
	5. The results are store in architecture database and submit to service form to be displayed onto a panel by establishes a link between the service and the design component.
	1. System designer enters scenario name and component control requests results of selected design templates from architecture database.
	2. Then, the designer selects required alternative design and component control requests related design components from architecture database to be displayed in list on component form.
	3. The system designer selects a component to map, component control query design component details and submits the results back to the control.
	4. Then, service control compare and match the selected design component onto concrete component.
	5. The results are store in architecture database and submit to component form to be displayed onto a panel by establishes a tag between the design component and the concrete component.
	1. System designer enters scenario name and assess control requests formulated scenarios and its results from analysis repository.
	2. Then, assess control submits a query for design contributions to template design library.
	3. The query results are passes back to assess control.
	4. Subsequently, mean values are calculated and the results are passes to assess template to be displayed.
	1. System designer selects contribution level (e.g. level 1: best architectural designs, level 2: concern, level 3: sub-concern).
	2. ContrGraph request data from Analysis Repository and calculate these dataset.
	3. Contribution bar chart is display on assessment template.
	4. System designer selects architectural design.
	5. ScoreGraph request data from Analysis Repository and calculate these dataset.
	6. Scores pie charts are display on assessment template.
	7. System designer selects architectural design.
	8. TradeOffGraph request data from Analysis Repository and calculate these dataset.
	9. Component trade-off line chart is display on assessment template.
	1. System designer selects a scenario.
	2. Report request architectural design alternatives details from architecture database.
	3. Report display report to the system designer.
	4. System designer requests to print the report.
	5. Report raster and print the report.
	1. System designer browses and selects XMI/XML design template specification and clicks OK.
	1. The XMI/XML parser parses the rule specification and checks against XMI/XML schema.
	2. The XMI/XML parser stores rule descriptions in rules repository
	3. The tool organizes the rule in tree hierarchy and each element detail description is display on the description form.
	1. System designer browses and selects XMI/XML component specification and clicks OK. The parser parses the component specification and checks against XMI/XML schema.
	2. The XMI/XML parser stores component descriptions in component repository
	3. The tool organizes the component in tree hierarchy and each element detail description is display on the description form.
	B2. CSAFE Class Diagrams

	Appendix C.CSAFEToolset User Manual
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience and Reading Suggestions

	2. System Requirements
	3. System Features
	3.1 Main Windows
	3.2 Toolbar Menus
	3.3 Managing Component Library
	3.4 Managing Design Template Library
	3.5 Updating Quality Index List
	3.6 Generating iXML Template
	3.7 Starting an Architectural Analysis Project
	3.8 About and Helps

	Appendix D. EDDIS Specification & Results
	D1. Detail Requirements
	D2. Service Descriptions
	D3. Constraint Descriptions
	D4. Concrete Component Descriptions
	D5. SMART
	D6. Reports

	Appendix E. GVPS Specifications & Results
	E1. GVPS Software Requirements Specification
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience and Reading Suggestions
	1.3 Product Scope

	2. Overall Description
	2.1 Operating Environment
	2.2 Design and Implementation Constraints
	2.3 Assumptions and Dependencies
	2.4 Priority of Requirements
	2.5 Abbreviations

	3. Requirements
	3.1 Vehicle Requirements
	3.2 GVPS Requirements
	3.2.1 ICD
	3.2.2 Control Centre

	3.3 Non-Functional Requirements
	3.4 Summary

	4. Service Descriptions
	5. Constraint Descriptions
	E2. iXML ADL Specification of GVPS
	E3. SMART

	Appendix F. Design Templates
	Appendix G. Quality Descriptions
	Quality Definitions

	Glossary
	References

