An Integrated Architecture
Analysis Framework for Component-Based
Software Development

Nowvia Admodisastro

PhD m Computing

Computing Department

Lancaster University

A thesis submitted for the degree of Doctor of Philosophy
October 2011

Declaration

I certify that this thesis submutted for the degree of PhD in Computing 1s the result of
my own research, except where acknowledged, and that this thesis or any part of it has

not been submitted for higher degree to any other university or institution.

NOVIA INDRIATY ADMODISASTRO

Date :28/10/2011

Abstract

The mmportance of architecture m reuse-driven development 1s widely recognized.
Architecture provides a framework for establishing a match between avalable
components and the system context. It is a key part of the system documentation;
enforces the mtegrity of component composition and provides a basis for managing
change. However, one of the most difficult problems in component-based system
development (CBD) 1s ensuring that the software architecture provides an acceptable
match with its intended application, business and evolutionary context. Unlike custom
development where architectural design rehies solely on a detalled requirements
specification and where deficiencies in application context can be corrected by
‘tweaking’ the source code, n component-based system development the typical umt
of development 1s often a black-box component whose source code 1s inaccessible to
the developer. Getting the architecture right is therefore key to ensuring quality in a
component-based system. Architecture analysis in CBD provides the developer with a
means to expose interface mismatches, assess configurations with respect to specific
structural and behavioural constraints and to verify the adequacy of compositions with
respect to quality constraints. However, support for key component-based system
design 1ssues 1s still patchy in most architecture analysis approaches. My solution has

been to develop, Component-based Sofiware Architecture analysis Framlwork

1

(CSAFE), a scenario-driven architecture analysis approach that combines and extends
the strengths of current approaches using pluggable analysis. CSAFE 1s process-
pluggable and recognises that negotiation (trade-off analysis) 1s central to black-box
software development. However, while CSAFE 1s primarily mtended to support
black-box development, we recognise that there may be aspects of the system for
which a black-box solution 1s not feasible. CSAFE supports custom development in
such situations by treating abstract components as placeholders for custom

development. CSAFE 1s supported by an extensible toolset.

111

Acknowledgements

In the Name of Allah, the Beneficent, the Merciful. All praise is due to Allah, whose
Bounties and Mercies I cannot begin to enumerate. Not in my wildest dream, I could
complete this journey, when time 1s so bleak and dim hope, and only losses keep

accompany, to Allah I thankful for giving me strength to carry on.

My most deepest and earnest appreciation goes to my supervisor, Dr. Gerald
Kotonya, his enthusiasm, his mspiration, and his guidance on this journey has been
mnvaluable. Tirelessly, he provided encouragement, sound advice, good teaching, and
lots of good 1deas. T could not ask for a better supervisor than him, thank you for

believing in me.

I am also most indebted to the Universiti Putra Malaysia for granting me the study
leave and to the Government of Malaysia for awarding me a generous sponsorship.
Sincere thanks to Lancaster University which has granted me William Ritchie Travel
Fund during the study period to attend a prestige international conference in Beyjing,

China.

My colleagues and admimstration staffs from the Lancaster Department of
Computing for supporting me m my research work. I want to thank them for all their

help and support.

v

The affection and heart-warming friendship I received from miraculous people
who have I known in Lancaster University, to name a few Lala Alabadi, Azrina
Kamaruddin, Rafidah Md Noor, Xiaozhu Wu, Sara Khan, Christine Dawson, cannot
be described, only deeply felt.

This thesis 1s devoted to my parent, Wargo Admodisastro and Mainah Macartney,
for their previous love and support in all my efforts, and for giving me the foundation
to be who I am. To my beloved father, rest in peace, you will always be my greatest
admirable guide and philosopher. To my baby sister Vienna, who gives me comfort

with her cheerful stories, keep on telling good stories.

There have been many others who have give encouragements and prayers and to

all I am grateful.

10 all the good memories...

“So verily, with hardship, there is reflief."(94:5)

List of Figures

Fig. 1.1
Fig. 2.1

Fig. 2.2

Fig. 3.3
Fig. 3.4

Fig. 3.5

Fig. 3.6

Components reside 1n software reuse [Aoyama97| 3

Quality in multi-dimensional construct [Gillies96] 18

A sample catalogue of architectural patterns, orgamised by 1s-a

relatonship [BassOdl 20
CBSE processes [KotonyaO3 23
Component-based system development [KotonyaO4b] 25
CBSE process model [Pressman09] 26
Brown [Brown96] component-based development approach 28
Pluggable analysis 33
Embedded analysis 33
Architectural analysssm CBD 34
Effect of components on spheres of control [Wallnau02] 35

Component and application development processes - together with
associated stakeholder roles 36

Vil

Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.12
Fig. 4.1
g 4.2
Fig. 4.3

Fig. 4.4

Fg. 4.6
Fig. 4.7
Fig. 4.8
g 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16

Fig. 4.17

REDEPEND-REACT architectural analysis process 40

ATAM actvities [Kazman98| 42
ASAAM process [TekinerdoganO4]_ 43
Channing framework 45
ARGUSI process [Viewra00} 46
Odyssey-Adapt 47
The process of adapting a component_____ 49
CSAFE and architectural design process 55
Architecture analysis process 56
Requirement and analysis viewponts___ 57
Abstract viewpont structure 58
Service and constramnts variabthty 59
Service partttioning_ 62
Process parsing and storing XMI/XML specification. 63
EDDIS architectural description with interface identification. 64
XMI/XML specification of DocManager 66
XML architectural metamodel 67
Analysis of design mapping 71
Architecture design template 72
Mapping a service onto a design template component 73
Re-factoring facty menn .~~~ 73
Mapping onto concrete component 75
Contribution of suggested alternatives according to sub-concerns. 77
Sensitivity analysis of mantanabity 78

Vil

Fig. 5.7

Fig. 5.14()
Fig. 5.14(i)

Fig. 5.14Gu)

CSAFE toolset use-case diagram______ 79
Architecture of CSAFE toolset 80
Transform architecture sequence diagram 81
Design template metamodel 83
Componentmetamodel 85
EDDIS use-case diagramy 90
Sequence diagram for EDDIS services_ 90
EDDIS service partitoning 91
EDDIS architectural description with interface identification .~~~ 92
XMI/XML specification of DocManager. 94
Parsed EDDIS architecture (left pane) and EDDIS XMI/XML source
fle (ight pane) 94
DocManager component specification (right pane) 95
Creating a new analysis scenario ‘Scenario?2” 98
Formulating scenarios for document_services - Scenario1 99

Mapping EDDIS formulated scenarios of Scenario 1 onto Design

Template Library 100
Mapping EDDIS formulated scenarios of Scenario 2 onto Design
Template Library 100
Recommended solutions - Scenario 1 102

ClusterServer pattern with its contributions, configuraion and

spectfication 103
ClusterServerpattern (S1) 105
Service-Order Provisionlocal-scheme §2) . 105
Three-tier proxy serverarchitectural style §3) 106

1X

Fig.

Fg.

Fg. !

Fig.

Fig.

Fig.
Fig.
Fg.

Fg.

a1
Ju—
&

5.23

5.25

5.26

5.27

5.28

5.29

5.30

Fig. 5.31

Fig. 5.32

Mapping document_services onto DocumentRequestBB abstract

COMPONCN 107
Refactoring ValidManager onto the ServiceOrderProvision 107
AdminManager abstract component with associated services. 108
Mapping onto concrete component 109

Structural musmatch ~ found between — AdmunManager a

Contribution of suggested alternatives according to main concerns -
Scenario 1 112

Contribution of suggested alternatives according to sub-concerns -
Scenario 1 112

subconcern - Scenario 2 113
Sensitivity analysis of Performance - Scenario 1 114
Sensitivity analysis of Performance (Throughput) - Scenario 1 115
Sensitivity analysis of Maintamability - Scenario 1. 116

Sensitivity analysis of Maintainability(Requirement) - Scenario 1 116

Scoring percentage of ClusterServerlocal-scheme - Scenario 1 117

Scoring percentage of ServiceOrder Provision pattern - Scenario 1117

Fig. 5.33

Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4

Fig. 6.5

Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11

Fig. 6.12

Fig. 6.13

Fig. 6.14

Fig. 6.15

Fig. 6.16

Fig. 6.17

Fig. 6.18

Scoring percentage of Three-tier proxy server architectural style -

Scenario 1 118
GVPS use-case diagram 121
GVPS typical component parttioning 123
GVPS architectural description with interface identification 125

GVPS architecture (left panel) and 1XML specification (right panel) 125

GVPS architecture component and their associated mterfaces and

CONNCCIOTS 126
Proxypattern (S1) 130
Proxymapped services onto IProxyand IProxyIVD 131

Contribution of suggested alternatives according to main concerns____ 132

Contribution of suggested alternatives according to sub-concerns_ 132
Sensitivity analysis applied to security concern 133
The GVPS simulator main window 134

tag on left bottom panel 135
Navigation event for a student car to Infolab21 137

Student car navigates to Info Lab 21 parking area shows on IVD panel
of Simulator I 137

Student car navigates to Info Lab 21 parking area shows on IVD panel
of Simulator IT 138

Visitor car navigates to Sport Centre parking area shows on IVD panel
of Simulator IT 138

X1

Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.92
Fig. 6.23
Fig. 6.24
Fig. 6.25
Fig. 6.26
Fig. 6.97

Fig. 6.28

Fig. 6.29

Fig. 6.30

Fig. 6.31

Fig. 6.32
Fig. 6.33
Fig. 6.34
Fig. 6.35
Fig. 6.36
Fig. 6.37
Fig. 6.38

Fig. 6.39

Simulator II (PID 3744) configurations and environment 140

Simulator I (PID 4016) monitoring enteringevent 141
Simulator II (PID 3744) monitoring entering event 141
Simulator I (PID 4016) monitoring exitingevent 143
Simulator II (PID 3744) monitoring exitingevent 143
Simulator I (PID 4016) CPU profile . . 145
Simulator IT (PID 3744) CPU profile_ 145
Simulator I (PID 4016) memory profile .. 146
Simulator IT (PID 3744) memory profile__ . 146

Student car arrives at the university entrance of IVD panel of Simulator I
(top) and Simulator IT (bottom) 147

Student navigates to Ash House parking area shown on IVD panel of
Simulator I 148

The first visitor car navigates to Ruskin Library parking area and the
second visitor card navigates to Health Centre parking area shown on

IVD panel of Smwilator 10 148
Student and visitor card leaving car park areas shown i Control Centre
panel of Smwulator 10 149
Simulator I (PID 2212) monitoring enteringevent 150
Simulator II (PID 2756) monitoring entering event 150
Simulator I (PID 2212) monitoring exitingevent 151
Simulator II (PID 2756) monitoring exitingevent 151
Simulator I (PID 2212) CPU profile . 153
Simulator IT (PID 2756) CPU profile__ . 153
Simulator I (PID 2212) memory profile 154
Simulator IT (PID 2756) memory profile__ .. 154

X11

Fig. 6.40

Fig. 6.41

Fig. 6.42

Fig. 6.43

Fig. 6.44
Fig. 6.45
Fig. 6.46
Fig. 6.47
Fig. 6.48
Fig. 6.49
Fig. 6.50

Fig. 6.51

Road obstruction menu 155

Road obstruction at road 17 1s shows on Control Centre panel of

Simulator 11 155

Road obstruction at road 17 and 38 1s shows on Control Centre panel of
Simulator IT 155

Visitor car navigates to Ruskin Library using alternatives road 1s shown in

IVD panel of Smwlator 10 156
Simulator I (PID 1712) monitoring entering event 157
Simulator II (PID 2512) monitoring entering event 158
Simulator I (PID 1712) monitoring exitingevent 159
Simulator II (PID 2512) monitoring exitingevent 159
Simulator I (PID 1712) CPU profile 160
Simulator IT (PID 2512) CPU profile_ 161
Simulator I (PID 1712) memory profile 161
Simulator IT (PID 2512) memory profile 162

X1l

List of Tables

Table 3.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Comparison of architectural analysis approaches . 50
DocManager component specthcation 64
Scenario formulation template 69
Scenario descriptions____ 70
Component template 75
Transtorm architecture use-case descrippons .~~~ 80
Service mappingrules 82
Design template XML DTD desenpton . 84
EDDIS viewpoints and requirements 88
DocManager component specthcation 93
EDDIS Scenario descriptions - Scenario 1 96
EDDIS Scenario descriptions - Scenario2 98
ServiceOrder Provisiontemplate .~~~ 100
Architectural design alternatives contributions - Scenariol 104

Comparison of EDDIS concerns and design alternatives contributions -
Scenario 1 110

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

Table 6.6

Table 6.7

Table 6.8

GVPS viewpomts and requrements 122
IXML descripton of CC_Console__._. 124
GVPS Scenario descriptions - Scenariol 126
Architectural design alternatives contributions 128
Proxypattern template 128

Summary performance and memory consumption for Experiment
Scenario 1 144

Summary performance and memory consumption for Experiment
Scenario 2 152

Summary performance and memory consumption for Experiment

Scenario 3 160

XV

Publications

Admodisastro, N. and Kotonya, G.: Usability Requirements for Architectural Analysis
1Tool to Support CBD. In: Proc. of the 2nd International Conference on User
Science and Engineering (-USer). IEEE. Computer Society, 2011; 118-123.

Admodisastro, N. and Kotonya, G.: An Architecture Analysis Approach for
Supporting Black-box Software Development. In: Crnkovic, 1., Gruhn, V. and
Book, M. (ed.) ECSA 2011. LNCS, vol. 6903: 180-189, Springer, Heidelberg,
2011.

Admodisastro, N. and Kotonya, G.: An Architectural Analysis Approach for Black-
box Component-Based Systems. In: Proceeding of the 2nd Annual GSTF
International Conference on Software Engineering (SE), 2010; 68-74 - Awarded

for Best Research Student Paper

Admodisastro, N. and Kotonya, G.: Architectural Analysis Approaches: A
Component-Based System Development Perspective. In: Mei, H. (ed.) ICSR
2008. LNCS, vol. 5030: 26-38, Springer, Heidelberg, 2008.

Admodisastro, N. and Kotonya, G.: Towards an Integrated Approach to Architectural

Analysis m Component-based Software Development. Poster in London Hopper

XVl

Colloquium of British Computer Society (BCS). 2007. London, United
Kingdom.

Admodisastro, N. and Kotonya, G.: An Integrated Approach to Architectural Analysis
m Component-based Software Development. Poster in Christmas Conference of

Faculty of Science & Technology. 2006. Lancaster University, Lancaster.

Admodisastro, N. and Kotonya, G.: Towards an Integrated Approach to Architectural
Analysis m Component-based Software Development, In: Proceeding of the

Work 1n Progress Session in the 32nd IEEE EuroMicro Conference (SEAA),
Dubrovnik, Croatia. 2006.

Xvil

Table of Contents

Declaration 1
DS aACt 1l
Acknowledgements v
List of Figures Vil
Listof Tables X1V
Publications XVl
Chapter 1 Introduction 1
.1 CBSEin Practice 3
1.2 Challenges for Developing Systems from Components 5
1.3 Motwvation for Research 7
1.4 Objectives 9
1.5 Research Contributions___ 10
1.6 Thesis Structure 11
Chapter 2 Background 12
2.1 Software Architecture 13

2.2 Architecture and System Quality 16

2.2.1 Achieving Qualities: Architectural Styles, Patterns, Custom, Metrics,

and Scenarios 18
2.3 Software Architecture Evaluaton__ 20
2.4 Component-based Software Engineering Process 292
2.4.1 COMPOSE Model 24
24.2 Pressman Model 26
24.3 BrownModel 28
2.5 Summary 29
Chapter 3 Architectural AnalysismCBD___ . 30
3.1 Design Challengesm CBD___ 30
3.1.1 Necessary Requirements for Architectural Analysis 32
3.2 Architectural Analysis Approaches 38
3.2.1 NFR-Framework 38
3.2.2 REDEPEND-REACT 40
3.8 AL AM 41
324 ASAAM 49
3.2.5 Chaming Framework 44
3.2.6 ARGUS-L 45
3.2.7 Odyssey-Adapt 46
3.2.8 Engmeenng Frramework 48
3.3 Methods Summary 49
S SUMIMALY 52
Chapter 4 Component-Based Software Architecture Analysis
Framework
4.1 The Framework 54
4.1.1 Weaving Requirements and Architectural Design =~~~ 57
4.1.2 Architecture Parsing 61

6.1
6.2
6.3

4.1.2.1 Constructing Baseline System Architecture 61
4.1.2.2 XMI/XML Parser 62
4.1.2.3 CSAFE Architecture Description Language - 1IXML. 66
4.1.3 Formulating Analysis Scenarios________ 68
A LA The Analysis 70
4.1.5 Trade-off Analysis and Rating - Negotiation 75
The Toolset 79
4.2.1 CSAFE Toolset Architectare 79
SUMMaArY 85
Chapter 5 Evaluation 1: Electronic Document Delivery Information
Sy I 86
The Case Study 87
EDDIS Viewpomts & Requrements 87
5.2.1 Constructing the baseline EDDIS Architecture 91
The Analysis 92
5.3.1 Formulating EDDIS Analysis Scenarios 95
5.3.2 Analysing EDDIS Architecture 99
5.3.3 Rewvising EDDIS Architectare 105
SuUmMMaArY 118
Chapter 6 Evaluation 2: Guided Vehicle Parking System 119
The Case Study 120
GVPS Viewpomnts & Requrements______ 121
The Analysis 124
6.3.1 Documenting the GVPS Architecture 124
6.3.2 Formulating GVPS Analysis Scenarios 126
6.3.3 Analysing GVPS Architectwre 127
6.3.4 Refining GVPS Architecture 130
Runtime Comparison of GVPS Architectures 133

6.4

XX

Chapter 7 Conclusion 163
7.1 Framework Objectives Revisited 163
7.3 Opportunities & Future Work 167
74 Reflection 169

Appendix A: iXML Schemas 172
Al. iXML Schema for Architecture Design______ 172
A2.iXML Schema for Design Template Descripton 175
A3. 1IXML Schema for Component Descripton_______ 178

Appendix B: CSAFE Toolset Analysis & Design._ 180
Bl. CSAFE Use-Case Descriptions & Sequence Diagrams______ 180
B2. CSAFE Class Diagrams 192

Appendix C: CSAFE Toolset User Manual 195

Appendix D: EDDIS Detail Specifications & Results 224
DI. Detall Requirements 224
D2. Service Descriptions_______ 227
D3. Constrant Descriptions 230
D4. Concrete Component Descriptons__ 233
Do SMART 241
D6, Reports 243

Appendix E: GVPS Detail Specificatons & Results 248
El. GVPS Software Requirements Specificaton 248
E2. iXML ADL SpecificaionofGVPS 264
E3. SMART 272

XX1

XXl

273

278

281
283

Chapter 1
Introduction

Component-Based Software Engmeering (CBSE) is a sub-discipline of software
engineering. However, it derives its motivation from traditional engineering. Britannica
encyclopaedia [BritannicalO] defines engineering as a profession that 1s devoted to
designing, constructing, and operating the structure, machines, and other devices of
industry and everyday life. An important charactenistic of traditional engineering rarely
builds whole systems from scratch; instead traditional engineering has established time-
tested principles to construct systems from pre-fabricated parts. For imnstance,
automotive engineering designs and produces cars by fitting together basic components
such as window, door, fender, engine etc. through an assembly line process [Auto10)].
This 1s an essential characteristic of a mature engineering discipline. The main
advantage of this 1s that high quality systems can be produced more cheaply and
rapidly than custom-built systems since standard reusable components can be

massively produced and tested m different user contexts.

Component-based software system development typifies traditional engineering
philosophy by promoting the construction of systems from pre-fabricated software

components. Underlying this philosophy 1s the promise of accelerated, low cost
1

Chapter 1 Introduction

development and reliable software systems [Clements10]. However, the use of
components to build software systems 1s not a new idea. Software “componentization”
was first proposed m 1969 by Doug Mcllory [Wikil0] as a way of tackling the
“software crisis”. Similarly, according to Jacobson [HeinemanO1], more than 30 years
ago components called “blocks” were used to construct a telecommunications system.
The system became the largest commercial software success story in Sweden and
mspired many software engineers to use blocks to construct all kinds of applications. In
recent years CBSE has been transformed into a practical software development

approach by the emergence of commercial component technology and standards.

CBSE offers a different approach to the conventional software reuse in that it
encompasses architecture [Shaw96], design patterns [Gamma95], component
frameworks [Fayad97] and 1s constramed by the availabihity of suitable third party

components. In summary:

e Component-based design 1s a negotiated process that 1s subject not only to user
requirements, but also to the avalability of suitable off-the-shelf software
components.

e A component is integrated with other components and/or frameworks via a
plug-and-play mechanmism, thus components can be composed at run-ime
without compilation. Component-based development 1s mterface-centric.
Hiding the implementation part allows components to be composed without
the need to know their iternal details.

e Components are associated with particular component models and
frameworks. This means that a component requires standardization of its
nterface.

e Component can be acquired via market distribution and mmproved n quality

through market competiion [Aoyama98].

Fig. 1.1 illustrates the different types of reusable development elements i CBSE.

Chapter 1 Introduction

Level of
abstraction

Design White box Black box

Grey box

System

1

1

1

1

1

1

1

1

1

1

| .
! 1
1 1
i /\ Subsystem |
1 1
: Subsystem :
| AY |
! Class
1

1

1

1

1

1

1

Class

Fig. 1.1 Components reside in software reuse [Aoyama97]

1.1 CBSE i Practice

The software industry has increasingly adopted a component-based approach to
software development. The software community has realized that CBSE can provide
tremendous benefit 1f harnessed properly. According to Feblowitz and Greenspan
[Feblowitz98], organisations developing software are turning to software components in
the hope of reducing the risks associated with software development. The underlying

factors behind the increasing use of software components include:

e Improved rehability.

e The possibility of attaming shorter time-to-market for products. Simply because
the buying organisations do not need to make everything from scratch.

e The quality of the component i1s regarded as being higher after undergone
extensive process reuse by customers, possibly even competitors. It is reported that
the reuse process allows the management to expect substantial gains, tme to
market: reductions of 2 to 5 times, defect density: reductions of 5 to 10 times,
maintenance cost: reductions of 5 to 10 times, and overall software development

cost: reduction of around 159 to as much as 75% [Jacobson97].

Chapter 1 Introduction

Organisations that have adopted CBSE have reported similar benefits. Bond et al.
[Bond05] describe their experience of implementing a distributed feature composition
framework (DFC) for a large international telephone company. The DFC is
component-based architecture for the development of complex telecommunication
services. The DFC architecture 1s designed to provide feature modularity and
structured feature composition. In the DFC, a request for service 1s satishied by a
dynamically assembled graph of concurrent processes implementing feature functions
and a poimt-to-pomnt connection. Bond et. al. describe their experience and the result
as extremely rewarding and a clear demonstration of the value of CBSE in
telecommunications. Upadhyaya [UpadhyayaO8] describes a successful experience of
developing of a large component-based application that handles massive federal and a

United States state government labor market information data.

ABB, a global power and automation company, used a component-based approach
to develop the Open Control System (OCS) [Advant10], a large embedded product-
line system designed to suit different industrial applications that include systems for
power utilities, power plants and mfrastructure, and the petroleum industry. The
National Electric Company of Japan (NEC) used component-based software
development to construct the HolonEnterprise [Aoyama01], a large distributed store
management and point-of-sales (POS) system to support the NEC’s chain of stores

across Japan. Other CBSE success stories are published in [Luer0O1].

However, despite these relative successes, component-based software engineering 1s
still hampered by the lack of practical methods and tools that support the reuse-driven
paradigm embodied in black-box components. Some of the key challenges are

discussed next.

Chapter 1 Introduction

1.2 Challenges for Developing Systems from
Components

Software components represent an attempt to exploit the advantages of genumely
reusable software. Components promise potentially greater rewards because packaged
expertise can be purchased in an open market place. However, the limited visibility of
black-box components and the varability in applicaion contexts means that the
specifications delivered with third party components are often ncomplete or
madequate. This m tuwrn means that the correspondence between stakeholder
concerns and the system architecture, and the correspondence between the system
architecture and components 1s often unclear. Broadly, component-based system

development poses seven challenges:

o Component discovery and verification. Off-the-shelf software components have to
be discovered, understood and, sometimes adapted to work I a new
environment. For the development process to be successful, it must provide
mechamsms for discovering, verifying, adapting and ‘wiring’ plug-compatible
components.

o Balancing need and avairlability. There 1s a conceptual gap between the way we
articulate requirements m custom development and the reuse-driven paradigm
embodied m black-box component-based system development. The features
supported by commercial software solutions vary greatly in quality and complexity.
This together with the variability in application contexts means that specifications
delivered with black-box software are likely to be inadequate [Vidger96].

o Architecting the system. A typical component-based system architecture comprises
a set of components that have been purposefully designed and structured to
ensure that they fit together and have an acceptable match with a defined system
context. However, poor support for negotiation and lack of effective techmques for

defiming, venfying, evolving and matching abstract designs to concrete components

make this a difficult task.

Chapter 1 Introduction

Supporting diversity. 'The increasing complexity and diversity of software systems
means that it 1s unlikely that large systems will continue to be developed using a
purely component-oriented approach. Rather, a hybrid model of software
development 1s likely to emerge where components and other solutions such as
web services co-exist in the same system.

Managing change. Traditional system maintenance involves observing and
modifying lines of code. However, in component-based development the main
unit of construction 1s often a black-box component or service. This Lmited
visibility to the component design presents fundamentally different change
management tasks and has major implications for the way we manage and evolve
composition-based systems [Kotonya0jal.

Poor standard descriptons. There are several modelling notations intended to
support component-based development. Perhaps the best known 1s the Unified
Modelling Language (UML) [Pilone05]. However, while the recent versions of
UML ofter some support with constructs for modelling component-based systems,
these are largely mtended to support custom development (UML does not
support the notion of component discovery and verification). UML component
diagrams are not intended to provide a logical decomposition of a software system
mto reusable and combinable subsystems. In additton, UML modelling is largely
domain-driven, which usually leads to designs based on domain objects and non-
standard architectures. Lastly, UML provides no easy way of addressing
“compositional mismatches”.

Poor tool support. Component-based development environments are typified by
tools such as WREN [Luer0O1], model driven approaches such as ASF+SDF [van
den Brand01] and component tools for Networked Embedded Systems (NEST)
[Volgyesi02]. Many of these mclude the ability to locate potential components
from component distribution sites and to incorporate selected components mto
application design models. However, they provide little support requirements

formulation, negotiation, architecture analysis, desi attern reuse, or “glue-code”
8 \ 21 D 8

6

Chapter 1 Introduction

generation, and no support for managing change. Model driven imtiatives are
largely domain-specific and intended for developing reusable components, rather
than systems from pre-existing components.

The work described in this thesis 1s addresses challenges of developing viable

architectures for component-based systems.

1.3 Motivation for Research

Component-based System Development (CBD) focuses on the realization of systems
through integration of pre-existing components [Bass05,Crnkovic02,Medvidovic07]. A
component 1s reusable software element that exposes its functionalities (services)
through one or more mterface and, can be independently deployed and composed
without modification [HeinemanO1]. There 1s also the possibility to acquire software
components from third parties, commonly known as Off-The-Shelf (OTYS)
components [[108] (e.g., commercial OTS components or COTS; free components
open source or FOSS [Feller02]; and web services [Papazoglou08]). Software
architecture plays an important role i CBD as it provides a framework for establishing
a match between available components and the system context. Architecture
contributes not only to the system documentation, it contributes to the mtegrity of the
component composition, maintenance, and evolution. However, one of the most
difficult problems m CBD 1s ensuring that the software architecture provides an

acceptable match with its mntended application, busmess and evolutionary context

[Medvidovic07].

Unlike custom development where architectural design relies solely on detailed
requirements specificaion and where deficiencies m application context can be
corrected by ‘tweaking’ the source code, in CBD the typical unit of development 1s
often a black-box component whose source code 1s maccessible to the developer.
Unfortunately, features supported by third party software components often vary
greatly m quality and complexity. In addition, the contexts in which the components

7

Chapter 1 Introduction

are used may also vary considerably. This complexity together with the variability n
application contexts means that the documentation supplied with software components
1s often incomplete or madequate. Additional analysis 1s often required to ensure that
an acceptable solution 1s achieved, and to address situations where unforeseen user
needs coincide with a component’s undocumented design assumptions. Architecture
analysis can provide an effective and relatively low-cost mechanism for addressing

these problems.

Architecture analysis can provide means to expose interface mismatches, assess
configurations with respect to specific structural and behavioural constraints and to
verify the adequacy of compositions with respect to the application context.
Architecture analysis can also provide a basis for developing “what-if” scenarios to
explore the implicaions of evolving a component-based system
[KotonyaOba,Dobrica02]. However, current architecture analysis approaches differ
widely with respect to their underlying models, analytical capabilities and ability to
support CBD making it difficult for developers to ascertain their effectiveness in
different application contexts [Hutchinson05,Abowd97]. Current architecture analysis
schemes vary from process embedded models that derive skeleton architectures by
matching non-functional requirements to architectural styles [Wallnau0O3], to
stakeholder-driven schemes that analyze architectures using multiple quality attributes
to identify and improve areas of highest risk [Kazman98], to aspect-oriented
approaches that use cross-cutting system properties to suggest improvements to system

architecture [Viera00].

A key challenge in developing black-box software systems 1s how to provide
developers with tools that allow them to derive suitable software architectures by
balancing aspects of stakeholder concerns with the architectural considerations and
capabiliies embodied in software components. It i1s mmportant to note that a

component-based system architecture is both an expression of required functionality

Chapter 1 Introduction

and the result of verifying the suitability of the components used. Getting the

architecture right, therefore, has a major impact on the quality of the final system.

This thesis describes CSAFE, a scenario-driven architecture analysis approach that
provides a framework for balancing aspects of stakeholder concerns with architectural
considerations and component solutions to derive viable system architectures. CSAFE
1s process-pluggable to minmuse process disruption and supports the analysis of

different architectural aspects.

1.4 Objectives

The aim of this research was to develop a pluggable architecture analysis framework
for component-based systems that mtegrated and extended the strengths of current
approaches. The framework was primarily mtended for black-box development, but
would allow white box development 1n situations where black-box development was

not feasible. In summary the objectives of the research were:

1. To formulate a classificaion and comparison framework that could be used to
assess the efhicacy of software architecture analysis approaches in black-box
development.

2. To use (1) to develop a scenario-driven architecture analysis framework to support
black-box component-based development. In addiion to supporting the
requirements in (1), the framework should:

1) Allow the system designer to adapt and tailor the design process to reflect the
system context and domain specific needs (i.e. be process-pluggable).
@ Prowide explicit support for broad stakeholder nvolvement.
(m) Provide support for pluggable architecture analysis.
() Prowide explicit support for trade-off analysis (1.e. negotiation).
(v) Provide support for standard design notations.
3. To develop an extensible toolset to support the architecture analysis framework

4. To evaluate the framework on non-trivial case studies.

9

Chapter 1 Introduction

1.5 Research Contributions

The contributions of this research are as follows:

1.

<2

The first contribution of this research 1s the formulation of a classification and
comparison framework for software architecture analysis approaches
[Admodisastro08]. The framework consists of eight key requirements that can be
used to design architectural analysis methods and assess their efficacy for
component-based development.

The second contribution 1s the development of Component-based Software
Architectural Analysis Framework (CSAFE), a scenario-driven, negotiation-based
architecture analysis framework for black-box component-based software
development [Admodisastro06].

The third contribution is development of an extensible toolset to support CSAFE.
The toolset supports diversity in analysis by supporting pluggable analysis that
allow different tools to be mcorporated. The toolset also supports an extensible
XML repository of design templates and components that allows the system
designer to define analysis contexts that include design patterns, styles and
organisation-specific schemes.

The fourth contribution 1s the development of UML parser and the 1XML
architecture description language to support the transformation and verification of
UML and 1XML architecture descriptions. The parser transforms UML
architectures mto processable specifications (1.e. IXML), and the ADL provides a
mechanism of verifying the correctmess of IXML architectures.

The fifth contribution is the results of evaluating CSAFE in static and runtime
conditions. The first evaluation uses a real case study drawn from an Electronic
Document and Delivery Interchange System (EDDIS) project to demonstrate
CSAFE features and its practicability [Admodisastrol0] and Guided Vehicle
Parking System. The second evaluation uses runtime system behaviour to validate

the eflicacy of CSAFE architectural refinements.

10

Chapter 1

Introduction

1.6 Thesis Structure

The remainder of this thesis is organised as follows:

Chapter 2 sets the context for the research by providing a background on
software architecture and its relation to CBSE. The notion of software
architecture and its relationship to system quality is discussed. The chapter
then discusses the mmportance of software architecture evaluation. The
chapter concludes with a discussion of current CBSE process models.
Chapter 3 discusses design challenges i component-based system
development. The chapter uses the design challenges to identify the
necessary requirements for architecture analysis m CBD. The chapter
then uses the requirements to assess existing architecture analysis
approaches intended to support component-based development.

Chapter 4 presents the proposed architecture analysis solution,
Component-Based Software Architectural Analysis Framework (CSAFE).
Various features of the framework including its underlying method and
toolset are presented.

Chapter 5 presents the first of two CSAFE evaluations. The first evaluation
demonstrates the features of CSAFE and the practicabiity of the
framework using a case study drawn from an electronic document delivery
and nterchange system project.

Chapter 6 presents the second CSAFE evaluation. The second evaluation
focuses on the runtime validation of architectural refinements.

Finally, chapter 7 provides some concluding thoughts and further work.

11

Chapter 2
Background

Like custom-developed systems, component-based systems must continue to satisfy
evolving stakeholder needs (.e. stakeholders must remain confident that their
concerns are addressed n the design solution) and the system must adapt to an ever-
changing environment [VidgerO1]. It 1s therefore crucial that system architects
understand how stakeholder concerns are addressed in the application, how they relate

to other system concerns and how changes in the system might affect them

[SaniabilleO1].

In component-based software systems the basic building block 1s a black-box
component, there 1s no code to act as “final documentation” of the system and any
mmadequacy i component documentation may represent “lost information”. This
limited wisibility of components represents a real risk for system architects when it
comes to tracking stakeholder concerns, understanding how well they are addressed m
the system design. Systematic architectural analysis can help ensure that risks resulting
from architectural adaptations and trade-offs do not adversely affect critical system

attributes. The analysis 1s likely to reveal not only how well an architecture satisfies a

12

Chapter 2 Background

particular context, but also how changes to specific quality attribute might affect other

quality concerns.

This section provides a background to software architecture. The relationship
between architecture and system quality, and architecture evaluation is discussed. The
section closes with a review of how the issue of system quality and architecture
evaluation 1s addressed in three representative component-based system development

models.

2.1 Software Architecture

The study of software architecture began in 1968 when Edsger Dykstra pointed out
that it pays to be concerned with how software 1s partiioned and structured, as
opposed to simply programming [Clements96]. Today as software has become larger
and more complex, that assertion has been proven. A software system must have a
systematic representation that works as a blueprint to give the software engineer the

“big picture” before system details are committed to implementation [StaffordO1al.

Although software architecture 1s often regarded as a high-level description of the
organization of a software system, it has been described in slightly different ways by
researchers in software engineering. Perry and Wolf [Perry92] provide the classical
defimtion of software architecture as a 3-tuple consisting of elements, form and
rationale. Over the years other researchers have extended and refined this classical
defimtion. Elements represent the systems building blocks (e.g. objects, components
and services). Elements may be considered at different levels of abstraction to manage
complexity and improve communication amongst system stakeholders. Form captures
the ways 1n which the system elements are organised in the architecture. It represents
the structure of mdividual architectural elements, and the manner in which they are
composed 1n the system. Lastly, form characterises the interactions and relationships of

the elements with their operating environment. Rationale represents the systems

13

Chapter 2 Background

designer’s intent, assumptions, subtle choices, external constraints, selected design

patterns and styles.

Shaw and Garlan [Shaw96] state that software architecture encompasses
components (e.g. database, middleware and ports), connectors to enable
communication, constraints to define how components can be integrated, and
semantic models to understand its overall properties. According to Clements
[Clements95] software architecture is a way to structure systems so that they can be
built from reusable components. Clements underscores the importance of architecture
in facilitating the component mterconnection, rapid system evolution and reliable

analysis.

Philippe Kruchten [Kruchten95] uses a model composed 5 views to define software

architecture. The model 1s known the 4+1 architectural view model and comprises:

o the Jogical view, which is the object model of the design,

o the process view, which captures the concurrency and synchronization aspects
of the design,

o the physical view, which describes the mapping(s) of the software onto the
hardware and reflects its distributed aspect, the development view, which

describes the static organization of the software m its development environment.

The description of an architecture, and design decisions, 1s organized around these
four views, and then illustrated by a few selected use cases, or scenarios that become
the fifth view. For each view the set of elements to be used 1s defined (i.e. components,
containers and connectors). Each view is described by a blueprint using its own
particular notation. For each view also, the architects can pick a certain architectural

style, hence allowing the coexistence of multiple styles in one system.

14

Chapter 2 Background

Bass et al. [Bass05] define software architecture as:

“The structure or structures ol a program or computing system, which comprises
software elements, the externally visible properties of those elements, and the
relationships among them.”

The mmportance of this defimtion 1s that it recognizes the need for multiple
representations to describe the architecture of a single system. Each of these
representations may have its own concept of elements and relationships. Furthermore,
Bass views architecture as an inherent property of all systems, meaning that all systems
have an architecture, even 1f it 1s not explicitly specified or even known. The work

described mn this thesis adopts the architecture definition by Bass et al. [Bass05].

Architecture 1s critical to system quality. The architecture of the software system
can affect the system’s availability, safety, performance, security, efficiency, robustness
and mamntamnability. The particular style and structure chosen for a software system
may therefore depend on non-functional system requirements (NFRs). Sommerville
[SommervilleO1] gives the example of a critical performance requirement that may
influence the system architecture should be designed to localise critical operations
within a small number of sub-system with as little communication as possible between
the sub-systems. This may mean using relatively large-grain components to reduce
component communications. On the other hand, if security were a cntical
requirement, a layered structure for the architecture may be preferred with the most
critical assets protected in the mnermost layers, and with a high level of security
validation applied to these layers. More important 1s the fact that quality attributes are
not mutually exclusive. The achievement of one quality attribute mvariably mmpacts

positively or negatively on other quality attributes.

Chapter 2 Background

2.2 Architecture and System Quahity

Bass et al. [Bass05] state that,

“Although functionality and other qualities are closely related, functionality often takes
not only the front seat in the development scheme, but the only seat. This is short-
sighted, however. Systems are frequently redesigned not because they are functionality
deficient but because they are difficult to mamntan, port, or scale, or too slow, or have

been compromised by network hackers.”

This 1s a common scenario, qualities are rarely taken into account in most software
development processes. According to Clements [Clements9)] these requirements are
not explicitly dealt with because of their complexity, usually informal statement, high
abstraction level, as well as the rare support of languages, methodologies, and tools for
them. The problem 1s more difficult for non-trivial systems with competing quality
requirements. For example, rehiability and performance often exist in a state of mutual
tension, data replication to increase reliability will decrease the performance of the
system. The software engineer has to trade-off these attributes to achieve an acceptable

level of system quality.

Achieving acceptable quality must be considered throughout the design,
implementation and deployment of a system. There 1s no quality attribute that 1s
entirely dependent on design, nor 1s it entirely dependent on implementation or
deployment. Satisfactory results are a matter of getting the architecture as well as the
implementation right. Therefore two conclusions can be made. Firstly architecture 1s
critical to the realization of many qualities in a system, and these qualities should be
designed in and be evaluated at the architectural level. Secondly, architecture by itself is
unable to achieve complete system quality. However, it provides the foundation for
achieving quality, but this foundation will be of no avail if attention 1s not paid to the

system implementation.

16

Chapter 2 Background

Quality attributes can be classified in several ways. Bass et al. [Bass05] classify
quality attributes into three main categories: qualities of the system, business qualities,
and architectural qualities. Qualities of the system focus on considerations such as
availability, modifiability, security, usability and safety. While business qualities are
goals which frequently shape a system’s architecture, they include cost, schedule,
market, and marketing. Architectural qualities are directly related to the architecture
itself namely conceptual integrity, correctness and completeness, and buldability.
Architectural qualities represent the conceptual underlying theme that unifies the
design of the system at all levels. Whereas, correctness and completeness are essential
for the architecture to allow for all of the system’s requirements and runtime resource
constraints to be met, buildability allows the system to be completed by the available
team mn a timely manner and to be open to certan changes as its development

progresses.

Therefore 1t 1s perhaps unsurprising that qualities can be classified according to a
number of “views” or “perspectives” (see Fig. 2.1). Each view comes from a particular
context (e.g. business analyst), any single view tends to give only a partial picture. The
views 1dentified tend to be stereotypical, as such a distinction 1s commonly made within
software quality between the “user or client” and the “designer or supplier”. The views
are generally presented i adversarial pairs such as users versus designers. Satisfying the
non-functional requirements (NFRs) which may be synergistic or conflicting requires a

process of negotiation and trade-off.

17

Chapter 2 Background

Timeliness

| |

. . |
Functionality | Cost | Corrrectness

| |

| |

Reliability E

Multi-Dimensional
Parameter

n

Security

Dimension of Quality

Fig. 2.1 Quality in multi-dimensional construct [Gillies96]

2.2.1 Achieving Qualities: Architectural Styles, Patterns,
Custom, Metrics, and Scenarios

An architectural pattern in software, also known as an architectural style [Bass05], is
analogous to an architectural style in building architecture, such as Gothic or Greek
Revival. It consists of a few key features and rules for combining them so that
architectural mtegrity 1s preserved. It 1s important to mention that not all researchers
agree that architectural style 1s the same as architectural pattern. The disagreement 1s
due to different level of granularity perceived by these researchers between
architectural pattern and architectural style. Architectural style 1s considers as a coarse-

grained pattern that provides an abstract design decisions for designing a software.

An architectural style 1s determined by:

e A set of elements types (e.g. data repository or a component that computes a
mathematical function).

e A topological layout of the elements indicating their interrelationships.

e A set of semantic constramnts (e.g. filters m a pipe-and-filter style are pure data
transducers which icrementally transform their input stream nto an output

stream, but do not control either upstream or downstream elements).

18

Chapter 2 Background

e A set of interaction mechanisms (e.g. layered, blackboard, object-oriented) that

determine the way elements are coordinated through the allowed topology.

A building architect, Christopher Alexander [Gamma95] once said, “Fach pattern
describes a problem which occurs over and over again m our environment, and then
describes the core solution to that problem, in such a way that you can use this solution

a mullion ties over, without ever doing it the saine way twice”.

According to Liiders [LiidersO0] architectural styles defined the vocabulary of the
design. Benefits of applying well-known or standardized architectural styles include
possibilities of design and code reuse, ease of understanding the architecture, and
increased interoperability. Having the same belief, Shaw and Garlan’s [Shaw96]
influential work attempted to catalogue a set of architectural patterns that are known as
architectural styles. This 1s analogous to design patterns [Gamma95] and code pattern

[Coplien97] at different level of abstraction.

The motivation for Shaw and Garlan’s project was the observation that high-level
abstraction for complex systems exist in software engineering as i other engineering
disciplines. These patterns occur regularly in system designs, but without systematic
cataloguing it prevents the software engmmeer from recognizing them, because mn
different disciplines the same architectural pattern may be called different things. Fig.
2.2 shows how patterns are categorized into related groups in an mheritance hierarchy.
Event systems, for example, 1s a sub-style of independent elements, and has two sub-

patterns: implicit invocation and explicit nvocation.

Another study by Perry and Woll [Perry92] suggested the use of architectural style
for constraining the architecture and coordinating software architects. They proposed
that rationale, together with elements and form, constitutes the model architecture.
Perry and Wolf [Perry92] illustrated a number of interesting architectural points in

building architecture that have corresponding mappings in software architecture. This

19

Chapter 2 Background

1s particularly true of architectural styles like network, hardware, and web-engineering

[Pressman(9].

Independent
Component

P

Communicating Event Systems

Process
Implicit Explicit
Invocation Invocation
Data-Flow Data-Centered
Batch) . .
Sequential Pipe & Filters Repository Blackboard
Virtual Machine Call/Return

N N

Rule-Based ~ Main Program Object-

. Layered
System & Subroutine Oriented Y

Intrepreter

Fig. 2.2 A sample catalogue of architectural patterns, organised by is-a relationship [Bass05]

2.3 Software Architecture Evaluation

Systematic architecture analysis can help ensure that risks resulting from architectural
adaptations and trade-offs do not adversely affect critical system quality attributes (e.g.
performance, security and modifiability). The analysis 1s likely to reveal not only how
well an architecture satishies a particular quality attribute, but also how architectural
changes to improve one quality attribute might affect other quality attributes. These
decisions are likely to have a profound effect on the quality of the delivered system.
The architecture analysis process can not only reveal how well an architecture satisfies
particular quality attributes, it can also provide mnsight into how those attributes interact

and the implications of trading them off against each other.

20

Chapter 2 Background

Some benefits that accrue from holding early architectural evaluation [Bass05]

mclude:

1.

<2

Validation of requirements. Discussion and examimation of how well an
architecture meets requirements often opens up the requirements for discussion.
Requirements creation, 1solated from early design, usually results in conflicting
system properties. High performance, security, fault tolerance, and low cost are all
easy to demand, but difficult to achieve, and often mmpossible to achieve
simultaneously. Architecture evaluation can uncover the conflict and trade-offs,
and provide a forum for their negotiated resolution.

Forces preparation for the review. Requiring a representation before the evaluation
1s done means that reviewees must document the system’s architecture. The
process of preparing for the evaluation is likely to expose problems that the
software architecture may have to address.

Captured rationale. A documented design rationale explaiming the design choices
and their rationale 1s a critical part of the software system hfe cycle. Hence the
mmplications for design modifications can be assessed.

Farly detection of problem with the existing architecture. The earlier in the life
cycle problems are detected, the cheaper it 1s to fix them. The problems that can
be found by an architecture evaluation mclude unreasonable (or expensive)
requirement, performance problems, and problems associated with potential
downstream modifications. In this way an architecture evaluation can provide early
mnsight into software system capability and limitations.

Improves architecture. Organizations that practice architecture evaluation as a
standard part of their development process report an improvement in the quality
of the architecture that 1s evaluated. As development organizations learn to
anticipate the questions that will be asked, the 1ssues that will be raised, and the
documentation that will be required for evaluation, they naturally pre-position
themselves to maximize their performance on the evaluation. Architecture
evaluation results in better architecture not only after the fact, but before the fact as

21

Chapter 2 Background

well. Over time, an organization develops a culture that promotes good
architectural design.

6. Cost savings. A study of several large projects by AT&T reported that each project
manager perceived savings from architecture evaluation. Over an eight-year period,
projects receiving a full architecture evaluation reported an average 109 reduction
n project costs. Several consultants reported similar pragmatic benefits, more than
80% of their work was repeat business. One report showed how a large company
avolided a multi-million dollar purchase when the architecture of the global
information system they were procuring was found to be incapable of providing
the desired system attributes. In another case, mvolving a large engineering
relational database system, a project was cancelled after 20 muillion dollars had
been spent. The organization later learned that performance problems were

largely attributable to design decisions that made integration testing impossible.

In summary, architecture evaluation enhances system documentation through
explicit representation and documented design rationale. It provides a framework for
understanding how well an architecture addresses critical system concerns and for early
detection of software problems. While architecture evaluation does not guarantee high
quality or low cost, 1t 1s an eflective tool for establishing aspects of the system for which

quality can be improved and budget risk reduced.

2.4 Component-Based Software Engineering Process

In order to understand architecture analysis for black-box component-based systems, it
1s important to first understand the software engineering processes used to develop
components and component-based systems. The component-based software
engineering (CBSE) process can be viewed as two separate, but related processes
[Kotonya03]; development for reuse and development with reuse respectively. The

first 1s concerned with the application domains and the development of domain-

22

Chapter 2 Background

related components. The second process 1s concerned with assembling software

systems from prefabricated (off-the-shelf) components.

CBSE Processes

N

Development for Development with
reuse reuse

Component
procurement

Component
certification

Component
repository/
marketplace

Fig. 2.3 CBSE processes [KotonyaO3]

Development for Reuse: The component development process 1s aimed at
developing generic and domain-specific components that can be made available
within organization or on the open market as commercial components. To
achieve successful software reuse, commonalities of related systems must be
discovered and represented i a form that can be exploited in developing similar
systems. Domain commonalities are used to develop models or software
components that can be used to develop models system i the domain. However,
developing a component 1s not easy as often the aim of the component developer
1s not to satisty a specific requirement, but to achieve widespread reuse.

Development with Reuse: Component-based system development (CBD) 1s
concerned with composing software systems from pre-fabricated component
[Kotonya4b]. Development with reuse 1s mainly intended to support black-box
development but should make allowances for white-box development m cases
where black-box development is not feasible. It 1s important to recognize that for

certain types of requirements and system, a black-box solution may not be

23

Chapter 2 Background

adequate or even appropriate. These two processes are related through

component distribution sources and market distribution sources (see Fig. 2.3).

This thesis 1s maimnly concerned with architecture analysis for CBSE methods that
support development with reuse (i.e. for component-based system development). The
next section reviews component-based system development from the point of view of

three current development models.

2.4.1 COMPOSE Model

COMPOSE 1s an example of a process model that supports development with reuse
as shown m Fig. 2.4 [Kotonya4b, Kotonya(O7]. The development phase implements
the agenda set out in the planning phase. The first step in application development 1s
requirements definition. Often this starts with requirements elicitation, followed by
requirements ranking and modelling. This requirements process 1s constrained by the
availability of potentially suitable components as well the nature of the application.
Subsequently, the design stage partiions the service descriptions into abstract sub-
systems blocks with well-defined nterfaces. Sub-systems are replaced with concrete
software components at the composition stage. Beyond this stage the system goes into
a management cycle. Like the requirements stage, the design stage proceeds in tandem
with the verification and planning phases, and may iterate to the requirements stage

from time to time.

The architectural design stage partiions required functionality (.e. services and
constraints) mto logical components, which can be composed using off-the-shelf
components and services. The discovery and venfication phase is intended to ensure
that there 1s an acceptable match between available software components and the
system being built. The negotiation and planning phase implements the necessary
mechanisms for resolving conflicting system attributes and sets out the development

agenda.

24

Chapter 2 Background

Parts Repository

— Development agenda
Negotiation strategy

Black-box Planning and
component Negotiation

N

(e.g. WebService) Discoveryand |~
_/

—O) Verification

— Verify availability of part — Requirements definition

Development

- Define system context

— Evaluate suitability of part . \dentiy system service

il

1uswabreuepy

- — Verify viability of solution iti i i
Design pattern fy Y | Partition services (Design)

- Map services to abstract
component

— Test subsystem assembly - Adapt component
— Compose system

— Analyse architecture

|

Design style

Fig. 2.4 Component-based system development [Kotonya04b]

The verification phase 1s intended to ensure that there 1s an acceptable match
between selected software components and the system being built. At the requirements
stage, verification 1s used to establish the availability of suitable software components
and services, and the viability of a reuse-driven solution. At the design stage verification
1s concerned with ensuring that the design matches the system context (e.g. system
characteristics such as requirements, cost, schedule, operating and support

environments). This requires architectural analysis and black-box testing.

In summary, COMPOSE is an approach for supporting the development of black-
box component-based systems from formulation through to deployment. COMPOSE
1s supported by a constraint-based language known as Component Architecture
Description Language (CADL) [Kotonya0O8]. CADL provides support for partitioning
services Into abstract component architectures, searching and verifying plug-compatible
black-box components, composing and adapting design-level components, and
visuahising, mediating and vahdating component changes. COMPOSE does not
explicitly support architecture evaluation. However, 1t highlights the need for

architecture evaluation as a pluggable process during design verification.

Chapter 2 Background

2.4.2 Pressman Model

According to Pressman [Pressman(09] two processes occur i parallel during the
CBSE process; domain engineering and component-based development (see Fig. 2.5).
The mtent of domain engineering 1s to identify, construct, catalogue, and disseminate a
set of software components that have applicability to existing and future software in a
particular domain. An application domain 1s like a product family which has similar
functionality or intended functionality. The goal 1s to establish a mechanmism by which

the software engineer can share these components in order to reuse them.

Domain engineering begins by identifying the domain to be analysed. This is
achieved by examining existing applications and by consulting experts on the type of
application that are aiming to develop. A domain model is then realised by 1dentifying
operations and relationships that recur across the domain and are therefore candidates
for reuse. This model guides the software engineer to identify and categorise

components that will be subsequently implemented.

Domain Engineering

Software Reusable
Domain
Analysis Architecture Component S
Y Development Development
Domain Structural Repository
Model Model Reusable
Artefacts/
Components
—> Component Component
Qualification Update
Component
A Architectural Adaptation
Analysis —> :
pestan Component Application
Composition
P Software
S J L
Component-based Development 9 9
Legends: Process Product 8 Store —”Flow

Fig. 2.5 CBSE process model [Pressman(9]
26

Chapter 2 Background

Pressman describes the CBD activity as consisting of three stages; qualification,
adaptation, and composition. Component qualificaion examines reusable
components by 1dentifying the characteristic of their interfaces. The qualification stage
does not always provide the complete picture of whether a component will fit the
requirements and the architectural style. However, this 1s a process of discovery by the
software engineer to ensure a candidate component will perform the function
required, and whether it 1s compatible with the architectural styles of the system. The
three important characteristics looked at are performance, rehability and usability. The
adaptation stage 1s required because it 1s rare for the components to immediately
mtegrate with the system. Different strategies are used for adaptation such as grey-box
wrapping and black-box wrapping. Grey-box wrapping relies on the availability of a
component hbrary that enables conflicts to be removed or masked. In situations where
the component source-code 1s not available, black-box wrapping 1s used to adapt the

component at the interface level.

The component composition stage integrates the components mto a working
system. This 1s accomplished by way of an established mfrastructure to bind the
components mto an operational system. The infrastructure 1s often a hbrary of
specialised components itself. It provides a standard for the coordination of
components and specific services that enable components to mnteract with one another
and perform tasks. Common component technologies mclude Sun’s Enterprise

JavaBeans (EJB), Microsoft’s NET and CORBA’s CCM [Lau07].

In summary, the Pressman model does provide any obvious means for supporting
architectural evaluation. However, the model emphasis that as part of the quahfication
process, the software engineer should ensure that candidate components perform the
required functions and are compatible with selected architectural styles. None of the

component technologies mentioned provide support for architecture evaluation.

27

Chapter 2 Background

2.4.3 Brown Model

Brown [Brown96] describes CBSE as primarily an assembly and integration process
that consists of five major stages; off-the-shelf components, qualification, adaptation,
assembling components into system, and system evolution (see Fig. 2.6). The first stage
1s the process of 1dentifying potential components that may be derived from local and
remote sources. At this stage little may be known about a component’s characteristic.
The information available may simply its name, parameter, and required operating
environment. The followmng component qualification stage explores detailed
component documentation and specification through discovery and evaluation.
Discovery 1dentifies a component property such as its functionaliies and mterfaces as
well as 1ts quality aspects. The evaluation phase involves feedback gathering from other
users of the components, and hands-on benchmarking and prototyping. The

component adaptation stage involves wrapping three types of components; white-box,

grey-box and black-box.
iviti - i ition i evolution to
Act|V|t|e_s/ qualification to adaptation to composition into a
transformations > discover interface remove selected updated
" architectural architectural components
and fitness for use h
mismatch styles

@ ST
pan [0 R

States > off-the-shelf qualified adapted assembled updated
components components components components components

=

Fig. 2.6 Brown [Brown96] component-based development approach

Assembling components into system has the same objective as in the Pressman
model [Pressman09], however Brown emphasizes that component composition must
follow a selected architectural style. Lastly, system evolution 1s a process for repairing
component errors, where defective components are swapped for updated ones.

Similarly, when additional functionality 1s required, it 1s embodied in a new component
28

Chapter 2 Background

that 1s added to the system. Adding new functionality 1s a complex and time-consuming
task. Often wrappers must be rewritten, and side effects from changes found and

assessed.

In summary, the Brown model does not highlight the mportance of an
architectural evaluation. Nevertheless, component composition 1s conducted mn

coherence with selected architectural styles.

2.5 Summary

This chapter has provided a background to software architecture with the aim of
setting the context for architecture analysis. The chapter has discussed the importance
of architecture m software design and in component-based software design. The
relationship between architecture and system quality has been explored and different
ways of achieving quality in architecture discussed. The chapter has also explained
architecture evaluation and highlighted 1its benefits. Lastly, three well known
component-based software engineering models have been discussed and their poor

support for architecture evaluation highlighted.

29

Chapter 3
Architectural Analysis m CBD

The mportance of architectural analysis in CBD raises the need to explore how we
can develop better analysis techniques and methods [Kotonya08]. The following
section discusses key design challenges in CBD and identifies the necessary
requirements for an architectural analysis approach in CBD [Admodisastro08]. The
requirements are then used to review architectural analysis approaches that support

CBD.

3.1 Design Challenges m CBD

A typical component-based system architecture comprises a set of components that
have been purposefully designed and structured to ensure that they have “pluggable”
mterfaces and an acceptable match with a defined system context. However, the
blackbox nature of many software components means there 1s never a clean match
between system specifications and concrete software components. Services may
therefore have to be re-assigned, requirements renegotiated and components adapted

to achieve an acceptable match with the system context.
30

Chapter 3 Architectural Analysis n CBD

The design challenges m CBD can be summarized thus:

o Balancing application context with component availability. 'There 1s a conceptual
gap between the way we articulate requirements mn custom development and the
reuse-driven paradigm embodied n black-box component-based system
development. The features supported by commercial software solutions vary
greatly in quality and complexity. This together with the variability in application
contexts means that specifications delivered with black-box software components
are almost always madequate [KotonyaO7]. There 1s need for architectural analysis
approaches that facilitate the mapping of requirements to component-based
system architectures by providing mechanmsms that allow developers to balance
aspects of requirements, characteristics of application domains, business concern
and architectural considerations with the capabilites embodied m software
components [Medvidovic07].

o Pluggability. Blackbox components are generally not taillorable or “plug and play”.
In addition, components may have hidden design assumptions and constraints.
This has serious implications for exception handling and system quality
[Kotonya0ba,CrnkovicO2]. The design challenge here 1s twofold: First, to devise
ways to help the developer formulate appropriate analysis scenarios to expose
structural and behavioural mismatches, and secondly, to help the developer
identify and design appropriate adapters to ‘repair’ mcompatibiliies and safe-
guards to minimize unforeseen side effects in the system [Crnkovic02,Stafford01].

o (Conflicting quality requirements. Service quality constraints vary and conflict
amongst themselves, and with system constraints. This makes them difficult to
track and resolve. The challenge for the design process 1s to provide ways of
assessing and addressing the adequacy of logical component configurations with
respect to service and system constraints [Kotonya07, Wallnau03].

o Fvolution. Third party software components are subject to frequent upgrades.
This often leads to a disparity in customer-vendor evolution cycles and may result

in unplanned upgrades being forced on the customer. In custom development,
31

Chapter 3 Architectural Analysis n CBD

change 1mpact equates to the potential to make different design and coding
decisions. However, for a system comprising black-box components, the decisions
potentially impacted by a change are associated with the system development
process, it 1s therefore necessary to generate information about this process as it
occurs [KotonyaO5b]. The design challenge here 1s to mimmise the risks
associated with change by helping system designers and integrators to understand
how proposed changes may affect not only the quality of the system, but its
lifecycle planning. The basis for this 1s effective traceability mechamsms that
capture the system development history and relationships between its various
artifacts.

o Farly problem detection. A component-based system design 1s tightly connected to
the availability of components. In addition, it 1s constrained by the characteristics of
the application domain, business model and nature of the target platform (see Fig.
3.3). This means that design mistakes discovered late in system development may
be mmpossible or costly to fix as decisions may already have been made on
component selection. The design challenge here 1s to develop analysis schemes

that facilitate early and mcremental problem detection.

3.1.1 Necessary Requirements for Architectural Analysis

We have distilled the design challenges discussed in Section 3.1 mto eight key
requirements that can used to design architectural analysis methods and assess their

efficacy for CBD. We outline the requirements below:

1. Nature of Analysis. A pluggable analysis allows the developer to adapt and tailor
the design process to reflect the system context and to address domam specific

needs (see Fig. 3.1) [Obbink07,Klein99].

32

Chapter 3 Architectural Analysis n CBD

System requirements
(services + constraints) archagreed

——

Architectural Design

ar'Chrecommendmions

Architectural Analysis

I€(services+constraints

Fig. 3.1 Pluggable analysis

Fig. 3.2 illustrates the alternative embedded analysis. Because of its close binding
with the design process, embedded analysis often poses problems where evaluation

needs to be conducted for specific reasons such as safety analysis.

System requirements
(services + constraints) Architectural Design +
Architectural Analysis

arChagreed

Fig. 3.2 Embedded analysis

2. Problem Detection. Early design problem detection cuts development costs and
immproves system reliability. We categorize architectural analysis schemes according
to [Abowd97] as follows: early (no actual architecture exists at this stage, only
prelmmary design decisions), middle (architecture exists in different stages of
completeness and problems associated with it can be 1dentfied) and post-
deployment (both architecture and system exist, an evaluation to check whether
the architecture matches the implementation can be performed).

3. Support for Diversity. The mcreasing complexity and diversity of software systems
means that it 1s unlikely that large systems will continue to be developed using a
purely component-oriented approach. Rather, a hybrid model of software
development 1s likely to emerge where components and other solutions such as
web services co-exist in the same system.

4. Support for Negotaton. The potential, and contextually achievable, benefits of
component use must be weighed against the match between requirements and

available functionality. The result 1s that component selection 1s a potentially very
33

Chapter 3 Architectural Analysis n CBD

<2

complex, mterdependent set of decision making problems. Support for
negotiation 1s therefore central to successful architectural design and analysis
[Hutchinson06]. As we discussed i Section 2, there is never a clean match
between system requirements and concrete software components. Different design
trade-offs may be required in a system architecture to achieve desired quality

attributes (see Fig. 3.3).

Components
(e.g. certification,
standards, resource
requirements, cost, source)

Application Domain
(e.g. business processes, local
and external system

Architectural constraints, life-cycle planning)

Analysis

Requirements
(services = {sy, S;...Sn},
constraints = {ci, Cz,...Cm} =

Req. =3 a(sn) + ¥ B(Cm)

Fig. 3.3 Architectural analysis in CBD

Analysis Scenarios. Kurt Wallanau et al. [Wallnau02] describe the presence of a
component in the architectural design process as a dilution of control (see Fig. 3.4).
In a tradiional software engineering approach a software architect makes
architectural decisions based on system requirements, constraints, and business
goals alone. After the system architecture plans are stabilized a set of components
are evaluated. This sort of approach 1s not suitable for component-based systems.
There may be no suitable components available to suit the specific needs of the
envisioned system. By choosing to use components an architect takes on
additional risk that he or she cannot control. In essence the component adds a
new source of control, thus diluting the control relationship between the
stakeholders’ needs and the system‘s requirements. The changes that might occur
to a component are more than that just its features and functional capabilities.
Component vendors make frequent decisions about which features remain and

which are removed from future release.

34

Chapter 3 Architectural Analysis n CBD

(Variable) desires Components found in the
of stakeholders / marketplace
Genuine needs)// \
‘ Requirements ‘ Expectations Exclusions
Requirements Requirements

Things that cannot

engineer's engineer’'s ! !
diminished expanded sphere of be obtained with
sphere of influence existing component
control technology
Hot Spot

Fig. 8.4 Effect of components on spheres of control [Wallnau02]

Analysis scenarios are essential in helping the system designer understand how
proposed architectural configurations and system changes might affect not only the
quality and operaton of system, but also its lifecycle planning
[BabarO4a,Ekstedt02,WeissO1]. In summary, an architectural analysis method
should provide:

e Gudance for formulating and constructing analysis scenarios.

e Support for standard/portable descriptions of the system architecture (e.g.
UML and XML). Ramu et al. [Rami03] have highlighted ADLs as a potential
mstrument for supporting software architecture evaluation.

e Support for augmenting architectural descriptions with specific constraints and
other information to taillor the analysis to specific questions (e.g. quality
attributes, application domain characteristics and business concerns).

e Support for formulating “what if” analysis (static and dynamic) under
conditions of uncertainty that allow developers to describe scenarios to assess
the impact of competing designs.

e Support for evolution through qualitaive and quantitative analysis that allow
designers and maintaiers to develop change scenarios to assess the impact of
proposed changes.

e Support for stakeholder mvolvement in architectural analysis can help 1dentify

and resolve contflicts, assess alternatives and build consensus on priority 1ssues.

Fg. 3.5 shows the typical stakeholder roles in CBSE. Stakeholder may also
35

Chapter 3 Architectural Analysis n CBD

include other decision makers within and outside the orgamsation (e.g.

regulatory bodies).

CBSE Processes

Development for Development with
reuse reuse

- Domain/Requirement - Specifier
analyst - Architect/Designer

- Architect/Designer - Integrator/Composer
- Implementer Component - Maintainer
- Maintainer procurement % - System user

- Market analyst - Project manager

Component
certification

- Local quality officer
- External certifier

- Component librarian
- Component vendor
- Component broker

Component
repository/
marketplace

Fig. 3.5 Component and application development processes - together with associated stakeholder roles

6. Assessment. Architectural assessment allows the developer to establish how well a
proposed system design satisfies its application and busmess contexts. The result of
the assessment process contributes towards regression testing, impact analysis and
traceability activities that may be conducted later in the development process.
There are several architecture assessment techniques mcluding use-case scenarlios,
conformance to patterns, metrics and organization-specific assessment techniques.
Use case scenarios provide mformation on system contexts and logical
connections [Jacobson97]. Design patterns and styles can be used to check if
architectures and configurations conform to certan structural and behavioural
characteristics [Babar07]. Metrics provide useful quantitative information related to
mterface complexity, size, component dependency and other measurable system
attributes. In summary, an ideal assessment technique should reveal:

e Structural musmatches. Incompatibilites in the data exchanged between

components and verify architectural adherence to design heuristics and rules.

36

Chapter 3 Architectural Analysis n CBD

e Quality mismatches. Inconsistencies and mismatches between quality
attributes and services and the system context. When we understand desired
service and system qualities before a system 1s built, the likelihood of selecting
or creating the right architecture 1s improved.

¢ Behaviour mismatches. Semantic mismatches between provided and required
mnterfaces and defects in dynamic component interaction.

It 1s mmportant that assessment techniques support both qualitative and
quantitative analysis. Qualitaive measurements provide a means for representing
quality concerns m a subjective evaluation which allows logical reasoning, whilst
quantitative analysis provides a mechanism to elicit subjective responses from the
stakeholders that provide empirical and measurable values.

7. Maturity. Maturity indicates the state of readiness of architectural analysis
approaches to be adopted n an organization. An important metric for measuring
maturity 1s validation results [Dobrica02,Babar04b]. We use a CMM-like
[Persse01] approach to categorize the maturity as follows: mitial (approach has not
being validated), repeated (vahidation through hmited complexity and domains with
consistent published results) and defined (validation through various complexity
and domains with consistent published results).

8. Tool support. Architectural analysis 1s a complex activity that involves the planning,
analysis, negotiation and assessment of large amounts of mterrelated, often
conflicing mformation. A tool should provide support for extracting architectural
defimtion, storing architectural knowledge, analyzing architectural design decisions,
identifying trade-offs and offering alternatives [BabarO4b,Obbink07,Kazman96,
Bashroush04].

In the next section we use these requirements to assess architectural analysis

approaches intended to support component-based development.

37

Chapter 3 Architectural Analysis n CBD

3.2 Architectural Analysis Approaches

3.2.1 NFR-Framework

Chung [Chung9ba] proposes a process-embedded framework for generating
architectural fragments by evaluating non-functional requirements against stored design
knowledge. The approach is associated with a prototype tool called NFR-Assistant
[Tran99]. Fig. 3.6 shows the NFR-Framework process. In the approach, non-
functional requirements are represented as goals to be addressed and achieved during
the process of architectural design. Each goal 1s associated with a “type”, a parameter

list and importance (e.g. Modifiability [system: critical]).

Software Development

Represent & Prioritize
Goals

% involvement
—>

Software
Architect

Organize Goals and its
Relationships
(i.e. goal graph)

Manage tradeoffs
among architectural
design alternatives

(i.e. Correlation Rules)

Evaluate Goals
Achievement

Fig. 3.6 NFR-Framework people and activities

NFR goals have the property of potentially interacting with each other, in conflict or
in synergy. This property 1s used to systematically guide selection among architectural
design alternatives and to rationalize the overall architectural design process. Goals
(nodes) and goal relationships (links) also correspond to design alternatives, decisions,
and rationale. They are recorded and structured in a goal graph with link types

annotated as either “AND” and “OR”.
38

Chapter 3 Architectural Analysis n CBD

Architectural design knowledge and experience about specific NFRs 1s organized
mto methods and made available to the software architect through systematic search.

These methods are categorized mnto three types as the follows:

1. Decomposition methods are used for refine or clarify NFRs. For example
performance can be decomposed nto space and time.

2. Satisfying methods are used to organize knowledge about achieving NFRs goals
where they are embedded 1n the architectural design. For example, an implicit
function mvocation style can be used to hide implementation details in order to
make an architectural design more extensible, thus contributing to goals that
required these NFRs.

3. Argumentation methods are used to organize principles and guidelines for making
design rationale for or against a design decision. Argumentation methods act as
determiners to verify which goals are most important to satisty, and in selecting
among alternatives to satisfy NFR goals, especially in the context of time and effort

constraints.

Correlation rules that embed knowledge and experience about design trade-offs are
used by the software architect to select among architectural alternatives. For example,
correlation rules showing the contribution of architectural design alternatives for (+) or
against (-) specific NFRs. An entry with +— denotes an uncertain contribution, and
requires the software designer to consider the characteristics of the mtended
application domain. Throughout the goal expansion process, the evaluation procedure
propagates upwards, via the label of nodes in the graph. The effect of each design
decision from child to parent nodes provides an assessment of the degree of goal
achievement. An assessment 1s carried out by relating this to the characteristics of the
mtended application domain. NFR-Framework has been used and validated m
Information System domain namely Credit Card System, Health Insurance System

and Government Cabinet and Tax Appeals system [Chung95b].

39

Chapter 3 Architectural Analysis n CBD

3.2.2 REDEPEND-REACT

REDEPEND-REACT 1s an architectural analysis tool that supports the 1% approach
which 15 represented m Strategic Dependency models (SD)
[Grau0)5,RedependReact07]. 1* 1s an actor modeling language that 1s used to represent
software domains and actors (human, organization, hardware or other software). SD
describes a network of dependency relationships amongst various actors m an
organization context. Actors are represented by nodes; links between nodes represent
dependencies between actors. The depending actor 1s called Depender and the actor

who 1s depended upon 1s called the Dependee. The approach i1s shown in Fig. 3.7.

% /% i* SD model design ‘

Requirement
Engineer -l 4
T i* SD properties
definition e %
\ Architecture
Expert
Evaluating
architecture(s)

(i.e. actor- & dependency-
based metrics)

Actor Component o %

Catalogue Catalogue Market
Definition Definition

Expert

Fig. 3.7 REDEPEND-REACT architectural analysis process

REDEPEND-REACT provides guidelines for formulating metrics over 1* models
that a developer can use to perform architectural analysis. The metrics are selected
with respect to properties that are important to the system being modeled (e.g. security,
efficiency or accuracy). Metrics are defined in terms of the actors and dependencies in

the models, and the results of the evaluation are used to inform multiple component

40

Chapter 3 Architectural Analysis n CBD

selection. Metric measurement 1s performed using a MS Excel"" tool which allows the
user to define additional metrics and to modify actor values interactively. As the values
on the architectures are formulas based on these values, the results are automatically
updated. REDEPEND-REACT has been successfully used to analyse several
mformation management system case studies including; a Meeting Scheduler system,

an e-Learning system and an e-Business system.

3.2.3 ATAM

The Architecture Trade-off Analysis Method (ATAM) [Kazman98,Kurpjuweit02] 1s a
pluggable scenario-based approach. ATAM focuses on multiple quality attributes
(currently; modifiability, availability, security, and performance). It 1s aimed at locating
and analyzing trade-off points for areas of highest risk in the architecture. Attribute-
specific questions generated using scenarios of mterest are used to identify possible
architectural solutions to achieve desired system quality attributes. The analysis
process derives three architectural decisions (i.e. sensitivity points, trade-off points and
risks) that have marked effect on one or more qualty attributes. ATAM requires the
participation and mutual cooperation of three groups of stakeholders: an evaluation

team that 1s external to the project, project decision makers, and architecture

stakeholders.

The approach requires the architect to walk through each high-prionity attribute-
specific scenario, showing how it affects the architecture (e.g. modifiability) and how the
architecture responds to it (e.g. for quality attributes such as performance, security and
availability). If the system has complex quality attribute requirements or is in a complex
and unusual domain, specialists may be needed to augment the expertise of the core

evaluation team. Along the way, the evaluation team documents the relevant

™ MS Excel is a trademark of the Microsoft Corporation

41

Chapter 3 Architectural Analysis n CBD

architectural decisions, and 1dentifies and catalogues their risk, non-risks, sensitivity

pomts and trade-off.

Sensitivity pomts are parameters in the architecture to which some measurable
quality attribute 1s highly correlated. To find the trade-off, all important architectural
elements with multiple sensitivities are located. For example the number of copies of a
database might be a sensitivity pomt for both availability and performance. Fig. 3.8
shows how the ATAM activities are partiioned mnto four iterative phases. ATAM has
been extensively evaluated in different application domains including embedded

[Kazman98] and general information systems [Bass05].

PHASE 4 Acion (L "y

Trade-offs plan

PHASE 1
Scenario &
Req. Engi.

7. Identify 1. Collect_
trade-offs scenarios
6. Identify 2. Collect req./
sensitivities constraints/

environment

. - 3. Describe
5. Attribute-Specific architectural
Analyses views
(best individual
theoretical 4. Realizg
models) scenarios

PHASE 2
Arch. Views &
Scenario
Realization

PHASE 3
Attribute Model
Building &
Analysis

Fig. 3.8 ATAM activities [Kazman98]

3.2.4 ASAAM

Aspectual Software Architecture Analysis Method (ASAAM) is scenario-based
architecture analysis method that is able to identify concerns that can be easily localized
and specified n architectural abstraction, and identify concerns that crosscut various
architectural components [Tekinerdogan04]. For example, failure management
aspects, monitoring Aspects and operating system aspects are inherently crosscutting
concerns. The method 1s associated with a prototype tool called ASAAM-T.

Architectural analysis activities for ASAAM are shown m g, 3.9.
42

Chapter 3 Architectural Analysis n CBD

Scenario Architecture

Development Description

Evaluation & Assessment &

Aspect Identification V]2 SO

Individual Scenario % ﬂ Scenario Interaction
Identification

4

Refactoring of %ﬂ Aspectual Refactoring ‘

Architecture of Architecture

Fig. 8.9 ASAAM process [Tekinerdogan04]

ASAAM takes as mput a problem description, requirements statement and
architecture descriptions. In scenario development stage, scenarios from various
stakeholders are collected, which represent both important uses and anticipated uses
of the software architecture. A scenario 1s considered as a brief description of some
anticipated or desired use of the system. ASAAM starts characterizing scenarios that
can be directly supported by the architecture (direct scenarios) and scenarios that
require the redesign of the architecture (indirect scenarios). Some scenarios, however,
can be scattered over different architectural components and their impacts are difhicult

to localize m mdividual components.

ASAAM mtroduces a set of heuristic rules to identfy these so-called aspectual
scenarios, and to derive architectural aspects based on domain model developed
through a domain analysis process. Based on detailed impact analysis for a given set of
scenarios, ASAAM provides a categorization of the architectural components into
cohesive components, composite components, and tentative tangled components.
Tentative tangled components are component that perform semantically distinct
scenarios and cannot be decomposed. The results of the detailed impact analysis can
be used i aspect-oriented design and aspect-oriented programming. ASAAM 1s at the

mitial stage of maturity with no significant case studies.

43

Chapter 3 Architectural Analysis n CBD

3.2.5 Chaining Framework

Stafford et al. [Stafford01b] propose a static dependency analysis approach at
architectural level called chaming. The approach uses the Rapide ADL specification
[Luckham95]. Dependence analysis is widely used at implementation level to aid
program optimization (i.e. anomaly checking, program understanding, testing and
debugging). The chaining framework uses this technique to analyze architectural
designs by taking a broader view of dependence relationships that are more

appropriate to the concerns of architectures and their component iteraction.

Dependence at the architectural level arises from the mterconnections among
components and the constraints on their interaction. These relationships may mvolve
some form of control or data flow, but more generally they involve source structure
and behaviour. Source structure 1s related to the static source specification

dependencies, while behaviour is related to dynamic interaction dependencies.

The chaiming framework provides analysis of structural and behavioural aspects of
system architecture using a tool called Aladdin [Stafford98]. The framework describes

three types of chaining (see Fig. 3.10):

1. Affected-by chains: Consists of the set of components and/or their elements
that could potentally affect an element of a component, C. These are elements
that C 1s affected by.

2. Affects chains: consist of the set of components and/or their elements that
could be affected by a component, C. These are elements that C affects.

3. Related-to chains: consists of the set of components and/or their elements that
may affect or be affected by an element of a component, C. This chain 1s the
combination of the affected-by and the affects chains for elements of

Component, C.

44

Chapter 3 Architectural Analysis n CBD

Rapide
Specification

v

Abstract Syntax
Tree

Table
Builder

Tabular
Representation

Chain
Builder

{ Chains

J "

Aladdin TUI } Aladdin GUI }
V\\ /’Kv

queries 4 % A queries

Designer

Fig. 3.10 Chaining Framework

Aladdin generates a dependency table that 1s built from an abstract syntax tree that
represents the set of relationships that exist between pars of elements m the
architecture. Aladdin also provides a set of queries over the chains (through both a
graphical and a textual user interface) that aid in answering dependency questions. By
performing analysis using these queries, anomalies can be revealed. However, only the
experience of software engineer can determine whether the anomalies are actual faults
in the specification. For mstance, it 1s possible that an unused event has been mcluded
in an iterface because it 1s expected to be needed n the future, not because it is a
misconnection. The Chaining Framework at the imtial stage of maturity which

evaluated using a small case study of a gas station system.

3.2.6 ARGUS-I

ARGUS-I [Vierra00] is a specification-based analysis tool which uses the C2-style
architecture description language [Medvidovic96] and augments it with component

behaviour specification using Statecharts. The ARGUS-I tool performs analysis at

45

Chapter 3 Architectural Analysis n CBD

component and architectural level. Component-level specification analysis allows for
static (.e. mnterface inconsistencies and component-Statechart inconsistencies) and
dynamic analysis (.e. enables the execution of component Statecharts). The analysis

process 1s shown in Fig. 3.11.

Architectural Element

Mt | b Dynamic
Component _ Specification Component
Specification ‘component/ conne(itors/ Analysis
Analysis message event
. g
1‘ Architectural
' Implementation
v
Architectural Architectural / \ ~
Specification Configuration K .
Analysis Specification Dynamic
“opology” (€T Architecture
Analysis

***** » Feedback

Fg. 8.11 ARGUS-I process [VieiraO0]

Architecture-level specificaion checks are performed statically by verifying
structural and behavioural dependencies among components, and dynamically by
evaluating architecture configuration through simulation. The analysis capabilities of

Argus-I have been illustrated using a mediums-sized Elevator Control System example.

3.2.7 Odyssey-Adapt

Odyssey-Adapt 1s a plug-in for the Odyssey IDE [Spagnoli06] that supports CBD n
both domain engineering and application processes. Most of the analysis 1s focused on
the component interface that 1s mtended to support component adaptation and
composition during development. The approach uses three design patterns (proxy,
facade and adapter) to tackle component interface mismatches and structural

complexity.

Fig. 3.12 shows the analysis process. The approach defines two types of

dependencies between a provided and a required interface; assembly connector and
46

Chapter 3 Architectural Analysis n CBD

mcompatibility dependency. An assembly connector dependency represents the actual
composition between two components through their interfaces. An mcompatibihity
dependency shows the relationship between two components that require some kind

of adaptation before their mterface can be composed.

. Component Architecture -
involvement Modeling Design

patterns

Designer

Component Search C\

&
Specification Inspection

Component
Adaptation

provide

Mismatch
Identification

Component
Composition

incompatibilities

Fig. 8.12 Odyssey-Adapt

Whenever a provided and a required nterface are related, Odyssey-Adapt triggers

the incompatibility detection function. Three types of incompatibilities are considered:

1. Structural. These are contflicts related to syntactic problems between a provided
and required mterface. These include mterfaces with different names, interfaces
with methods that differ in their signature, interfaces with different numbers of
method, and any combinaton of these three. They are automatically
discovered by a detection function that compares the specification of the
nterfaces.

2. Behavioural. These are semantic mismatches between the provided and
required interface. This mismatch 1dentification process is the responsibility of
the designer, which means that all conflicts are documented manually in an

incompatibilities note and tagged with the provided interface.

47

Chapter 3 Architectural Analysis n CBD

3. Hybnd. These are mismatches that occur from combination of structural and
behavioural incompatbility. This type of mismatch 1s automatically detected,

provided that the behavioural incompatibility has been previously marked.

Odyssey-Adapt 1s a relatvely new approach and has not been validated on a

significant software system.

3.2.8 Engineering Framework

Becker et al. [BeckerO6] have proposed an adaptation process for detecting and
resolving component mismatches based on a taxonomy of design patterns. The
adaptation process 1s applied during architectural design, whenever an analysis of the
system indicates a mismatch between two constituent components. The taxonomy
contains five distinct classes of component mismatches; technical, signature, protocol,
concept and quality. These are associated with patterns that may overcome the

mismatches.
The adaptation process has five steps as follows (see Fig. 3.13):

1. Detect nusmatches. Find the mismatch between the required and provided
interface.

2. Select measure to overcome the mismatch. Select from the established patterns
the one which 1s known to solve the specific mismatch.

3. Configure the measure. Often the pattern selected 1s fine-tuned as patterns are
described as abstract solutions to the problem. Therefore, utilize relevant
specification and query developer for additional input.

4. Predict the impact. Predict the impact of the solution on the existing setting.

Implement and test the solution. 1f the prediction indicates that the mismatch 1s

<2

fixed, the solution 1s implemented, either by systematic construction or by using

generative technologies.

48

Chapter 3 Architectural Analysis n CBD

Detect
Mismatches

Pattern &
Mismatches
Classification

Resolve
Mismatches

% 77777777777777 - Configure

Developer query Measure
additional
input

Predict
Impact

I N

Implement &
Test Solution

Fig. 8.13 The process of adapting a component

The Engineering Framework has been partially evaluated using a small case study

of a water cooling system.

3.3 Methods Summary

The results of the assessment are summarised in Table 3.1. Briefly, the NFR-
Framework 1s an embedded, early problem detection approach that supports whitebox
development. It supports a negotiation process that 1s concerned solely with trading-off
non-functional attributes. Central to the negotiation process 1s the system architect. The
NFR-framework provides some limited help with formulating analysis scenarios and
allows the developer to uses quality attributes to explore and venfy design goals. It 1s

tool supported and supports both qualitative and quantitative assessment.

49

Table 3.1 Comparison of architectural analysis approaches

ANALYSIS APPROACH NFR- REDEPEND- ATAM ASAAM Chaining Argus-I Odyssey- Engineering

REQUIREMENT Framework REACT Framework Adapt Framework
Nature of Pluggable @) @) [(] ® [@) [
Analysis Embedded [} [O O O O {] O
Early [[] @) (@) @) (@) @) (@)
EZ:LT;n Middle O O ° ° ° ° ° °
Post-deployment @) O @) O @) O @) O
. Component® O ® o O O O O ®
Diversity Mybrid o 0 o 0 o o o o
. Help with formulation o o o o O O O @)
g:j::':“" Quality attributes ° ° ° ° ° o 9 °
Business concerns o O ([J O O O O O

(Trade-off — - —
analysis) Application domain characteristics [J [([J o O O ([J O
Component features O [o o ([J [([J o
Help with formulation o o o o O O O O
Support for augmentation O O o O O o ([J [
Analysis Project Manager O O ([J O O O O O
Scenario Stakeholder Architect/ Designer [[] [] o ([J [([J o
involvement Evaluator O O ([J O O O O (@)
Component Provider O [O O O O O O
‘What-if’ analysis ° (]] (] (@) O (@) O
Structural o * ¢ e e ¢ e o
(al, at) (Qat) (Ql, at) (Ql) (Ql) (at, al.) ((el)] (Qn
Assessment | Behavioural @) (@) ® e e ¢ o o
(al, at) (Ql) (Ql) (at, al.) ((el)] (Qn

Quality attributes (QI,.Qt) (C:t) (QI,.Qt) (C.ll) O O O O
Maturity’ [} o o o o) O O O
Tool support [J [o [([J [([J o

@ Supported/ *Blackbox support/ Defined
Qt. —Quantitative assessment

Q. —Qualitative assessments

O Partially Supported/ *Greybox support / *Repetition

O Not Supported/ *Whitebox support / Initial

¢ ™dey)

(€D W SSAPUY [EmDompIy

Chapter 3 Architectural Analysis n CBD

The REDEPEND-REACT approach 1s a maturing, embedded approach that
supports blackbox development. The approach intended for early problem detection
and provides good support for negotiation. It also prowvides extensive help with
formulating analysis scenarios and involves three different system stakeholders in the
analysis. It 1s tool supported and provides good quantitative assessment for structural

and quality attributes analysis. It 1s significantly weak i behavioural analysis.

ATAM 1s a maturing approach that 1s pluggable, supports greybox development
and has extensive support for trade-off analysis (.e. quality attributes and business
concerns). ATAM focuses on middle problem detection and provides good help with
formulating analysis scenarios. However, it provides only partial support for
augmenting of architectural descriptions and experimentation. It 1s tool supported, and
provides both qualitative and quantitative assessment for structural, behavioural and

quality attributes analysis.

The ASAAM 1s a pluggable, scenario-based method that supports whitebox
development. Like ATAM, it 1s a muddle analysis method. It has relatively good
support for trade-off analysis (quality attributes and components), but poor support for
stakeholder mvolvement. It provides imited support for formulating analysis scenarios,
but good support for “whataf” analysis. It 1s tool supported provides qualitative

assessment for structural, behavioural and quality attributes analysis.

The chaiming approach 1s a pluggable architectural analysis approach that supports
whitebox development. The approach 1s intended for middle problem detection. It
provides limited help with formulating analysis scenarios and relies on the experience
of the software engmeer to verify behavioural anomalies. It 1s tool supported and

provides qualitative assessment for structural and behavioural analysis.

ARGUS-I 15 a relatively new, pluggable, middle approach that supports whitebox
development. ARGUS 1s tool supported and provides good qualitative and

Chapter 3 Architectural Analysis n CBD

quantitative assessment for structural and behavioural analysis. However, it provides

limited help with formulating analysis scenarios and has poor support for negotiation.

Odyssey-Adapt 1s a relatively new, embedded architectural analysis process for the
Odyssey development environment. It supports whitebox development and is
mntended for middle problem detection. The analysis 1s largely structural and hmited to
component mterface mismatches. There 1s no provision in the method for analysing
non-functional properties and no support for negotiation. Limited support 1s provided
in method for formulating analysis scenarios. The resulting assessment 1s a qualitative
report detailling structural, behavioural and hybrid mismatches. However, the

behavioural mismatches are weakly identified and tackled.

The Engineering framework 1s an immature, pluggable, middle analysis method
that supports blackbox development. Its support for negotiation 1s imited to qualty
attributes. The framework provides limited support for both structural and behavioural
aspects of design. The resulting assessment 1s qualitative. In our view, the Engineering
framework 1s stll at an early stage of development. Its guidelines for component
adaptation are very generic and it relies heavily on designer experience to achieve

there’s considerable reliance on designer experience as the steps above indicate.

3.4 Summary

Many of the challenges in component-based development arise because
components already exist before the system 1s developed. The need to trade-off and
accept compromise 1s therefore central to the successtul development of component-
based systems. However, current architecture analysis approaches provide poor
support for negotiation. The chapter also highlighted the poor support for diversity in
current architecture analysis approaches. Current approaches are largely designed to
support a particular type of analysis (e.g. structural or conformance checking) and often

for a specific applicaion domam. However, the black-box nature of the software

52

Chapter 3 Architectural Analysis n CBD

components, and the variability in stakeholder concerns and application contexts,
means that there 1s value m diversity n analysis. Critically, none of the approaches
reviewed 1n this thesis support hybrid reuse-driven development, even though,
increasingly applications are being developed for which different types of reusable

software co-exist in the same system (e.g. OTS components and services).

Support for stakeholder mvolvement i architecture analysis can help 1denafy
critical system concerns and conflicts, assess alternatives and build consensus on
priority 1ssues. In current architecture analysis approaches, the role of architectural
design 1s left largely to the system designer. However, system stakeholders often
mclude decision makers within and outside the organisation (e.g. regulatory bodies).
Effective analysis must be able to identify, express and analyse concerns from different

system stakeholders.

Most of the existing architecture analysis techniques are based on proprietary
notations and provide limited support for converting architectures described standard
modelling notations such as UML. This means that many architectural designs have to
be described anew in the proprietary notation. Lastly, current architecture analysis
approaches are difficult to incorporate nto existing design processes without significant
disruption or changes to the existing processes. It i1s important that an architecture

analysis approach causes as little disruption as possible to the existing process.

The chapter discussed architecture analysis problems m component-based
development and 1dentified the necessary requirements for architectural analysis
approaches. The requirements have been used to assess eight existing architectural
analysis approaches intended to support component-based development. The results

of the assessment are summarised in Table 3.1 and published in [Admodisastro08].

Chapter 4

Component-based Software
Architecture Analysis Framework

In Chapter 3, I lghlighted the poor support for component-based system design
1ssues I current architecture analysis approaches. I noted that most architecture
analysis approaches are designed to support custom rather than black-box software
development, making them mappropriate for addressing the unique design problems
posed by black-box development [Kotonya(O8]. This Chapter describes my proposed
solution, Component-based Software Architecture analysis FramEwork (CSAFE),

which 1s intended to address the problems discussed m Chapter 3.

4.1 The Framework

CSAFE 1s a scenario-driven, negotiation-based architecture analysis approach mtended
to support black-box development. However, while CSAFE 1is primarily mtended to
support black-box development, we recognise that there might be aspects of the system

for which a black-box solution 1s not feasible or appropriate. CSAFLE supports custom

54

Chapter 4 Component-based Architecture Analysis Framework

development mn such situations by treating abstract design components as placeholders

for custom development.

An 1terative analysis process and an mtegral toolset underpin CSAFE. The analysis
process 1s supported by an architecture description language, 1XML ADIL, and
extensible repository of architecture design templates and component specifications.
The 1IXML ADL defines the architectural elements, their relationships and the rules
that govern valid architectural descriptions. The architecture design templates specify
configurations that embody specific design goals and best practice, while the
component specifications represent salient properties of concrete components. Lastly,
CSAFE 1s process-pluggable rather than embedded to mimmise disruption to the
development process. Fig. 4.1 shows how CSAFE plugs into a typical development

process.

System requirements
(services + constraints) archagreed

— Architectural Design

archrecommendations

CSAFE

,,,,,,,

€(services+constraints

Fig. 4.1 CSAFE and architectural design process

The CSAFE approach comprises 4 iterative steps as shown Fig. 4.2:

—_

Identify system or sub-system architecture to analyse.
2. Formulate analysis scenario(s) by identifying and prioritising quality concerns as
goals to be addressed and achieved during architecture analysis.

3. Analyse architecture based on analysis scenario and available components.

=

Modify architecture according to recommendations

Repeat step (1) until done

<

O
gl
O

Chapter 4 Component-based Architecture Analysis Framework

4% Negotiate
Conflicting J ‘

aspects

@ Trade-offs
Analyse @

Check Check Check
Structure Quiality Conformance
Scenario Recommendations
iXML ——, UML/iXML —— T Requirements

(services & constraints)

Formulate analysis specification Parse Architecture Design
scenario architecture architecture

Fig. 4.2 Architecture analysis process

The architecture design stage 1s concerned with the construction of the system
architecture. The CSAFE analysis process accepts architectures expressed in the
standard UML component notation [Uml10] or in the iIXML architecture description
language. 1XML 1s an XMI-based ADL developed to support analysis in CSAFE.
The 1IXML ADL is discussed in detail in section 4.1.2.3. Architectures expressed in
UML are converted into iXML specification to allow for machine processing. The
IXML ADL serves three purposes; first, it allows both pre-existing and new
architectures to be analysed. Secondly, it allows for a portable, plattorm independent
description of the system architecture. Lastly, it provides the system designer and other
stakeholders with a mechamsm for augmenting architectural descriptions to explore

“what if” analysis.

Scenario formulation 1s essential in helping the system designer verify how closely a
proposed architectural solution matches desired system attributes, and to understand
how system changes might affect not only the quality and operation of the system, but
also its life-cycle planning. Analysis scenarios provide a means for augmenting
architectural descriptions with specific constramts and other information to tailor the
analysis to explore specific questions (e.g. quality attributes, applicaion domain

characteristics and business concerns). Analysis scenarios also allow designers to

56

Chapter 4 Component-based Architecture Analysis Framework

formulate “what 1f” analysis under conditions of uncertainty to assess competing

designs and change impact.

The analysis process (step 4, in Fig. 4.2) allows the developer to establish how well a
particular system design satisfies its applicaion and business contexts. The analysis
process uses standard and user-defined architecture design templates, component
specifications and a process of negotiation to identify an architectural configuration that
offers the best balance between critical stakeholder concerns and available component
functionality. The output of the analysis process is a report outhning potential
inconsistencies and mismatches, and recommendations for improving the architecture.

The next sections discuss each of the stages of the CSAFE. process.

4.1.1 Weaving Requirements and Architectural Design

In addition to analysing pre-existing architectures, CSAFE. also allows the system
designer to derive architectures from scratch using a service-oriented requirements
method based on the notion of viewpoints that maps requirements onto the 1IXML
ADL. The requirements method has been adopted from [Kotonya0O4b] and adapted
to work with CSAFE [Admodisastrol 1al. A viewpoint 1s a perspective of the software

architecture from a requirements or analysis standpoint (see Fig. 4.3).

o

ﬁrchitect

programmer

o

Analysis
Viewpoints

Viewpoints
services &
onstraints

x

non-interactor

o

domain expert

project manager

Construction System
Concerns -~

ARCHITECTURE Refinement

Verification

Fig. 4.3 Requirement and analysis viewpoints

Chapter 4

Component-based Architecture Analysis Framework

Requirements viewpoints identify requirements sources and analysis viewpoints

identfy the human actors involved in the analysis of the architecture as follows:

o Requirement viewpoints represent sources of requirements. They are grouped

mto Interactor and Non-nteractor viewpoints. Interactor viewpoints comprise

operator and component viewpoints. Operator viewpoints map onto classes of

users who mteract with the proposed system. Component viewpoints correspond

to software components and hardware devices that interface with the proposed

system. Non-interactor viewpoints are entities that do not teract directly with the

mtended system, but which may express an interest in the system requirements.

Non-interactor viewpoints provide a mechanism for expressing critical ‘holistic’

requirements, which apply to the system as a whole. Fig 4.4 shows the typical

requirements types associated with the different classes viewpoint.

Interactor

- [attribute,]

L [attributes]

Requirements @ / |

L [attributen)

Non-Interactor

Viewpoint Architect

|
! ! .

- [analysis scenario,]
|

i [analysis scenario,]
|

L [analysis scenario,]

Analysis Programmer

Project manager

Domain expert

Operator

Component

Organisation

\ Regulatory

Associated requirement types

> Services + Constraints on services
> Control information

> Business goals {Organization viewpoint}

> Project concerns {Organization viewpoint}

> System quality concerns {Organization viewpoint}

> Legal requirements, Government certification
requirements {Regulatory viewpoint}

Fig. 4.4 Abstract viewpoint structure

In this thesis a requirement 1s defined as a statement of system service or

constraint [Sommerville10]. Services represent expressions of functionality, both

required and offered and, crucially, expressed mn a way that shows how available

58

Chapter 4 Component-based Architecture Analysis Framework

components satisfy what is required [Kotonya0Ojal. Constraints represent
stakeholder concerns such as component cost, certificaion, memory and platform
restrictions, or dependability requirements such as security, performance and
availabihty. They may also represent elements of mterdependence that are
introduced to allow services to meet certan architectural considerations (e.g.
Service X and Service Y may not reside in the same component). Fnally,
constraints may capture dependencies that are introduced to make certain
component choices acceptable n the current context, particularly with regard to
the outcome of negotiation and thus may hold mportant design rationale
mformation.

Modelling services from the point of view of viewpoints also exposes mteresting
mterrelationships between services and constraints and raises questions about how
best to address this in the architecture. In Fig. 4.5, for example, two viewpoints
express different availability constraints on the same service. Service 3 n actor
viewpoint 1.1 has an avalability requirements of 98% or greater, while actor
viewpoint 1.2 has an availability requirement of only 50% for the same service.

@teractor viewpoint_1.1
S

ervice_3 + availability 98%
Service 4

eractor viewpoint_1 .
Service_1 P — \ S_ame service be_twe_en)
Service_2 different constraints intensity

teractor viewpoint_1.2
Service_3 + availability 50%

Fig. 4.5 Service and constraints variability

A viewpoint template with the following structure:

Viewpoint id <A unique viewpoint identifier>

Type <Viewpoint type (e.g. operator, system, component, organisation,
regulatory etc.)>

Role <Role of the viewpoint in the system>

Requirements <Set of requirements generated by the viewpoint>

Chapter 4 Component-based Architecture Analysis Framework

A requirement template has the following structure:

Requirement id <Requirement identifier>
Rationale <Justification for requirement>
Description <Natural language definition>|<Service description>|

<Other description>

Requirements can be considered at different levels of abstraction to allow for
scoping and are ranked according to the benefit they offer [KotonyaO4a] as
follows:

0 Essential (3): This means that the requirement 1s crucial, if they are to
adequately deliver commtments made on them by operators and
stakeholders.

0 Important (2): This means that the requirement may prove extremely useful
mn assisting and delivering its commitments.

0 Useful (1): This means the requirement could prove useful but it 1s far more
likely to only be of use to a subset of operators and stakeholders.

During architecture analysis, requirement viewpoints can be used verify that

proposed changes do not adversely affect critical system functionality.

o Analysis wviewpoints allow the stakeholders mvolved system design and
mplementation to verify how well the architecture supports aspects of the system
that interest them. Analysis viewpoints are associated with analysis scenarios that all
the system designer to explore different architectural configurations, quality trade-
offs and component solutions. We have identified three analysis viewpoints; the
architect, programmer and stakeholder. The architect performs the analysis to
identify critical system qualities). The result of the analysis helps the architect to
propose architectural refinements that match the desired system qualities as closely
as possible. Programmer 1s concerned with ensuring the runtime composition 1s
structurally consistent while minimising changes that might adversely affect critical
system qualities. Stakeholders are decision makers who are responsible for the
project investment and domain experts who are knowledgeable in application

domain.

60

Chapter 4 Component-based Architecture Analysis Framework

4.1.2 Architecture Parsing

CSAFE supports two types of architecture description. The first uses UML to model
the system architecture. UML 1s an extensible general-purpose language for modelling
software systems. UML has been widely adopted by researchers and industry despite
contentions over its use in modelling architecture [Medvidovic02]. UML extensions
such as constramts, tagged values and stereotypes are used to extend the semantics of
UML modelling elements and to define UML modelling elements with new
semantics. However, many software architectures are stll typically described using an

architecture description language (ADL) [Medvidovic00)].

Many ADLs have been developed by academic and industrial communities,
including C2 [Medvidovic96], Acme [Garlan97], Darwin [Darwin95], Rapide
[Luckham95], xADL [Dashofy02], and others. Each of these vary in the modelling
notation used, the kinds of entities they describe, the properties they express about the
entities, and how the entities may be connected (e.g. C2 is used for highly distributed
software systems). However, to support independent architecture analysis that is not
tied to a particular language or methodology, we developed an integrated architecture
description language based on the markup language, XML [Xml10], called 1XML.
1IXML builds on xADL and extends it to support the notion of services, non-functional
requirements (e.g. constraint and its details) and inclusiveness of interface contracts

(e.g. property and constraint).

4.1.2.1 Constructing Baselne System Architecture

A CSAFE baseline architecture 1s constructed by partiioning service descriptions and
their associated constraints mto abstract component (L.e. design-ime components).
The mapping process 1s aided by the CSAFE toolset. Tig. 4.6 shows the graphical

process of mapping requirements to abstract components.

61

Chapter 4 Component-based Architecture Analysis Framework

The process offers several advantages without compromising the architecture
analysis process. These mclude; development traceability from requirements to
deployment, process documentation, flexible implementation (.e. abstract
components can be treated as placeholders for custom development), easy mapping of
abstract components to UML component notation, and a framework for change
mpact analysis. The process 1s discussed mm more detail as part of the CSAFE

evaluation, in Chapter 5 and Chapter 6.

Viewpoints Services / Constraints Abstract components composition
Sia1 Siz1 CAZ Csa1 Csen
Ru1 ‘!i @ A
Sip1 Csis Cszs Cssy
R [o Ciii Cyza Casa
Sia1
Vi = <<abstract>>
2 Ria [H) D ValidManager
R [ES Sia1 Siza Csir Cszn
. e Cg1a Csaz Cson
R | @ AA A
™ Sza1 Ce1a Csaz
R)
Vb2 Roo[5] —— | Saz <<abstract>>
22 il @ DocManager
© :
Roa [0 231
D— & <<abstract> DD DD
Soar AdminManager Co1s Csza Cssi Caza
R) — Soas Siz1 Saar Sear
Ve Seii Ssiz Csii Csax Cosr Coor I:Dc c I:Dc D Cia1 Cra1 Cioa Coan
@ > Ro[)) 332 Caa Cgaz
Vpa Ss11 Csiz Cszz2 Csaz Coes
© — = —| @
Caza [ﬁ
R | A
§ Caa1 Cazn <<web service>> <<web service>>
Rsz A ‘ DocRegistry DocSupplier
Sz11 Saiz
Vos ; Gurs iz Cons Si11Cs1z Cszz Cosa
© R[N —| A A Cs11 Coz1 Cazi Csse D
Ca11 Coa2 Cse3 Ca12 Caiz
. C,
nih o AA 7 A
~ C311 Csa2 Ca13 Cz21 Cgan Csso
e[| AAAAA
Legends:

A Business Constraint AComponent Constraint A Quality Constraint @ Service

Fig. 4.6 Service partitioning

4.1.2.2 XMI/XML Parser

The XMI/XML parser supports the early stage of CSAFE analysis by parsing
architecture specified in the UML notation or iIXML ADL as illustrated mn Iug. 4.7.
Architectures specified m UML are transformed to iXML ADL, whilst architectures

specified m 1IXML ADL are verified for correctness using the XML schema described
62

Chapter 4 Component-based Architecture Analysis Framework

in Appendix Al, Table Al.1. The parser incorporates semantic safeguards to verify
that components are properly connected and to the nght components. The parses
process outputs are stored m the analysis repository. The system architecture,
architectural design templates and components specifications are all represented 1n the

same way using a standard XML schema.

UML /iXML XMIZXML Analysis
S e

Architectural Design parse Parser) repository
3 store
< S

conforms to

I
1
I
1
I
N~

iXML schema

Fig. 4.7 Process parsing and storing XMI/iXML specification

The XML schemas define the structures of architecture designs, design templates
and component specifications. For example, the XML schema for an architecture
design specifies the elements in the design specification, nested elements, attributes of
the elements, attribute values and value types. On the other hand the XML schema for
a design template may also specify the elements of the design template, category,
mntent, context, motivation etc. The parser provides a uniform interface to the
underlying XMI/XML objects. This umform representation facilitates easy retrieval of

different elements of the architecture design.

To 1illustrate the transformation process, consider the example of the UML
architecture description of an Electronic Document Delivery and Interchange System
(EDDIS) shown in Fig. 4.8. The complete system is discussed in detail as a case study

in Chapter 5.

63

Chapter 4

Component-based Architecture Analysis Framework

- <<interface>>
<<interface>> ILogin <<interface>>
IManage IQuery
addUser() validateUser() search()
delUser() logout() locate()
/ setAccess() order()
IManage Q ILogin Q IQuery
ValidManager DocumentRegistry
O—
IRegistry
<<interface>>
IRegistry
AdminManager (@) DocManager | | setSearch()
- setLocate()
|Authorization
ISupplier =l
O——— DocumentSupplier
<<interface>> <<interface>>
|Authorization ISupplier
setLogin()
resetCondition() setOrder()

Fig. 4.8 EDDIS architectural description with interface identification

The DocManager component 1s responsible for coordinating and managing the

order and delivery of electronic documents from suppliers. It has four mterfaces to

facilitate these services; IAuthorisation for accepting orders and validating recipients,

IRegisay for inding document 1dentifiers and their locations, /Query for searching and

locating documents and ISuppilier for interacting with document suppliers. In addition,

the DocManager component may have several properties and constraints as shown mn

Table 4.1. This information 1s part of the UML architecture description of EDDIS.

Table 4.1 DocManager component specification

Name

DocManager

Type:Subtype

Component

Description Users will have access to a set of services determined by the permissions associated
with their account. All users are allows for document search and locate. Only staff
library can place document order.

A document search will be initiated by a search criterion. The output will be a set of
document identifiers.

A document locate service will be initiated by a set of document identifiers and the
output shall be asset of location identifiers.

Properties - Component.Standard = null

- Component.Cost = null
- Component.Version = 0.2
- Component.Availability = inhouse

64

Chapter 4 Component-based Architecture Analysis Framework

- Component.Certification = No
- Component(In) = 4
- Component(Out) =2
- Component.Services = IDiscovery, |0rder
- Business.Cost = Null
- Business.Schedule = Null
- Business.Platform = Windows XP
- Reliability.Availability = Nul
- Maintainability.Time = Null
- Maintainability.Requirement = user
- Maintainability.Technology = Null
- Performance.ResponseTime_UPL = 0.5 sec.
- Performance.ResponseTime_PL = 3 sec.
- Performance.Throughput_UPL = 150 trans. per sec.
- Performance.Throughput_PL = 75 trans. per sec.
Constraints - Performance of response time must less than or equals to 0.75 sec. under-peak-
load and less than or equals to 4 sec. peak-load.
- Performance of throughput must greater or equals to 150 trans. per sec. under-
peak-load and must greater or equals to 70 trans. per sec. peak-load.
- Maintainability of requirement must equals to user.
- Component of availability must equals to inhouse.
- Business of platform must equals to Windows XP.
Interfaces Provided -> IDiscovery, |0Order

Required -> IRegistry, ISupplier, ILogin

Fg. 4.9 shows a smippet of the resulting XMI specification of the DocManager
component with its associated constraints and textual descriptions after parsing. The
XMI specification includes components, their interfaces, properties, interconnections,
constraints and textual descriptions. The specification 1s stored in the analysis

repository.

<Component xmi.id="Im456fe435m1254d641e78mm7be8" name="DocManager" visibility="private"
isSpecification="false" isRoot="false" isLeaf="false" isAbstract="false" isActive="false">
<ModelElement.constraint>

<Constraint xmi.idref="13003240am1254ec16e03mm7db6"/>

<Constraint xmi.idref="13003240am1254ec16e03mm?7daa"/>

<Constraint xmi.idref="Im7e3cc993m12665521f35mm7b27"/>

<Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bef"/>

<Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bed"/>

</ModelElement.constraint>

<ModelElement.taggedValue>

<TaggedValue.dataValue>Users will have access to a set of services determined by the permissions
associated with their accounts. All users are allows for document search and locate. Only library staff
can place document order. A documents locate service will be initiated by a set of document
identifiers and the output shall be a set of location identifiers. A document search will initiated by a
search criterion and a list of databases to be searched. The output will be a set of document
identifiers.

65

Chapter 4 Component-based Architecture Analysis Framework

</TaggedValue.dataValue>

<ModelElement.taggedValue>

</Component>

Fig. 4.9 XMI/XML specification of DocManager

4.1.2.3 CSAFE Architecture Description Language - i XML

The 1XML ADL defines three primary architectural elements; component, interface,
and connector. In addition, the 1XML ADL also defines property and constraint
elements that may be associated with the primary architectural elements. Fig. 4.10
shows the meta-model that provides defimtions for iIXML elements. The descriptions
of these elements are as following:

e (Component. Denotes an encapsulated, distributable, and executable piece of

software that provides and receives services through well-defined mterfaces.

0 A component has a name @ identifiers (e.g. Order)

0 A component has a stereotype (e.g. infrastructure, database, Ul, web services etc.) and visibility
(e.g. private, public).

0 A component may have a textual description of the component (e.g. Order component handles
customer’s order that include create order, search and display information).

0 A component may have one or more constraints (e.g. Order component can only be connected
to EJB components).

0 A component may have one or more properties (e.g. Order component is version 0.2)

0 A component may have one or more interfaces of provided and required (e.g. Order: OrderEntry,
Orderableltem and Person). It is not necessary for all of provided and required interfaces to be
occupied.

0 Components that are grouped together in ‘container’ component form a composite component.

o Interface. Defines a collecion of one or more operations without their
implementation details. An interface can be either provided (i.e. characterizes the
services that the component offers to its environment) or required (ie.

characterizes the services that the component expects from its environment).

66

Chapter 4 Component-based Architecture Analysis Framework

0 Interface has a name @ identifier (e.g. I0OrderEntry)

0 Interface has a stereotype and visibility (e.g. public, private)

0 An interface may have a description (e.g. I0rderEntry is Order component’s provided interface
that consists of three services of CreateOrder, AddOrder and ValidateDetails).

0 A provided interface may provide one or more services.

0 Interface may have one or more signatures that describe operations and their attributes (e.g.
IOrderEntry: AddOrder, AddOrder(item <int>, quantity <int>, total <int>)).

0 An interface may have one or more constraints. A constraint can be either associated with a pre-
condition or post-condition that describes restriction that must be fulfilled before and after
connections to the interface.

0 Aninterface may have one or more properties (e.g. IDoc interface is using standard Z39.50).

e (Connector. Denotes the connection between two interfaces that defines that one

mnterface provides the services and that the other mterface requires the services.

0 A connector has a name @ identifier (e.g. Order->Customer).

0 A connector has a stereotype (e.g. HTTP, TCP/IP, RPC, Database Connector etc.) and role (e.g.
Listener, Writer etc.)

0 A connector may have a description (e.g. Order->Customer RPC feature TCP transport (RFC 793)
provides a reliable and stateful connection).

0 A connector may have one or more constraints (e.g. Order component communicates with
Customer component must be connected via RPC).

0 A connector may have one or more properties (e.g. Order->Customer is using RPC 793).

0 Connector implicitly describes interconnection between two components.

Connector 5
-name: String < tra int
-type.: Eﬂrlng * | -concerr:String
-role:String) -subconcern: String
-iescription: String -type String
-state: String
-walue:String
\ -scope: 3tring
Ha% 1 ~description: String
Required 1
. Interface .
- -natme: String :
type String
-sigriature: String
Provided -visibility: String
: = { -description: String 1 *
-service: String .\ Property
-concern: String
1H axs -subconcern: String
, - y -value:String
Component "
-rame: String
typer String
-description: String
~igibility: String .

contsins Zomponent Composition

Fig. 4.10 iXML architecture meta-model

67

Chapter 4 Component-based Architecture Analysis Framework

e Constaints. Correspond to non-functional requirements such as component cost,
standard, certificaion and platform restrictions, or dependability requirements
such as security, performance and reliability. A constraint may associate with a

component, an interface, a connector or a configuration.

0 A constraint has a concern (e.g. Component) and its sub-concern (e.g. Standard).

O A connector may have a description (e.g. Document delivery service shall conforms to Z39.50
document retrieval standard.).

0 A constraint has a type (e.g. pre-condition, post-condition or invariant).

O A constraint has a state that indicates the state of a property or variable (i.e.. equals (EL), not
equals (NE), greater than or equals (GE), greater than (GT), less than (LT) or less than or equals
(LE)).

0 A constraint has a value (e.g. Z39.50)

0 A constraint has a scope (e.g. Identifier of service affected by the constraint)

o Property. Are used to extend the specificaion of the element by defining

additional attributes that apply to architectural elements.

O A property has a concern (e.g. Performance) and its sub-concern (e.g. Response time).
O A property has a value (e.g. 4 seconds)

The 1XML ADL inherits XML’s schema-based extensibility mechanism allowing
its rules to be extended to support specific needs. Thus, an extension may be written to
modify the elements that we have described above. As indicated in section 4.1.1, the
1IXML ADL also supports the derivation of architectures from viewpoint requirements

(1.e. services and constraints).

4.1.3 Formulating Analysis Scenarios

Analysis scenarios are formulated after architectural transformation has taken place.
Analysis scenarios allow software designers and other system stakeholder to tailor the
analysis to explore how specific system concerns may be addressed. Analysis scenarios
provide system stakeholders with a means to augment architectural descriptions with
specific quality concerns and other architectural information as part of the analysis.
Designers can also formulate scenarios to explore “what if” analysis such as assessing
the 1impact of change and competing designs. Table 4.2 shows the elements of an

analysis scenario.

68

Chapter 4 Component-based Architecture Analysis Framework
Table 4.2 Scenario formulation template
Aspect Description
Concern A desired quality attribute that acts as goal to be addressed and achieved during

the process of architectural design. Concerns are associated with user
requirements, component expectations and business concerns. Concerns may be
categorized as follows:

e Requirement (e.g. performance, security, efficiency availability, maintainability),
e Component (e.g. certification, standards, resources etc.)
e Business (e.g. nature of support, trust, cost)

Sub-concern

A lower level of concern that allows either qualitative or quantitative
measurement to be conducted.

Refinement

Refinement expresses concern/sub-concern in more detail. For example, a broad
goal such as “modifiability” or “high throughput” is not specific enough
information to assess the suitability of a software architecture. A refinement is
expressed as :

Concern(Sub-concern) <relational operator> <value> unit

Conformity
condition

A condition that must be satisfied in order to ensure conformity to constraint or

design heuristic. Conformity conditions expressed using:

e Precondition — a condition that must be true before the associated scope is
executed.

e Postcondition — a condition that must be true after the associated scope is
executed.

e Invariant — a condition that must always evaluate to be true.

Scope

Identifies services or components affected by a concern/sub-concern. Scope also
serves as a traceability mechanism by providing an understanding of
interrelationship between a service or a constraint, and architectural design.

Weighting

Prioritises concerns. Values assigned to quality concerns are likely to vary with
application and organization. For the purpose of the evaluation described later in
this thesis, | have adopted a 3-level weighting scheme that relates the value of
required features to customer satisfaction and system operation. The weighting
scheme of High (H), Medium (M) and Low (L) is associated with quantitative values

of 3,2 and 1:

e High denotes core quality concerns. Failure to provide these features means the
system will not meet customer needs.

e Medium denotes features that are important to the effectiveness and efficiency
of the system. Lack of inclusion of an important feature may affect customer or
user satisfaction.

e Low denotes features that are useful but not central to the system operation.
However, lack of inclusion of a useful feature will not have significant impact on
customer satisfaction.

Table 4.3 shows part of a typical scenario 1s formulation with concerns, sub-

concerns, and their refinement, type, weighting and the concern scope.

69

Chapter 4 Component-based Architecture Analysis Framework

Table 4.3 Scenario descriptions

Concern Sub-concern Description (Refinement) Wt. Scope
C t(Availabilit Is t
Component Availability ompone.n (Availability) equals to High accessLocate
web service
Component Cost Component(Cost) less than to 500 High accessLocate
R C t(Availabilit Ist .
Component Availability ompont?n (Availability) equals to High accessOrder
web service
G e Version Component(Version) greater than or Low adm_m_
equals to 0.3 services
C t(Certificati Ist
Component Certification SRR QSO High use.r_ .
yes validation
Component Version Component(Version) equals to 4.0 Medium use:r_ .
validation
Maintainability(Technol I
Maintainability | Technology el el Crelb Medium use.r_ .
to updated validation
Maintainability | Time Maintainability(Time) less than or Medium use.r_ .
equals to 12 months validation
. Business(Platform) equals to .
Business Platform Windows 2000/XP High System
Business Schedule Business(Schedule) equals to strict High System
Performance Response Performance(ResponseTime_UPL) Hich S—
Time_PL less than or equals to 0.75 seconds g ¥
Response Performance(ResponseTime_PL) less .
HUTEC Time_UPL than or equals to 4 seconds Al System
TR Performance(Throughput_PL) _
Performance PL greater than or equals to 150 Medium System
transaction/per second

4.1.4 Analysis

The analysis process 1s based on a flexible XML framework that allows the system
designer to integrate different analysis methods and tools (see Fig. 4.14). The tools are
used to check and suggest iImprovements to various aspects a software architecture at
design-time (.e. mapping of services to design templates) and at compose-time (L.e.
mapping of abstract components to concrete components). Currently the analysis

process provides support for:

o Structure checking. Identifies mismatches between provided and required

mterfaces and defects in dynamic component interaction.

70

Chapter 4 Component-based Architecture Analysis Framework

o Quality checking. ldentifies inconsistencies and mismatches between desired
quality attributes (dependability, organisational, component, etc.) and the system
context.

o (Conformance checking. Venties architectural adherence to design heuristics and
styles

A typical analysis process begins with the mapping of analysis scenarios onto a

repository of architecture design templates as shown in Fig. 4.11. The aim of the
mapping process 1s to 1dentify design templates whose contribution to specific quality
attributes match the quality thresholds identified in the analysis scenarios. The quality
scenarios generate query expressions that are combined with a set of rules to search the
repository for design templates that match their quality thresholds. The output of the
mapping process 1s a set of recommended design templates. The analysis process rates
each recommendation on how well it contributes to the quality concerns identified

an analysis scenario.

Architectural analysis
scenario
(use services)

Analysis

If <constraint/requirement>
Design Template <design template instance>
<property-guarantees>
If <constraint>
Design Template <design template instance>
<property-guarantees>

Property
validation

Design Template

Property guarantees
Usage rules

Fig. 4.11 Analysis of design mapping

Architecture design templates are uniformly specified in XML for ease of matching
and to promote portabihty. Fig. 4.12 shows the elements of an architecture design

template.
71

Chapter 4 Component-based Architecture Analysis Framework

{Category} Type, i.e. style, design pattern, local scheme.

{Name} Denotes unique design template name.

{Also-Known-As} Other well-known names for the design template if any.
{Related-Template} Reference to other closely related design templates.
{Intent} The justification for design template

{Context} The situation in which the template may apply.

{Motivation} Describes template solution.

{Configuration} Specification of the template.

{Consequences (Contribution)} Specification of dependency and contribution that template may
possess shown in scoring factor:

e High — Strongly supported,

e Medium — Moderately supported

e Low— Weakly supported.

Fig. 4.12 Architecture design template

Architecture design templates have three major benefits. First, they help in
understanding and predicting the properties of design by offering a context for the
creation and application of design experience. Secondly, they reduce the effort needed
to understand another person’s design by reducing the number of new concepts to be
learned. Thirdly, they aid in creating and documenting a system design by providing

rationale for component composition.

The next stage n the analysis involves modifying the system architecture to take into

account the proposed recommendations. This 1s a two-stage process:

e First, the current system services are mapped onto the recommended architecture
design templates. This activity must take mto any specified constramnts and design
heuristics.

e Secondly, abstract components in the selected alternative architecture are mapped

onto concrete components.

The process of mapping system services onto architecture design templates 1s tool-
supported and nvolves selecting the relevant source component service and searching
within the design template for a matching service. When a matching service 1s found,
the destination component name appears and the service mapping is completed. The

process takes mto account the dependencies between different services and the
72

Chapter 4 Component-based Architecture Analysis Framework

component interfaces. Fig. 4.13 shows a screenshot of the process in action where a
service called document_services 1s found provided by [IRequest mterface of
DocumentRequesterB and the service 1s subsequently mapped on the destination

component.

[
g (connectorsy
=-E] AdminManager
=] (interfaces)
=+ (provided) IManage
~ED) acct_create
~-ED accl_remove
~oE) acct_setaccess
~-ED) Admin_serices
£ [required] lauthorization
=-£] DocManager
= (intertaces)
=h-rf (provided) [Query
document_locate
B docurnent_order
~ED) document_search
~-ED dacument_senvices
% [required] IAuthorization
£ [required] IRegistry
~-z% [required] ISupplier

(3 Elicit & Prioritize | (3 Mapping | (5 Assessment

©, Search Service i Map Service| 47 Refactor £ Refresh

Selected architectural alternatives ‘SQZSSN\CBOI’USI’PI’DViSiDn

% Template Abstract Component:

DiocumentProvider
DocumentRegistry
DocumentRequesterB
ServiceQrder_Provision:: subsystem

Component | Service | Rating | Design

Descriptions:

=%] DocumentRegistry
=-F (interfaces)
=t [provided] IRegistry
~ED accessLocate

Found service document_services of
DocManaget in DocumentRequesterB
Iprovided by interfare IRequests

~ED ace h

=-£] DocumentSupplier

Mapping result

%]

=] (interfaces)
=h-zf [provided] ISupplier
woE) accessOrder
=5] ValidManager _
= (interfaces) | ok

=h-f [provided] lAuthorization

.
y Mapping serice document_services onto DocumentRequesterB successfull

Fig. 4.13 Mapping a service onto a design template component

In cases where a matching service cannot be found, the system designer may map
the service manually using a re-factoring facility provided by the tool (see Fig. 4.14). Re-
factoring also allows the system designer to configure connectors, and mnstantiate
required and provided interfaces for the destination component while ensuring that

specified constraints are not violated.

Refactor =14

£] Design Companent 24 Abstract Companent

‘AdmmMamager | AdminManager
Interface: D Senvice DocurmentPravider
DocumentRegistry
-l&uthorization D private DocumentReguesterd
+IManage [public SeniceOrder_Pravision: subsystem
Walidhanager
|:| Mested onto = D Mapping Senice onto abstract provided interface
o D Instantiate provided interface:
|:| Design interface: -lAutharization ﬂ
‘IManage |v ‘ \ |
|:| Instantiate design required interface ﬂ

provided o Abstract Component required to Abstract Component:

WValidhanager

Fig. 4.14 Re-factoring facility menu
73

Chapter 4 Component-based Architecture Analysis Framework

The algorithm of mapping services onto the recommended architecture design

templates are as follow:

Algorithm DesignTemplate<design template instance><property-guarantee>
Begin
For each service do
search designTemplate(service)
If service = found then
check interface.signature
If signature match then
For service.constraint[] do
propertyValidation(constraint)
match[true/false]
End For
If match = true then
map service — dest.component
End If
Else If match = false then
flag mismatches
End Else if
End If
End If
End For
End

The second stage of the process involves mapping abstract components to concrete
components. The analysis tool aids the process by indicating how well the mapping
fits, exposing mismatches and providing suggestions for further component selection.
Fg. 4.15 shows how the tool supports the process of mapping of an abstract
component, AdminManager, to three concrete components (.e. AdminManager 1,
AdmmManager 2 and AdminManager_3). Concrete component fitness 1s indicated
n percentage terms next to the concrete components. The mismatches associated with

each concrete component are also indicated.

74

Chapter 4

Component-based Architecture Analysis Framework

Specification [Scenariu Formulation

_Rscenariu] = P.Scenarin? x |

|' (9 Elicit & Prioritize [(5 Mapping [(5 Assessment |

s | 4, Search Component {(j‘ Map Component 3 Structure @
§
= Selected itect. i |S2:SamceOrdelPrcmsion [v|
£ =
=
,t_ Abstract component: |.ﬁdrninrdanager |"| --------- = |AdminManager_3 |
=4
z | Refinement Concem | SubConcem | State | Value | Type Scope
«@ iy Component (Avallability) equals to inhouse Component Availability EL (inhouse [invariant Admin_services
E LLa Component{Version) greater than or equals to 0.3 _Component [Version GE Ina |precondition {Admin_services
§_ ﬁ Maintainability (Requirement) equals to user Maintainability |Requirement |EL user invariant Admin_senvices
E
o
Search results:
{Legends: @ngh\'\l’armng @ Medium YWaming) Low¥aming }
= M3z _| AdminManager_1
) h © rnust be equals to inhouse. The actual value for G for A _1iscots
2 - Comp ion) must be greater than or equals to 0.3 . The actual value for Comp tiversion) for Admi 1is0.2
b4 Ok The actual value for Maintai i for A ger_1is user
W AdrinManager_2
-+ 0K The actual value for C for Ad _2isinhouse
- Ok The actual value for C rsion) for Adrmink. _2is0.4
% Ok The actual value for Maintai i far Admi ger_2 is user
MR | AdminManager_3
-2 mi teh:. Comp failability) must be equals to inhouse. The actual value for Comp b ity) for Ad _3iscots
=4 0K The actual value for C Version) for A ger_3is0.4
—4 Ok The actual value for Mair i for Admi _3is user

Fig 4.15 Mapping onto concrete component

Like architecture design templates, concrete component are also uniformly

specified in XML as shown in Table 4.4. Detailed specifications for the concrete

components used 1n this research are provided in Appendix A3.

Table 4.4 Component template

{Name} denotes a unique name for the component

{Type:Subtype} denotes the component with a particular behaviour and services its deliver
{Description} denotes a details explanation of the component

{Properties} denotes component’s concern and sub-concern and its values

{Constraints} a predicate imposed on one or more component properties

{Interfaces} denotes the interfaces specified on the component

4.1.5 Trade-off Analysis and Rating - Negotiation

Trade-off analysis 1s intended to support the process of balancing the architectural

considerations and stakeholder concerns with the available component functionality.

CSAFE supports trade-off analysis through the implementation of the Sunple Mula-

Chapter 4 Component-based Architecture Analysis Framework

Atribute Rating Technique (SMART) [ShepetukhaOl]. SMART 1s a form of the

multi-attribute utility theory methods.

Although SMART has some similarities with other multi-attribute analysis
approaches such as the Analvtic Hierarchical Process (AHP) [Saaty90], it does have its
own pecuharities. As with AHP, SMART contextualises the decision making process
to a decision maker and a set of previously identified options to be considered. Rather
than relying on pair-wise comparisons, an assumption of the SMAR'T approach 1s that
performance against attributes can ultimately be measured, and a value assigned.
Although various mechanisms can be used to measure performance and assign values,
where appropriate, value functions can be used. This ability to capture a subtle,
perhaps subjective and possibly complex relationship between an option’s
performance according to a particular attribute and the value assigned to that
performance 1s a potential strength of SMART. Another 1s the weighting of the
attributes i order to recognise their relative prionty. Together, these aspects allow
SMART to balance different strengths and weaknesses across options, and allow for a

degree of weighted trade-off.

SMART provides a means for assessing each of the quality concerns to reflect its
relative importance to the design decision. By refining the scores with the relative
weights of all quality concerns, the utility value or contribution for each alternative
solution can be computed. The utility function used in SMART [ShepetukhaO1] 1s
shown below; where w; is the scaling value (weight) assigned to the 1” of m quality
concerns, s;; is the utility for alternative 7 on criterion £ and 721s number of alternative

solutions.

m m
— * H—
K = ZWL-SU/ZWL-, j=1..n,
i=1 i=1

A maximum score of 1 for the utility value mdicates the highest probability of the
quality concerns being achieved. Whereas, the mmimmum of zero indicates the least

76

Chapter 4 Component-based Architecture Analysis Framework

acceptable trade-oft. While high rating scores increase the likelihood of an architecture
design template being selected, specific analysis of its contribution to ndividual quality
concerns may be needed to provide better understanding of the results at every level.
Fig. 4.16 shows the example of three alternative architecture contributions to different

quality sub-concerns, generated by the CSAFE trade-off analysis.

scenario 1: Architectural contribution by sub-concerns
1.0 ..
09
0.818 0.793
0s
07 0.641 5550 0.205
06
i}
T 05 . oom
o 0.307
0.4 0.077
03
0.23
02 077 0.23
o1 prped [oor]
| e oo eere
0o0-
S1:ClusterSenver S2:5ewviceOrderProvision S3:Three-tier proxy server
Architectural Alternative
|I Requirement B Technology [Time [ResponseTime_PL M ResponseTime_UPL || Throughput_PL :Avai[ability]

Fig. 4.16 Contribution of suggested alternatives according to sub-concerns

In addition to trade-off analysis, CSAFE. provides support for sensitivity at quality
concern and sub-concern levels. Sensitivity analysis may be needed to establish how
robust the choice of an architecture 1s to changes in the weights for quality concerns
identified 1n the analysis scenario. Conducting sensitivity analysis can help the system
designer understand how variations in the relative weights of critical quality concerns
might affect the suggested solutions, and may lead the designer to reconsider some of
the weights associated with the quality concerns. Sensitivity analysis shows that, in many
cases, large variations in the weights are often required before one option becomes
more attractive than another. It 1s therefore possible, in certain cases, to trade-off

quality concern weights without adversely affecting the system quality.

77

Chapter 4 Component-based Architecture Analysis Framework

The system designer performs sensitivity analysis by making systematic changes to
the relative weights of the quality concerns and observes how the variations affect the

contributions of the recommended solutions. Changes may involve:

e Varying concern (¢g) weights to mimmum one at a time:

ml=q m
— * — —
Wi = Zwisij/Ewi, j=1..n, wherew, =0
i=1 i=1

e Varying concern () weights to maximum one at time:

m=q m
— * y — —
Kj = w; sl-]-/ wi, j=1..n wherew,=0
i=1 i=1

The results of the sensitivity analysis are a set of recommendations that comprise
change mmpact graphs and recommendations that guide the system designer to
mprove the architecture design. Fig. 4.17 shows an example of a CSAFE sensitivity
analysis for the mamtamnability quality concern. The graph shows how the benefits
from three architectural alternatives vary with changes in the relative weighting of the
quality concern. At weighting value of 0.38, the architectural alternative, S2, provides
the best benefit and S1 the worst. At a weighting of 0.45, S3 provides the best benefit.

However, S2 remains generally unaffected by the changes.

Sensitivity to Maintainability

1.0 ¢
0.383

2 R=]

08 {—— _
07 |

08

Alternatives:
0.5
— 51: ClusterServer

— 52: SeniceOrderProvision

Rate Scores

04

0.3) 53: Three-tier proxy server

02

019

0.0
00 01 02 03 D04 08 O OF 08 08 10

weighting value

Fig. 4.17 Sensitivity analysis of Maintainability
78

Chapter 4 Component-based Architecture Analysis Framework

4.2 The Toolset

CSAFE 1s supported by an mtegral toolset. The toolset was specified and designed
using the UML notation, and mmplemented m the Java programming language. An
overview of the toolset use cases 1s shown in Fig. 4.18. The complete use case

specification and object model for the toolset 1s provided in Appendix B.

CSAFE Toolset

% Construct
Architecture

Requirement .
viewpoints i <<include>>

Transform
Architecture

Interat) Formulate
nterator Non-interator Scenario
Analyse
Architecture N %
XMI/XML
/ <<extend>> Parser
% —"'//<<extend>> /" <<extend>> <<extend>>\“\\
Analysis Dl\eASaipn Dza;iten Sgei’::e Ci i it
viewpoints g g Sl i
A Analysis
Repository

% — Assess

Architecture

System N
architect % <<extend>> .~ . <<extend>>
% Programmer Generate graphs Generates report
Project
manager |
Domain Maintain Cqmponent
expert Repository

Maintain Design
Template Repository

Fig. 4.18 CSAFE toolset use-case diagram

4.2.1 CSAFE Toolset Architecture

The CSAFE toolset has six main components: The XMI/XML parser, scenario
formulator, analyser, IXML ADL, trade-off analyser and rater, and report generator.

These components are supported by an analysis repository containing the design

79

Chapter 4 Component-based Architecture Analysis Framework

template library, component library and architecture database. Fig. 4.19 shows

architecture of the CSAFE toolset.

Structure Quality Conformance Other
checker checker checker checker

XMIXML parser Scenario formulator Analyser Trade-off analyser Report generator
iXML ADL & rater

Analysis Repository

Design template library (i.e. architectural styles, Component Architecture
design patterns, local schemes library database

Fig. 4.19 Architecture of CSAFE toolset

XMI/XML Parser

This supports the early stage of the CSAFE process by transforming architectures
expressed iIn UML to 1XML ADL format, and by verifying architectures expressed in
1IXML ADIL. Table 4.5 and Fg. 4.20 show the sequence of the transformation and

the actors involved.

Table 4.5 Transform architecture use~case description

CSAFE: Transform Architecture

Actors System Designer, XMI/XML Parser, Analysis Repository

Description 1. System designer selects the XMI/XML architectural specification from
the analysis repository.

2. System designer enters project name and clicks OK.

3. The XMI/XML parser parses the architectural specification and checks
it against XML schema/DTD.

4. The XMI/XML parser creates a design schema for the architecture.

5. The XMI/XML parser stores the architectural vectors in analysis

repository.
6. The tool organizes the architectural elements into a tree hierarchy.
Data XMI/XML architectural specification
Stimulus System designer selects ‘New Project’ from CSAFE File menu
Response CSAFE parses and stores the architecture design in the analysis repository.
Alternative flow of 3.a. Invalid XMI/XML description. Indicate error message.

events

80

Chapter 4 Component-based Architecture Analysis Framework

XMI/XML . .
% Parser Analysis Repository
System
Designer \ \

L

selects XMI/iXML specification

returns specification

parse XMI/iXML specificati

jverify specification

Alt
create schema

[XMI/XML Valid]
store architectural elements

display tree hierarchy

[XMI/XML Invalid]

display error message

Fig. 4.20 Transform architecture sequence diagram

Scenario Formulator

The scenario formulator allows the system designer and other stakeholders to identify
and explicitly represent system quality concerns as goals to be addressed and achieved
during the process of architectural design. Product quality concerns can be associated
with any element of the system design. To facilitate scenario formulation, the tool
incorporates a process for weighting and ranking quality concerns based on the
scheme described in section 4.1.3. Data from analysis scenarios provide input to the
analysis and trade-off processes. A use case description of the scenario formulation
process 1s provided in Appendix B1.2. Analysis scenarios are stored m the analysis

repository.

Analyser

The analyser 1s responsible for mapping analysis scenarios onto architecture design
templates, and for transforming abstract system designs to concrete compositions. The
analyser incorporates a set of rules that relate quality concerns in analysis scenarios to

design templates to 1dentify architectural solutions that best address the quality
81

Chapter 4 Component-based Architecture Analysis Framework

concerns. However, no single architectural solution can adequately address all the
quality concerns raised by stakeholders; every architectural solution 1s a trade-off of
competing quality concerns. The analyser rates each architectural solution for its

contribution to critical quality concerns.

Selected design templates are nstantiated to facilitate service and component
mapping as discussed in Section 4.1.4. The process of mapping services to instantiated
design templates takes into account any specified constramnts and design heuristics. The
analyser has a set of pre-defined rules to ensure the service mapping proceeds
correctly. Some of the rules are shown m Table 4.6. Lastly, the abstract components in
a selected alternative architecture are mapped onto concrete components. The
analyser flags warning messages for structural (including configuration) and property
mismatches found between the components. Analysis scenarios are stored i the
analysis repository. Use case descriptions of the mapping and rating processes 1s

provided m Appendix B1.4 - B1.7.

Table 4.6 Service mapping rules

No. Rule Description
1. If (service not found and interface’s design component is provided and constraints not
violated)
Then
(configured connectors between design component and abstract component)
2. If (service not found and design interface is ‘Required’)
Then
(violation: service not provided by abstract’s component)
3. If (service found and interface type match)
Then

(violation: attempting to connect component’s interfaces of ‘Provided’ -> ‘Provided’ or
‘Required’ -> ‘Required’)

4. If (service found and interface type not matching and abstract component interface is
‘Provided’ and constraints not violated)

Then

(configured connectors between abstract component and design component)

5. If (service found and interface type not matching and abstract component interface is
‘Required’ and constraints not violated)

Then

(configured connectors between design component and abstract component)

82

Chapter 4 Component-based Architecture Analysis Framework

Trade-off Analyser - Negotiator

The trade-off analyser 1s responsible to assessing and rating competing architectural
solutions for their contributions to different quality concerns and different concrete
components configurations. The trade-off analyser generates results in tabular and
graph format for qualitative and quantitative analysis. Use case descriptions of the

assessment process are provided in Appendix B1.8 - B1.9.

Design Template Repository

The design template repository stores architectural design templates and the result of
analysis and composition. Fig. 4.21 shows the design template metamodel. The
repository contains facts about the design templates and rules that govern their correct

use.

Design Tenplate

Contribution -category String
-name:String 1
—subgual ity String -al sok novnas String -narme: String
- gt char -intent:int

-refine ment String -ritivatior String
-context: String

R elatedD e=ignT emplate

-guality: String

1

Configuration

-component: Yector
-interface: Wectar
-connectorVector
-congraint Yector
-property Yectar

Fig. 4.21 Design template metamodel

A snippet of the design template XML Data Type Description (DTD) 1s shown in
Table 4.7. A complete description 1s provided in Appendix A2, Table A2.1.

83

Chapter 4 Component-based Architecture Analysis Framework

Table 4.7 Design template XML DTD description

<IELEMENT NXML (CATEGORY, RNAME, ALSOKNOWNAS, RELATEDRULES, INTENT, CONTEXT,
MOTIVATION, CONTRIBUTIONS, CONFIGURATION)>

<ISELEMENT CATEGORY (#PCDATA)>

<IELEMENT RNAME (#PCDATA)>

<IELEMENT ALSOKNOWNAS (#PCDATA)>

<IELEMENT RELATEDRULES (RELATEDRULE.DESCRIPTION*)>

<IELEMENT RELATEDRULE.DESCRIPTION EMPTY>

<IATTLIST RELATEDRULE.DESCRIPTION RNAME CDATA #REQUIRED >

<IELEMENT INTENT (#PCDATA)>

<IELEMENT CONTEXT (#PCDATA)>

<IELEMENT MOTIVATION (#PCDATA)>

<IELEMENT CONTRIBUTIONS (CONTRIBUTION.DESCRIPTION*)>

<IELEMENT CONTRIBUTION.DESCRIPTION (#PCDATA)>

<IATTLIST CONTRIBUTION.DESCRIPTION QUALITY CDATA #REQUIRED
SUBQUALITY CDATA #REQUIRED
WEIGHT CDATA #REQUIRED>

<IELEMENT CONFIGURATION (COMPONENT*, INTERFACE*, CONNECTOR*)>

Component Repository

The component repository 1s a machine searchable hibrary of black-box components.
Most component repositories specify components using mterface-description-
languages (IDLs), which are restricted to describing only structural properties. Our
approach uses an extensible constraint notation to express semantic properties of a
component, m addition to structural properties. Constraints are expressed using
concerns, sub-concerns, relational operators, conformty conditions (i.e. precondition,
post-condition, or invariant), values and services. The component metamodel is shown

in Fig. 4.22. A complete description is provided in Appendix A3, Table A3.1.

84

Chapter 4 Component-based Architecture Analysis Framework

] Interface Component
exjuire: Has
-narne:string . -narne:String
-type:String 4 |tvpesting
-signature: String -description: String
-wisibility: String -wisibility: String
-deseription: String 1
Provided
-service:Btring 1
1 1 1 N |
* * * . A
Containg
s
Constraint Property Component Composition
-concern:String -concern:String
-subconcern:String -subconcern:String
-type:String -value:String
-state:String
-value:String
-scope:Siring
-desctiption:String
Fig. 4.22 Component metamodel
Report Generator

Report generator 1s used to construct reports of the architecture analysis. The report
generator can be configured to generate tailored reports of the analysis to sut different

stakeholder interests.

4.3 Summary

This chapter has described CSAFL, the proposed architecture analysis approach for
supporting component-based black-box system development. The chapter has
explained how CSAFE fits into a general design process, outlined the steps in the
process and discussed each stage mn the process. The chapter has explamed the link
between CSAFE and requirements analysis, and shown how this can be used to
support mitial architectural design. I have shown mn this chapter how CSAFE provides
supports for diverse stakeholder involvement. I have also shown how CSAFE provides
explicit support for negotiation (i.e. trade-off analysis), support for standard modelling
notations such as UML and diversity in analysis. The chapter has also discussed the
CSAFE toolset architecture and its various components. Detailled use cases describing
the functionality of the toolset are provided in Appendix B. A detailed user guide for
CSAFE toolset 1s provided in Appendix C.
85

Chapter 5

Evaluation 1: Electronic Document
Delivery Information System

This chapter presents the first of two case studies used to evaluate the architectural
analysis framework (CSAFE) described in Chapter 4. The case study used m the
evaluation 1s derived from the specification of an actual Electronic Document Delivery
and Management System (EDDIS) [Kotonya07]. A summarised version of the
evaluation has been published i [Admodisastroll]. The objective of the first
evaluation 1s to demonstrate the key features of CSAFE and the practicability of the
framework. The evaluation demonstrates how CSAFE can be used to construct,
analyse and refine a software system architecture from requirements to system
composition. The evaluation 1s conducted using two different stakeholder scenarios to
demonstrate CSAFE’s support for broad stakeholder mvolvement m architectural

design and analysis.

86

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

5.1 The Case Study

The Electronic Document Delivery and Interchange Systems (KDDIS) is a web-based
library system for the UK Higher Education sector to help users obtan documents,
other library items not available at their local library. The main function of EDDIS is
to manage the process of identfying, locating, ordering and supplying electronic
documents. Users access to the system via web-based mnterface using valid usernames
and passwords. EDDIS users have access to a range of services determined by the
permissions assoclated with the accounts they hold. Each EDDIS node has an

administrator whose task 1s to set up and manage user accounts.

To obtain a document, an EDDIS user must place an order with the document
supplier. However, before a document order can be placed, the user must first obtain
the document identifiers and its location identifiers from a centralised document
registry. All document interchange between an EDDIS node and the document
supplier use the 739.50 document retrieval protocol. When the ordered document
arrives on the EDDIS server it 1s automatically emailed to the requester as a PDF
document. EDDIS users can also order non-digital items. In this case, the physical
item 1s supplied to the hibrary admimistrator who notifies the requester via email. The
next section describes a subset of the EDDIS requirements and shows how the

viewpoints approach described in Section 4 was used to ehicit and partition them.

5.2 EDDIS Viewpoints and Requirements

The viewpoint approach described in Section 4 1s used to elicit EDDIS requirements.
Five viewpomnts are identified for the EDDIS user (Vpi), admimstrator (Vp.),
document_registry (Vps), document_supplier (Vpi) and consortium (Vps). Table 5.1
shows the EDDIS requirements associated with each viewpomt mstance. These
requirements are assoclated with a number of services and constraints. The detaled

descriptions of services and constraints are provided in Appendix D2 and Appendix

87

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

D3 respectively. Services represent expressions of required functionality expressed

way that shows the dependencies between the services.

Constraints represent stakeholder concerns such as component cost, component
certification, component memory and platform restrictions, or dependability
requirements such as security, performance and availability. They may also represent
elements of interdependence that are introduced to allow services to meet certain
architectural considerations. Finally, constraints may capture dependencies that are
mmtroduced to make certain component choices acceptable in the current context,
particularly with regard to the outcome of negotiaion and thus may hold important
design rationale information. Each requirement is ranked as described in Section 4.1.1

(L.e. as essential, important or useful) to determine its priority level.

Table 5.1 EDDIS viewpoints and requirements

Viewpoint Requirement
ID Role/Type ID Description Service Ranking
Vp, EDDIS_User R1.1 EDDIS users shall be able to login on to S1.1.1 Essential
(Operator) the system via a Web-based interface S1.2.1
using valid usernames and passwords.
R1.2 Once logged in, EDDIS users will have S1.2.1 Important

access to a set of services determined by
the permissions associated with their
accounts.

R1.3 EDDIS shall allow users to search and S1.3.1 Essential
identify documents, which interest them.
A document search will be initiated by a
search criterion and a list of databases to
be searched. The output will be a set of
document identifiers.

R1.4 EDDIS shall allow users to determine the | S1.4.1 Essential
location of documents. A documents
locate service will be initiated by a set of
document identifiers and the output
shall be a set of location identifiers.

R1.5 EDDIS user shall allow users to order S.1.5.1 Important
documents. A document order will be
initiated by a set of document and
location identifiers. The output will be a
set of order identifiers and
electronic/hardcopy documents.

Vp, EDDIS_ R2.1 EDDIS shall provide facilities for setting S2.1.1 Important
Administrator up and managing user accounts.
(Operator)

88

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem
Viewpoint Requirement
ID Role/Type ID Description Service Ranking
R2.2 EDDIS shall allow admin to create S2.2.1 Essential
account for EDDIS user. Creating a new
account require user name, matrix/staff
no. and user level e.g. Undergraduate,
Postgraduate and Staff.
R2.3 EDDIS shall allow admin to delete EDDIS S2.3.1 Important
user account. An account delete require
matrix or staff no.
R2.4 EDDIS shall allow admin to assign access S2.4.1 Essential
level for EDDIS user.
Vp; Document_ R3.1 EDDIS shall be able to access a S3.1.1 Important
Registry centralized document registry to obtain S3.1.2
(Component) document and location identifiers using
the Z39.50 document retrieval standard.
Vp, | Document_ R4.1 The document order client will be use S4.1.1 Important
Supplier the Z39.50 document retrieval standard.
(Component)
Vps | EDDIS_ R5.1 The system shall run on Microsoft Essential
Consortium Windows 2000 and Windows XP.
(Organisation) R5.2 The system shall be develop according to Important
schedule and cost estimated.
R5.3 The system shall ensure that a Important
reasonable level of performance is
maintained across the services at all
times.
R5.4 The system shall ensure that availability Essential
of service is given to EDDIS users
accordingly.
R5.5 The system shall ensure that it is easy to Useful
maintain that allow for graceful
replacements or extensions of
components.

Fig. 5.1 shows the use-cases associated with high-level service descriptions that

represent the underlying EDDIS functionality. These can be combined with other

forms of modelling such as interaction diagrams (see Fig. 5.2) and statecharts to

provide a more detalled description of the system behaviour. However, for

component-based systems, detailled requirements specifications are often counter-

productive as they tend preclude possible component solutions [Admodisastro06)].

89

Chapter 5

Evaluation 1:Electronic Document Delivery Information Svstem

EDDIS
Administrator

———— Document_ services

EDDIS
User

Admin_services

<<uses>>

<<uses>>

<<extend>>"

<<extend>>

<<extend>>

User_validation

|
| <<extend>>
| ’

|

<<extend>>

<<extend>>

Acct_
create

Acct_
remove

Acct_
accesslevel

Document_
order

Document_
locate

Document_
search

X

Validation_services
EDDIS User

validateUser
(username,password)

Fig. 5.1 EDDIS use-case diagram

Document_services

|

Document_registry

|

enter(username,password

authorise_access()

search(sc,D)
[D cPay]

[login e valid login]

logout()

locate(di,C)
[C € Pay]

order(document_ids,location_ids]
[Ssupp € Psuppl

Document
Supplier

Document
Registry

Document_supplier

|

[[

resetAccessCondition()

login = username-password pair
D = set of selected databases

sc = search criterion
C = set of selected catalogues

Ssupp = set of selected suppliers

validLogin = set of valid username-password pairs

Pab = set of user permissible databases

Pcat = set of user permissible catalogues

Psupp = Set of user permissible suppliers

Fig. 5.2 Sequence diagram for EDDIS services

90

Chapter 5

Evaluation 1:Electronic Document Delivery Information Svstem

5.2.1 Constructing the baseline EDDIS Architecture

The mput to the architecture analysis process 1s the software system architecture. A

baseline architecture 1s constructed for the EDDIS by partitoning its service

descriptions and their associated constraints mto abstract components. Fig. 5.3 shows

the result of partiioning of the EDDIS requirements onto five design-ime

components using the approach described m Section 4.1.2. The process takes nto

account the system and service constramnts, and dependencies between the services.

Viewpoints Services / Constraints Abstract components composition
Sii1 Sia1 CA; Csa1 Csen
DD AAA
C. C: C.
R “i %’ N Csr1 Ca21 Caza
12 —_—
Sia1
Vi = <<abstract>>
é R il @ ValidManager
R [5&]51 Sia Sizn Cain Caoa
. Sis1 Cs1s Csa1 Csen
Re[D | &) AA A
™ S C C.
Rea [|2®” 214 Csaz ¢
\ N —— | Seaa <<abstract>>
P2 Rez il I@ DocManager
@ s Si21 Sizr Siar Sisi
Ros [231
23 @ <<abstract>> @ @ @ @
AdminManager C. C. C. I
R“ 36 Surs Soz1 Soss Swa 515 Cs23 Cssa Cais
Ves Ss11 Ssiz Csii Csai Cssr Cses IiDc lj)c I:Dc D Cia1 Ci21Coay Coaa
@ - R;, D 332 Cs14 Csaz
Vpa Ss11 Csiz Cszz Cssz Cses
@ | @
Cags [ﬁ [‘]
Ra[) —| A
Ca11 Caza <<web service>> <<web service>>
Rsz — A A DocRegistry DocSupplier
S311 Saiz 6. C G
Vps . Cri1 Craa Cisa 411 Cs12 Cszz Csaz
© R — A A Coia Cozi Conr Coaa DAAA
Cz11 Canz A A A A Ceos C12 Caio
Rl —) A A N A A A
5.4
. Cs11 Ca12 Ca13 Cz21 Cgar Caae
e AAAAA
Legends:

A Business Constraint

Acumponent Constraint A Quality Constraint @ Service

Fig. 5.3 EDDIS service partitioning

The partitoned services are then mapped onto a UML component model as

shown i Fig. 5.4. In addition to enhancing the system documentation, the partitioning

and mapping process provide traceability back to requirements formulation. It was

decaided that functionality for the AdnunManager, ValhdManager and DocManager

91

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

would be provided using off-the-shelf components while DocumentRegistry and

DocumentSupplier would be provided by web services.

<<interface>> -
ILogin <<interface>>
IManage IQuery

addUser() validateUser() search()

delUser() / logout() locate()
/ setAccess() o order()

<<interface>>

IManage Q ILogin Q IQuery
ValidManager DocumentRegistry
O—
IRegistry
<<interface>>
IRegistry
AdminManager O) DocManager | setsearch()
L setLocate()
|Authorization
ISupplier $:|
O~——— DocumentSupplier
<<interface>> <<interface>>
|Authorization ISupplier
setLogin()
resetCondition() setOrder()

Fig. 5.4 EDDIS architectural description with interface identification

5.3 The Analysis

The architecture analysis process begins with the transformation of the UML
description of EDDIS into a machine proccessable 1IXML specification. The CSAFE
parser supports the transformation process by parsing and storing EDDIS architectural
elements 1n an analysis repository, which 1s accessible by other CSAFE. tools. It
provides a uniform interface to the underlying XML object model that represents
elements of the architecture (i.e. architectural structure with its descriptions, services,
interfaces, constraints and properties). Table 5.2 shows the original DocManager

component specification, and Fig. 5.5 shows part of the XMI/XML transformation of

1
the DocManager component.

!"The description has been simplified but does not affect connotation of the content.

92

Chapter 5

Evaluation 1:Electronic Document Delivery Information Svstem

Table 5.2 DocManager component specification

Name

DocManager

Type:Subtype

Component

Description

Users will have access to a set of services determined by the permissions
associated with their account. All users are allows for document search and locate.
Only staff library can place document order.

A document search will be initiated by a search criterion. The output will be a set of
document identifiers.

A document locate service will be initiated by a set of document identifiers and the
output shall be asset of location identifiers.

Properties

- Component.Standard = null

- Component.Cost = null

- Component.Version = 0.2

- Component.Availability = inhouse

- Component.Certification = No

Component(ln) =4

Component(Out) = 2

- Component.Services = IDiscovery, |I0rder
Business.Cost = Null

Business.Schedule = Null

Business.Platform = Windows XP
Reliability.Availability = Nul

Maintainability.Time = Null
Maintainability.Requirement = user
Maintainability.Technology = Null
Performance.ResponseTime_UPL = 0.5 sec.
Performance.ResponseTime_PL = 3 sec.

- Performance.Throughput_UPL = 150 trans. per sec.
- Performance.Throughput_PL = 75 trans. per sec.

Constraints

- Performance of response time must less than or equals to 0.75 sec. under-peak-
load and less than or equals to 4 sec. peak-load.

- Performance of throughput must greater or equals to 150 trans. per sec. under-
peak-load and must greater or equals to 70 trans. per sec. peak-load.

- Maintainability of requirement must equals to user.

- Component of availability must equals to inhouse.

- Business of platform must equals to Windows XP.

Interfaces Provided -> IDiscovery, |IOrder
Required -> IRegistry, ISupplier, ILogin
<Component xmi.id="Im456fe435m1254d641e78mm7be8" name="DocManager"

visibility="private" isSpecification="false" isRoot="false" isLeaf="false" isAbstract="false"
isActive="false">

<ModelElement.constraint>

<Constraint xmi.idref="13003240am1254ec16e03mm7db6"/>
<Constraint xmi.idref="13003240am1254ec16e03mm7daa"/>
<Constraint xmi.idref="Im7e3cc993m12665521f35mm7b27"/>
<Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bef"/>
<Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bed"/>
<Constraint xmi.idref="Im76dd02a2m12668f792b5mm7beb"/>

93

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

<Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bdf"/>

<Constraint xmi.idref="Im76dd02a2m12668f792b5mm7bdd"/>

</ModelElement.constraint>

<ModelElement.taggedValue>

<TaggedValue.dataValue>Users will have access to a set of services determined by the
permissions associated with their accounts. All users are allows for document search and locate.
Only library staff can place document order. A documents locate service will be initiated by a set
of document identifiers and the output shall be a set of location identifiers. A document search
will initiated by a search criterion and a list of databases to be searched. The output will be a set
of document identifiers.

</TaggedValue.dataValue>

<ModelElement.taggedValue>

</Component>

Fig. 5.5 XMI/XML specification of DocManager

Fig. 5.6 shows how the process is supported in the toolset and how the final result 1s
organised. The root of the tree represents the overall system architecture. The nodes
of the tree represent the system components. Fach component has a set of interfaces
and connectors. Fach architectural element 1s also associated with an optional set of
properties and constraints. Part of the XMI/XML specification of the system is shown

n the right pane.

‘_', g{u;ﬂem BT Specification| Scenario Formulation
7 | L]

o (connectors)
=3 DocumemDelivery
B (connectors)
=-§] AdminManager
| = ontertaces)
E-1f (provided) IManage
€D acet_create
€D acel_remove
i—ED acel_setaccess
gD admin_services
| g [required) lAuthorization
=-£] DocManager
| = onterfaces)
| -2 (provided) IQuery
document_locate
i—ED) document_ordar
D docurnent_search
D) docurment_senvices
¥ [required) Authorization
f [required] IRegistry
| ‘g frequired] ISupplier
-] DocumentRegistry
| = (nterfaces)
| S-gf [provided] IRegistry
D accessLocate
| D accessSearch
&£ DocumentSupplier
| = onterfaces)
| E-pf [provided] 1Supplier
-] validManager
=[] (mertaces)
E-pf [provided] Wutharization
Acct_permission
-1 (provided) ILogin
D User_validation

rXMIHML Spacification

<XMl.content >
<UML:Model i id = TrmAS6Fe435m1 254064 LeTEmn7 <08 name = ‘madel ' isSpecification = Talse”
isRoot = Fales' isLeaf = False' isabstract = Fakse'>
<UML:Namespacs.cwnsdElement >
<UML:Component xami.id = Im456fe435m1254d64 Le78mm b name = “ValidManager’
wisibility = 'privabe’ isSpeciication = Take' Root = Talse' isleaf = Takie'
sAbstract = False' shctive = Taka'>
<UML:ModeiElement chentDependency >
<UML:Abstraction xmi.idref = TrrdS6Fe435m1 254064 16 T8mm7hT4 >
<L ariidref = 132f i
<UML:ModeElement chertDependency >
<UML:ModelElsment .canstraint >
<UL Constraint xmi.idref = Tm7e3cc593m 1 266552 1F3SmmTbas [>
LML Constraint xmi.idref = ‘Im7e3cc993ml 266552 IF3SmmTbaT [
<UL Constraint ami idref = ‘Im7e3cc993m 1 266552 1F3SmmTbas >
<UML:Constraint xmi idref = Tm7e3cco%3m | 266552 1F3SmmTHa >
<ML Constrairt womi.idref = Im764d02a2m] 26686 792hSmenThf 1'f =
</UML:ModalElamant. corstraink »
<UML:ModelElement baggedyalue >
<UL Taggedvahoe xmiid = T30032408m1 254ec 1 6e03mm7db7’ isSpeciication = Talse'>
€UML: Taggadah X ;Usars shall be able bo login on to the system via a Web-based interface
ds. & [pégt; <fLUML: Taggedy.al

using vabd and
<UML:TagoedValue type >
<LIML: TagDefirition i idref = '13003240am1 254ec | Galiimm7dod | >

<JUML: Taggedvalue. type>

<UL Taggedvahe >
<ML Tag) e i i =] PHES5Z1 FISeen7 el i fi = Falza's
ML Ve house < oV sk, \

<UML:Tagoedvale type >
<LIML: TagDefirition xmi.idref = Tm7e3cco%3ml 266552 1F 3SmmT ol >
<JUML: Taggedvake types
<JUML: Taggedyalus >
<UL Taggedyahas xmi.id = 'ImTe3ccd93m1 2665521 F 38mm7bfe’ isSpecification = False'>
fUML.

datavaues

<ML
LML Tagoedvale, bype:
<LML: TagDefirdtion xmiidref = ‘Im7Te3cc993m1 266552 1F3Smm?c01’/ >
<fUML: Taggedialue type>
LML Taggedyshe =

ol o nes e EE Pt - R,

Fg. 5.6 Parsed EDDIS architecture (left pane) and EDDIS XMI/XML source file (right pane)

94

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

The EDDIS architecture tree comprises five components; AdmmManager,
DocManager, DocumentRegistry, DocumentSupplier and ValidManager (see Fig. 5.6,
left pane). The architecture tree shows the component nodes expanded to reveal
provided and required mterfaces. A provided interface 1s associated with service(s), for
example, IManage provides services; acct_create, acct_remove, acct_setAccess, and
admin_services. Lastly, the parser also captures other architectural element
information such as type, description, signatures, role, properties and constraints as

shown in Fig. 5.7.

= e%d's | Specification| Scenario Formulation
&~ System Design LA ——
o (connectors)
= D:‘E:cumenloeluery Type: [nul |
@-oo (connectors)
&-&] AdminManager Descriptionsd Signaturel Role(Connactor):
=) E (Interfaces) [Users wall have access to a set of services by the i their accounts. Al users are alows for document search Bamp;
21 (provided) IManage flocate. Orly lbrary staff can place document: order. A locate service will be initisted by a set of document identifiers and the cutput shal be a
t %accl_creme fset of h identifiers. A document search h and a st of databases to be searched, The output will be & set of document
€D acel_remave dentfiers.,
D acct_setaccess
€D Admin_services
ot
=-£] DocManager Froperies:
e E E;'i:?:;’m ey Concem Sub-Concem Valug
-1 (pn U § 1 i -
D) document_locate L Eus!ness Schedule slr!c!
€D document_order - |Business Cost strict 3
€D document_search ° |Business Platform Windows 20000P
—ED documen_services Companent Standard 739.50
o reguired] Authorization c t i 02
__;"1, [required] IRegisty amponent ‘arsion
“—f [reguired] ISupplier Component Out 2 provided =
=-§] DocumentRegistry Pem—— —
&-F gnterfaces) onstraints:
Sgf [provided) IRegistry Concern | Sub-Concem | Refinement [state] wawe | Twe | Stape]
] % :EE::E;‘:;:‘ C = equalsiol. == |inhouse Invwariant Document_senvices |
2§ DocumentSupplier Component |In Component(in) less than or equals... <= |5 required |imvariant Document_senvices
=-[(nterfaces) Component |Standard ComponentiStandard) equalsto 2. == |Z38.50 precondition | Document_serices
E-pf [provided] ISupplier equal.. == |user Irwaniant Document_services
= g E”::ﬂ:?:;] Maintainability Time Malntainability(Time) less than ore.. <= 18 months Invaniant Document_order
. & i Time_PL Time_PL)..|== |4 seconds precondiion |Document_services | |
®-7f (provided) ILogin Time_UPL Time_UPL. == |0.75secon.. precondition Document_senices [

Fg. 5.7 DocManager component specification (right pane)

5.3.1 Formulating EDDIS Analysis Scenarios

After architectural transformation has taken place, analysis scenarios may be
formulated. Analysis scenarios are a simple yet effective way to represent quality
concerns as goals to be addressed and achieved during the process of architectural
analysis. Quality concerns relate to non-functional requirements (NFRs). They reflect
concerns such as system dependability, project cost, schedule and effort, and

component concerns such as availability, certification, support and compatibility.

95

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

CSAFE allows system designers to create scenarios to perform structural,
conformance and quality checks as well as “what-if” analysis. For the purpose of this
analysis we have formulated two different scenarios. The first scenario 1s formulated
from the Requirement Viewpoints to improve the mamtainability, performance and
rehability (.e. availability) of EDDIS. The second scenario 1s formulated from the
Programmer viewpoint, who 1s mterested to improve only performance of EDDIS.
The analysis scenarios may be selective (l.e. component or service level) or global
(system level). Table 5.3 and Table 5.4 show the concerns identified for the scenarios.
Scope 1dentifies aspects of the system affected by a particular concern. Detailed

descriptions of these quality concerns are provided in Appendix G.

Table 5.3 EDDIS Scenario descriptions - Scenario 1

Concern Sub-concern Description (Refinement) Scope Wit.

Component Availability Component(Availability) equals accessLocate High
to web service

Component Certification Component(Certification) equals accessLocate Medium
to yes

Component Cost Component(Cost) less than to accessLocate Low
500

Component Standard Component(Standard) equals to accessLocate High
739.50

Reliability Availability Reliability(Availability) greater accessLocate High
than or equals to 60

Component Availability Component(Availability) equals accessOrder High
to web service

Component Certification Component(Certification) equals accessOrder Medium
to yes

Component Cost Component(Cost) less than to accessOrder Medium
650 yearly

Component Standard Component(Standard) equals to accessOrder High
739.50

Maintainability Time Maintainability(Time) less than or | accessOrder High
equals to 18 months

Reliability Availability Reliability(Availability) greater accessOrder Medium
than or equals to 65%

Component Availability Component(Availability) equals accessSearch High
to web service

Component Certification Component(Certification) equals accessSearch Medium
to yes

Component Cost Component(Cost) less than to accessSearch Low
500

Component Standard Component(Standard) equals to accessSearch High
739.50

96

Chapter 5

Evaluation 1:Electronic Document Delivery Information Svstem

Concern Sub-concern Description (Refinement) Scope Wit.
Reliability Availability Reliability(Availability) greater accessSearch High
than or equals to 60
Component Availability Component(Availability) equals admin_ Low
to inhouse services
Component Version Component(Version) greater than | admin_ Low
or equals to 0.3 services
Maintainability Requirement Maintainability(Requirement) admin_ Low
equals to user services
Component Availability Component(Availability) equals document_ Low
to inhouse services
Component In Component(In) less than or document_ Medium
equals to 5 services
Component Standard Component(Standard) equals to document_ High
739.50 services
Maintainability Requirement Maintainability(Requirement) document_ Low
equals to user services
Maintainability Time Maintainability(Time) less than or | document_ Low
equals to 18 months services
Component Availability Component(Availability equals to | user_ Medium
inhouse validation
Component Certification Component(Certification) equals user_ High
to yes validation
Component Version Component(Version) equals to user_ Medium
4.0 validation
Maintainability Technology Maintainability(Technology) user_ Medium
equals to updated validation
Maintainability Time Maintainability(Time) less than or | user_ Medium
equals to 12 months validation
Business Cost Business(Cost) equals to strict System Medium
Business Platform Business(Platform) equals to System High
Windows 2000/XP
Business Schedule Business(Schedule) equals to System Medium
strict
Performance Response Performance(ResponseTime_UPL | System High
Time_PL) less than or equals to 0.75
seconds
Performance Response Performance(ResponseTime_PL) System High
Time_UPL less than or equals to 4 seconds
Performance Throughput_ Performance(Throughput_PL) System Medium
PL greater than or equals to 150

transaction/per second

Fig. 5.8 shows the scenario derived for the programmer viewpomt (i.e. Scenario 2).

97

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

New Scenario

Scenario Name:

|E‘.cenarm 2 ‘

AuthaniStakeholder:

[ionn:progammer J

Date:

created by john:iprogammer at 2011-10-18 15:03:38
modified by john::progammer at 2011-10-18 15:03:38

Comment:

[The scenaria s created to analyse EDDIS architectural design from programmer viewpoink in
lterms performance issue.

|@ | cancel

Fig. 5.8 Creating a new analysis scenario ‘Scenario 2’

Table 5.4 EDDIS Scenario descriptions - Scenario 2

Concern Sub-concern Description (Refinement) Scope Wt.
Performance Response Performance(ResponseTime_UPL | System High
Time_PL) less than or equals to 0.75
seconds
Performance Response Performance(ResponseTime_PL) System High
Time_UPL less than or equals to 4 seconds
Performance Throughput_ Performance(Throughput_PL) System High
PL greater than or equals to 150
transaction/per second
Component Availability Component(Availability) equals accessLocate High
to web service
Component Certification Component(Certification) equals accessLocate Medium
to yes
Component Cost Component(Cost) less than to accessLocate Low
500
Component Standard Component(Standard) equals to accessLocate High
739.50
Component Availability Component(Availability) equals accessOrder High
to web service
Component Certification Component(Certification) equals accessOrder Medium
to yes
Component Cost Component(Cost) less than to accessOrder Medium
650 yearly
Component Standard Component(Standard) equals to accessOrder High
739.50
Component Availability Component(Availability) equals accessSearch High
to web service
Component Cost Component(Cost) less than to accessSearch Low
500
Component Standard Component(Standard) equals to accessSearch High
739.50
Component Availability Component(Availability) equals document_ Low
to inhouse services

98

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

Fig. 5.9 show part of the analysis scenario for the document services service n
Scenario 1. The constraints associated with the service and their weightings are shown
n the right pane. The bottom left form in the right pane provides a refinement of the
selected constramt. The scale mformation shows mdicates lowest and highest possible
weighting value for the constraint. The tool uses this information to generate query
statements that are used by the mapping processes to locate matching architectural and

component solutions.

=] eddis Specification | Scenano Formulabon
=) Systemn Design Y
| (connectors)
=-F DocumentDelivery o o — =
B (connectars) | 3 Eticit & Prioritize | (53 Mapping | 03 Assessment
-] AdminManager)
= (interfaces)
-7 (provided) IManage Constraints
€D acct_craate
@D acct_remove

£ scenaniot ~ | cenario 2+

() Aceept Weight

4y Component

—ED atel_setaccess Concem Sub-Concern | Refinamant Wigight |
A0 i emnres (Companent . Companent hvallabily equals o nouse _ [T N = XL
of] D'm‘;‘car[':;:;mm Iudnorization {Component In Componentin) less than or equals to 5 requirad Medium 2 BE%
= v i - . b Shabd :
e[gnterfaces) [AT S 2 =i A P) e O Sl Hioh __[~13 190%
- (provided) Wuery
t guocumenl_locm High
document_order) Wedium
Quality
€D dotument_search i Lo
gD documant_servces: || | Contem _Sub-Concem | i Rafinerment Lkl UL I
eS feaured | rantainabiny — Regu itanabiltFo squals 1o user w1 os sl
i g Eeﬂ“"'-‘:} :geg'slw Al o R __F (ResponseTime_PL) less than of equals to 4 seconds High 3 100%
. equired] ISupplier t T
=-£] DocurnentRegistry | bbb Ao T, PO asponaa Tine, UPL) e el r aguets 1o D75 Sa. . High 3 100,)| |
= gntertaces) [Performance Throughput PL__ Performance(Throughput_PL) grealter than or equals to 150 trans ., Medium 2 66% x>
E-pf [provided] IRegisiry
% atcessLocate A& Business
=-§] DocumentSupplier | Concem | Sub-Concem | Refinament | Weight |
= nterfaces)
- lprovided] 1Supplier
gD accessOnder
=-£] vahiaManager

=~ [finterfaces)
E-gf [provided] LAuthoszation rDescrplive Sentences- Seale Information

€D Acet_permission
S-1P (urovidad) ILagin With respect to Standard"on a Scale’ ranging from

L High' to Low’, Tomponent{Standard) equals to £39.50
D uan_vilalin rates High' worst [Low | Best. |H|gn |

Unils: |Seale]

Fig. 5.9 Formulating scenario for docurnent_services - Scenario 1

5.3.2 Analysing EDDIS Architecture

The analysis begins with the mapping of a scenario onto architectural design templates
as described m Section 4.1.4 (see Fig. 5.10 and Fig. 5.11 for Scenario 1 and Scenario 2
respectively). The output of the scenario mapping process is a set of architectural
design templates that best match the qualiies and the quality thresholds identified in
the analysis scenario. Architectural design templates iclude design patterns,

architectural style and local orgamisation-defined design schemes. The flexibility

99

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

provided by CSAFE means that organisations can add therr own custom design

templates, design patterns and heuristics.

Specfication | Scenario Formulation

| i seenario = [B scenarinz - |
[G Enct & Priortize | 5 Mapping | 53 assessment |
I « Search Termplabe

P
5
@
5
2 Quiality constraints of design
=
% Coneem Bub-Concem | (=]
| Maindainainy Requirement vl
Z | [Maintainabilty Technology vl
6% |Maintainabllity Time Il
= i‘Pedmmam:e ResponsaTime_PL |g_§
E | |Perormance ResponseTime_UPL Il
g rformance Throughput_PL 2l
3 | [Relabilty Aallability vl
* mapping for selacted concams and subtoncems
Dasign template catego y
in & Hory. In accordance with selected catagories -
| & | |Pattarn Patlern, Style, Local Scheme,
& | [5te (—]
L Local Schame Lokl

Fig. 5.10 Mapping EDDIS formulated scenarios of Scenario 1 onto Design Template Library

Specification ES(enatio Farmulation

[B scenaior ~ [L Scenario2 = |)
[Eieita Priorzs | C5 Mapping | 55 assessment |
(& 1 &, Search Template
PR
9 Quality constraints of design
=
£ Concemn Sub-Contem L]
s Maintainability Requirament |
2 | |Maintainability Tachnology El
5 Malntainability Time D
“= | [Performance ResponseTime_PL]
g Performance ResponzeTime_UPL E|
g' Perfarmance Throughput_PL
S | |Reliabilty vallability =
]|
i % Successfully mapping for selected concems and subconcems
Design template category: -) iIn accordance with selecled calegories -
& | null, Patham, Stle, Local Scheme,
% | |Pattern
@ | [ste ok]
Lacal Sch l

Fig. 5.11 Mapping EDDIS formulated scenarios of Scenario 2 onto Design Template Library
Table 5.5 shows a typical in-house design template called ServiceOrder Provision.

Table 5.5 Service Order Provision template

Category Local scheme

Name ServiceOrder Provision

Also-Known-As Order Provision

Related-Rules -

Intent A document may require service of search, locate and order. There is a

need to restrict the order service to reside in a component, which consists
service search and locate. The program’s requirements imply constraints on

100

Chapter 5

Evaluation 1:Electronic Document Delivery Information Svstem

the order in which threads should access the resources.

Context

When document manager require search, locate and order services,
restricted document order in a separate execution is good a strategy.
Suppose you are designing an application to manage a document for an
online digital library. A component obtain document and location
identifiers from an centralize document registry before placing a document
order. Document orders are placed with the document supplier
component.

Motivation

DocumentManager may require services of DocumentServer which consists
of ISearch and ILocate, and DocumentServer which consists of |Order.

Configuration

<= componert , subsystem »»
ServiceOrder_Provision

C--- >0
ISearch ISearch
<< companent »> —
< -
DocumentRequesterB componert , web service
DocumentRegistry
== =0
ILocate ILocate
10rder
)
v
C

10rder

[x< component , web service >»
DocumentProvider

Consequences

Performance.ResponseTime = {the rules provides a way to control, 2}
Performance.Throughput = {the rules provides a way to control, 2
Maintainability.Time = {provided a systematic allocation towards
maintenance time for the document main services, 3}
Maintainability.Requirement = {allows the document server maintain the
order service more effectively, 3}

Reliability.Availability = {the rule provides a better way to control the
availability of related services. Which allow longer duration of order service
to be served, 3}

Fig. 5.12 shows three recommended architectural solutions generated as a result of

the concerns 1dentified m Analysis Scenario 1. The suggested architectural solutions

are Cluster-Server pattern, 1hree-tier proxy server architectural style and Service Order

provision architectural style. The recommendations are described in detal in

Appendix F. The analysis process rates the architectural design templates based on

how well they contribute or lend themselves to critical quality concerns identified i the

analysis scenario. When the design templates are rated, they are moved to a solution

state where they are mstantiated to define the particular varation m the context of

EDDIS solutions. The designer notes are entered with the solutions to rationalise the

design decisions taken by the system designer. In the case where a recommended

design does not contribute to a quality concern a “Not Applicable (N/A)” remark 1s

entered.

101

G0l

| Specification l Scenario Formulation |

Jascenariui ~]ﬁ_scenan’o! ~ I

| & Eiicit & Prigritize | (3 Mapping | (5 Assessment |

]

|@Rate Template [Mote &Y

‘ Cnmponen‘l} SeMcal Raung} Design

al design Descriptions:
ClusterServer []
Service OrderProvision []
Three-tier proxy server :
| Specification |5cenarin Farmulailon|
[L scenariot ~ | Q) scenario2 ~ |
| & eiicit & Prioritize | (5 Mapping | 5 Assessment |
"5 | Rate Template () Note &)
g
Contributions: ,D_ Architectural design templates: Descriptions:
o
£ | Concem | Sub-Concemn % ClusterServer Th‘s_i§ ty_'picd refereu_'l:e architecture for a modern web-based system, A tier is 3
1 Maintainability Requirement Low || & partitioning of functionality that may be docated to a separate hardware, This improves
i - ServiceOrderProvision imaintainability while hiding the complexity of distrbuted processing. Requests from
2EEMsInisinsbilky Technology Lowl| 2 | |Three-ier proxy server [V] | Incividual browsers may frst aive at a proxy server, which exists to improve the
3 Maintainability Time Lowl| @ ftdossstalstosssel s sarvers cache frequently accessed Web
4 Performance ResponseTime_PL Ml ;tau:ass t"'ﬁﬂ\"a\’tﬁbﬂi:ﬁ- They are typically
wiork, so save significant
5 Performance ResponseTime_UPL Medi g _i) Sy servers are dso used ta restrict users’
6 Throughput_PL Medil | 2 - The design L z
7 Reliability Awailability High|| 3 .
Contributions:
B | # Concern Sub-Concern] ClusterServer ServiceOrderProvisi Three-tier proxy server
1 MWaintainability Requirement Low High High
2 Maintainability Technology Low MiA High
3 Maintainability Time Low High High
4 Performance ResponseTime_PL Medium Medium Medium
5 Performance ResponseTime_UFPL Medium Medium Medium
6 Performance Throughput_PL Medium Medium Medium
7 Reliability Mailability High High Medium

Fig. 5.12 Recommended solutions - Scenario 1

¢ e

(e

uIQlSAS uoneuwLojuy A.IQA!IQ(I JUUWNDOT dTUODII[

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

Fig. 5.13 shows the ClusterServer pattern dependency and contributions that the
template may posses with its scoring values. The figure also shows the design template

configuration and XML specification in the design template library.

22 Design Template Library [Cif=i B3
Rutes:
.i.a‘ Pattems 1 Mame i’CIusIerSe'ver
) ClusterServer
L proxy | Descriptions | Non-Functional Properties | Structural | Specification |
Q] Sttes . Specify a rule contributions here:
Three-tier proxy server
@] Local szr!tlrr.es)) Quality Sub-Quality Refinemant | Weight]
SericeOrderProvision 3 e M shput_. |C ™ parfi 8 |Medium E.l
4F e Thraughput_... |C is g pert 3 Medium | |
5 Reliability Avallability ClusterServer is improving availability using active redundancy a... [High
6 quirement |C complexity may system maintainability. |Low
7 Mairtainability Tech |Clush complexty may compromise system maintainability. |Low
8 Mairtainability Time _'3IuslerSEr\'9r complexity may compromise systenm maintainability | Low

L QSecuity ribeearity ACIusRering nAbo bem 0F FOR SEREE AR Comonise intearite o data, |l o
Qualtty. [Maintainability |

< HEC

Sub-Quallty [Technalogy [| wweight [Low

Marrig: [ClusterSaner

Refinement

| Descriptions | Nor-Functional Froperties | Structural | Specification |

ChusterServer complesity May compromiss system maintainabiity

Name: [ClusterSenmr WMIDOML Specification

n5 | Mon-Funcionsl Praperties | Structmal | Speciication

Specity a rude conbguraton here

Path: [CiDotuments and SetingsinarwaatBaans_prowctsiC SAFErsttics siICILstorSenur prg][Browse
I <UML:Namespace. ownedElement >

<UML: Component xami.id = TaBleSam]1 242596220 Tmm7Teéc’ name = TocumertRequesterd’
viskiity = ‘private’ sSpeckication = Talse' sRoot = False® isLeaf = Talse’

s s | e componertss |
=0 roe - m—

b A — Documentegistry! |
Wiscovery IDlscowery \Access IAccens]
o pe——] e companert v
v UosusmenRequosterh usterserver P vy .
Fioqeoni) <UML:Component xmi.id = TaleSam] 2259622 TremTeSY name = ChisterServer’

vishillty = ‘privats’ Speckication = Talse' isRloot = Talse” islasf = Takse’

J / ._
;o PSR I >0 g TR =0 S CompOrant ==
7] e [osciamerEtegisry...n
Ragiewy Wegsty [[

Fig. 5.13 ClusterServer pattern with its contributions?, configuration and specification

The rationale for each recommended architectural solution 1s provided below:

o Service-Order Provision. This architectural style represents a local (in-house)
design solution for an online digital library that may require document search,
locate and order services. The architectural style enforces the separation of search
and locate services, which reside in the same component, from the order service.

This may imply that there are constraints on the order m which threads access the

2 The toolset allows the system designer to record a list of concern/sub-concern and retrieve back thru button click,
detail descriptions is described in Appendix F.

103

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

resources. However, separation of order services may shghtly affect performance
of the applicaion response time and throughput. The design mproves
maintamability by providing a systematic allocation towards maintenance time for
the main services, and allowing the document server to maintain the order service
more effectively. This architectural style improves system availability by controlling
the provision of the order service.

o (luster-Server pattern [Msdn10]. This design enables the system to maintain good
performance while mmproving availability by using active redundancy and
automatic restart during faillover. However, cluster-server complexity 1s likely to
compromise system maintainability.

o Three-tier proxy server architectural style [BassO5]. This 1s typical reference
architecture for a modern web-based system. A tier 1s a partiioning of functionality
that may be allocated to a separate hardware. This improves maintainability while
hiding the complexity of distributed processing. Requests from mdividual browsers
may first arrive at a proxy server, which exists to improve the performance of the
Web-based system. These servers cache frequently accessed Web pages that users
may retrieve without having to access the Web site. They are typically located close
to the users often on the same network, so that they save sigmficant
communication and computation resources. Proxy servers are also used to restrict

users’ access to certain Web sites.

Table 5.6 shows how the three alternative designs contribute to the critical quality

concerns.
Table 5.6 Architectural design alternatives contributions - Scenario 1
Concerns Sub-Concerns Architectural Design Alternatives

CS SOP TPS

Performance Response time Medium Medium Medium

Throughput Medium Medium Medium

Reliability Availability High High Medium
Maintainability Requirement Low High High
Technology Low N/A High
Time Low High High

Legends: CS — ClusterServer SOP — ServiceOrder Provision TPS — Three-tier proxy server

104

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

5.3.3 Revising EDDIS Architecture

The final step mnvolves modifying the EDDIS system architecture to reflect the
recommended architectural solutions. The modified architectures will then be rated
for their relative contributions to the quality concerns. Fig. 5.14) to Fig. 5.14(u) show
the separate EDDIS architectures based on the three design templates. The
modification to the original architecture 1s shown in the boxed area. The mapping

process 1s explained next.

<<interface>> <<interface>> <<interface>>
IManage ILogin IRequestA
addUser() validateUser()
delUser() logout() search() <<interface>> <<interface>>
setAccess() \ locate() IDiscovery IAccessl
= setSearch()
ILogin setSearch() setLocate
IManage 9 IRequestA 0
<<subsystem>>
_ClusterServer
ValidManager
|Access1 DocumentRegistryl
IDiscovery
Admir (] DocumentRequsterA ClusterServer
|Authorization

<<interface>>

: . o gl
/ 1Supplier v / IRegistry |Access2 DocumentRegistry..n

IAuthorization DocumentSupplier
setLogin()
<<interface>> <<interface>> <<interface>>
resetCondition() e flliviioay intertace
setSearch()
setOrder() setLocate() setLocate()

Fg. 5.140) ClusterServerpattern (S1)

<<interface>> <<interface>> <<interface>>
IManage ILogin IRequestB

addUser() validateUser() search() <<interface>>
delUser() logout() locate() ISearch
setAccess() \ order()

setSearch()

i IRequestB
IManage ILogin q
<<subsystem>>,

ServiceOrder_Proyision

2]

ValidManager DocumentRegistry
O

ISearch l
AdminManager DocumentRequesterB 4C ILocate -
<<interface>>

IAuthorization ILocate

setLocate()

2]

10rder (3 _{ pocumentProvider

<<interface>>
IAuthorization

<<interface>>

setLogin() I0rder

resetCondition()

setOrder()

Fig. 5.14() Service-Order Provisionlocal-scheme (S2)
105

Chapter 5

Evaluation 1:Electronic Document Delivery Information Svstem

<<interface>>
IRequestC

<<interface>>
IManage

access()

addUser()
delUser()

)

IRequestC

<<subsystem>>
Three-tier Proxy

Application_Logic

©
IManage

€] /©\
Browser

2]

ProxyServer \Im%n/

AdminManager

ValidManager

ol

2

|

IAuthorization

2]

IEncm /

/

/

DocumentDatabase

—-@@ase

<<interface>>
|Authorization

setLogin()
resetCondition()

:

<<interface>>
IRequestA

search()
locate()
order()

<<interface>>
ILogin

validateUser()
logout()

<<interface>>
IDatabase

setSearch()
setLocate()
setOrder()

Fig. 5.14G1) Three-tier proxy serverarchitectural style (S3)

CSAFE assists in modifying the mitial architecture into the recommended solutions

using a two-step process:

e Irstly, it maps the existing system architecture services onto the design

template’s abstract components. This 1s done taking into account any specified

constraints and design heuristics.

e Secondly, it maps the abstract components onto suitable and available concrete

components.

Fig. 5.15 shows how the CSAFE. toolset aids in the mapping of EDDIS architecture

services onto the abstract components of the design templates. In this example,

document_services service 1s mapped onto the DocumentRequesterBB component of

the ServiceOrder Provisioning design template. Chicking on the abstract component

returns a list of services from which document_services s selected. When the mapping

1s complete, the abstract component DocurnentRequesterB 1s associated with four

services Including document locate,

document order, document search and

document_services. The toolset provides a visualisation of these associations (refers to

Fig. 5.15).

106

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

(] eadis | specificaton | Scenano Formuation |
B ?:mm Design e
“wa (conneclars) Rsconanot v | f Scenario2 ~
=3 DocumentDelivery J a cenrel . =
s (connactons) Q Elicit & Priositiza | 7 Mapping [3 Assessment |

=-E] AdminManager
= pnterfaces)
s (provided) IManage
—oF [required)
2§ DacManager
=[] pnterfaces)
B¢ (provided) [Guery

| &, Search Service & Map Servce| & Refactor)

ign

| . [s238rmcecraerprovsion I~

| Rannn‘l Desi

£4 Template Absiract Companent

|--Q dacument_locate |DacumentProvider
- 3 dacumen_order DocumentFegisiry
|-ED document_search |
e DocumentRegueste | ED) document_locats
| D cocument_sendces 2 e =m

ServiceOrder_Provision::

—if [required] lutharization @
i [required] IRegistry ;|
gf [required] ISupplier
E-£] DocumantRegistry
&[] (nterfaces)
- [provided] IRegistry ——
-] DocumertSupplier Diescriptions: =
[Emmmes} X Found servce document_servces of -
Dk Foagunsts H
=€ vauﬁa[:ran;?m il m;armw = y Mapping senice Socument_serices anto DocumentRequesterd successtull
- anterfaces) m
oK

Emmm‘m |Ennq_-a |

| Comnon!ml Senvice

immumn _QW

£4 Apstract Component =

| AzminManager
WalidManager

Hg. 5.15 Mapping document_service onto DocumentRequestB abstract component

If a desired service 1s not found mn the design template, service mapping can still be
performed through a refactoring facility provided by tool. Refactoring allows manual
mapping and component reconfiguration. Fig. 5.16 shows an example of refactoring
that reconfigures the ValdManager component in the mitial EDDIS architecture for
the ServiceOrder Provision design template. Fig. 5.17 shows an association diagram of
the AdmnManager and its services after being reconfigured for the ServiceOrder

Provision design template using refactoring.

| & scenario 1 ~ | & scenario2 - |
| 5 Eiicit & Prioritize_| 53 Mapping | 5 Assessment |
|E\Eaarcn Service 4f Map Serice ﬁF{emln: @

S
G
a
|- Selected architectural alernatives: [52.8eniceOrderProvision [+]
é | B Refactor =%
1
@ | £]Design Component £3 Abstract Component
=
3 valid] [ooc rovider
T 3 Interface: D senvice: gatumanﬁ?euis!r\r
13 . — - R
s +Authorization I:‘ private | [User_validation ServiceOrder_Provision: subsystem
£ +Login public
5]
—

resull
-
y ” Wi oas D o

D Nested onto 5 .m ovided Interface
| | Ingtantiate provided intarface:
Desio nertce raorzsion_[7] | = =]
{i=] -
= L
Instantiale design raquired Interface: |IRequests -

5 |

Fig. 5.16 Refactoring ValidManageronto the ServiceOrderProvision
107

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

Specification | Scenario Formulation

[L scenariot - [Scenario2 - |

| G5 Elicit & Prioritize | Cj Mapping | (5 Assessment
| & search Senice & Map Senvice 47 Refactor £

=

k=

@

a

| Selected architectural alternatives: [s2:8enice0rderProvision [~]
5

x $3 Template Abstract Component

8 [oocumentProvier

= DocumeniRegistry

= DocumeniRequesterB EDMmin_amvm I E Manage

3 | |SeniceCrder_Provision: subsystem | d

2 D) acct_create)

5 r £3 AdminManager
& D) acct_remove L

ED acct_setaccess
Descriptions:

£3 Abstract Component: =

AdminManager
ValidManager

Fg. 5.17 AdminManager abstract component with associated services

The second step composes the abstract EDDIS architectures by mapping their
abstract components onto concrete components in the repository. The tool provides a
quantitative indication of how well each mapping fits and provides further suggestion
for component selection. Mismatches are flagged and indicated m colours that
correspond to the severity of the mismatches levels (e.g. low, medium or high
warning). The severity is borne by the weight assigned during the formulated analysis
scenarios which prioritise the concerns. Fig. 5.18 shows the result of mapping the
AdnmnManager abstract component to AdminManager:_ 3 concrete component which
has a 669 match. The fithess percentage 1s calculated based on number of matches
divided by number of the component selected concerns. For example,
AdmiManager_ 3 matches two divided by three concerns of the AdmnManager
abstract component. These represent the required component version, which should
be greater or equals to 0.3, and the maimtanability concern, which equals to user.
AdmnManager_3’s version and mantamability are 0.4 and user. While the
component’s availability property 1s specified as COTS mstead of mhouse. Detailed
specifications of the concrete components are available in Appendix C6.

108

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

Specification | Scenarlo Formulation
_[a scenario 1 =] &L Scenario2 -]

[() Elicit & Prioritize [[Mapping T 39 Assessment 1

("5 || S Searchc & Map © S Structure &)
§ L
l—— Selected architectural alternatives: |82 SenviceOrderPravision]"|
2| :
13
,% Abstract component: |.ﬂ.n‘minHanager |V| —— hdminManager_El | [~] |
g . Refinement Concern | SubConcern | State | Value Type Scope
Ly I L"_L\"' ilability) equals to i Companent HAvailability EL inho... |invariant Admin_services
E Z |..:i3 Compaonent{version) greater than or equals to 0.3 Component Version GE |03 |precondition Admin_services
§, Z Iﬂ intainability {Requi) equals lo user intainability |Requi EL user |invariant Admin_services
e |
LS
-
: !) AdminManager suc with 3
Search results:
{Legends: @ HighWaming ©@ Medium Warning () LowWarning }
S WB3x_| AdminManager_1
L mi tch;. Comp itivailabilitd must be eguals to inhouse. The actual value for C (orailability) for Adminkd: _liscots
) tch:. Comp i ion) must be greater than or equals to 0.3 - The actual value for Comp i\ iom) for Admink _1is0.2
-4 QK The actual value for MaintainabilitRequi f) for Admi _1is user
| AdrminManager_2
-4 Ok The actual value for Comp llability) for Admi _2is inhouse
4 OK:: The actual value for Comp {h ion) for i 2is04
| % OK: The actual value for Maintainabilite{Regqui if) for Admi _2is user
=~ BB _| AdminManager_3
omi hi. G ilability) must be equals to inhouse. The aclual value for C for _Jiscots
4/ Ok The actual value for Comp fy for _3is04
“—4 Ok The actual value for MaintainabilitRequi £y for Admin. r_3is user

Fig 5.18 Mapping onto concrete component

The structural checker completes the composition process by ensuring structural

compatibility between the abstract and the selected concrete component. For example,

Fig. 5.19 shows potential mismatches found by the checker between AdmmManager

and AdminManager_3. The checker flagged two error messages: the first indicates the

addUser signature of IManage provided mterface has an incompatible method

signature, and the second indicates the deleteUser signature of IManage provided

interface has an incompatible parameter type. Nevertheless, the decision 1s left to the

system designer either to proceed with the composition, or to maintain a temporary

placeholder for the abstract component until a suitable concrete component is found.

109

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

Specification | Scenano Formulation

[& scenario1 = | 8 scenario2 ~ |
| G Elicit & Prioritze | (5 Mapping | (5 Assessment

— & [
g | % Search Component 3 Map Component 3¢ Structure &
[
3
|——{ Selected architectural alternatives [s2:5enviceorderProvision [+]
= =
g ;
|- Abstract e : I'u |v| e ﬁmmmanager_l @
@
o
5 | Refinement Concern | SubConcern | State |Value | Type | Scope
« (4, Component (Availability) equals o inhouse Component | Availability EL inho... |imvariant | min_services
E £y Component(Version) greater than or equals to 0.3 Component Version GE |03 |precondition min_services
= I .
= ﬂ Maintainability (Requirerment) equals to user Maintainability |[Requirement |EL user |imariant IMmln_Sém¢9$
£ | | |
S]

e AdminManager AdminManager_3

+IManage addUser(name:String, id:Integer, calegoryinteger,) == addUser { name:String, categoryInteger, id-Integer,)
+IManage deleteUser{idinteger,) <= deletellser { id:String,)

y

Fig 5.19 Structural mismatch found between AdmimManagerand AdminManager 3

Lastly, the design alternatives are assessed by comparing the quality concerns
identified i the analysis scenario against the contributions of the design alternatives.
Table 5.7 and Fig. 5.20 show the result of the comparison for Scenario 1. While Fg.

5.21 shows the result of the comparison for Scenario 2.

Table 5.7 Comparison of EDDIS concerns and design alternatives contributions - Scenario 1

Scenario 1

Mean S1: S2: S3:
Concern Wi Sub concern Wt. Scope Ccs SoP TPS
Performance High Response Medium S1.2.1 Medium Medium Medium
time_upl
Response Medium S1.2.1 Medium Medium Medium
time_pl
Throughput Medium S1.2.1 Medium Medium Medium
Reliability High Availability High S1.3.1 High High Medium
Availability High S1.4.1 High High Medium
Availability Medium S1.5.1 High High Medium
Maintainability Medium Requirement Low $1.2.1 Low High High
Requirement Low S2.1.1 Low High High
Technology Medium S1.1.1 Low N/A High
Time Medium S1.1.1 Low High High
Time High S§1.5.1 Low High High
Time Low $1.2.1 Low High High

Legends: CS — ClusterServer SOP — ServiceOrder Provision TPS — Three-tier proxy server

110

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

Specification Scenario Farmulation

[B scenaio 1~

| ‘”‘;n Elicit & Prioritize :_7-”'&1 Mapping | T"; Assessment

|| ol 55 Tra0fr €2 Scores [l Report £ Refresh

I # Concern MeanWeight Sub-Concern Weight St:Cl S3:Three-tier proxy server
1 Maintainability Medium Requirernent Low Low High High
2 Maintainability Medium Requirermnent Low Low High High
3 Maintainability Medium Technology Medium Low MIA High
4 Maintainability Medium Time Medium Low High High
5 Maintainability Medium Time High Law High High
6 Maintainability Medium Time Lovwr Low High High
7 Performance High Throughput PL Medium Medium Medium Medium
g Performance High ResponseTime_UPL High Medium Medium Medium
9 Performance High RegpanseTime_PL High Medium Medium Medium
10 Reliability High Awailability High High High Medium
11 |Reliability High Awailability High High High Medium
12 |Reliability High Awailability Medium High High Medium

Fig. 5.20 Assessing quality concerns and architecture design solutions - Scenario 1

Specification | Scenario Formulation |

.Q_ scenatinl = ‘Q_Scenar\UZ = 1

|' ffa Elicit & Prioritize T ffﬂ Mapping T ffﬂ Assessment]

[onll contr (% sens 4% Scores () Report &Y "
Concern Sub-Concern Weight Si:ClusterServer _[S2:ServiceOrderProvis...s3:Three-tier proxy se...
1 Ferformance High ResponseTime_PL High Medium mledium Medium
2 |Performance High ResponseTime_UPL High Medium Mediurm Medium
3 |Performance High Throughput_PL High Medium mledium Medium

Fig. 5.21 Assessing quality concerns and architecture design solutions - Scenario 2

The Fig. 5.22 and Fig. 5.23 show the weighted contributions of the different design

alternatives for Scenario 1. S1 offers the poorest solution as 1t has an overall quality
contribution score of 0.641. Of the remaining, S2 has the better score of 0.818 and S3
a slightly lower score of 0.793. Although, S2 looks like the best design, it may not
necessarily be chosen. For example, the cost of implementing the system using S2 may
be beyond the organisation’s budget. To decide on the most acceptable architecture,

stakeholders need to explore how each suggested design relates to critical EDDIS sub-

concerns (see Fig. 5.24).

3 Details weighting and scoring values are compiled in Appendix D, Table D5.1
111

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

scenario 1: Architectural Alternatives Contribution

10
oo
os
07
oe
05

Rate

0.4
03
0z
0.1

i v o
52:ServiceOrderP rovision S3:Three-tier proxy server
Architectural Alternative

0o - -
51:ClusterServer

Fg. 5.22 Contribution of suggested alternatives according to overall - Scenario 1

scenario 1: Architectural contribution by concerns

o8 0.818

Rate
o
in

S1:ClusterServer S2:SeniceOrderProvision S3:Three-tier proxy server
Architectural Alternative

[W Maintainability W Pert 71 Reliability |

Fig. 5.23 Contribution of suggested alternatives according to main concerns - Scenario 1

scenario 1: Architectural contribution by sub-concerns

09 0818 0.793
os

Rate

S1:ClusterSenver £2:SewviceOrdeProvision S3:Three-tier proxy server
Architectural Alternative

|. Requirement B Technology I Time [ResponseTime_PL M ResponseTime_UPL [Throughput_PL I A\riilabilil\f|

Fg. 5.24 Contribution of suggested alternatives according to sub-concerns - Scenario 1

112

Chapter 5 Evaluation 1:Electronic Document Delivery Information System

The Fig. 5.25 shows the weighted contributions of the different design alternatives

for Scenario 2. In Scenario 2, all the three design alternatives offer an equivalent
quality contribution score of 0.666. The contributions at sub-concern level are also
equivalent (see Fig. 5.26). However, the programmer concern for performance 1s only

moderately addressed by all the alternative designs.

In this particular case, the preferred architectural solution 1s selected from the design
alternatives in Scenario 1 as the alternatives offer the same contribution for
performance in Scenario 2. However, in cases where design alternatives offer varying
contributions for different scenarios, further negotiation (trade-offs) may be required to
resolve the competing scenarios and establish an acceptable compromise. This may

mvolve weighting the stakeholder scenarios.

Scenario 2: Architectural contribution by concerns

10
0o

og
o7
o0&

Rate

05
04
0z
0z
01

oo
S1:Three-tier proxy server S2:SemviceOrderP rovision S3:GlusterSener

Architectural Alternative

Fig. 5.25 Contribution of suggested alternatives according to performance concern - Scenario 2

Scenario 2: Architectural contribution by sub-concerns

1.0
0g

08
ar] 0.666 : ! 0.666 : i 0.666

086
0222 0.222 0.222

Rate

0s
= | | .
o3 - - -

0z

> -—-—-

S1:Three-tier proxy sever SZ:SeniceOrderProvision S3:ClusterSenver
Architectural Alternative

‘l Response Time_PL M ResponseTime_UPL | :ThluughpuLPL‘

Fig. 5.26 Contribution of suggested alternatives according to performance sub-concerns - Scenario 2

* Details weighting and scoring values are compiled in Appendix D, Table D5.2
113

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

Sensitivity analysis

As part of the evaluation, two sensitivity analyses were conducted for Scenario 1 to
examine how robust the choice of architectural solution was to changes n the relative
weightings of critical quality concerns. The first sensitivity analysis examined how the
benefit value of the alternative designs might be affected by relative changes i the
weight of performance. The second sensitivity analysis examimed how value of benefits
offered by the alternative designs might be affected by relative changes in the weight of
maintamability. Before changes the relative weights for the different quality concerns

were: maintainability, 0.38; performance, 0.31; and reliability, 0.31.

Fig. 5.27 shows how the value of benefits for the architectural design alternatives
varies with changes n the weight placed on performance. If performance had a weight
of zero, the three performance sub-concerns would also have zero weights. After re-
normalisation, this would result n weights of 0.44 and 0.56 for reliability and
maintamability, respectively. At this point, S2 offers the highest level of benefits
followed by S3. S1 has the lowest benefit value. At the other extreme, if performance
had a weight of 100 (and therefore maintainability and reliability weights of zero) all the
three alternatives designs would have gradual decreasing aggregate benefit values of
0.66. However, since performance has a weight of 0.31, the software designer might

consider S2 and S3 marginally attractive solutions.

Sensitivity to Performance
107
| 0.307

004

081 —

074 —]
w — — — — _
@ 061
=]
o Altem atives:
®» 051
= | — 51: ClusterServer
T 044 I . .
o 1 52: ServiceQOrderProvision

03 53: Three-tiet procey senver

024

011

0.0+

00 0.1 02 03 04 05 08 07 osg o9 1.0
weighting value

Fig. 5.27 Sensitivity analysis of Performance - Scenario 1

114

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

CSAFE also supports sensitivity analysis at sub-concern level. The sensitivity analysis
graph for the throughput, a sub-concern of performance, 1s shown in Fig. 5.28. The
design alternatives, S2 and S3, become more attractive when throughput 1s assigned a
weight of 0.07. The system designer would need to conduct similar analysis for other

sub-concerns of performance to complete the verification.

Sensitivity to Performance(Throughput_PL)
10
0.077
09
08
07 P —— e

o8

Altemnatives:
05
— S1: ClusterServer

04

Rate Scoras

— 52: ServiceOrderProvision
03 53: Three-tier proxy sener

0z

0.1

oo . - - - - - - . - 1
oo 0.1 0.2 03 04 05 oX] a7 o8 og 1.0
weighting value

Fig. 5.28 Sensitivity analysis of Performance(Throughput) - Scenario 1

The second sensitivity analysis examines focuses on maintainability. Fig. 5.29 shows
how the value of benefits for the architectural design alternatives varies with changes in
the weight placed on mamtainability. If maintamability had a weight of zero, this would
mmply that the six mamtainability sub-concerns would also have zero weights. After re-
normalisation, this would leave weights of 0.50 and 0.50 for performance and
reliability, respectively. This would mean, for example, that ST and S2 would have an

aggregate benefit value of 0.833.

At the other extreme, if mamtanability had a weight of 100 (and therefore
performance and rehability a weight of zero) S3 would have an aggregate benefit value
of 1.0. The line joming these points shows the value of benefits for S2, for
maintamability weights between 0 and 100. As can be seen, S2 has the highest value of
benefits as long as the weight placed on mamntainability 1s less than 0.44. If the weight 1s

above this level then S3 has the highest level of benefits. However, since a weight of

115

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

0.36 was assigned to mamtainability, it would take a fairly moderate change n this
weight before S3 was worth considering. No changes in the weighting attached to
maintamability would make the other design alternatives achieve the highest value of

benetits, and the software designer can be reasonably confident about selecting S2.

Sensitivity to Maintainability

0.383
0.9

os

o7

0.&

Alternatives:

0.5
—— 51: ClusterServer

0.4 T | | s2: SeniceOrderProvision
) 53: Three-tier proxy server

Rate Scores

0.3

0.2

01

oo
0.0 01 0.2 03 0.4 05 065 07 og 0o 1.0

weighting value

Fig. 5.29 Sensitivity analysis of Maintainability - Scenario 1

Fig. 5.30 shows the sensitivity analysis graph for the EDDIS requirement concern,
which 1s a sub-concern of mamtainability. Again the suggested alternatives, S2 and S3,

have very close scores for weights between 0 and 100.

Sensitivity to Maintainability(Requirement)

10 -

bo7e —
091 SR

LER

071

06 1 T
| — Alternatives:

05 TTe—
1 T— —— S1: ClusterSernver

04‘5 --_-""'---.___ — S2: ServiceOrderProvision
S3: Three-tier proxy senver

Rate Scores

031

0z

0.11

o004
o0 01 02 03 04 05 08 07 08 08 10

weighting value

Fig. 5.30 Sensitivity analysis of Maintainability(Requirement) - Scenario 1

116

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

Another useful comparative analysis tool provided by CSAFE is the ability to
compare weighted quality concerns (i.e. as identified in analysis scenarios) with rating
values of suggested architectural design alternatives. The comparison charts are shown
in Fig. 5.31 -5.33. The left column shows the scenario ratings of quality concerns, and
the right column the contribution ratings of the ClusterServer pattern, Service Order

Provision and Three-tier proxy server architectural styles.

Scenario: Alternative: |s1: ClusterSenver] ¥ |

scenario 1 by concems ClusterServer byconcerns

Perfomance
32%

Technology
8%

Fig. 5.31 Scoring percentage of Cluster:Server pattern - Scenario 1

Scenario: : |Si‘. SendceOrderProvision [> |

scenario 1 by concerns = Service Order Provision by concerns

Performance
3%

Reliabllity
30%

Maintainability
38%

Maintainability
3T

ServiceOrder Provision by sub-cancerns

Response Time_UPL | Time_UPL | Throughput_PL
12% |

r 2% T
BN Throughput_FL [ResponseTime_FL
s a% a%

Technelogy i - Requiremant Technology Raquirement
% = 2% 0% > o%

Fig. 5.32 Scoring percentage of ServiceOrder Provision local-scheme - Scenario 1

117

Chapter 5 Evaluation 1:Electronic Document Delivery Information Svstem

Scenario: Altemative: [83: Three-tier proxy serer] >]

Parformance
3%

scenario 1 by concerns Three-tier proxy server by concerns

|
r: 4 eliability
4

Response Time_UPL ResponseTime_PL
12% 10% =

Throughput_FL /" ! i

P = Theoughput_PL
Time = 8%
29' | |
Aorailability |
| =
-
i 0%

Requirement
8%

Fig. 5.33 Scoring percentage of 7hree-tier proxy serverarchitectural style - Scenario 1

The detailed report of the results and analysis process generated by the CSAFE. tool
1s available in Appendix D6.

5.4 Summary

This chapter demonstrated the key features and practicability of CSAFE using a subset
of requirements extracted from the specification of a real software project, EDDIS. In
addition, the evaluation was conducted m the context of two different stakeholder
analysis scenarios to demonstrate CSAFE’s support for broad stakeholder involvement

n architectural design and analysis.

The evaluation started with the description of the case study. This was followed by
the construction of the baseline architecture for EDDIS. The baseline architecture
was then analysed according to the to the steps n the CSAFE approach. The analysis
begun with transformation of EDDIS architectural design to iXML ADL followed by
the formulation of two analysis scenarios. The analysis scenarios were used to generate
design templates that were in turn used to revise the baseline EDDIS architecture.
Lastly, the alternative designs were mapped concrete components and assessed for

contributions to the quality concerns identified in the analysis scenarios.

118

Chapter 6

Evaluation 2: Guided Vehicle
Parking Systems

This chapter describes second evaluation of CSAFE. The first evaluation provided a
practical demonstration of the CSAFE features discussed in chapter 4, and showed
how the approach could be used to mmprove the quality of software architecture
through a process of analysis and refinement. However, the assessment of architectural
refinements in the first evaluation was based solely on static analysis. The assessment
the refinements relied largely on the documented relationships between design
templates and system quality properties. The second evaluation focuses on runtime
evaluation to validate architectural refinements. The evaluation assesses the effect of
architectural refinements by comparing the runtime behaviour of an existing system
against its refined version. The architectural refinements evaluated in the case study
are mntended to improve the system efliciency and performance. The case study used
n this evaluation 1s derived from an undergraduate software engineering project run at
Lancaster University for computer science students. The project is organised around a

group of 4-5 students and runs for 25 weeks. The aim of the project 1s to develop a

119

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

simulated Guded Vehicle Parking Systermn (GVPS) to provide drivers entering the
university campus with accurate and timely mformation on parking. The case study

uses the results from the best GVPS project of the year 2006/2007.

The evaluation starts with the description of the GVPS case study. This 1s followed
by a summarised discussion of the architectural analysis performed on the GVPS and
a discussion of the architectural solution adopted. The evaluation concludes with a
discussion of three experiments conducted to gauge the effectiveness of the CSAFE

refinements on the GVPS runtime architecture.

6.1 The Case Study

The GVPS consists of two main sub-systems: an In-Vehicle Display (IVD) and a
Control Centre sub-system. The IVD allows drivers entering the university campus to
be assigned the best available parking space, closest to their destination. Drivers select
their destination on the IVD as they enter the campus. The IVD communicates with a
central server to display a map of campus roads and car parks, highlighting the route to
be taken to the selected destination. The IVD also dicates the correct direction to be
taken at junctions and roundabouts, both visually and audibly. The IVD mnforms
drivers of road closures and indicates alternative routes when appropriate. When
leaving the unversity, the IVD provides directions back to the exit. The Control
Centre sub-system is used by GVPS system administrators to register vehicles, to
monitor the status of vehicles and car parks, and to close and open sections of road for

cmergency or maintenance.

Fig. 6.1 shows the use-cases associated with high-level service descriptions of the
GVPS functionality. In the system design these represent services that are later
partiioned nto abstract, design-time components. The use cases have been extracted
from the student project document [Summers06]. Detalled GVPS requirements are

provided m Appendix E1.

120

Chapter 6

Evaluation 2: Guided Vehicle Parking Svstem

x

GVPS
Driver

Setup connection

Exit parking

/ Search parking

- ————— Navigate route

\ Broadcast %

Login

traffic messages

GVPS
Member

Traffic
Wrong turning
View Vehicle
Status
Manage driver
Managemap @ —-¢+——7-—— | %
/ GVPS
Manage car park Administrator
Manage
obstruction

Login

Fig. 6.1 GVPS use-case diagram

6.2 GVPS Viewpoints and Requirements

The viewpoint approach described in Chapter 4 was used to structure and partition the

GVPS requirements. Table 6.1 1dentifies the viewpoints associated with the GVPS and

their requirements. The GVPS requirements are derived from four viewpoints: driver

(Vp1), administrator (Vp.), traffic (Vps) and Consorttum (Vp.). A driver 1s a person
who interacts with the In Vehicle Display (IVD). The IVD helps the driver to navigate

the campus roads to locate suitable parking and to exit the campus. A driveris either

member of Lancaster University stafl’ or a visitor. University members are required to

register their vehicles with the GVPS management to ensure appropriate parking areas

are assigned to them (based on permit type).

121

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

An unrecognised vehicle 1s assumed to be a drver of type wisitor and 1s assigned a
temporary ID. A temporary ID allows a driver to park m visitor areas only. However, a
visitor may indicate a disability requirement, i which case the driver 1s assigned a
disabled visitor space. An admuinistrator is a person who 1s responsible for managing
the GVPS system. An administrator’s responsibiliies include: driver registration,
vehicle monitoring, parking areas monitoring and road management. An administrator
1s able to view all the vehicles on campus roads using the GVPS. The consortium
represents the organisation commussioning the GVPS. The consortuun includes
Lancaster University and the project financiers. 7raffic represents the traffic sensors on

the campus roads (e.g. trathc lights and traffic signs).

Table 6.1 GVPS viewpoints and requirements

Viewpoint Requirement

ID Role/Type ID Description Service | Ranking

Vp; | GVPS_Driver R1.1 To enable drivers either holding a car | S1.1.1 Important
(Operator) permit or visitor to access GVPS 24/7.

R1.2 | To be able drivers to logon to the system | S1.2.1 Essential
using valid RFID or vehicle registration
number.

R1.3 To guide the driver of the vehicle to a | S1.3.1 Essential
designated parking place (given as a
particular car park) as close to the
destination as possible.

R1.4 The display in the vehicle shall show the | S1.4.1 Essential
position of the vehicle on a map.

R1.5 To guide the driver of the vehicle to an | S1.5.1 Essential
exit.

R1.6 | To inform drivers of traffic messages | S1.6.1 Important
according to driver location and distance
to an incident

R1.7 To inform drivers of when a wrong turning | S1.7.1 Essential
is made and to re-calculate route

Vp, | GVPS_ R2.1 To enable the admininsrator to access | S2.1.1 Essential
Administrator GVPS 24/7 in a secure way.
(Operator) R2.2 To manage driver accounts i.e. | S2.2.1 Essential

add/delete/update accounts.

R2.3 To manage road maps i.e. add/delete map. | S2.3.1 Essential

R2.4 To manage car parks on campus by | S2.4.1 Important
providing their status.

R2.5 | To enable closure of sections of road in | S2.5.1 Important
case of emergency or maintenance.

R2.6 | To monitor the status of all vehicles | S2.6.1 Essential

accessing GVPS.

122

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

Viewpoint Requirement
ID Role/Type ID Description Service | Ranking
Vp; | Traffic R3.1 The IVD client shall act as an observer for | S3.1.1 Important
(Component) traffic signal broadcast.
Vp,s | GVPS_ R4.1 | The system shall ensure a reasonable level Essential
Consortium of performance is maintained across the
(Organisation) services at all times.
R4.2 The system shall provide 24/7 access. Useful
R4.3 The system shall enforce authentication Essential

policies to avoid loss of data integrity or
confidentiality

R4.4 | The system shall promote XML data map Important
format and driver independence on map
resources.

R4.5 | The system shall be developed according Useful

to agreed schedule and cost estimate.

Fig. 6.2 shows the partitoning of GVPS services derived from viewpoints Vpi-Vp..

The constraints are indicated with different colours to distinguish their types.

Viewpoints Services / Constraints Abstract components composition
. S111 Coia
Ru[) —| D
. S121 S122 Ceai
Ruc[— A
S S.
R1,3 — = 52 Cs511Cs21 Csa1 Ci1a
Vo = Sia1 AAA <<abstract>>
@ Ris il - Map
. Sien Sy141 S161S262 S3115263
Ris[1 —| & N =) J=) =)
C. Ce11
Ris “i Sie1 Coi1 Kl A
. S
. Sz11 Sp12
Rl — D
] s c <<abstract>> <<abstract>>
Ry» ﬁ!l él 2&1 ControlCentre Database
. Sps1 Sza2 Szas Ceat S211 Sz21 Sza1 Sasi S122 Si32 Szi2 0
vp: Rea[) — BB A — D 9
@ s Spe1 Cainr Ceaa Sz32 Sz33 S241
R —| & A 5)
R25 — Sél
st 551 Sz62 Sze3
Vps s <<abstract>>
© — rRF—| & Ve
. Cins Si11 Si21S131 S1s1S172
R —| A (N =) =) =)}
R E‘i [Co21 C312Cz11 Cs31
4.2, B
v — % AAA A
O =3 — XX
Rl —] Q@
Legends:
A Business Constraint A Component Constraint A Quality Constraint @ Service

Fig. 6.2 GVPS typical component partitioning

123

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

6.3 The Analysis

6.3.1 Documenting the GVPS Architecture

In this case study, GVPS architecture was fully specified using the iIXML ADL, Table
6.2 shows a snippet of the 1XML description for CC_Console. The complete 1XMIL.
specification 1s provided in Appendix E2. The GVPS architecture 1s shown in Fig. 6.3

[Summers06].

Table 6.2 iXML description of CC_Console

<component name.id = 'CC_Console' type =" visibility = 'private'>

<component.description>

CC_Console component is for administrative users who can monitor the status of each vehicle and car park on
campus, and enable closure of sections of road in case of emergency or maintenance.
</component.description>

<component.interface name.idref = 'IDataCentre' port.idref ='r'/>

<component.interface name.idref = 'IMapCC' port.idref ='r'/>

<component.interface name.idref = 'IControlCentre' port.idref ="'p'/>

<component.interface name.idref ='IRouteObs' port.idref ="p'/>

<component.connector name.idref = 'IDataCentre -> CC_Console'/>

<component.connector name.idref ='lMapCC -> CC_Console'/>

<component.constraint concern = 'Security' subconcern = 'Integrity’ type = 'invariant' state = 'EL' value ="
authentication_policies' scope = 'Login'/>

<component.constraint concern = 'Component' subconcern = 'Persistent' type = 'precondition' state = 'EL'
value ='SQL Server' scope = 'ManageDriver'/>

<component.constraint concern = 'Component' subconcern = 'Persistent' type = 'precondition’ state = 'EL'
value ='SQL Server' scope = 'ManageMap'/>

<component.property concern ='Component' subconcern ='Availability' value = 'inhouse'/>

</component>

124

Chapter 6 Evaluation 2: Guided Vehicle Parking System

<<interface>>
IMapCC
connectWaypoint(); —_—
showVehicle(); O—
trafficTracker(); <<interface>>
IMapCC IDataMap
<<interface>> -
tEntities();
IControlCentre IDataMap H etenorac.
login(); g ;
updateDriver();
updateMap(); _
viewStatus(); IDataCentre <<interface>>
IMaplVD
CC Console O calculateRoute();
- drawRoute();
IControlCentre trafficCast():
<<interface>>
IVehicle
connect(); <<interface>>
loginIVD(); IDatalVD IDatalvVD
searchParking(); [authenticate();
exit(); assignParking();
reroute(); IRouteObs
IVD_Console
O
IVehicle \
<<interface>> <<interface>>
IRouteObs IDataCentre
routeObstruction(); parseMap();
validate();

queryDriver();
queryParking();

Fig. 6.3 GVPS architectural description with interface identification

The transformed GVPS architecture 1s shown in Fg. 6.4. The nodes with gvps as
root represent the composite component, Navi, which encapsulates four other
components: CC_Concole, IVD_Console, Map and avpsDB. The System Design

node corresponds to the overall GVPS specification. The corresponding component

services and interfaces can be seen in Fig. 6.5.

Bi-oa (connectors)
| |- ® aws0B-» IDataCentre -» CC_Console
| =% Map-» MapCC -» CC_Cansole
| =& cc_console-» IRouleObs -» ND_Console
| |- # aws0B-» DatavD -» ND_Cansale
| =& Map-> MapiVD -» WD_Console
| & awpsDB-» [DataMap -> Map
-] apsDB
| [onterfaces)
B [peovided] IDataCenire
B [provided] IDatavD
B [provided] IDataMap
€] cc_consale
=7 finterfaces)
B-1f (provided) IControlCentre
E-pf [provided) IRoutaObs
—oF Irequired] IDataCentre
—gf [required] IMapCC
£] WD_Console
= ontertaces)
E-7f (provided) Mehicle
+of [required] IDatalD
|—% Irequired] MapivD
—gf [required] IRoweObs

|
|
|
=5

[<IDOCTYPE DML SYSTEM °) ard e M o UL il
<DL >

<eompanent name.id = 'CC_Console’ type = ° visbilty = private's

<component description>

CC_Consale component is For administrative users who can monitor the status of each vehicks and car park on campus, and enable closure of
sections of road in case of emergency o mantenance.

<jeompanent. description >

<component irkerface naems idref = TDataCentre’ poet deef = ¥f>

eomponent.inkerface rame.idref = TMapCC port.idref = >

<eomponent inteface name.idref = IControlCentre’ port.ideef = o>

<eompanent interface nams.idref = TRouteObs” port idref = 'plf>

<component connector name.idref = TDataCentre -> OC_Consols|>

|| €ccmponsnt connecter name. idref = TMapCE -3 CC_Console'f >
- || ecmpanent constraink concern = ‘Securky” subconcem = Integrity” type = Trvariant” state = EL' value = "suthertication_policies” scope = Login[>
|| <sompnent constrank concern = ‘Component subconcern = Persistert” type = brecondiion’ stabe = EL' value = SQL Server' scope =

| Managedriverf>
| <component constrank conceen = “Component’ subconcenn = Persistent type = precondition’ state = EL valus = "SOL Server’ scops =
[Managedap|/>

<OOEORAe. Hroparty Concern = ‘Componant’ subtoncam = 'Avadabilty’ valus = Tnhouse’|>
< feompanerit>

nasne.id = 'TVD_Cansole’ bype = " vishilty = private'>

atomponent description>

ICD_Consobe component. provides senvices to the driver ta navigate campus b and from parking space using a vald registration number or RFID tag.
<jcompanent, description

<omponent inkerface name.idref = Tvehicke” port.idref = if>

<componant interface nameidref = IDabalVD’ port.idref = 7>

=] Map <component.interface nama.idref = TMapIVD' port ideef = r'f>
- ntertaces) <epmponent.inkerface naens.idref = TRouteObs' port idref = >
Brp [provided] IMapGeo | eompanant connecton namenef = TReuteObs - IVD_Console’(>
-2 [provided] INapND «component connector name.idref = TOStAIVD - IVD_Console)j s
- <companent connector name.kdref = TMEpIVD - IVD_Corsole’/ >
ef [required] IDataMap | <component constrant concemn = ‘Component’ ‘Standard type = state = EL' vale = PassiveTag scope = LognivDf> |
remcbe ik rrraen = Enrswbd ok = “Irbmneb b = resrind chaba = 1 sk = rolring crome o

M c CSAFE) Toolset EAEE
File Repot Tools Help
@0
=5 s | Spacification | Scenario Farmulation
=i System Design B e
—d (cannectors) HMUKML Specification)
=L Nad [<7aed vavsion = 1.0 encodig = UTF-8 7> =1

Ready

Fig. 6.4. GVPS architecture (left panel) and iXML specification (right panel)

125

Chapter 6

Evaluation 2: Guided Vehicle Parking Svstem

] ovps
= System Design

7 % Sz\:nectors) Subsystem

Root (project name)

=} {connectors)

avpsDB -= IDataCentre -= CC_Console

Map -» IMapCC - CC_Cansole Connectors between components
CC_Consale -» IROWE0DS -» WD_C 050 af——— 00 @ SUDSYStEM

avpsDE -= IDatalvD -= WD_Console

Map -= IMaplvD -= IVD_Consaole

H E ;\;p:ggsDB -= |Datamap -= Map Component

=[] (interfaces) .

=20 [provided] IDataCentre Provided Interface

Services of the interface

[provided] IDatalvD
D) RequestParking
D validateDriver
=0 [provided] IDataMap

I ManageErtities
=-£] CC_Console

Fg. 6.5 GVPS architecture components and their associated interfaces and connectors

6.3.2 Formulating GVPS Analysis Scenarios

The GVPS requirement specification, GVPS actors and stakeholders discussions were

used to elicit and organmize the quality concerns for analysis scenarios. The analysis

scenario formulated for this evaluation 1s shown 1n Table 6.3 (.e. Scenario 1). The

concerns reflect system construction constramts and user expectation of how the

system services should be provided. The concerns are weighted to reflect their value in

the system from the perspective of requirement viewpoints 1Le. mterator and non-

mnterator.
Table 6.3 GVPS Scenario descriptions - Scenario 1

Concern Sub-concern Description (Refinement) Wt. Scope

Flexibility Expendability Flexibility (Expendability) equals to Medium DrawMap
xml-based

Business Platform Business(Platform) equals to Medium Exit
Windows Mobile

Security Integrity Security(Integrity) equals to High Login
authentication policies

Security Integrity Security(Integrity) equals to High LoginlVD
authentication policies

Component | Standard Component(Standard) equals to High LoginlVD
PassiveTag

Business Platform Business(Platform) equals to Medium LoginlVD
Windows Mobile

126

Chapter 6

Evaluation 2: Guided Vehicle Parking Svstem

Concern Sub-concern Description Wit. Scope
Component Persistent Component(Persistent) equals to Medium ManageDriver
SQL Server
Component Version Component(Version) greater than High ManageDriver
to 2.0
Component Persistent Component(Persistent) equals to Medium ManageMap
SQL Server
Business Platform Business(Platform) equals to Medium SearchParking
Windows Mobile
Reliability Availability Reliability(Availability) equals to Low SetupConn
24/7
Performance | ResponseTime Performance(ResponseTime_UPL) High System
_UPL less than or equals to 0.5 seconds
Performance | ResponseTime Performance(ResponseTime_PL) High System
_PL less than or equals to 4 seconds
Business Cost Business(Cost) equals to moderate Low System
Business Schedule Business(Schedule) equals to Low System
moderate
Business Component Business(ComponentModel) equals Medium System
Model to JavaBeans
Component | Availability Component(Availability) equals to Medium TrafficSignal
inhouse
Business Platform Business(Platform) equals to Medium WrongTurning
Windows Mobile
Efficiency Memory Efficiency (Processor) equals or less | High VehicleTracker
than to 20% threshold
Efficiency Processor Efficiency(Memory) equals or less High VebhicleTracker
than 75% threshold

6.3.3 Analysing GVPS Architecture

The GVPS use services that consume significant system resources such route plotting,
map displaying and vehicle monitoring. The GVPS also performs high-volume
transactions for clients accessing its resource components. The origmal GVPS
architecture creates all map objects upfront whenever a new vehicle 1s added to the
map rather than on-demand. This results in many unnecessary navigational threads
consuming system resources. This m-turn impacts adversely on the GVPS
performance. There 1s need for a better resource-aware configuration to manage
object creation and method invocation in the GVPS. The current GVPS configuration
also offers poor security features. It provides little access and authentication control for
the transactions between client and resource components. Lastly, the current

configuration offers little flexibility as it has strong coupling between its components.
127

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

The mapping of the GVPS analysis scenario onto architectural design templates
generated two possible architectural solutions: the ClusterServer pattern and the Proxy
pattern. The design template detail descriptions are provided in Appendix F. Table
6.4 shows the contributions of the recommended design templates. Based on their
contributions to the GVPS quality concerns, the Proxy pattern was selected to refine

“

GVPS architecture. Although, Proxy pattern has a “Not Applicable” entered for the
reliability concern, it has a high contribution for efhiciency, security and performance,
and a medium contribution for flexibility. The ClusterServer pattern scores poorly for
security and flexibility, and only moderately well for performance and efficiency. A

detailed description of the Proxy pattern properties is shown in Table 6.5.

Table 6.4. Architectural design alternatives contributions

Concerns Sub-Concerns Architectural Design Alternatives
ClusterServer Proxy
Efficiency Memory Medium High
Processor Medium High
Flexibility Expendability N/A Medium
Reliability Availability High N/A
Security Integrity Low High
Performance ResponseTime Medium High

Table 6.5 Proxy pattern template

Category Pattern

Name Proxy

Also-Known-As Surrogate

Related-Rules Decorator, Adapter

Intent The pattern makes the clients of a component communicate with a representative

rather than to the component itself. Introducing such a placeholder can serve
many purposes, including enhanced efficiency, easier access and protection from
unauthorised access.

Context Proxy is applicable whenever there is a need for more versatile or sophisticated
reference a component. Some common situations in which the pattern is
applicable:

1. Remote proxy — where clients of remote components should be shielded from
network addresses and inter-process communication protocols.

2. Protection proxy — where components must be protected from unauthorised
access

3. Cache proxy — where multiple simultaneous access to a component must be
synchronised

4. Counting proxy — where accidental deletion of components must be prevented
or usage statistic collected

5. Virtual proxy — where the processing or loading of a component might costly,
while partial information about the component might be sufficient

128

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

6. Firewall Proxy — where local clients should be protected from the outside world

Motivation One reason for controlling access to a component is to defer the full cost of its
usage until we actually need it. Until that point we can use some light objects
(proxies) exposing an identical interface as the heavy objects to the Client. When
the proxy is accessed it forwards the request to the real subject. This ability to
control the access to a component can be required for a variety of reasons:
caching, access control, synchronisation, lazy creation, remote access.

Configuration

<< component |, subsystem ==
_prosty
== component »» == componert =» == component »»
panils _Q_ - >0 Proxy _C - - s0—] Subject
IProxy IProxy IRequest IRequest %
' |Base ﬂ/Iatsz
: o
The Client is NOT part of the panemj 1B ase:
\
<< COMponent »»
AbstractBase
Consequences Efficiency.Memory = {The proxy provides space optimisation through caching and

lazy construction when the cost of data access and rendering is reduce, H}
Efficiency.Proccesor = {The proxy provides time optimisation through caching and
lazy construction when the cost of data access and rendering is reduce, H}
Performance.ResponseTime = {A virtual proxy helps to implements a ‘load-on-
demand strategy’ that avoid unnecessary loads and usually speeds up the
application, however complex implementation would cause less efficiency due to
indirection, M}

Reusability.Modularity = {The proxy provides weak coupling between clients and
subsystems, M}

Flexibility.Expendability = {A remote proxy decoupling clients from the locations of
remote server components, H}

Security.Integrity = {Protection proxy and smart references allow additional
housekeeping tasks when a component is accessed, H}

There 15 strong rationale for selecing the Proxy pattern
[Buschmann96,Khosravi04]. The pattern can be mplemented as a virtual or
protection proxy to improve performance, security and enhance the functionality of
the GVPS, it can also be implemented to create resource-hungry objects on demand to
manage system resources. The Subject component ie. Map and avpsDB is a
resource-hungry component that we wish to use more efficiently. The proxy
component acts as a surrogate, holding a private mstance of a subyect component as
required. The client components, [V Console and CC_Console, execute actions on
the proxy whose results are passed to the Sulbyect component. The results from the
Subjects members are returned to the chent via the proxy. The AbstactBase

component 1s shared by the proxy component and its subyect component. The base

129

Chapter 6

Evaluation 2: Guided Vehicle Parking Svstem

component defines any standard members that will be mmplemented by proxy
component and subyect components. Therefore, the virtual proxy can effectively delay
the creation of a rich environment. Secondly, the proxy enhances access security by

ensuring that only authenticated components can access the database. The protection

proxy component acts as a layer between these components and the database.

6.3.4 Refining GVPS Architecture

Based on the Proxy pattern, the original GVGS architecture (see Fig. 6.3) was revised

as shown mn Fig. 6.6. The modifications, which also involve mapping the GVPS

services to on the Proxy pattern components, are shown m the boxed area.

<<interface>>
IProxyCC
validate();

<<interface>>
IControlCentre

parseMap();
queryDriver();

Togin();
updateDriver();
updateMap();
viewStatus();

queryParking();
connectWaypoint();

<<interface>>
IMap

showVehicle();
trafficTracker();
calculateRoute();
drawRoute();
trafficCast();

<<interface>>
IBase

connectWaypoint();

showVehicle();
trafficTracker();

Oi
IControlCentre

CC_Console

<<interface>>
IRouteObs

routeObstruction();

E—
T IRouteObs

IVehicle O

5.

IProxylVD

IVD_Console

/

<<interface>> <<interface>>
IVehicle IProxylvVD
con_necl(); authenticate();
loginIVD(); _ assignparking();
searchParking(); calculateRoute();
exit(); drawRoute();
reroute(); trafficCast();

The wvisualisation of the mapping process is shown m Fig. 6.7. The services

Y

IMap

Proxy

IBase

O—— AbstractBase

|Data (O ———

/

avpsDB

/ IDataMap

<<interface>>
IData

validate();
parseMap();
queryDriver();
queryParking();
authenticate();
assignParking();

Fig. 6.6 Proxypattern (S2)

130

<<interface>>
IDataMap

getEntities();
getCoord();

ValdationAdmin, ParseMap, ManageParking and etc. are mapped onto [Proxy and

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

IProxylVD of Proxy abstract component. The mapping to concrete components was

conducted as described in Chapter 4 (Section 4.1.4).

Specification | Scenario Formulation

| & scenario1 - |

| G Elicit & Prioritize | 3 Mapping | 5 Assessment |

| € search Senvice £7 Map Service &7 Refactor &)

]

Selected architectural alternatives: [S?:pm:‘f | v|

@ Template Absiract Component:

AbstraciBase
Frowy

Subject ED Drawhap ‘BAw
_proxy:: subsystem bitad
ED TrafficTracker
ED) vehicleTracker
| D £ Proxy

Descriplions: y

@ ParseMap

ED ManageParking
\@— [F ProxyiProxyivo
a Absiract Component: B m RequestParking
avpsDB - :
cC_Console \ED"‘""“— HeRoute

WD _Console

Cnmponeni} Service Raling} Design

| ED) TrafficSignal

Fig. 6.7 Proxymapped services onto IProxyand IProxylVD

The weighted contributions of the two design alternatives are shown in g 6.8.
The Proxy pattern alternative (S2) offers an overall quality contribution score of 0.824
(Le. efficiency 0.26, flexibility is 0.13, performance 1s 0.17, reliability 1s 0.00 and
security 0.26). The ClusterServer pattern (S1) offers lower contribution score of 0.521
(Le. efficiency 0.17, flexibility 1s 0.00, performance 1s 0.17, reliability 1s 0.09 and
security 0.9). The S1 and S2 contributions are further refined to show their

contributions at sub-concern level (see Fig. 6.9).

! Details weighting and scoring values are compiled in Appendix E3, Table E3.1
131

Chapter 6

Evaluation 2: Guided Vehicle Parking System

08
0z
o7
06
05
0.4
03
0z

Rate

01
0o

7
0.824

0.087 “

scenario 1: Architectural contribution by concerns

0.521

0.174

S1:ClusterSernver S2:proxy
Architectural Alternative

M Efficiency B Flexibility ! Performance [Reliability B Saoulilyl

Fig. 6.8 Contribution of suggested alternatives according to main concerns

1.0

scenario 1: Architectural contribution by sub-concerns

0@
08
07
06
05
04
03

Rate

0z
01
00

0.824

| |
I 0.26 ‘

s ——

0.087
0.13
0.087
S1:ClusterServer S2:proxy

Architectural Alternative

B Memory B Processor || Expendability || ResponseTime_PL M ResponseTime_UPL [Availability || Integrity

Fig. 6.9 Contribution of suggested alternatives according to sub-concerns

A sensitivity analysis completes the analysis by examining the robustness of the

selected architectural solution to changes in the 1dentified quality concerns. A software

designer may, for example, be concerned about the weight of security (.e. 0.26)

relative to efficiency (.e. 0.26), flexibility (.e. 0.13), performance (e. 0.26) and

reliability (1.e. 0.09), and might want to know how changes in these weights might affect

the contributions of the alternative designs. Fig. 6.10 shows how the value of benefits

for the design alternatives varies with changes in security. If security had a weight of

zero, this would imply that the two security sub-concerns would also have zero weights.

132

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

After re-normalisation, weights would be 0.35 for efhiciency, 0.35 for performance,
0.18 for flexibility and 0.12 for reliability. This would cause S2 to have an aggregate
benefit value of 0.765. If security had a weight of 100 (and therefore efficiency,
flexibility, performance and reliabihity a weight of zero) S2 would have an aggregate
benefit value of 1.0. Sensitivity analysis conducted for security concern as shown in Fig.
6.10 indicate that the Proxy pattern is the more wviable alternative design. The
ClusterServer pattern may be considered when security concern 1s zero, or less
important, as its contribution only shghtly lower than that of the Proxy pattern.
However, the uncertainty of using Proxy pattern reduces when the weight of the

security concern increases.

Sensitivity to Security
10 B
026 S
09 I
081 I -
07
w
@ 061
3 —
o |
e o Alternatives:
m T
é 04 : — _—
-] |—52: proxy
03
02
0.1
0.0
0.0 0.1 02 03 0.4 05 06 07 08 09 10

weighting value

Criticality: Concemn - Sub-Concern

Goal ---> Reliability -
Goal ---= Security

Efficiency ---= Memory =
Efficiency ---= Processor
. .

e Evranedahility

Fig. 6.10 Sensitivity analysis applied to security concern

6.4 Runtime Comparison of GVPS Architectures

This section describes an experiment to compare the runtime performance and
resource consumption of the orgnal and refined GVPS architectures. The
architectures were 1mplemented to smmulate the GVPS in operation. Each

implementation comprised the In-Vehicle-Device (IVD) sub-system and the Control
133

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

Centre. The GVPS implementation of the original architecture was named Simulator 1
and the refined architecture implementation, Simulator II. The simulators were
implemented using JavaBeans technology [JavalO] and constructed according to the

architectures shown in Fig. 6.3 and Fig. 6.6.

The basic GUI design for the GVPS simulators 1s shown m Fig. 6.11-Fig. 6.13.
However, Simulator II implements more functionality as it addresses more GVPS
requirements [Cs10] than Simulator I. For example, Simulator II allows parking
spaces to be allocated by vehicle type (e.g. car, disabled and van/lorry) and user type
(e.g. Staff, Student, Visitor), whereas Simulator I allocates spaces only according to
vehicle type. Simulator II also improves the map display by labelling both buildings

and parking areas as shown m Ig. 6.13.

Welcome to the Al
“IN

AVPSSimulator

geing you from & 1

Afs 5 _
AVPSMap I Foan Shailator File Mihew In Car Addd Car € Map Edlit Obstructions Edit Buses
Caling ol from A 1o § il L oo I L oty dL o d lepenrespsil L = i

Fig. 6.11 The GVPS simulator main window

134

Chapter 6 Evaluation 2: Guided Vehicle Parking System

L =
1 ="
5 "
A) Lz
5 " 4, il
" ar
m o 7
4 - o
&
]
w -
5 ERE |
1
El -3 &
ot F
El “
»
0 = 2
at
a“ .
8
AVPSMap %‘!i[Py Semuiator Fie] [Vs In S] | ekl Car] I M] [Ede Obstructions.] [e

Fig. 6.12 Simulator I display Lancaster University map with ‘avpsSimull_LU’ tag on left bottom panel

®
I v
E "
e #
£}
1
ﬂ " . s
i 1
Tt
‘. . a
“
= i E
at
E R
“ (v H
2 LR TS
'
I £l #
- e
]
' £l a-
w
5
l] £
0
8
r F
v
n
AVPSMap é.r%l Foun Sinwiator File | i Viow In Car | Al G | oC Map Edi Obistructions. | | Eit Buises |
petng you fram A i B - = L - !

Fig. 6.13 Simulator II display Lancaster University map with ‘avpsSimul2_LU’ tag on left bottom panel

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

6.4.1 Methodology

The experiments were conducted using Java VisualVM [Javal 1]. The two simulators
were configured to run the same data comprising different numbers of vehicles and
different road conditions. The simulations were tracked using the basic VisualVM
runtime information such as process id (PID), their main class, arguments passes to
java process, JVM version, JDK home, JVM flags and arguments, and system

properties.

Six experiments, representing three data scenarios, were conducted for each
simulator. Each experiment observed the system behaviour when vehicles entered the
campus 1n search of parking spaces (entering event), and when vehicles left their
parking spaces to exit the campus (exiting event). Data on performance and resource
consumption (.e. memory usage, CPU time, heap memory, number of loaded
classes) and the number of threads running during entering and exiting events was
collected and analysed for each scenario. The memory profiler and CPU profiler were
used to assess where the application spend most time and which objects consumed

most memory during the entering and exiting events.

Experiment Scenario 1: One student vehicle and one visitor vehicle
under normal road conditions

The objective of this experiment was to compare the behaviour of the two
architectures under relatively low load conditions with normal road conditions (i.e. no
road closures). The experiment scenario consisted of running an auto-navigation file
that specified a student vehicle of type carand a destination of the InfolLab 21 (see Ig.
6.14 - Fig. 6.16), then adding a visitor vehicle of type car whose destination was the
Sport Centre (see Fig. 6.17). After a short while, the vehicles exited from their parking

areas and proceeded to leave the campus.

136

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

AVPSControlCentre 7
Runner geting you fom Ato B

‘ Browse for event file | I OK

Event file successfully parsed. Parsing vehicles entries...
Wehicles Successfully parsed and initiated into AVPS

[Vehicle at entrance: 1 reg: WSN401-100 destination : InfoLab21 user type :Students
End of Event File!

Fig. 6.14 Navigation event for a student car to Info Lab 21

Als
AVPSInCar 7~
getting you from At B
§] %
17 @
B & 38
e 2
i3 18
™ 53 34
22
% 2
Wr:" 14 o
16 21
E 615 7
10 &
) 18 .
47 a7 12
25
=]
25 2 24
1
it Pl 27
49
0 Bihmewell Building
39
E‘ 28
30
)
,
g
%
AVPSMap I | Exit Map ‘ I Hew Raute l EMERGENCY STOP ETA: 3¢ sasonds
getling you from Ato B

Fig. 6.15 Student car navigates to Info Lab 21 parking area shows on IVD panel of Simulator I

137

Chapter 6

Evaluation 2: Guided Vehicle Parking Svstem

View in Car

AVPSInCar ¢

getiing you from A 10 B

Al
AVPSMap 7%

4 Exit Map/|
getting you from A lo B

New
Route

g 0
L f
1
i 3
b1l e
3 (] %
=) & 5
= 2"
04 15
18 21
q 7
wis 7
= 10 g
&
" N
T
ar = 1
253
% S
3% zl‘ 24
[4
i % 47
@ F-
5
o Ll
P lla
1a
q G
0
2
a {
q 8
32
| ‘ EMERGENCY STOP ETH: 9% secands

Fig. 6.16 Student car navigates to Info Lab 21 parking area shows on IVD panel of Simulator I1

e
AVPSInCar
getiing you from Ao B
L
L
AVPSMap e ‘ Exit Map ‘ ‘
getting you from Ato B

New
Route

il an
047 i
1
B 38
o
[ERE
g 18 'y
=) & 9
= 2"
% 16
18 a1
f 7
915 7
- 10 i
i
e .
2
= at @ .
26715
%
% zl' gy
i 4
a - i
“ ¢
5
al 1
Sl
13
B 2%
0
2
a {
W 8
32
‘ ‘ EMERGENCY STOP ETH: 64 secands

Fig. 6.17 Visitor car navigates to Sport Centre parking area shows on IVD panel of Simulator IT

138

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

Fig. 6.18 and Fg. 6.19 show Simulator I and Simulator II executing Experiment
Scenario 1. Smmulator I 1s packaged as avpsSimulator].jar and its main method 1s
located n the avpsce bean. Simulator I 1s packaged as avps3.jar and its main method
1s located i the ControlCentre bean. Both simulators are running on a local host and
using the Java Runtime Environment (JRE) version 6. Detailed system properties for

the simulators are displayed on the right lower panels.

&3 com, matthewsummers. avps. avpsce, TestCC (pd 4016) = AIEE
L8 Overview | [Moritor | 23 Threads £ Sarnpher | (5) Profiler | (4 [snapshot] 05:19:52 PM x| ([[snapshot] 08:20:15 PM =

- com.matthewsummers.avps.avpscc.TestCC (pid 4016)
Crverview

PID: 4015

Host: locahost

Main class: com.matthewsurmmers. avps.avpsee, TestCC
Arguments: <none

WM Java HotSpot{TM) Client WM (20.2-b06, mixed mode, sharing)
Java: verson 1.6.0_27, vendor Sun Maosystems Inc,

Java Home: C:\Program Files| sl jred

WM Flags: <none>

Heap dump on OOME: dsabled

Saved data ® WM arquments [System properties |
Thread Dumps: 0 awt.toolkit=sun. st windows. WTocki -
Heap Dumgs: 0 file encoding=Cp1252
Profiler Snapshots: 2 file.encoding.pkg=sun.io
file.separators=|

java.awt. it ¥

java.awt.printerjob=sun. awt wandows, Whrintes Job

java.class.pathe(:|simstorT avps| avpsSimulator | jar

java.class.version=50.0

java.endorsed.dirs=C:\Progran Fles) Lavaljraé b sndorsed

java.ent.dirssC:\Frogram Fies), AWINDCWS Sun

Javahome=C:\Program Fies| Javaliet

javaiotmpdir=C-\DOCUME~ 1 nonwy|LOCAL 51\ Temg)

javalibrary.path=C:\Program Files] Javalires bing C:\WINDOWS|Suni Javalbin; C-YWINDOWS sy stem32; CIWINDOWS; C:\Program Fles| Javalidkl 6.0_27
javarmiserver.randomiDs=ts

Javaruntime.namesJavs{TH) SE Runtime Evironment

java.runtime.version=1.6.0_27-b07
java.specification.name=1sva Platform APT Spectication
java. d Inc.

javaspecilication.version=1.6
jova.vendor=>5un Microsystems Inc.
Java.vendor.url=hitp: fjava.sun.conf
javavendor.urlb v sun comj 2]
javaversion=1.6.0_27

<

Fig. 6.18. Simulator I (PID 4016) configurations and environment

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

& avps.ControlCentre, MAIN (pid 3744) = EE
[Overview | (sl Morikor | =) Theeads | (O} Sampler | (5) Profiler | () [snapshot] 08:28:03 PM x| [[snapshot] 06:28:32 PM x
< avps.ControlCentre.MAIN (pid 3744)

Crverview [Saved dstd [7] Datais
PID: 3744

Host: localhest

Main class: avps.ControlCertre MAIN

Arguments: <none:

IWM: Java HotSpot(TM) Chent VM (20.2-b06, mixed mode, sharing)
Java: version 1.6.0_27, vendor Sun Microsystems Inc.

Java Home: C:|Progeam Fles) lavaljreé

I¥M Flags: <ncne>

Heap dunip on DOME: desblad

Saved data ® | IMarguments | System properties *
~
Thread Bumps: 0 awt toolkit=sun_ st windows, WTookt
Heap Dumps: 0 file.encoding=Cpi252
Profiler Snapshots: 2 lile.encoding. plg=sn i
file.separators,
java.awt. 2k

java.awt.printerjob=son, s windows, Whrinkes Job
java.class.pathec \smudstor TavpsFnallavpsd. jar
java.class.version=50.0
java.endorsed.dirs=C:\Program Fles)lavaljreciib|endorsed
Java.eat.dirs=C:\Program Fles Javaljres\ib st C:\WINDCWS| Sun avaiib ext
javahome=C:\Program Fles Javalires
javaiotmpdir=C |\ DOCUME= 1 neowyILOCAL S~ 1| Tamp|
Java ibrary pathe=C:\Program Fles|Javaljres\bin C:\WINDOWS) Suri Javalbin:C:YWINDOWS | system2; C:|WINDOWS; C: |Program Fies| Mavalidkl 6,0_27%
javarmiserver.randomiDs=true
java.runtime.nammeslayva(TH) SE Rurkime Enviroament
javaruntime.versions1 6.0_27-b07
ic. Pl APT Specfication

ds Inc.

java.specification.version=1.6

java.vendor=5un Mcrosysteams Inc.
java.vendor.url=http: [[java o, comf

Java.vendor.url b s comf o
java.version=1.6.0_27

Fig. 6.19 Simulator I (PID 3744) configurations and environment

Performance and resource analysis for Experiment Scenario 1

The result of monitoring the performance and resource consumption of the two
simulators 1s shown m Fg. 6.20 and Fg. 6.21. The left upper panel shows the
percentage of CPU time used (orange line) and the garbage collector (GC) activity
(blue line). The heap graph located in the right upper panel shows information on
memory consumption and memory pools. The memory used includes the memory
occupied by all objects including reachable and unreachable objects. The used area
turns red when the memory used exceeds the memory usage threshold. The Heap
graphs shows memory usage for current heap size, which indicates number of Kbytes
currently, occupied by the heap and maximum heap size that mdicates the maximum

number of Kbytes occupied by the heap.

140

Chapter 6

Evaluation 2: Guided Vehicle Parking System

& avps.avpscc. TestcC (pid 4016) x|
| 58 Overviom | 188 Monikor | 5] Theaads | £33, Sarpler | (2) Profer

G
Z com.matthewsumme rs.avps.avpscc.TestCC (pid 401 5}
Mordkor Foru [Memory [Classes [7] Theeads
it
cru %[Hean | pemden x
CPU usage: 1.6% GL activity: 0.0% Size: 120,946,653 6 Used: 73,507,154 B
Max: 268,435,456 8
1009
0% 20 ME
o 75 M j
- o Me T -
0% *I
E o - hhf\h_./‘- _A il
£119:00 PH i85 BN £118:30 oM :18:45 B0 £119:00 P SANISE £118:00 4 2018:15 PM £118:38 PM 81500 B8 BmIGE
@ CPuusage [l GC activity [Heap size [l Used heap.
Classes x| | Threads x
Total loaded: 2,762 Shared loaded: 1,705 Live: 23 Daemon: 13
Total unloaded: 13 Shared unloasded: 0 Live peak: 23 Total started: 37
000
1,000
" sado o 218115 P :18:30 PM 8:18-45 DM #:19:00 P BAISE :58:90 M B:18:15 PM 1830 PM B:18:45 O
[0 Total oaded classes [l Shared baded classes

(@ Live threads [l Daemon threads

BARIEF

Fig. 6.20 Simulator I (PID 4016) monitor entering event

& avps. ControlCentre MAIN (pid 3744) = |

[0 Overvew | B Morkor | 5 hvess | saler | @ profter

EE
Z avps.ControlCentre.MAIN (pid 3744)
Morior Flru [FlMemory [F] Gasses [] Threads
il (Erene)
CRU % | Heap | PermGen 3
CPU usagpe: 0.0% GC activity: 0.0% Size: 88,633,200 B Used: 56,536,504 B
Max: 268,435,456 B
100%
a0
Lo
0
2 A A
o Ao N _.AN R
B2630 P 2645 P 82700 P #2715 B 9:2730 BM 9263000 42545 DM 22750 oM []
B PUusage B GC activity [Heap sze [Used heap
Classes % | Theeads £
Total loaded: 3,165 Shared loaded: @, 753 Live: 23 Daemon: 14
Total unloaded: 13 Shared unloaded: 0 Live peak: 23 Total started: 36
10T / N
B —
2008 L
1w
1000
H
00 M 264 P 2700 B BITE P 42730 P B600 P BN P 2700 PM B P
L] o L] ek Eve threads B Daemon teads

Fg. 6.21 Simulator 1T (PID 8744) monitor entering event

The classes graph located in the right lower panel displays an overview of the total

number of classes loaded in memory (orange line) and the shared classes (blue line)

versus time. The total classes loaded mdicate the total number of classes loaded mto

141

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

memory since JVM started, mcluding those subsequently unloaded. Lastly, the total
classes unloaded represents the number of classes unloaded from memory since the
JVM started. The Threads graphs located on the left lower panel provides an overview
of the number of live and daemon threads versus time in the application's JVM. The
threads graph (orange line) represents the current number of live daemon threads plus
non-daemon threads. The blue graph mdicates the current number of live daemon
threads and total number of threads started since JVM started (i.e. daemon, non-

daemon, and terminated).

The CPU, heap, classes and thread graphs for Simulator I (see Fig. 6.20) and
Simulator II (see Fig. 6.21) correspond to the entering event. Simulator I shows that
this event uses 1.6% of CPU time and 79,507,184 bytes of memory while loading
2,762 classes and has a total of 23 live threads. Conversely, Simulator IT uses 0.0% of
CPU time and 56,536,504 bytes while loading more classes; 3,185 classes and a total of
23 live threads. In the heap graphs, the memory consumption shows two expected
spikes. The first spike occurs after running the auto-navigation file for the student

vehicle and the second spike occurs after adding a new vehicle.

At approximately 360 seconds, the exiting event 1s triggered. The results show that
Simulator I uses 3.09% of CPU time and 67,933,744 bytes of memory, which involves
4,622 classes and 27 live threads (see Fig. 6.22). Simulator II shows a markedly better
performance and significantly less memory consumption for the same event. It is also
worth mentioning that Simulator II is running 13% more classes than Simulator 1.
Simulator IT uses 1.69% of CPU time and 44,644,992 bytes of memory while loading
5,237 classes and 26 live threads (see Fig. 6.22). In the heap graphs memory
consumption shows two expected spikes. The first spike occurs when the first vehicle

exits its parking area and the second when the second vehicle exits its parking area.

142

Chapter 6

Evaluation 2: Guided Vehicle Parking System

| i Morkor | (= Thvesds | @ sempier | ©

] LEe
Profiler | (4 [snapshot] 09:19:52 M = | (3 [anapshet] 09:20:15 PM x|
C com.matthewsummers.avps.avpscc.TestCC (pid 4016)

(IEPU [Memory [F]Classes [] Threads

Gl
Py x| [reap | pemcen x
CPU usage: 3.0% GC activity: 0.0% Size: 120,346,653 B Used: 67,533,744 B

e Mo 268,435,456 §

o 10016

% EME

% 5048 4

“alt I L T

Tigem e e!zm 82460 8118 PM 220 P #22 M a246M

B CUusage B GC activity B Heap size [Used heap

Classes ® | Threads X
Total loaded: 4,622 Shared loaded: 1,712 Live: 27 Daeman: 17
Total unloaded: 13 Shared unloaded: 0 Live peak: 29

Total started: 45

Er
—_
3,000 — s
2000
n
1400
o 0
8139 P 8120 P8 822 bW P

8113 P 220
] loaded dasses Il Shaced koaded dl

822 P 824 EM

I Live theeads [0 Dasmon threads

Fig. 6.22 Simulator I (PID 4016) monitor exiting event

[& avps.ControlCentre. MAIN (pd 3744) x|

|8 verviews| Bl Porkor | = heeads | £ Sanvler | @ profer | G4

828 P 830 PM g2 PM
[Total loaded dasses [l Shared loaded dasses

ELive threads [Dasernon threads

VRO
M x| G [snepsh PH .

Z avps.ControlCentre.MAIN (pid 3744)

Monitor [P [FMemory [F]Clsses] Theads

o

Lo 1) % | Hesp | Permian x

CPUusage: |.6% GC activity: 0.0% Size: 53,782,016 B Used: 44,644,952 8

Man: 263,435,456 8

1%

)

0

50 MB

%

Sk ru 210 3

o A I LM,)

28 M 30 P $32 M #28 P4 430 BM B2 Pt
EPUwsage B GC activity EHeap sce W Used heap
Classes x| Threads x
Total loaded: 5,237 Shared loaded: 1,754 Live: 26 Daemon: 17
Total unloaded: 13 Shared unloaded: 0 Live peak: 23 Total started: 47
-
f \J—r_r—'—\—\—r_
4000 ’/ 20
2,000 0
828 B B30 P 832 PM

Fg. 6.23 Simulator 1T (PID 3744) monitor existing event

The performance and memory consumption results for Simulator I and Simulator

II m Experiment Scenario 1 are summarised in Table 6.6. The results show that

143

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

Simulator IT performed significantly better than Simulator I. Although Simulator II ran
more classes and threads, Simulator I has significantly lower CPU usage and memory
consumption than Simulator I. The proxy design pattern adopted for the refined
GVPS architecture manages complex and resource hungry components such as Map

and avpsDB more effectively than the original GVPS architecture.

Table 6.6 Summary performance and memory consumption for Experiment Scenario 1

CPU Usage Heap (bytes) Classes Threads
Entering event Simulator | 1.6% 79, 507, 184 2,762 23
Simulator Il <0.0% 56, 536, 504 3,185 23
Exiting event Simulator | 3.0% 67,933, 744 4,622 27
Simulator Il 1.6% 44, 644,992 5,237 26

CPU and memory profiles for Experiment Scenario 1

Profiling the simulators 1s valuable for exploring where the application spends most of
its time and for establishing which objects consume most memory. Profiling can also
expose potential memory leaks. Fig. 6.24 and Fig. 6.25 show the CPU profile for
Simulator I and Simulator IT in Experiment Scenario 1 during entering event. The
profile hsts all the methods called during the event and the time consumed by the
methods. Simulator I shows that AWT-EventQueue-) the application spends almost
all of its time on three methods. Simulator II (Fig 6.24) shows that for Thread-5 and
AW'T-EventQueue-0, which have several methods, only the one method run 100% of

the time.

144

Chapter 6 Evaluation 2: Guided Vehicle Parking System

& com matthevsummers, avps. svpset, TedeC (pd 4018) x| @
| I8 Overview | il Morktor | =) Threads | S5 Sampler | @M_Tﬁﬁ-ﬁ&iﬁs:m&ﬂ 3 (snapshor) 08:20:15 M =/
C com.matthewsummers.avps.avpscc.TestCC (pid 4016)
Profiler Snapshot
BE vew [Cvetods ¥ [QT F
Call Tree - Misthod Time: [%] + Tine [r—
5 3 AT Evenmed I v oo '
- jevaoc. swing. run () EE— 267 ms (39.75%) »
(© Seif time] 267 ma (395%) =
@ th avpe. avpste. CortrelCentrs 0ITme (%) 21
(B javar.sving. omponert$2.run () 0.957 M8 (0.3%) 1
= £53 RMI TCP Connection () 0.000ms. (0%) 1
{5} sun.rmé transpoet. top, TCP Transport ConnextionHandiers run () 0.000ms (ow) 1
?_?{I{E_.EMM‘- [Combined | @ Info|
Fig. 6.24 Simulator I (PID 4016) CPU profile
& v ControlContre WATN (ped 3744) =] ED
19 Crverviow | i orvtor | =5 Theeads | (G Sampler | (5 Profier | (G4 [snapshot] 06:28:03PM x | (T8 [snspshot] 09:28:32 FM x|
< avps.ControlCentre,MAIN (pid 3744)
Frofiler Snapshot
FE | vow [rehods | Q@& F
Cal Tres - Method Time [%] = Tree Invocations
=B Thread-5 | 1,39 ms {100%) 1
(5 avps. ControdCantre. Mapl nader 2. get CarsEventDecurred (| e——— 158 ms | 360
(5 avpes. ControlCentre. Mapt cader $3. getVansEventOccurred || |] 0L347 e (24.5%) 120
(5 avpe. ControlCentre. Mapl nader § 1 GetBusesEventDocurred () | | 0336 ms (245) 120
=5 AWT-EvertQueus-0 I 0c5ime (oon) 1
© ovax.own, " run0 — 0.502 8 (77.15%) 1
(3 Java.owing. Wompanent$2.run | = 0.153 ms (225%) 1
= G RMI TCP Cannection (- 0.000ms (o) 1
(5 sun.smi transpeet bep. TCPTranspart$Connectionandierrun) 0.000ms () 1

%3 Cal Tree | 5 Hot Spots | [Combined | @ Info]

Fig. 6.25 Simulator II (PID 3744) CPU profile

Memory profiles for the entering event, for Simulator I and II in Experiment

Scenario 1, are shown m Fig. 6.26 and Fig. 6.27. The profiles provide detailed

memory consumption for all objects involved n the entering event. In Simulator I, the

145

Chapter 6 Evaluation 2: Guided Vehicle Parking System

highest memory consumption is 17.99%, for object char[]. In Simulator II the highest
memory consumption for object char(] is 16.5%. All the other objects in Simulator 1T

consume significantly less memory than the objects in Simulator L.

& coom.matthevesumemess. avps. avpsce, TestCC (pid 4016) x| 3 ’18@

| [} Overviem | [Mortor | (5 Thveasds| @ Somgler | (©) Proer | (@) snapshot] 09:19:52 P | (e lsnspehot] 05:20:15PM x

C com.matthewsummers.avps.avpscc.TestCC (pid 4016)
Frofiler Snapshot

BE Qes

| Class Name - Live Abocated Objects Live Bytes = Live Bytes o]l
char(] T i) 1A
int[] . o6 !
java tang. Obpect] j===| 19,7288 (10.0%) 1
fava o lasskey 1 15,5208 (5%) 1
bytel] == 153128 (14%) 1
farva.utl, Abstractiistgltr | 14,2328 (7.0%) 1
fava.utl, TreeMapgEntry [] 14,1768 (75%) ¥ 1
fara bang String [] 45128 (25%) & 1
Java st Rectangle [| 3,938 e 1
fava,utd, TreeMap. [| 22,2568 (12%) 47 (L1 1
java. o, ObjectStreamClass i 1,6248 (1% 19 (0% 1
fava.utd TreeMapEeyTterator {] 1,798 5 1
fava.utd, TreeMapdEntrylterator] 1,6648 52 1
jaa. it geom. Alfine Transform] 1,408 8 2 [l
double]] 1 1,328 1% 1
fva o, SerialCallbackContest] 1,308 55 | 1
farva lang StringBuibder] 1,3128 g | 1
Jva, it image DirectColorMadel] 1,089 8] 1
st mags.] 8328 (15%) 8 1
fva.utl HashMapgEntry[] I BIGB (0.4 18 1
v | BOOB (04%) L] 1
s java2d SunGraphics2D | 08 4 1
java,utd Arrays$Arraylist 1 BB (o) 43 1
jaea it TreeMap$EntrySet] 7638 (04} 48 it 1
tavalano. Classf 1 286 fo4m) 38 i i
Wl [Class Name Flter] L
&) Hemory Resks | @ Ifo

Fig. 6.26 Simulator I (PID 4016) Memory profile
& v Controbentre MAIN (i 3744) = O EE

|) overview | i Montor | 5] Theeads | [, Sampler | Oﬁd‘u_ @[mm]m:zs;-mpﬂ x__E_[;ﬁoT&]_n_é:_zé:;;:- |
< avps.ControlCentre.MAIN (pid 3744)
Frofier Snapshat
B8 qes
char(]
fva lang. Object[]
javautd AbstractList$Ttr
arva. ClassKey
java.utd. TreeMapgEntry
bytel]
int[]
v lang String
java.ut, TreeMop
java o, ObjectStreamilass
tava il TreeMap$Keylterator
java.utd TreeMapSEntrylterator
(a0, SerialCallbackContext

Fundfdzg

w0 RYUTIERBETYES

java utl Arraysdrraylist
iava.utd TreeMapsEntrySet
java.utl. HashMapgentryl]
tarva: C
jsvaut HashMap

java lang. Stringl]

lang(])

SunImLY. e

javalang.Long

T

B [Class o Fiter]
] Memry Reuks | @ irfo]

Fig. 6.27 Simulator I (PID 3744) memory profile
146

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

Experiment Scenario 2: Two student vehicles and three visitor vehicles
under normal road conditions

The objective of the second experiment was to compare the behaviour of the two
architectures under increased load conditions (Le. 2.5 times the load m Experiment
Scenario 1). The experiment used five vehicles; two student vehicles and three visitor
vehicles under normal roads conditions. The student vehicles of type car navigated to
the Ash House (see Fig. 6.28 and Fig. 6.29). Two wisitor vehicles navigated to the
Ruskin Library (see right side of Fig. 6.30) and one wvisitor vehicle navigated to the
Health Centre (see left side of Fig. 6.30). After a short while, the vehicles exited from

their parking areas and proceeded to leave the campus (see Fig. 6.31).

g oo fom A o

AVPSInCar =
ouTng you fom A B
Arriving at entrance: MBOFE 125, 457520075 -
Enter your RFID:
Wehicle Type: e
User Type St
Staft
STutarey
e

Fig. 6.28 Student car arrives at the university entrance on IVD panel of Simulator I (top) and Simulator IT (bottom)

147

Chapter 6

Evaluation 2: Guided Vehicle Parking System

Fig. 6.29 Student car navigates to Ash House parking area shown on IVD panel of Simulator I

Fig. 6.30 The first visitor car navigates to Ruskin Library parking area and the second visitor car navigates to Health

-
AVPSInCar <
geting you om Ao B
f »
e
o " m
Al "‘
f " %
o S
iz 7l I s
Bas '
1 P a
. ., 1a
.
R ¥
" % .
w :
o] Ll
] = =
e
“ F
f
b
AVPSMap * I Bt I I Mew Routs ‘ [EMERGENCY STOR Jn- I
eting you Fom AL B i = | = el ~

[

&
AVPSInCar
g enans
0 »
(]
- e
g, 3
X | ' .
P
1 %
*
g A Extitap :; EMERGENCY TCF | & e

e L]
AVPSInCar
] 5
ol
[W
Gaun
. i
2 Pl
1
w
o
aveshg Exaaap || N EMERQENCY BTOP 1 & e
o VB Raute,

Centre parking area shown on IVD panel of Simulator IT
148

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

B CC Map

A
|}
%)

o
]

‘Em

Al
AVPSMap ™ P Sirmilatos File View In Car Add Car € Map Edil Obistructions Edla Buses.
geting you from A o B

Fig. 6.31 Student and visitor cars leaving car park areas shown in Control Centre panel of Simulator 1T

Performance and resource analysis for Experiment Scenario 2

The VisualVM CPU, heap, classes and thread graphs, corresponding to the GVPS
entering event, are shown in Fig. 6.32 (Simulator I) and Fig. 6.33 (Simulator II).
Simulator I shows that the entering event uses 2.4% of CPU time and consumed
97,109,032 bytes of memory while loading 2,721 classes and has a total of 28 live
threads. Conversely, Simulator II uses 0.7% of CPU time and consumed 92,927,384
bytes while loading more classes and threads; 3,175 classes and 30 live threads. In the
heap graphs, the memory consumption shows five spikes that occurred after adding
two student vehicles and three visitor vehicles. The result for both simulators m
Experiment Scenario 2 shows more memory consumptions compared to Experiment
Scenario 1, although the classes loaded are fewer. This may be due to the fact that both
the simulators in Experiment Scenario 2 running more threads, which require more
resources. Nevertheless, Simulator 1T still shows significantly better performance and

memory consumption in Experiment Scenario 2 than Simulator 1.

149

Chapter 6

& avps.avpscc. TestcC (pid 2212) x|
| (18 vervien | [Mooor | =] Thwowds | 433 Sompter | (2) Profier

Evaluation 2: Guided Vehicle Parking System

oG]
C com.matthewsummers.avps.avpscc.TestCC (pid 2212)
Mordor Foru [Memory [Classes [] Threads
e
U ¥ | Heap | ParmGen ®
CPU usage: 2.4% GL activity: 0.0% Size: 171,667,456 6 Used: 97,109,032 B
Max: 268,435,456 8
100%:
Y 150 M
o
100 MB.
-l
S0 me. Py
0% A \ y ’ﬁ
by ‘\—«\A/\f-jv\ «_A\—\-ﬂ—A"\ = - o
5230 P 535 P S£900 PM 55915 PM 55930 P S£8:15 PM 55830 P S50 PM 55500 PM 55315 PM 6930 Bh
EPuusage [l GC activity @ Hexp sice [l Used heap
Classas x Threads x
Total loaded: 2,721 Shared loaded: 1,656 Live: 28 Daemon: 13
Total unloaded: 13 Shared unloaded: 0 Live peak: 23 Total started: 35
P
e/ | A N
2,000 2 e
1000 w
Séni:ISDM SE830 P SERHE PM SE900 PM 555:15 PM 55930 P 5815 PM 55530 PM S58:6 PM S5500 PM S55:15 PM 55930 PV
[Total loaded classes [0 Shared boaded classes (B v threads [l Daemon threads

Fig. 6.32 Simulator I (PID 2212) monitoring entering event

& avpe.ControlCentre MAIN (pid 2756) x| 1 +xE
C awvps.ControlCentre.MAIN (pid 2756)
Moo BP0 FMemory [Classes [7] Theeads
Uptime: v 4 50¢ [(reome]
U ¥ | Heap | PermGen x
CPU usage: 0.7% G activity: 0.0% Size: 169,734,144 6 Used: 92,927,384 B
Man: 260,435,456 B
10
R 150 M.
% iy
. ’_"—J_W_/\/—V—A—A—/—
e
0%
T 2z m 2128400 P 2125015 M 212530 P 212616 M e T T ZAS PN ZZRGOPM 206 M
B PUusape [GC activity B Heap sice B Used heap
Classes x| Theeads x
Total loaded: 3,175 Shared loaded: 1,750 Live: 30 Daemon: 14
Total unloaded: 13 Shared unloaded: 0 Live peabe 30 Total started: 35
300 " /—/—/—
200)
1.0 w
22574 M 220 P 226,05 P4 T 225 P 22500 P 22500 P 22615 M 2280 oM 2205 P
an @Est ELive threads B Daemon threads

Fig. 6.33 Simulator II (PID 2756) monitoring entering event

In Experiment Scenario 2 the exiting event 1s triggered at approximately 750

seconds (see Fig. 6.34 and Fig. 6.35). The results show that Simulator I uses 2.2% of

150

Chapter 6

Evaluation 2: Guided Vehicle Parking System

CPU time and 100,625,744 bytes of memory that involves 4,556 classes and 33 live

threads. Simulator II uses 1.5% of CPU time and 93,155,208 bytes of memory while

loading 5,214 classes and 34 live threads. In the heap graphs, the memory

areas.

é"‘"“ T

Cipd221z) =|

consumption shows five spikes. These occur as the five vehicles exit their parking

<@

 com.matthewsummers.avps.avpscc.TestCC (pid 2212)
Horstor

Upkimes: 13 min 16 sec

U

% | Heap | PermGen
CPU usage: 2.2% GC activity: 0.0%

EIER EMemory [Fclasses [Theeads

ool
G0 PM 405 PM

Mtz 268,435,456 8

*x
Usexk 100,625,744 B

Size: 195,579,904 B
0
ow
150 M8
%
mosed
%
mw I s0ME
A i
% |

Total loaded: 4,956
Tokal unloaded: 14

(B Live thesads [l Daeenon thrsads
T ——

» Daemon 16
Shared unloaded: 0 Total started: 52
4000 { e
3000) Jll
R S— X
1,000
00 PH 106 PH B0 P P
Bl Total kaded d ™

B30 B¢

Fg. 6.34 Simulator I (PID 2212) monitoring exiting event

[ovps.CortrolCentre. MAIN (pid 2785) =
|

(8 vervew

m?gmmgm | © Profier | @ [snspshot] 02:27:18 P x | () [snapshi] 02:27:49 0
 avps.ControlCentre.MAIN (pid 2756)

Monior

Upline: |5 frin 28 s

x| [ez | Pemaen
G activity: 0.0%

Ea

Fru [FMemory [Casses [+ Theeads

x|

Size: 196,616,192 6
Mae: 265,435,456 8

e

Used: 93,155, 208 B

100
0%

150 M8
.

100 M
A
2%
(Y

FELT]

@ Heap soe [l Used heap

Daemon: 18
Total started: 43

2P

B Total inaded dlasses [l Shared koaded dasses

236 P
ELive threads B Caemon threads

Fig. 6.35 Simulator II (PID 2756) monitoring exiting event

151

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

The performance and memory consumption results for Simulator I and Simulator
II in Experiment Scenario 2 are summarised i Table 6.7. The results show that
Simulator II performed significantly better than Simulator I. Although Simulator 11
run more classes and threads, it has lower CPU usage and memory consumption
compared to Simulator 1. In the entering event Simulator II uses almost 3.5 times less
CPU time than Simulator I, and almost 5Mbytes less in memory. In the exiting event
Simulator II uses 1.5 times less CPU time than Simulator I, and almost 7Mbytes less

In memory

Table 6.7 Summary performance and memory consumption for Experiment Scenario 2

CPU Usage Heap (bytes) Classes Threads
Entering event Simulator | 2.4% 97,109, 032 2,721 28
Simulator Il 0.7% 92,927,384 3,175 30
Exiting event Simulator | 2.2% 100, 625, 744 4,556 33
Simulator Il 1.5% 93, 155, 208 5,214 34

CPU and memory profiles for Experiment Scenario 2

The CPU and memory profiles during the entering event, for Simulator I and
Simulator II, are shown in Fig. 6.36 and 6.37. Once again Simulator I shows that
application spends almost all its time on a few methods in the AWT-EventQueue-are.
In Simulator II, the application its ime on several methods in the Thread-5, AWT-

EventQueue-0 and RMI-T'CP-Connection.

152

Chapter 6 Evaluation 2: Guided Vehicle Parking System

é ‘com, matthevwsummers. ayps. avpsce, TestCC (pad 2212) x-l TTEI@
e O e
C com.matthewsummers.avps.avpscc.TestCC (pid 2212)
Profier Snapshot
BE | vew: [Gmethods v | Q B &
Cal Tree - Mathad (O]
= AWT-EventQuaus-0 1
_éi ! v, swing, b un 24
(D Self i 24
@ com avps.avpscc. ControdCentre, 0 19
() favax.swing Jomponert$2.run (| 5
| co ree [I ot scts | B Combind]| © o]
Fig. 6.36 Simulator I (PID 2212) profiling CPU
& v ContraiCentie MAT (4 2758)] [VEO
[[overview | [torstor |] Trreads | 28 Sampier | (5 Profer | (@ [snapshet] 02:27:18 PM x | 3 apshot] 02:27:49 PM x|
C avps.ControlCentre.MAIN (pid 2756)
Cal Tree - Method | Time [%] + Time Invocations (0]
- AWT-EventQusus-0 I 100 ms (100%) 1
B Javax.swing . run ()] 100 ms (53.4%) 14
LD Sef time [94.3ms (53.7%) 14
8-'! avps.ControlCentre. console. ControlCentreMapView, overRideDraw (java. swk Graphics2D)] 4.14ms (4.1%)
(T avps.map Mapiew. wait Forimage {java,awt, Imags, java. swt. Component)] 0985 ms (1%) 40
I (D) avps.map Mapiiew transformCoord (avps, Cooeds, booksn] | A ms (05%) 68
() evps.ControlCentre, SendalorGUIS1T. get ObstructionsEvent Occurred () 0.050ms (0%) 8
(5 javax.swing JComparent$2.run (} | 0661 ms (0.7%) &
- Theead-5 [} 2.36 s (100%) 1
L (B avps.ControiCertre. Mapl nader§2. getCarsEventOccurred () I 5.22ms (100%) 2142
(5 avps.ControlCertre. Maploader§3. getVansEvent Dccurred () i 0.722 ms (30.5%) 7
~ (D) avps.ControdCantre. Mapl nader1 di) [] 0.575 s (24.5%) 7
=-E53 RMI TCP Connection () I 00 (s 1
- e TheeadPoclExecutorfWorker.run () I 0.0%ms (00%) 1
=D SoF time I 0097 s (o) 1
(T sun.mi.transport. bep, TCP Transport$ConnectionHander run () 0.0M0ms (0%)]
B3 Call Tree | 5] Hot Spots | G Combined | @ Info

Fig. 6.37 Simulator II (PID 2756) profiling CPU

The memory profiles for the entering event, for Simulator I and II, are shown in

Fg. 6.38 and Fig. 6.39. Simulator I consistently shows significantly higher memory

153

Chapter 6 Evaluation 2: Guided Vehicle Parking System

consumption for almost all objects compared to Simulator II. Some Simulator I
objects such as nt[] (33,216 bytes), have more double the memory consumption of

their corresponding counterparts in Simulator IT (16,472 bytes).

o TR TS] m/GJc]
9 oveven et | 5 s 4| Ot @ ooz x| @i =
< com.matthewsummers.avps.avpscc.TestCC (pid 2212)

Profier Snapshot

BE qey

T.clus Name - Live Alocated Objects
(nt[]

Javaleng Object(]

jarva.utl Abstractlistgitr

v, o, ClassKey
sarvautl. TreeMapgEntry

byte[]

| sava.lang Skring

java,awt Rectangle

ava,utl. TreeMap

double[)

| java. awt geom. AffineTransform
sava,utd. TreeMapdKeyTterator
sarva.utd, TreeMapdEntryTterator

g
:

Live Chjacts. Ganarations

o

13,4728
(#.15)

#E245. 09908 sBEeBRERY

7
45 (1%
43 (%) o
-
Fig. 6.38 Simulator I (PID 2212) profiling memory
[aves. ContraiCentrs MAIN (i 2758). | NEE
[[Ovorviove | 5 Moror | £ Thomss | G Swpter |) Profder | (B [smapshas] 02:27:16 P x| Gl Esnepshot] 02:27:43 P
C avps.ControlCentre.MAIN (pid 2756)
Prodfiles Snpshet
BE Qs
Class Name - Live Allocsted Objects Live Bytes = Live Eiytes Live Objects GGenerabions @
ink[] I ;oizE) A7 (2aw) [
char[] [] 11,624 B (13.5%) 136 (6.5%) 1
javalang Dbjeck[] [———7 11,4088 (13%) 33D (16.2) 1
pava. bl AbstractList§Ior =3 5,504 B (10.1%) 371 (1) 1
fvao Classkey |] TETZE (vw) 246 (11w 1
peva.utl. TreeMapgEntry == TE4BE (1.7%) 239(11.49%) 1
byte[] B 2,5948 (29w) 21 (W) 1
Javalang String [| LEME (22w) 79 (3]]
fava.owt Rectangle [] L4646 (17%) 61 (29%) 1
prvautd TreeMap [] 1L,3HE [15%) 28 (1)]
pva il TreeMapiKeyterator 1 L0248 (12%) R [(15%) |
pva.utd TreeMapgEntrylterator] BB (1w) 27 (1aw)]
feva.awt.geom, Affine Transform] BIZB [0.9%) 13 (05%) 1
double]] (] BIGE (0.9%) 11 (05%) 1
feva. o ObjectStreamClass 1 TEEE (0.9%) B (0.4%) i
peva. o, SerialCallbackContext 1 8968 (0%) 29 (14%)]
] EODB (0.7%) 5 [12%)]
1 E28B (05%) 10 (0s9) 1
] 6B (05%) 3 [15%)]
I 4648 (05%) 29 (Law) I
| H16E (05%) 26 [12%) !
| 40BB (0.5%) 3 (01w} |
| 4008 (05%) 10 (:sw) 1
| 4008 (0.5%) 2 (0.1w) 1
o 1 3848 (naw) 24 (11w L=
|E [Class Mame Fiker] o
MWMMJ Q1

Fig. 6.39 Simulator II (PID 2756) profiling memory
154

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

Experiment Scenario 3: Two student vehicles, three visitor vehicles and
two road closures

The objective of this experiment was to add complexity, in addition to increased load.
The compares the behaviour of the two architectures a load of five vehicles; two
student vehicles and three wisitor vehicles, and two road closures. The requested
destinations are the same as in Experiment Scenario 2. The student vehicles of type
car are navigating to the Ash House, while two visitor vehicles are navigating to the
Ruskin Library. One visitor vehicle 1s navigating to the Health Centre. However, there
1s the added complexity of two road closures (i.e. road 1d 17 and 38), which obstruct
the direct route to Ruskin library (see Fig. 6.40 - 6.43). The closure has the effect of
forcing the GVPS to compute a new shortest route to the Ruskin library.

AVPSControlCentre

Obstructiong ==srmrm4=8

L 36

e ar
3
s

Add Obrstiuction

Hsmiove OBsErisction Dona

Fig. 6.40 Road obstruction menu

B cc uap '-—F;IE

m;
m

Hdem

AVPSMap 7I% | fun Simulater Fie View in Car e e cC Map e Obstructions f—
gatting you from Ao B

Fig. 6.41 Road obstruction at road 17 is shows on Control Centre panel of Simulator 1T

155

Evaluation 2: Guided Vehicle Parking System

Chapter 6

B ct Map
B »

= n -
al
-
= L “
¥
n
=
]
* £ W
B x
-y »
=
@ i
g 9
u
AVPSMap 9#5 P St Fibe Ve i Co M Caw £C Mg F it Obbiscrasens. Ful fhusas
gmttng you from Ao B

Fig. 6.42 Road obstruction at road 17 and 38 is shows on Control Centre panel of Simulator 1T

B View in Car ElCi&
Al
AVPSInCar *
gering you from A B
n x
1] ” a
& L™
-
iy 8l | o
;- "
Yy L
3
K _ " - s
f] " i
-3 f! wll 7
et] o @
- 8 % A, " (H
;-]
L]
3 |
i !
n 1 >
“ p-
1]
Jm 0 L1
ﬁ 13
k)
-
&
n
Hew |
AVPSMap -'s‘!‘(Exit Map | EMERGENCY STOP ETR AT seconds
geting you from A lo B Route

Fig. 6.43 Visitor car navigates to Ruskin Library using alternative road is shown in IVD panel of Simulator IT

156

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

Performance and resource analysis for Experiment Scenario 3

The CPU, heap, classes and thread graphs for the entering event, for Stimulator I and
Simulator II, are shown in g, 6.44 and Fig. 6.45. For Simulator I, the event uses
1.6% of CPU time and 100,965,680 bytes of memory while loading 2,739 classes, and
has a total of 28 live threads. Conversely, Simulator II uses 0.7% of CPU time and
94,998,656 bytes while loading 3,196 classes and 30 live threads. The memory
consumption i the heap graphs show five spikes occurring after adding the same
number of vehicles as in Experiment Scenario 2. Both simulators in Experiment
Scenario 3 load more classes and threads than Expermment Scenario 1 and
Experiment Scenario 2. Hence, the memory consumption in Experiment Scenario 3,
for the entering event is the higher than m Experiment Scenario 1 and Experiment

Scenario 2.

e T e
|| (50 Overview | 1 Morikor | (=) Thesads | (G}, Sampler (&) Profier
| © com.matthewsummers.avps.avpscc.TestCC (pid 1712)

Monitor [Flcru [FMemory [Classes [] Threads

Uptime: 1 min 37 56

U x| | Heap | PermGen x

CPU usage: 1 6% GC activity: 0.0% Size: 173,043,7128 Used: 100,965,650 8
Ma: 268,435,456 B

1719330 AM 1110045 AM 11140 A8 1HL1E AN 1111330 AM ' 1:00:30 AN 111045 AM 111400 A B111E A8 1114:30 AM
B PUusage W GC activity B Heap sze B Used heap
Classes x| Threads x
Total loaded: 2,739 Shared loaded: 1,65 Live: 28 Daemon: 13
Total unloaded: 0 Shared unloaded: 0 Live peak: 28 Total started: 36

|
L

111018 AM 111100 AM L1115 AM L8630 A
[0 Total boaded classes [l Shared loaded classes

LIS AM L1100 AM 1S AM LI AN
[ELive threads [l Daemon threads

Fig. 6.44 Simulator I (PID 1712) monitoring entering event

157

Chapter 6

Evaluation 2: Guided Vehicle Parking System

& avps.ContralCentre.MAIN (pid 2512) =
[0 Overview| i Mositox | (=] Thweads | (3% Samoler | (E) Profier

Z avps.ControlCentre.MAIN (pid 2512)
Morice [FCFU [Memory [7] asses [Threads
Uptime: 1 mn 37 sec (Pefomec_] [(Fewtams |
<PU % | Heap | ParmGen *®
U usage: 0.7% GL activity: 0.0% Size: 171,290,624 B Used: 94,996,655 5
il Manc 268,435,456 B
i
0% =
o (50 MBS
ar w Vo
8 f i B
A L===T7
o A ' Ta) . Fal ovel
42750 P A0TAL P 42800 PM 47915 PM 5 427:30 PM 43748 PM 42000 PM L S P
ECPUussge MG activiy MHesp sce W Used hesp
Classes x| Theeads x
Total loaded: 3,19 Shared loaded: 1,750 Live: 30 Daemon: 14
Total unloaded: 0 Shared unloadesk 0 Live peak: 30 Total started: 37
- 30 |
2000 E ‘l
o
P
o [
T 43T aga.00 M &26:15 P 42730 PM 4275 PM 42908 P &25115 P
I Tokal oaded dasses [Shered loaded classes

[Lve threads [l Daemon threads

Fig. 6.45 Simulator IT (PID 2512) monitoring entering event

The exiting event 1s triggered at approximately 750 seconds (see Fig. 6.46 and Fig.

6.47). The results show that Simulator I uses 2.4% of CPU time and 122,706,184

bytes of memory, which mnvolves 4, 595 classes and 31 live threads. Simulator II uses

1.5% of CPU time and 119,025,464 bytes of memory while loading 5,

270 classes and

33 hve threads. In the heap graphs, the memory consumption shows five spikes.

These occur when the five vehicles exit their parking areas.

158

Chapter 6

[& com matthewsummers. avps. avpscc. TestCC (pid 1712) x|

Evaluation 2: Guided Vehicle Parking System

[EO
po— - ’
| [0 verview | bl Monikor | = Threads |) Sampler | () Profiler | @ [snapshot] o1:11:58 0 | @3 7AM = | 3 [snapshot] 01:12:23 AM x|
 com.matthewsummers.avps.avpscc.TestCC (pid 1712)
Manitor FIEPU [Memory [Classes [Thresds
ey
U x| | Heap | PermGen x
CPU usage: 2.4% GE activity: 0,0% Size: 200,900,608 & Used: 122,706,184
Manc: 268,435,4% B
e
200 M8
e
150 MB.
L2
- 100 Me I
" ‘]‘ < —‘M oMe
115 AM 120 AM 115 A8 120 AM
ECFUussge B GC activity W Hesp sz Bl Used hesp
Classes % | Threads x
Total loaded: 4,555 Shared loaded: 1,704 Live: 31 Daemon: 16
Total undoaded: 5 Shared unloaded: 0 Live peak: 34 Total started: 47
4000 J =
3,000 »’l m
2000 I I
. w
1115 AM 120 AM s 1115 AM 120 AM
[] o [k2 d loaded ck [El Live threads [Dasmon thresds

Fig. 6.46 Simulator I (PID 1712) monitoring exiting event

& avps ControlCentre MAIN (pd 2512) = | DO
8 Overview | Wl monitor | 5 Threads | @ sampler | @) profier | @11 P x| 8 et x|
C avps.ControlCentre.MAIN (pid 2512)
i 2o
(=1} ® | Hesp | Permien *
CPU usage: 1 5% GC activity: 0.0% Size: 202,330,112 Used: 119,025,464 B
Man: 268,435,456 8
10
200 MB.
0%
150 M
0
10 M
%
oy 1 M
23 ol m (13
4120 PM 435 P 40 oM 435 o8
B CPUwsage [G activity [E Heap size [Used hesp
Casses x| Thieads x
Total loaded: 5,270 Shared loaded: 1,751 Liwe: 33 Daemon: 17
Total unloaded: 3 Shared unloaded: ¢ Live peak: 37 Total started: 50
e ——
[»
4000
— % f
s s
o a—I"
i
430 M 435 P 430 oM 435 M
I Total baaded chasses B Shared loaded classes Eive theeads B Daemon threads

Fig. 6.47 Simulator I (PID 2512) monitoring exiting event

The results for Experiment Scenario 3 are summarised in Table 6.8. Once again

the results show that Simulator II has performed significantly better than Simulator I

159

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

despite running more classes and threads. Simulator II has lower CPU usage and

lower memory consumption compared to Simulator 1.

Table 6.8 Summary performance and memory consumption for Experiment Scenario 3

CPU Usage Heap (bytes) Classes Threads
Entering event Simulator | 1.6% 100, 965, 680 2,739 28
Simulator Il 0.7% 94, 998, 656 3,196 30
Exiting event Simulator | 2.4% 122,706, 184 4,595 31
Simulator Il 1.5% 119, 025, 494 5,270 33

CPU and memory profiles for Experiment Scenario 3

Fg. 6.48 and Fg. 6.49 show the CPU profile for Simulator I and Simulator II in

Experiment Scenario 3 during entering event. Simulator I shows that the application

spends almost all its time in the AWT-EventQueue-0 class. In Simulator 1T (Fig 6.49),

the application spends most of its time n the Thread-5 and AWT-EventQueue-0

classes.
s com.matthewsummens. avps, avpece Test CC (pid 1712) x v [=](T)
(') Ovesview | | Morskor | (=] Theeads | JoL Sampler | (5) Profiler | (22 [snapshot] 01:11:58 AM x | (£ [snapshot] 01:12:26 AM x
| © com.matthewsummers.avps.avpscc.TestCC (pid 1712)
| | Profier Snapshot
|E§; View: | () Methods ¥ | QBa
| | cat Tree - Method Time [%] + Time. Invocations (=]
= 51 AWT-EventQueue-0 | mmmm—— 1083 ms. (40 1
= 3 Jmas it) I 1057 (s 1
O 5eF tme | 109 ms (33,4 13
(® com.metth vps. avpsce. ControlCentr 0.054 ms 9
(5 javan.swing. Jomponent$2.run 0414 ms 4
= 51 RMI TCP Connection (de) 0.000 ms 1
(5 sun.rovi. transport tep. TCPTranspart$ ConnectionHandier run 0,000 ms]

| | B cal Tree | B2 Hot Spots | G Combined | € Info

Fig. 6.48 Simulator I (PID 1712) profiling CPU

160

Chapter 6 Evaluation 2: Guided Vehicle Parking System

o avos ControiCentre. MARN (pd 2512) = | [n|[G =]
[Overview | it Monitor | [i5] Theeads | [0, Sampler | () Profiler G snapshet] 042347 P % 1 [sruapmhot] 04:20:07 P4 x
Z avps.ControlCentre.MAIN (pid 2512)

Frofier Snapshat
EE vew mehoss ¥ | Q%S
Call Tree - Method Time [%] = Tine I atiors a]
= AWT-EveriQueus-0 I Sz ms (100% 1
5 java.swing Ritiesh run 1] BLEmS "
) Soff time. .] a.zms (1 "
M avps.ControbCentre.consobe. ControlCentreMapiiew, ideDraw | [} 4 hms (4 8
(D) v, Map¥iew, waltForTmage (1 54 | 0857 ms (0.4 £
(5 v g Maghiew translormCoord (5 p: | Q46 (0 &
&) avps.ControlCentre. 7. 0.08me (v 8
() java.swing. Xompanent§2.run | 0,521 ms (5% 13
(= £ Thread-5 | — 0.58ms (105 1
(5 vps ComtroiCentre Magloaderf2 getCarst ventOccurred |] 159ms (1 21%
(5} s ControiCentre. [] 0,551 ms: [100%] k)
{5 avps-ComtroiCentie Mapl oader $3, get VansEventOccurred [;]] 0EAS ms £

B Cal Trew | (5 Het Spors | [Combined | € Info

Fig. 6.49 Simulator IT (PID 2512) profiling CPU

Memory profiles for the entering event for Simulator I and II mn Experiment
Scenario 3 are shown in Fig. 6.50 and Fig. 6.51. Simulator I shows significantly higher
memory consumption for almost all objects compared to Simulator II. The object int[]
of Simulator I, for example, has a memory consumption of bytes 58,128 bytes

compared to Simulator II, where 1t’s consumption 1s only 2,088 bytes.

g com mattheveoumner s, avps, avpsce, TestCC (pid 1712) | [413] B@
(1 Cveri | i Mo | 5 Trveas |, Solr | © ot | (3 s @ CE
 com.matthewsummers.avps.avpscc.TestCC (pid 1712)

Profier Snapshot

BE A%y

Clss Marms - Live Allocated bjects Live Bytes v Liva Bytes
ntf] | B cElE T A
charf] I o [0 z
st AbstractListglte | 46,8488 (11.1% 952 (22]
s Jarg, Dbject(] — 45,1128 251 (14]
s i, DbjectStreamClassWeakClasskey e 294728 (1% 3 1
sarva utd TreeMap§Entry === 27,0728 (75w (s 1
byte[] | | 17,0808 (45% 1% (1
savalang String | | 79920 (2% (2% 1
java ot Rectangle | } TIME (% 296 (14% (]
‘com.matthewrsummers_avps. avpsep. Coonds [] 54008 (18 25 (i v
yava utd, TreeMap 14,5128 (1% W |
double(] 3,3608 (005 46 (05% i
Java i TreeMapgeyIterator 3,%08 (30 105 (1% |
sarvs awtgeosn Alfine Transform 3,3288 (9% 52 (tE%]
save io. DbjectStreamiClass 31688 (5.5% 3 (o4 1
sava i TreeMap§intrylterator 3,1688 (2% E IR 1
sava o SerialCallbackContext: 1 2,528 (0.7W) 100 (13 1
savalang StringBusider] 21128 (b 132 (12]
pava bl HashMapsEntry[] (] 1,7928 (48 R [pan 1
s ot image DirectColorMadel 1 1,7638 (25w 130 |
st TreeMapgEntrySet 14728 (3.4%) 2 (L8 1
vt difiabletall 14248 (3.4 a9]
Java. i Arrays$rrayList 1,4088 (2% 3 1

cperebean O LITEE (2.0% 86 1

20, k. imace, 1 1IDB (o) 13 | LS
B [Class Name Fite "
&l Memory Resuks | @ Info

Fig. 6.50 Simulator IT (PID 1712) profiling memory
161

Chapter 6 Evaluation 2: Guided Vehicle Parking Svstem

s avps.ControlCentre MAIN (pid 2512) «v[EE
[Overview | bl Mondtor | =] Threads | () Sampler | (5) Profler | () [snapshot] 04:28:47 P x| (3 [snapshot] 04:29:07 P x

 avps.ControlCentre.MAIN (pid 2512)
Profies Snapshot

HE Qo
Class Mame - Live Allocsted Objects Live Bytes = Live Bytes Live: Objects Generations ajl
intf] I o6 8 15
char[] = 8248 £l 1
Java.awt Rectangle | | 28 130 1]
java,utl AbstractList$Itr | | 2168 901 1=
double]] [] 1288 2 (2 1
fava.lang. String] 1208 5 z |
java.ubl. HashMapsentryl]] 808 1 1
st jar, JarFiled JarFileEntry I 2B | 1
Java.awt geom. AffineTransform] (21:] 1 (1 1
frva.net URL I 558 1 1
Java,lang. Object(]] 566 10 1
java,lang Class(]] 568 3 1
ava,awt mege. SinglePielPackedsampleModel | 488 10 1
avps Coords] 458 2 (2 2
javalang. el WeakReference] £1:] 2 2
jarva.ut. HashMap | 408 1 1
java,awt maege, Datatulerint | 408 10 1
Java, st ImageMediabntry] 408 1 1
javalang.ref Finalizer | 328 1 1
sun. javald. pipe. Region |] 1 1
Java,avt Point. | 328 z 1
sun.misc URLClassPaths JarLoader§2 | 328 1 1
jarva.ubl. HashtablegEntry | 248 10 1
Java.utd ArrayList | Fal] 1 1
e, securky AccessControlContest | 248 1 L5
&l Memory Resus | € Info

Fig. 6.51 Simulator IT (PID 2512) profiling memory

6.5 Summary

This chapter has provided a runtime evaluation of CSAFE. The evaluation used a real
case study derived from an undergraduate software engmeering group project. The
evaluation assessed the effect of CSAFE efhiciency and performance refinements on
the runtime behaviour of a system by comparing the original system with its refined
version. In all cases the results validated the effectiveness of CSAFE by showing
significant improvements mn performance and resource consumption for the refined

system.

162

Chapter 7

Conclusions

This chapter begins with an evaluation of the Component-based Software Architecture
analysis FramEwork (CSAFE), a scenario-driven, negotiation-based architecture
analysis approach that intended to provide a viable framework for architectural analysis
i CBD. The evaluation compares the research achievements with the objectives
outlined in the introduction chapter. The chapter then provides a discussion of future
research directions, which have arisen during the development and evaluation of the
framework. The chapter concludes the thesis with a summary of the research
problems of developing an effective architecture analysis framework for CBD, the

1ssues with existing research efforts, and the key contributions put forward in this thesis.

7.1 Framework Objectives Revisited

This section discusses how CSAFE has addressed the research objectives stated n the
thesis mtroduction. These research objectives are to allow the system designer to adapt
and tailor the design process to reflect the system context and domain specific needs,
to provide support for pluggable architecture analysis, provide explicit support for

163

Chapter 7 Conclusions

trade-off analysis, to provide support for standard design notations, and develop an

extensible toolset to support the architecture analysis framework. How each objective

has been addressed 1s now discussed:

Formulate a classification and comparison framework for architecture analysis
approaches. This objective has been achieved by 1dentifying the design challenges
in component-based development and distilling them into a set of necessary
requirements for architecture analysis methods. The set of necessary requirements
has been used to develop a framework for assessing architecture analysis
approaches, which m turn, has been successfully used to assess current architecture
analysis methods [Admodisastro08].

Develop a scenario-driven architecture analysis framework to support black-box
component-based development. This objective has been achieved by the
development of Component—based Software Architecture analysis FramEwork
(CSAFE). CSAFE competently addresses the design challenges outlined in
Chapter 3 and has been successfully evaluated on both static and runtime case
studies [Admodisastrol0, Admodisastrol la, Admodisastrol1b]. CSAFE supports
the following features:

o Is process-pluggable to mimmise development process disruption and to
afford system designers flexibility in the way they conduct architecture
analysis to take into account application context needs. Output from the
existing design process forms the mput to the CSAFE process. The
recommendations from architecture analysis process are fed back into the
normal design process. This means that system designs do not have to
modify their development process significantly to accommodate CSAFE.

e Exphcitly supports broad system stakeholder involvement in architecture
analysis through analysis scenarios allow system stakeholders to tailor the

analysis to explore specific design questions. CSAFE also mantains

164

Chapter 7

Conclusions

traceability with the rest of the development process allowing for pluggable
“what-if” analysis of design and evolution changes using analysis scenarios.
Provides support for pluggable analysis to allow for diversity in analysis.
Currently, the CSAFE. analysis process illustrated with three types of
checking, which include structure, behavioural, and conformance, for
which different tools may be used.

Supports for negotiation (.e. trade-off analysis) 1s provided m the
framework through the mplementation of the Simple Mula-Ataibute
Rating Techmque (SMAR'T), which is a form of the mult-attribute utihity
theory methods. Trade-off analysis supports the process of balancing
stakeholder concerns and architectural considerations with the available
component functionality.

Supports architectures described m UML and those described m the
1IXML ADL. CSAFE incorporates a parser to translate UML architecture
descriptions to 1IXML ADIL, and a vertfier for 1XML architecture
descriptions. The 1XML ADL serves three purposes; first, it allows both
pre-existing and new architectures to be analysed. Secondly, it allows for a
portable, platform independent description of the system architecture.
Lastly, it provides the system designer with a mechamsm for augmenting
architectural descriptions to explore “what 1f” analysis. The system
architecture, architectural design templates and components specifications
are all represented in the same way using a standard XML schema.

Is primarly mtended to support black-box component-based
development. However, the approach recognises that there might be
aspects of a system for which black-box development is not feasible or
appropriate. In such cases, CSAFE. supports custom development by
treating abstract design components as placeholders for custom
development. CSAFE. supports hybrid component-based development in

recognition that that component-based systems are mcreasingly hybrid

165

Chapter 7 Conclusions

mtegrations of off-the-shelf components and web services. The evaluation

in described Chapter 5 uses components and a web service.
Develop an extensible toolset to support the architecture analysis framework. This
objective has been achieved through the development of an extensive CSAFLE
toolset that has six main components: The XMI/XML parser, scenario
formulator, analyser, IXML ADIL, trade-off analyser and rater, and report
generator. These components are supported by an analysis repository containing
the design template library, component library and architecture database. The
primary aim of the toolset is to support the architecture analysis process. The
CSAFE toolset achieves this by:

e Providing explicit support for the nvolvement of system stakeholders and
supporting the formulation analysis scenarios that explore specific design
questions

e Supporting the analysis of architectures specified in UML

e Supporting diversity mn analysis through pluggable analysis, to allow
different forms of architecture analysis to be conducted

e Supporting an extensible XML repository of design templates and
components that allows the system designer to define analysis contexts that
include design patterns, styles and organisation-specific schemes.

e Prowviding explicit support for negotiation through the trade-off analyser

and support assessment of proposed solutions

The efhicacy of the toolset 1s clearly demonstrated in the EDDIS case study
described in Chapter 5 [Admodisastrol0] and GVPS case study described i
Chapter 6.

4. Evaluate the architecture analysis framework on a non-trvial case study. This

objective has been achieved by clearly demonstrating the eflicacy of CSAFE in two
non-trivial design settings. Chapter 5 used the requirements of an actual Electronic

Document Delivery and Interchange system (EDDIS) to demonstrate the key

166

Chapter 7 Conclusions

features of CSAFE and the practicability of the framework. The evaluation
demonstrated how CSAFE can be used to construct, analyse and refine a software
system architecture from requirements to system composition. The second
evaluation focused on runtime evaluation to validate architectural refinements.
The evaluation assesses the effect of architectural refinements by comparing the
runtime behaviour of an existing system against its refined version, in three
different scenarios. In all cases the results validated the effectiveness of CSAFE by
showing significant improvement in performance and resource consumption for

the refined system.

7.3 Opportunities and Future Work

This section discusses i1deas for future research stemming from the development and

evaluation of the CSAFE. Fach research direction 1s discussed m turn:

o Improving service and component mapping process. The service and component
mapping process can be significantly improved semantically by the adoption of an
ontology for describing properties and capabihties of services and concrete
components. Current system services are mapped onto the recommended
architecture design templates, and abstract components are mapped onto concrete
components using semantic reasoning. An ontology can provide the semantic
information for conducting more eflicient mapping and analysis.

o [nhancing negotation support. The framework supports negotiation using the
SMART technmique. CSAFE could explore other methods for conducting
negotiation. For example, in addiion to SMART, the Analytic Hierarchical
Process technique (AHP) 1s also widely used mm mult-attribute decision-making.
The enhancement can be implemented m CSAFE as pluggable negotiation,
allowing different trade-oftf analysis tools to be used. Different negotiation

techniques vary in the wider decision factors that they consider. Supporting

167

Chapter 7 Conclusions

flexibility in negotiaion may allow aspects such as uncertainty and risk to be
incorporated 1n the analysis.

o [Fxtending analysis process checkers. Currently the CSAFE analysis process
provides support for structure, quality and conformance checking. The output of
the analysis process 1s a report outlining potential inconsistencies and mismatches,
and recommendations for improving the architecture. The analysis could be
extended to support behaviour checking by extending 1XML ADL to support
component behaviour specification. This would provide the basis dynamic analysis
of architecture design.

e Incorporating component metrics m assessment. Component metrics provide
useful quantitative information related to interface complexity, code size,
component dependency and other measurable system attributes. There are
numerous metrics avalable at the code level and some researchers also have
worked on the design metrics. However, current literature shows there are few
metrics at architectural level, and much less for black-box development. The
quantitative evaluation using component metrics would be a useful addition to the
decision-making process. Therefore, a study might be conducted to identify and
incorporate useful component metrics to support the assessment process.

o Dealing with large and complex system. For CSAFE. to be scalable it needs to
demonstrate that it can cope with the analysis of large and complex systems. The
prototype toolset has demonstrated that CSAFE can effectively analyse non-trivial
system architectures. However, the evaluations described here represent only a
small class of systems and a handful of scenarios. It 1s important that CSAFE 1s
vahdated on larger, more complex applications, and more quality scenarios.
Through further validations, the maturity of CSAFE will improve. Maturity

indicates the state of readiness of CSAFE to be adopted in an organization.

168

Chapter 7 Conclusions

7.4 Reflection

The 1mportance of architecture in reuse-driven development is widely recognmzed
[Bass05, Crnkovic02, MedvidovicO7]. Architecture provides a framework for
establishing a match between available components and the system context. It is a key
part of the system documentation; it enforces the mtegrity of component composition
and provides a basis for managing change. However, one of the most difficult
problems i component-based system development (CBD) 1s ensuring that the
software architecture provides an acceptable match with its mntended application,
business and evolutionary context. Unlike custom development where architectural
design relies solely on detaled requirements specification and where deficiencies m
application context can be corrected by ‘tweaking’ the source code, in component-
based system development the typical umt of development 1s often a black-box
component whose source code 1s inaccessible to the developer. Getting the

architecture right 1s therefore key to ensuring quality in a component-based system.

In this thesis we highhighted how architecture analysis can provide the developer
with a means to assess design configurations and to venfy the adequacy of
compositions with respect to stakeholder concerns. Architecture analysis can also
provide a basis for developing “what-if” scenarios to explore the mplications of
evolving a system [KotonyaO5a, Dobrica02]. However, a study by [Admodisastro08]
showed that current architecture analysis approaches differ widely with respect to their
underlying models and ability to support black-box software development making it
difficult for system designer to assess their efficacy in different application contexts.
The study also showed that there 1s significant disparity in the analytical capabilities and

user validation of the approaches.

The need to trade-oft and accept compromise 1s therefore central to the successtul
development of component-based systems. However, current architecture analysis

approaches provide poor support for negotiation. This thesis has highlighted the poor

169

Chapter 7 Conclusions

support for diversity in current architecture analysis approaches. Current approaches
are largely designed to support a particular type of analysis and often for a specific
application domain. Critically, none of the approaches reviewed 1n this thesis support
hybrid reuse-driven development, even though, increasingly applications are being
developed for which different types of reusable software co-exist in the same system.
In current architecture analysis approaches, the role of architectural design 1is left
largely to the system designer. However, system stakeholders often include decision
makers within and outside the orgamisation and their involvement i architecture
analysis can help 1dentify critical system concerns and contflicts, assess alternatives and

build consensus on priority issues.

This thesis has presented two key research contributions. The first key research
contribution of this thesis 1s the formulation of a classificaion and comparison
framework for software architecture analysis approaches. The framework consists of
eight key requirements that can be used to design architectural methods and assess
efficacy for component-based development. The second key contribution is
development and evaluation of Component-based Software Architectural Analysis
Framework (CSAFE), a scenario driven, negotiation-based architecture analysis
framework for black-box component-based software development. It is important to
mention that while CSAFE 1s primarily intended to support black-box development,
we recognise that there may be aspects of the system for which a black-box solution 1s
not feasible. CSAFLE supports white-box development in such situations by treating

abstract components as placeholders for custom development.

This thesis has highlighted the importance of architectural analysis in component-
based software development. Systematic architectural analysis can help ensure that
risks resulting from architectural adaptations and trade-offs do not adversely affect
critical system quahties. The analysis 1s likely to reveal not only how well an
architecture satisfies a particular application context, but also how change to specific

quality attributes might affect other quahty concerns. The work does not pretend that it

170

Chapter 7 Conclusions

has addresses all the problems posed by black-box component-based system design.
However, it 1s believe that the work has made significant contribution in understanding

and addressing those problems.

171

Appendix A:
1IXML Schemas

Al. 1IXML Schema for Architecture Design
Description

1IXML schema for architecture design is shown in Table A1.1.

Table Al.1 iXML schema for architecture

<IELEMENT NXML (COMPONENT*, INTERFACE*, CONNECTOR*)>

<IELEMENT COMPONENT (COMPONENT.DESCRIPTION, COMPONENT.INTERFACE*,
COMPONENT.CONNECTOR*, COMPONENT.COMPOSITE*, COMPONENT.CONSTRAINT*,
COMPONENT.PROPERTY*)>
<IATTLIST COMPONENT NAME.ID CDATA #REQUIRED

TYPE CDATA #IMPLIED

VISIBILITY CDATA #REQUIRED>

<IELEMENT COMPONENT.DESCRIPTION (#PCDATA)>

<l-- INTERFACE PORT: P (PROVIDED) OR R (REQUIRED) INTERFACE -->

<IELEMENT COMPONENT.INTERFACE EMPTY>

<IATTLIST COMPONENT.INTERFACE NAME.IDREF CDATA #REQUIRED
PORT.IDREF CDATA #REQUIRED>

<!--LIST CONNECTOR ONLY FROM REQUIRE COMPONENT -->
<IELEMENT COMPONENT.CONNECTOR EMPTY>
<IATTLIST COMPONENT.CONNECTOR NAME.IDREF CDATA #REQUIRED>

172

Appendix A XML Schemas

<!--LIST COMPOSITE FOR NESTED COMPONENT OR SUBSYSTEM -->
<IELEMENT COMPONENT.COMPOSITE EMPTY>
<IATTLIST COMPONENT.COMPOSITE NAME.IDREF CDATA #REQUIRED>

<l-- CONSTRAINT STATE: NE, LE, LT, GE, GT OR EL -->
<l-- CONSTRAINT TYPE: PRECONDITION, POSTCONDITION OR INVARIANT -->
<IELEMENT COMPONENT.CONSTRAINT EMPTY>
<IATTLIST COMPONENT.CONSTRAINT CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
STATE CDATA #REQUIRED
TYPE CDATA #REQUIRED
VALUE CDATA #REQUIRED
SCOPE CDATA #REQUIRED>

<IELEMENT COMPONENT.PROPERTY EMPTY>

<IATTLIST COMPONENT.PROPERTY CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
VALUE CDATA #REQUIRED>

<IELEMENT INTERFACE (INTERFACE.DESCRIPTION, INTERFACE.SERVICE*, INTERFACE.OPERATION*,
INTERFACE.CONSTRAINT*, INTERFACE.PROPERTY*)>
<IATTLIST INTERFACE NAME.ID CDATA #REQUIRED

TYPE CDATA #IMPLIED

PORT CDATA #IMPLIED

VISIBILITY CDATA #REQUIRED >

<IELEMENT INTERFACE.DESCRIPTION (#PCDATA)>

<I--LIST SERVICE FOR PROVIDED INTERFACE -->
<IELEMENT INTERFACE.SERVICE EMPTY>
<IATTLIST INTERFACE.SERVICE NAME CDATA #IMPLIED>

<IELEMENT INTERFACE.OPERATION (OPERATION.PARAM*)>
<IATTLIST INTERFACE.OPERATION NAME CDATA #IMPLIED
RET CDATA #IMPLIED>

<IELEMENT OPERATION.PARAM EMPTY>
<IATTLIST OPERATION.PARAM NAME CDATA #IMPLIED
TYPE CDATA #IMPLIED>

<IELEMENT INTERFACE.CONSTRAINT EMPTY>

<IATTLIST INTERFACE.CONSTRAINT CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
TYPE CDATA #REQUIRED
STATE CDATA #REQUIRED
VALUE CDATA #REQUIRED
SCOPE CDATA #REQUIRED>

<IELEMENT INTERFACE.PROPERTY EMPTY>

<IATTLIST INTERFACE.PROPERTY CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
VALUE CDATA #REQUIRED>

<IELEMENT CONNECTOR (CONNECTOR.REQUIRED, CONNECTOR.PROVIDED, CONNECTOR.CONSTRAINT*,
CONNECTOR.PROPERTY*)>

173

Appendix A 1IXML Schemas

<IATTLIST CONNECTOR NAME.ID CDATA #IMPLIED
TYPE CDATA #IMPLIED
ROLE CDATA #IMPLIED>

<IELEMENT CONNECTOR.PROVIDED (PROVIDED.COMPONENT, PROVIDED.INTERFACE)>
<IELEMENT CONNECTOR.REQUIRED (REQUIRED.COMPONENT, REQUIRED.INTERFACE)>

<IELEMENT PROVIDED.COMPONENT EMPTY>
<IATTLIST PROVIDED.COMPONENT NAME.IDREF CDATA #REQUIRED>

<!ELEMENT PROVIDED.INTERFACE EMPTY>
<IATTLIST PROVIDED.INTERFACE NAME.IDREF CDATA #REQUIRED>

<IELEMENT REQUIRED.COMPONENT EMPTY>
<IATTLIST REQUIRED.COMPONENT NAME.IDREF CDATA #REQUIRED>

<IELEMENT REQUIRED.INTERFACE EMPTY>
<IATTLIST REQUIRED.INTERFACE NAME.IDREF CDATA #REQUIRED>

<IELEMENT CONNECTOR.CONSTRAINT EMPTY>

<IATTLIST CONNECTOR.CONSTRAINT CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
STATE CDATA #REQUIRED
TYPE CDATA #REQUIRED
VALUE CDATA #REQUIRED
SCOPE CDATA #REQUIRED>

<IELEMENT CONNECTOR.PROPERTY EMPTY>

<IATTLIST CONNECTOR.PROPERTY CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
VALUE CDATA #REQUIRED>

174

Appendix A XML Schemas

A2. 1XML Schema for Design Template Description

1IXML schema for design template 1s shown in Table A2.1.

Table A2.1 iXML schema for design template

<IELEMENT NXML (CATEGORY, RNAME, ALSOKNOWNAS, RELATEDRULES, INTENT, CONTEXT,
MOTIVATION, CONTRIBUTIONS, CONFIGURATION)>

<|--CATEGORY: PATTERN, STYLE, LOCAL SCHEME -->
<IELEMENT CATEGORY (#PCDATA)>

<IELEMENT RNAME (#PCDATA)>

<IELEMENT ALSOKNOWNAS (#PCDATA)>

<IELEMENT RELATEDRULES (RELATEDRULE.DESCRIPTION*)>

<!|ELEMENT RELATEDRULE.DESCRIPTION EMPTY>
<IATTLIST RELATEDRULE.DESCRIPTION RNAME CDATA #REQUIRED >

<IELEMENT INTENT (#PCDATA)>

<IELEMENT CONTEXT (#PCDATA)>

<IELEMENT MOTIVATION (#PCDATA)>

<IELEMENT CONTRIBUTIONS (CONTRIBUTION.DESCRIPTION*)>

<1-- CONSEQUENCES WEIGHT: H(HIGH), M(MEDIUM) OR L(LOW) -->

<IELEMENT CONTRIBUTION.DESCRIPTION (#PCDATA)>

<IATTLIST CONTRIBUTION.DESCRIPTION QUALITY CDATA #REQUIRED
SUBQUALITY CDATA #REQUIRED
WEIGHT CDATA #REQUIRED>

<IELEMENT CONFIGURATION (COMPONENT*, INTERFACE*, CONNECTOR*)>

<IELEMENT COMPONENT (COMPONENT.DESCRIPTION, COMPONENT.INTERFACE*,
COMPONENT.CONNECTOR*, COMPONENT.COMPOSITE*, COMPONENT.CONSTRAINT*,
COMPONENT.PROPERTY*)>
<IATTLIST COMPONENT NAME.ID CDATA #REQUIRED

TYPE CDATA #IMPLIED

VISIBILITY CDATA #REQUIRED >

<IELEMENT COMPONENT.DESCRIPTION (#PCDATA)>

<l-- INTERFACE PORT: P (PROVIDED) OR R (REQUIRED) INTERFACE -->

<IELEMENT COMPONENT.INTERFACE EMPTY>

<IATTLIST COMPONENT.INTERFACE NAME.IDREF CDATA #REQUIRED
PORT.IDREF CDATA #REQUIRED>

<!--LIST CONNECTOR ONLY FROM REQUIRE COMPONENT -->
<IELEMENT COMPONENT.CONNECTOR EMPTY>
<IATTLIST COMPONENT.CONNECTOR NAME.IDREF CDATA #REQUIRED>

<!--LIST COMPOSITE FOR NESTED COMPONENT OR SUBSYSTEM -->
<IELEMENT COMPONENT.COMPOSITE EMPTY>
<IATTLIST COMPONENT.COMPOSITE NAME.IDREF CDATA #REQUIRED>

175

Appendix A XML Schemas

<l-- CONSTRAINT STATE: NE, LE, LT, GE, GT OR EL -->
<l-- CONSTRAINT TYPE: PRECONDITION, POSTCONDITION OR INVARIANT -->
<IELEMENT COMPONENT.CONSTRAINT EMPTY>
<IATTLIST COMPONENT.CONSTRAINT CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
STATE CDATA #REQUIRED
TYPE CDATA #REQUIRED
VALUE CDATA #REQUIRED
SCOPE CDATA #REQUIRED>

<!IELEMENT COMPONENT.PROPERTY EMPTY>

<IATTLIST COMPONENT.PROPERTY CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
VALUE CDATA #REQUIRED>

<IELEMENT INTERFACE (INTERFACE.DESCRIPTION, INTERFACE.SERVICE*, INTERFACE.OPERATION*,
INTERFACE.CONSTRAINT*, INTERFACE.PROPERTY*)>
<IATTLIST INTERFACE NAME.ID CDATA #REQUIRED

TYPE CDATA #IMPLIED

PORT CDATA #IMPLIED

VISIBILITY CDATA #REQUIRED >

<IELEMENT INTERFACE.DESCRIPTION (#PCDATA)>

<!--LIST SERVICE FOR PROVIDED INTERFACE -->
<IELEMENT INTERFACE.SERVICE EMPTY>
<IATTLIST INTERFACE.SERVICE NAME CDATA #IMPLIED>

<IELEMENT INTERFACE.OPERATION (OPERATION.PARAM*)>
<IATTLIST INTERFACE.OPERATION NAME CDATA #IMPLIED
RET CDATA #IMPLIED>

<IELEMENT OPERATION.PARAM EMPTY>
<IATTLIST OPERATION.PARAM NAME CDATA #IMPLIED
TYPE CDATA #IMPLIED>

<IELEMENT INTERFACE.CONSTRAINT EMPTY>

<IATTLIST INTERFACE.CONSTRAINT CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
TYPE CDATA #REQUIRED
STATE CDATA #REQUIRED
VALUE CDATA #REQUIRED
SCOPE CDATA #REQUIRED>

<IELEMENT INTERFACE.PROPERTY EMPTY>

<IATTLIST INTERFACE.PROPERTY CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
VALUE CDATA #REQUIRED>

<IELEMENT CONNECTOR (CONNECTOR.REQUIRED, CONNECTOR.PROVIDED, CONNECTOR.CONSTRAINT*,
CONNECTOR.PROPERTY*)>
<IATTLIST CONNECTOR NAME.ID CDATA #IMPLIED

TYPE CDATA #IMPLIED

ROLE CDATA #IMPLIED>

176

Appendix A 1IXML Schemas

<IELEMENT CONNECTOR.PROVIDED (PROVIDED.COMPONENT, PROVIDED.INTERFACE)>
<IELEMENT CONNECTOR.REQUIRED (REQUIRED.COMPONENT, REQUIRED.INTERFACE)>

<IELEMENT PROVIDED.COMPONENT EMPTY>
<IATTLIST PROVIDED.COMPONENT NAME.IDREF CDATA #REQUIRED>

<IELEMENT PROVIDED.INTERFACE EMPTY>
<IATTLIST PROVIDED.INTERFACE NAME.IDREF CDATA #REQUIRED>

<IELEMENT REQUIRED.COMPONENT EMPTY>
<IATTLIST REQUIRED.COMPONENT NAME.IDREF CDATA #REQUIRED>

<IELEMENT REQUIRED.INTERFACE EMPTY>
<IATTLIST REQUIRED.INTERFACE NAME.IDREF CDATA #REQUIRED>

<IELEMENT CONNECTOR.CONSTRAINT EMPTY>

<IATTLIST CONNECTOR.CONSTRAINT CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
STATE CDATA #REQUIRED
TYPE CDATA #REQUIRED
VALUE CDATA #REQUIRED
SCOPE CDATA #REQUIRED>

<IELEMENT CONNECTOR.PROPERTY EMPTY>

<IATTLIST CONNECTOR.PROPERTY CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
VALUE CDATA #REQUIRED>

177

Appendix A XML Schemas

A3. 1XML Schema for Component Description

1IXML schema for component is shown in Table A3.1.

Table A3.1 iXML schema for component

<IELEMENT NXML (COMPONENT*, INTERFACE*)>

<IELEMENT COMPONENT (COMPONENT.DESCRIPTION, COMPONENT.INTERFACE*,
COMPONENT.CONSTRAINT*, COMPONENT.PROPERTY*)>
<IATTLIST COMPONENT NAME.ID CDATA #REQUIRED

TYPE CDATA #IMPLIED

VISIBILITY CDATA #REQUIRED>

<IELEMENT COMPONENT.DESCRIPTION (#PCDATA)>

<l-- INTERFACE PORT: P (PROVIDED) OR R (REQUIRED) INTERFACE -->

<IELEMENT COMPONENT.INTERFACE EMPTY>

<IATTLIST COMPONENT.INTERFACE NAME.IDREF CDATA #REQUIRED
PORT.IDREF CDATA #REQUIRED>

<l-- CONSTRAINT STATE: NE, LE, LT, GE, GT OR EL -->
<l-- CONSTRAINT TYPE: PRECONDITION, POSTCONDITION OR INVARIANT -->
<IELEMENT COMPONENT.CONSTRAINT EMPTY>
<IATTLIST COMPONENT.CONSTRAINT CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
STATE CDATA #REQUIRED
TYPE CDATA #REQUIRED
VALUE CDATA #REQUIRED
SCOPE CDATA #REQUIRED>

<!IELEMENT COMPONENT.PROPERTY EMPTY>

<IATTLIST COMPONENT.PROPERTY CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
VALUE CDATA #REQUIRED>

<IELEMENT INTERFACE (INTERFACE.DESCRIPTION, INTERFACE.SERVICE*, INTERFACE.OPERATION*,
INTERFACE.CONSTRAINT*, INTERFACE.PROPERTY*)>
<IATTLIST INTERFACE NAME.ID CDATA #REQUIRED

TYPE CDATA #IMPLIED

PORT CDATA #IMPLIED

VISIBILITY CDATA #REQUIRED >

<IELEMENT INTERFACE.DESCRIPTION (#PCDATA)>

<!--LIST SERVICE FOR PROVIDED INTERFACE -->
<IELEMENT INTERFACE.SERVICE EMPTY>
<IATTLIST INTERFACE.SERVICE NAME CDATA #IMPLIED>

<IELEMENT INTERFACE.OPERATION (OPERATION.PARAM*)>
<IATTLIST INTERFACE.OPERATION NAME CDATA #IMPLIED
RET CDATA #IMPLIED>

178

Appendix A 1IXML Schemas

<IELEMENT OPERATION.PARAM EMPTY>
<IATTLIST OPERATION.PARAM NAME CDATA #IMPLIED
TYPE CDATA #IMPLIED>

<IELEMENT INTERFACE.CONSTRAINT EMPTY>

<IATTLIST INTERFACE.CONSTRAINT CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
TYPE CDATA #REQUIRED
STATE CDATA #REQUIRED
VALUE CDATA #REQUIRED
SCOPE CDATA #REQUIRED>

<IELEMENT INTERFACE.PROPERTY EMPTY>

<IATTLIST INTERFACE.PROPERTY CONCERN CDATA #REQUIRED
SUBCONCERN CDATA #REQUIRED
VALUE CDATA #REQUIRED>

179

Appendix B:
CSAFE Toolset Analysis & Design

B1. CSAFE Use-Case Descriptions & Sequence
Diagrams

CSAFE use-case descriptions are shown i Table Bl.1 - B1.18 and sequence
diagrams are shown i Fig. B1.1 - B1.13.

Table B1.1 Transform architecture use~case description

CSAFE: Transform Architecture

Actors System Designer, XMI/XML Parser, Analysis Repository

Description 1. System designer browses and selects XMI/XML architectural
specification from Analysis Repository.

2. System designer enters project name and clicks OK.

3. The XMI/XML parser parses the architectural specification and checks
against XML schema/DTD.

4. The XMI/XML parser creates design schema.

The XMI/XML parser stores architectural vectors in analysis repository.

6. The tool organizes architectural elements in tree hierarchy and each
element detail description is display on the description form.

o

Data XMI/XML architectural specification

Stimulus System designer selects ‘New Project’ from CSAFE File menu
Response CSAFE parses and stores architecture design in to analysis repository.
Alternative flow of 3.a. Invalid XMI/XML description. Indicate error message.

events

180

Appendix B

CSAFE Toolset Analysis & Design

XMI/XML))
% Parser Analysis Repository
System
Designer J J

L

selects XMI/iXML specification

returns specification

=

parse XMI/iXML specificati

jverify specification

Alt
create schema

[XMI/XML Valid]
store architectural elements

display tree hierarchy

[XMI/XML Invalid]

display error message

Fig. B1.1 Transform architecture sequence diagram

Table B1.2 Formulate scenario use-case description

CSAFE: Formulate Scenario

Actors System Designer, Analysis Repository
Description 1. System designer enters scenario descriptions (i.e. name, author and
comment). A date and time automatically captures.

2. System designer clicks ‘OK’.

3. The tool create new scenario in the analysis repository and display a
new a scenario template on Elicit & Prioritise display.

4. System designer selects a node (composite component, service,
interface or connector) from tree project and the constraint description
is shows on the Elicit & Prioritise display.

5. Then the system designer can starts to weight each of the constraint
description.

6. The system designer clicks ‘Save’ and the weighting values are store in
Analysis Repository.

Data New scenario and weighting values

Stimulus System designer selects ‘New Scenario’ from CSAFE toolbar

Response CSAFE stores new project info. and constraint’s weighting values in to project
repository.

Alternative flow of 1.a. Duplicate scenario name. Indicate error message.

events

181

Appendix B

CSAFE Toolset Analysis & Design

x

System
Designer

enters scenario desc.

ScenarioFormulator Analysis Repository

t

store scenario desc.

Alt

[Scenario Valid]

display scenario form

scenario ‘OK’

enters weighting values

store weighting values

[Scenario Invalid]

display error message

Scenario ‘not OK’

T T

Fig. B1.2 Formulate scenario sequence diagram

Table B1.3 Analyse architecture use-case description

CSAFE: Analyse Architecture

Actor System Designer, Analysis Repository
Description 1. System designer executes mapping design use-case.
2. System designer selects conformance checker and retrieves analysis
data from Analysis Repository.
3. The tool executes rating design use-case.
4. System designer selects quality checker and retrieves analysis data from
Analysis Repository.
5. The tool executes mapping services use-cases and executes mapping
component use-cases
6. System designer selects structural checker and retrieves analysis data
from Analysis Repository.
Data Formulates scenarios
Stimulus System designer selects mapping form
Response Results of conformance, quality and structural checker.
Relationship Extend: Mapping design, Rating design, Mapping services, Mapping component
Alternative flow of | -
events

182

Appendix B CSAFE Toolset Analysis & Design

Conformance Quality Structural Analysis
Checker Checker Checker Repository

System
Designer

mapping design

assess analysis data

pass query data

verify conformance
display results

””””””””””””” assess analysis data

pass query data

mapping rating

1 verify quality

display results

mapping service

assess analysis data

pass query data

mapping services & components

verify structural
display results

1 T T T 1
Fig. B1.3 Analyse architecture sequence diagram

Table B1.4 Map design use-case description

CSAFE: Map Design

Actor System designer, Analysis Repository

Description 1. System designer selects scenario name, quality concerns and design
template categories.

2. The system design form submits this request to design control which
then queries desired concerns and matching categories from design
template repository.

3. The query results are passes to design control which then conduct
comparison and matching.

4. The matching results are store in analysis repository and a success
message is display to the designer.

Data Quality concerns and design template category (i.e. Pattern, Local or Style)
Stimulus System designer selects design mapping template.
Response CSAFE stores design templates results in to project repository.

Alternative flow of | 3.a. Matching design template not found. Indicate error message.
events

183

Appendix B

CSAFE Toolset Analysis & Design

7

. DesignTemplate Analysis
DESANELD Library Repositoyy
System
Designer .
selects, scenario name, |
quality concerns &
categories
query quality concerns
pass query results
1 compare & match
Alt [Mapping Sucessful] store results
display success mesage
display error mesage
[Mapping Unsuccessful]
T T

Fig. B1.4 Map design sequence diagram

Table B1.5 Rate design use-case description

CSAFE: Rate Design

Actor System Designer, Analysis Repository
Description 1. System designer selects scenario name, rating control submits the
requests to analysis repository and retrieves mapping results.

2. Rating control then retrieves the design contributions from design
template repository and passes the results to rating form to display
rating for each design template.

3. Then the system designer instantiated desired alternatives designs and
its justifications.

4. These architectural instantiation are store in architecture database.

Data All related design templates.

Stimulus System designer selects rate map template.

Response CSAFE stores desired design template and its justification.
Alternative flow of | -

events

184

Appendix B CSAFE Toolset Analysis & Design

DesignTemplate Analysis Architecture
Repository Repository Database

System
Desifner J J J

select scenario

RateMap

query mapping result

pass query results

query design contributions

pass query results
display alternatives |~
PN designrating
selects alternative
design & enters desc

instantiate architecture

Fig. B1.5 Rate design sequence diagram

Table B1.6 Map services use~case description

CSAFE: Map Services

Actor System Designer, Analysis Repository

Description 1. System designer enters scenario name and service control requests
results of selected design templates from architecture database.

2. Then, the system designer selects required alternative design and
service control requests related design components from design
template repository to be displayed in the list.

3. The system designer selects a service to map, again service control
query design component details and submits the results back to the
control.

4. Then, service control compare and match the selected service onto
appropriate design component.

5. The results are store in architecture database and submit to service
form to be displayed onto a panel by establishes a link between the
service and the design component.

Data Service (Non-functional requirement)
Stimulus System designer selects service map template
Response CSAFE stores component mapping results and a link is display onto a panel in

the service form
Alternative flow of | 3.a. Matching design template not found. Indicate error message.
events

185

Appendix B CSAFE Toolset Analysis & Design

ServiceMap DeS|gnTe_mpIate AnaIy_S|s
Repository Repository
System
Designer J L

selects scenario name

query mapping result:

pass query results

display results

selects alternative des'gn

query design’s component

pass query results

display results

selects service
%

query design’s service

pass query results

1 compare & match

store results

Alt [[Auto mapping]

display mapping link

display ‘no found’ mesage

selects service & design
component

. compare & match
[Manual mapping]
store results

display mapping link

Fig. B1.6 Map services sequence diagram

Table B1.7 Map component use-case description

CSAFE: Map Components

Actor System Designer, Analysis Repository

Description 1. System designer enters scenario name and component control requests
results of selected design templates from architecture database.

2. Then, the designer selects required alternative design and component
control requests related design components from architecture database
to be displayed in list on component form.

3. The system designer selects a component to map, component control
query design component details and submits the results back to the
control.

4. Then, service control compare and match the selected design
component onto concrete component.

5. The results are store in architecture database and submit to component
form to be displayed onto a panel by establishes a tag between the
design component and the concrete component.

Data Design component

186

Appendix B

CSAFE Toolset Analysis & Design

Stimulus

System designer selects component map template

Response

CSAFE stores component mapping results and a tag is display in the
component form

Alternative flow of

4.a. Matching component not found. Indicate error message.

events

System
Designer

enters scenario name

Component Analysis
Library Repository

| |

ComponentMap

selects alternative
design

query mapping resultg

pass query results

display results

query design’s component

pass query results

selects design component
& constraints

query component

pass query results

1 compare & match

Alt [Mapping Sucessful] store results

display success mesage |

display error mesage

[Mapping Unsuccessful]

Fig. B1.7 Map components sequence diagram

Table B1.8 Assess architecture use-case description

CSAFE: Assess Architecture

Actor System Designer, Analysis Repository
Description 1. System designer enters scenario name and assess control requests
formulated scenarios and its results from analysis repository.
2. Then, assess control submits a query for design contributions to
template design library.
3. The query results are passes back to assess control.
4. Subsequently, mean values are calculated and the results are passes to
assess template to be displayed.
Data Scenario name

187

Appendix B CSAFE Toolset Analysis & Design
Stimulus System designer selects assess template
Response Analysis overall results are calculated and displayed.

Alternative flow of

events

System
Designer

selects scenario

Analysis
Repository

TemplateDesign

AssessArch)
Repository

calculate & display
values/mean values

query scenarios

pass query results

query design contributiop

w

pass query results

Fig. B1.8 Assess architecture sequence diagram

Table B1.9 Generate graphs use-case description

CSAFE: Generate Graphs

Actor System Designer, Analysis Repository
Description 1. System designer selects contribution level (e.g. level 1: best
architectural designs, level 2: concern, level 3: sub-concern).
2. ContrGraph request data from Analysis Repository and calculate these
dataset.
3. Contribution bar chart is display on assessment template.
4. System designer selects architectural design.
5. ScoreGraph request data from Analysis Repository and calculate these
dataset.
6. Scores pie charts are display on assessment template.
7. System designer selects architectural design.
8. TradeOffGraph request data from Analysis Repository and calculate
these dataset.
9. Component trade-off line chart is display on assessment template.
Data Contribution graph dataset, Score graph dataset and Trade-off dataset.
Stimulus System designer selects graph (i.e. contribution, scores, trade-off)
Response Graph display on assessment template
Alternative flow of | -
events

188

Appendix B CSAFE Toolset Analysis & Design
ContrGraph ScoreGraph TradeOffGraph R/anlé/iii)sr
System P y
Designer J J J
il selects level

display contr. bar chart

request contr. values

submit contr. values

1 calculate dataset

selects arch. alt

display arch alt. scores pie
charts

request score. values

submit score values

1 calculate dataset

selects arch alt.

display component trade-off

request trade-off values

submit trade-off values

1 calculate dataset

line chart
T T T T
Fig. B1.9 Generate graphs sequence diagram
Table B1.10 Assess architecture use-case description
CSAFE: Generate report
Actor System Designer, Analysis Repository
Description 1. System designer selects a scenario.
2. Report request architectural design alternatives details from
architecture database.
3. Report display report to the system designer.
4. System designer requests to print the report.
5. Report raster and print the report.
Data Architectural design alternatives configurations
Stimulus System designer selects report template
Response Architectural design alternatives report is generated
Alternative flow of | -
events

189

Appendix B

CSAFE Toolset Analysis & Design

Report Architecture
Database
System
Designer
1 -~

selects scenario

request architectural details

submit results

display report

prints report

raster and print
report

Fig. B1.10 Generate report sequence diagram

Table B1.11 Maintain rules repository use-case description

CSAFE: Maintain Rules Repository

Actor System Designer, XMI/XML Parser
Description 1. System designer browses and selects XMI/XML design template
specification and clicks OK.
1. The XMI/XML parser parses the rule specification and checks against
XMI/XML schema.
2. The XMI/XML parser stores rule descriptions in rules repository
3. The tool organizes the rule in tree hierarchy and each element detail
description is display on the description form.
Data XMI/XML design template specification
Stimulus System designer selects design template manager template
Response Design template library is updated

Alternative flow of
events

1.a. The system designer selects a design template node. A confirmation
message is display and upon confirmation the rule is removes from
design template library.

190

Appendix B CSAFE Toolset Analysis & Design

DesignTemplate XMI/XML DesignTemplate
Manager Parser Library

selects XMI/XML r r
specification

submits request

returns specification

1 verify specification

store design template vectors

enters confirmation

parse XMI/XML specification

display template tree
hierarchy

Alt selects template
] confirm delete?
enters confirmation
pass delete query
[Delete template] update'template
tree hierarchy

\
4@ T T T

Fig. B1.11 Maintain Rules Repository sequence diagram

Table B1.12 Maintain Component Repository use~case description

CSAFE: Maintain Component Repository

Actor System Designer, XMI/XML Parser

Description 1. System designer browses and selects XMI/XML component specification
and clicks OK. The parser parses the component specification and
checks against XMI/XML schema.

2. The XMI/XML parser stores component descriptions in component
repository

3. The tool organizes the component in tree hierarchy and each element
detail description is display on the description form.

Data XMI/XML component specification

Stimulus System designer selects component manager template

Response Component library is updated

Alternative flow of | 1.a. The system designer selects a component node. A confirmation message
events is display and upon confirmation the component is removes from

component library.

191

CSAFE Toolset Analysis & Design

Appendix B
% ComponentManager N Compo_nent
Shstom Parser Repository
ys
Designer L
selects XMI/XML ! !
specification) .
submits selection query
returns specification
enters confirmation
parse XMI/XML specification
1 verify specification
display component tree store component vectors
< hierarchy
Alt

[Delete component]
selects component

] confirm delete?

pass delete query

update component
tree hierarchy

enters confirmation

Fig. B1.12 Maintain Component Repository sequence diagram

B2. CSAFE Class Diagrams

CSAFE class diagram are shown i g, B2.1 - B.2.2.

192

Aspect
: o Qy,mncem ArchitectureFam
omponentM anager &Euhcnm:em &parchData
SounitType BppropData
%create CompTreel) Saunithame SpconatData
%addComp() Senotes
®removeComp() fi|| De sori ptions()
Sorowse Comn() %addCancemn() il Constl)
ScopySource() ®removeAspect() fillProp()
RulesManager
%createRuleTree() CSAFEMain
®addRule()
®removeRule() Q}pmﬂ\lame
BupdateRule() “\\———_
Bhmw==Rule() :cmsegmj()
BcopySource() "2;\?;() il
exit()
StructuralChecker
®checkCong()
®checkProp()
®checkSignature
s & ParserRule Par=rCamp ParserArch
Spname
SparsxMI() par=XMLY
Ppar= XML parxmI(SparseXm ()
®parseXML()
SCLRuleConverter SELComponentC SaLArchConverte
onverter

&filIRule()
fil|RelatedRule()
fil| Contribution()
&fil|Companent()
&fil|Connector)
fillinterface()
i1l Si gnature()
fil| Congtraint()
*filIProperty()
@fillService()

F

%fi|ICormponent()
%fillInterface()
fil 1151 gnature()
i [Constraint()
*fil IProperty()

“fil|Service()

%fi|| Component()
fi|| Connectar()
*fill Interface()
%fill|Signature()
¥fill Property()
Bfil| Constraint()

Bfill Service()

Elicit&.PriontiseFo
m D=gnContral
Q;husist DesignForm
Lst
—
%EQE;;”ER ®rapTemplate() RateCantral
Y Bgetlity() ®getTemplate() Bonris
®maph =g () L
Bfil| BussCon () Spternplet
i || Ql by Con () RatingForm T
®fil| Comp Const() getContr()
$etScope() N 5 SdisnlayRate Thi() %initTemplatelngtance()
SsstService() rmingrom SzetTemplate()
®=etScenanal) ®setComment()
®setii ght() ®getSceMName() e
Q/ENLN
SenviceForm Se.dCompLbl
ScenarioFom c f@/wnﬂﬁm”r
gethlthame()
%23:;;, ®yetServiName() SmapSerDComp()
&. t ®initConnecton) SgetDsgnCornpl)
carmmen e — ®getDCompServ()
Sudate L= "
Sptime
ComponentFom
el Scenario() CompCantrol
®newScenario() Sgetaltiamel) S ratePre
$getCompMarme()
%createRakingTree() %mapDsynConit()
@i playCong() SgetConrtCormp()
BgetDsynCompi)
Report
Asze ssContral
SgenerateReport() =sCe) Seconcemls
:d\sp\ayﬁ‘eport() SgetsceNameg SecontrLz
printReport()
ScalculateMean()
®getContribution()
GraphContr GraphScare Graph Trade Off SgetScenaniof)
%contm_vl SpaltemativeName Spirade
minhleanit
%create Chart()
X, YerzateChart) BcreatePanel()
Create Chart() %createDataSet() Screate DataSet()
“createDate Set() %createPanel() S=tScenariog
SoreatePanel() st tharne() Aot Trad oAt
®printChart() %setScenarno) SprintChart)
¥=tScenario() ®printChart() ®
R¥getMeanvieight()

Fig. B2.1 CSAFE toolset project boundary and control class diagram

q xipuoddy

TSTSO(] %y SISATRUY 19S[00 [, - LIVSD

V61

Contribution
Srquality : varchar 100)
%}il‘](] ualiby war char 1000
Serofinement : text
Spweight : smallint unsigned

P

1
Rule

&ecategory : varchar{50)
l*/fnamo svarchar{ 1000 not null pkey
aka : varchar (100)

Epmolivation :

Eeconflglir] : varchar(350)

RelatedRula

SxrelatedRuleName : varchar(100)

o_Constrain
Setype : varchar(25)
Srconcern : varchar(100)
apsubf:oncarn = warchard 100)
&=state : varchar(10)

Serafinement : text
Sroweight : smallint unsigned
Spscope : varchar (50)

c_Property
th:nm:ern varchard 100 -
@-subconcorn 2 ar char 1000
Spralue : varchar(50)

Srpvalue : varchar (500 O.n

consists of

a_ Conslrain

%l\‘lﬂ = war char (25)
Sxconcern :varchar(100y
%ﬁubc{mceln - varr chiar {1003
Estate Dvarchar(10)
Svalue @ varchar(50)
Sprefinement : lext

Sxweight : smallint unsigned

0.]
fras
|
1
a_Componenl

Setype varchar(25)
Spdescription : toxt

1.n |Slevel : smallint unsigned
Srparent : varchar(100)

Spcname :varchar(100) not null pkey

a_Connacior

S scname :varchar(100)

& sinamesvarc har { 100)
Selype : var char (25)
&p.role : var char (25)

a_lProperty

S concern :varchar 10031
&subconcern : var char (100)
Sxvalue :varchar(50)

fra.

“ y
"\ 2 J
\ /

a_lnlerlace

tieis &&Iport : char(1)

type @ varchar{25) null
Spdescription : texd
Srrisibility :varchar(10)

&
A
/ a.n

&gIname : varchar(100) pkey

a_IConsiraln
&type : varchar (25)
&rconcern : varchar(100)
a5 O @Essubconcern : varchar(100)
&.state :varchar(10)
SExvalue :varchar (50)
Eprelinement : lex

@wmlghi : smallint unsianed

A E 1
1/ has fas
Pas _,; i
s - \
0.n /-’ 0 Loln
a_Property a_lSignature a_Sonvice

Srconcern varchard 100)
Spsubconcern : varehar(100)
&value : var char (20001

Sr-operation : varchar(1000
Spparams : varchar(100)
&eret :varchar (50)

Srsname :varchard 1000

[

o_Senvoce
&g sname :var char(100)

Component
%CHH‘IIIG svarchar(1003 not null pkey

freis

o_IProperty

&g concern : varchar(100)
%:Llhconcorn > war char (1000
Epvalue : varchar(50)

O UTT
freas
1

. ¢_Interface
Sxiname : varchar (100) pkey
Epiporl : char (1)

tvpe D varchar{25)
Setyp

| Spdescriplion : lex 1

Svarchar{25)
on :led
Epaisibility s varchar (10)

Fig. B2.2 CSAFE toolset project entity class diagram

a_Slanature
&g oparation;varchar{ 100)
Sr-params : varc har(1000
&gret 1 varchar(50)

_|Constrain
I}Iype svarchar{25)
ﬂ}cuncel n :varchar { 100}
Q-;.t;ubconc arn :varchar{ 100)
— Spstate : varchar(10)
Spvalue :varchar (50)
Srrafinement : text
ﬂ}weﬁgm s smallint ursigned
Eescope varchar(50)

q xipuoddy

TEES(] 3 SAEUY S[00 L, ALTVS0

Appendix C:
User Manual CSAFE Toolset

195

User Manual

for

CSAFE Toolset

Version 1.0
Prepared by Novia Admodisastro

Lancaster University

Copyright © 2011 by Admodisastro. Permission is granted to use, modify, and distribute this
document.

User Manual for CSAFE Toolset Page ii

Table of Contents

Table Of CONTENTScociiiiieee e e i

REVISION HISTONY ...t ii

I | Y oo 11 Tox 4 o] o S PSOP P 1
1.1 PUIDOSE ..ttt nrae s 1
1.2 Intended Audience and Reading SUQQESLIONS...........cccoviveieveieeie v 1

2. SYStem REQUITEMENTS......ccviiiieiie ettt 1

3. SYSTEM FRATUIESottt ee e 2
3.1 MaIN WINAOWS ...ttt enee e 2
3.2 TOOIDAT IMIBINUS. ...ttt 2
3.3 Managing Component Library ..o 3
3.4 Managing Design Template Library.........ccccccooveveiiiiiieieii e 7
35 Updating Quality INdeX LiSt........ccccveviiiiiiie i 15
3.6 Generating iXML Templateccooeieieieieee e 17
3.7 Starting an Architectural Analysis Projectcccooeoiiiiiniiiie e 19
3.8 ADOUE AN HEIPS ... 24

Revision History

Name Date Reason For Changes Version

User Manual for CSAFE Toolset Page 1

1. Introduction

1.1 Purpose

This document describes detailed user manual for Component-based Software
Architectural analysis FramEwork (CSAFE) Toolset. The CSAFE toolset has
been developed to be as intuitive and easy to use as possible. Most functions
in the system are obvious however this user manual aims to give a guide to
performing the most common functions in the system.

1.2 Intended Audience and Reading Suggestions

This is a guidelines document meant for CSAFE users that may involve system
architect, project manager, domain expert and programmer.

The following are the system and system features covered by this User
Manual:

1. System requirements (hardware and software)

2. System features

2. System Requirements

CSAFE Toolset is written entirely in Java and therefore is platform
independent. To successfully start and run CSAFE Toolset the following
hardware and software require:
1. Java 5 is strongly recommended for Windows, Linux and Mac OS X
platforms.
2. A specific operating system is not required. However, it has been
predominantly developed and tested on Windows.
3. Database — MySQL Server 5.1 is used to access and to process data in
the database.
Processor — 500MHz or higher processor (or compatible processor).
Memory — 512 MB RAM or higher
Hard Disk — 2 GB or higher

o0k

User Manual for CSAFE Toolset Page 2

3. System Features

3.1 Main Windows

CSAFE main window consists of three parts: menu toolbar, a project area and a
workspace area as shown in Fig. 1. The Project area contains a tree view of the
system architecture which includes components, connectors, interfaces and so
on.

The workspace area is tabbed with the specification and scenario panes, where
the specification pane is use to display the architecture elements description and
the scenario formulation pane is use to view and access formulated scenario.

8 C based Software Archi al analysis FramEwork (CSAFE) Toolset [(ol B3 Menu

File Report Tools Help toolbar
Q&,ﬂg‘%‘) 5 IE‘.pemﬁuatlun Scenario Formulation ! Workspace
= ystem Design
Pl (COnnectarsy area
=L (subsystern)
Tofs feannectors) Project area

=&] (components)
L[(interfaces)

Ready

Fig. 1. CSAFE main window

3.2 Toolbar Menus

The menu toolbar provides quick access to used project configuration,
architectural analysis managements and tool tutorials through File Menu,
Report Menu, Tools Menu and Help Menu (refers to Fig. 2).

User Manual for CSAFE Toolset Page 3

B Componenthased Softw “omponent based Softw :nt-based Software Architectural an: .« Software Ar

File | Report Tools Help Report ‘ Tools Help E— | Help TR
Mew Project. I - -
NEWAIE:THEEILH’E l] Design Template Likrary Help
L open Project. 1 \E: 7 | €] Component Library 4 About
el A Quality Index
e save Project. 151 | | Generate ML Template
E =
Exit

Fig. 2. File menu, Report menu, Tools menu and Help menu

3.3 Managing Component Library

Concrete software components specifications could be view and updates in the
component library by clicking:

Tools | Help

/| Design Template Library
C | Component Librany
Guality Index

“’j Generate XML Template

That brings up the Component Library window (refers to Fig. 3) which display
a list of components on the left side and the component details of the right side.

8 Component Library STE <

1 Components

[g 7 | e Il component

5§ AdminManager_2 Description | Froperties | Constraints I details
£G AdminManager_3
-2 Browser_1 Type: [type; subtype; |
~£0G Clusterserver_1
4 ClusterServer_2 Description! Signaturel Role (Connector):
£G DocumentDatabase_1
-£G DacumentPravider_1

54 DocumentProvider_2 c':omponent
o iRegistry.n_i list

-£G DocumentRegistry! _1
£G DocumentRegistry_1

20 DocumentRegistry_2

20 DocumentRequesterB_1
-2 DocumeniRequesterg
-£G Documentsupplier_1

£G DocumentSupplier_2
-2 ProxyServer_1
~£0 ValidManager_1

2§ validManager_2 -

i
)

(e (eancen] ()

Fig. 3. Component Library window

A new component could be added by clicking:

User Manual for CSAFE Toolset Page 4

This would display the ‘New Component’ dialog that requests for the
component XML specification and name as shown in Fig. 4.

New Component r_i
Source XMIGML: | | [Browse|
Marne: | |

(ex]

Fig. 4. “New Component’ dialog

Clicking the ‘Browse’ button assessing the component specification file where
a file filter is implements to keep unwanted files from appearing in the directory
listing (refers to Fig. 5.)

Open B

| oo Bom -] (=) () (=) [EE]

.AdmmManageU i . DocumentReagistryl _1 xmi .ValidManageU ¥mi
' .AdmmManagerj i . DocumentReaistry_1 xmi .ValidManageLz i
.AdmmManagerj i . DocumentRegistry_2 xmi

. Browser_1.xmi . DocumentRequesters_1.xmi
! . ClusterServer_1.xmi . DocumeniRequesterd_2xmi
. ClusterServer_2xmi . DocumentRequesterB_1.xmi
. DocumentDatabase_1xmi . DocumentRequesterB_2xmi
. DocumentPravider_1 xmi . DocumentSupplier_1 xmi
. DocumentPravider_2 xmi . DocumentSupplier_2 xmi
. DocumentRegistry.n_1.xmi . ProxyServer_1 xmi

File Mame:

Files of Type: I *xmnl, * wmi | v

Fig. 5. Filter files for component specification

Error message are flagged by the XMI/XML parser when mismatched occurs
such as duplicated component name, component specification is non-
conformance to XML schema and etc. (refers to Fig. 6 and Fig. 7).

New Component r,‘]

Source XMIBML [nd SettingsinaryiDeskiople LibumiDocumentsupplier_2 il [Browse]

Marme: |Dncumemt8uppher_2 |

Duplicate name

Cancel

Fig. 6. Error message of component with duplicated hame

]

e Parse error: Element type 'UML:Diagram' in element I violates content model ¢l header? Xl content? 3l difference® xnlextensions®

Fig. 7. Error message of non-conformance XML schema

User Manual for CSAFE Toolset Page 5

A component could be deleted by selecting the component node on the tree and

clicking:
Delete

and a delete dialog

is display to confirm deletion as in Fig 8. After selecting

‘Yes’, the component is removed from the component tree.

E# Component Library

Components

€] Cornponent Library

G AdminManager_1

- (interfaces)

£6 AdminManager_2

£ AdminManager_3

£G Browser_1

£G ClusterServer_1

£G ClusterServer_2

£ DocumentDatabase_1
£G DocumentProvider_1
£ DocumentProvider_2
£G DocumentRegistry.n_1
£G DocumentRegistry1_1
£G DocumentRegistry_1
£G DocumentRegistry_2
E£6 DocumentReguesters_1
6 DocumentReguesters_32
£ DocumentReguesterB_1

LG EE DocumentReguesters 2

Name: | i 1

| Description | Froperies | Gonstraints | Specimication |

Type: [nun

Description/ Signature/ Role (Connector)

\Admin shall be able to add, delete and set access level for EDDIS us

Confirm A

:.)) Confirm deleteAdminManager_1 2

Fig. 8. Delete confirmation dialog

Component details such as its descriptions, properties, constraints and
specification can be viewed by selecting a component node, for example the
AdminManager_1 details is shown in Fig. 9 — Fig.12.

B c Library

Components:

] Component Library -
=46 AdminManager_1 =i
=[] qnterfaces)

=< (required) lAuthorization
=0 (provided) IManage

@-£G AdminManager_2

-G AdminManager_3

=-§G Browser_1

@86 CC_Consele_1

@80 CC_Console_2

@56 Clustersaner_1

@86 ClusterServer_2

=46 DocumentDatabase_1 =

@86 DocumentProvider_1

®-88 DocumentProvider_2

=-£8 DocumentRagistry.n_1

@86 DocumentRegistyl _1

©-£6 DocumentRegistry_1

@-§6 DocumentRegistry_2

#-86 DocumentReguesters_1

©-§6 DocumentRequesters_2

@-§6 DocumentReguesterB_1

@8 DocumentRequesterB_2

=-£G DocumentSupplier_1 L

@86 DocumentSupplier_2

©-80 ProgyServer_1
15, .

-
[Ada] [Detete

Name; :_ i 1 |

iption | Properties | ¢ | specification |

Type: [nul

Descriptions Signature/ Role (Conneclor):
{Audmin shall be sble to add, delete and set access bevel for EDDIS user,

Fig. 9. AdminManager_1 descriptions

User Manual for CSAFE Toolset Page 6

&8 Component Library aE

Components:

Ej Component Library MName: ‘AdmmManageU |
£ AdminManager_1 ” z
£6 AdminManager_2 | Description TPrnperties TCUnatramts T Specification

E6 AdminManager_3
26 Browser_1 Cancern Sub-Concern Walug
6 Clusterderver_1 Component version 0.2
E6 ClusterSerer_2

£6 DocumertDatabaze_1 Business Platform Windows 2000/P
20 Dmumgmpmmeu_ Maintainability Requirement user
26 DocumentProvider_2 Component HAvailability cots

£0 DocurmentReqistry. n_1
26 DocumentRegistryl _1
E6 DocumerntRegisty_1
26 DocumentRegistry_2
@ DocumentReguesteras_1
@ DocumeniRequesters_2
@ DocumentRequesterB_1
@ DocumeniRequesterg_2
E6 DocumentSupplisr_1
£6 DocumentSupplier_2
E6 ProwySenver_1

6 validManager_1
@ validManager_2 Caoncern: ‘Cnmpnnent | [:]

Sub-Concern: [Version] Value

Fig. 10. AdminManager_1 properties

8 Component Library EJ @
Components:
Ej Caomponent Library Marne: |AdmmManagerj |
20 AdminManager_1 . 5
6 AdminManager_2 | Description T Properties ICnnstraims T Specification |
EG Admindanager_3
£ Browser_1 Concern Sub-Concem Refinement Tipe State Walue
£ ClusterServer 1 Component Availability Component (availability eguals to inho . |invariant == inhouse

g g‘;ﬁi:s:%z;;iase 4 Business Flatform Business{Platform) equals to YWindows .. precond...== wiindows 2000..

£G DocumentProvider_1 Maintainability |[Reguirement |Maintainability (Requirement) equals to ... [invariant == user
£G DocumentProvider_2
26 DocumentRegistry..n_1
£G DocumentRegistry! _1
A£G DocumentRegisty_1
26 DocumentRegistry_2
“£6 DocumentRequesters_1 Concerm E] Sub-Concern: [vailability | [:]
-@ DocumentReguestera_2
26 DocumentRequesterB_1

£G DocumentRequester8_2 Type: |iﬂvariam "‘ State: ‘:: ‘V‘ Yalue |mhuu59 ‘
G DocumentSupplier_1
26 DocumentSupplier_2 Refinement

A£G ProwyServer_1
A£G validManager_1
26 ValidManager_2

\Campanent (Availability) equals ta inhouse

Fig. 11. AdminManager_1 constraints

User Manual for CSAFE Toolset

Component Library

=]

Components:
€| Compaonent Library Mame: |[AdminManager_1 |
+-5G AdminManager_1
+ 26 AdminManager_2 Description | Properties | Constraints | Specification
=-56 AdminManager_3
+-20 Browser_1 HMIZML Specification
#-56 ClusterSener_1 ~ForETTSgTETT
& @ ClusterServer 2 <UML:Component xmi.id = 'T25860097m1 2621 32f 7edmm?dS3’ name = ‘AdminManager 1" -
T DocumentDatabase 1 wisibility = ‘public' isSpecification = False' isRook = False' isLeaf = False'
+ - istbstract = False' ishctive = False'>
+ -6 DocumentProvider_1 <UML:ModelElement . clientDependency >
&80 DocumentProvider_2 <UML: Abstr action xmi. idref = ‘[25860097m1 2621 32 Fedmm7c3 1>
f---?@ DacumentRenistry. n_1 <UML:Dependency xmi.idref = ‘[25669097m1262132FFedmm7h7d' =
#-£G DocumentRegistyl_1 </UMLiModelElement. cientDependency >
#-£0 DocumentRegistry_1 <UML:ModelElement constraint =
+ 28 S Tl Sew o

<UML: Constraint xmi.idref = 'Tm?e3cc993m: mm7h3E >
+$3 DocumentRequesters,_1 <UML:Constraint xmi.idref = '[m7e3cc293m1 2665521 F35mm7han') >
#-56 DocumentRequesters_2 < fUML:ModelElement. constraint
E ~& DocumentRequesters_1 <IML:ModelElement. taggedvalue =
#-2G DocumentRequesterg_2 <UML: TaggedValus xmiid = Tm7e3cca93m12665521F35mm7c07" isSpecification = False'>
E3 @ DocumentSupplier_1 «<UML: Taggedyalue dataValue =2t pégt; Admin shall be able to add, delete and set access level For EDDIS
+-£6¢ DocumentSupplier_2 user.<fpgt; <fUML: Taggedvalue. datavalue >
o @ ProxyServer_1 <UML: Taggedvalus bype>
3 &G Va\ldMamaggr 1 <UML: TagDefinition =mi.idref = "13003240am1254ec16e03mm7dbd (>
i . = <fUML:Taggedvalue type:>
& @Va\ldManager_z <fUML:T aggedvalus =

<ML Taggedvalue xmiid = Im7e3cc093m 1266552 1F35mm7bb4’ isSpecification = False'>

<UML:Taggedvalue datavalue >0, 2 </UML: Taggedvalue. dat avalue

<UML: Taggedvalus bype>

R — <UML: TagDefinition xmi‘\dr’kf = "Im7e3cc093m1 266552 1F35mm7hb 7'/ = 4
| Add | | Delete

(o] [cancel] [+9:,]

Fig. 12. AdminManager_1 specification

3.4 Managing Design Template Library

Page 7

Design template which consists of patterns, styles and local-schemes could be
view and updates in the design template library by clicking:

Tools | Help

.| Design Template Library

] Component Library
Quuality Index
| Generate XML Template

That brings up the Design Template Library window (refers to Fig. 13) which
display a list of design template which organised by its categories on the left
side and the design template details of the right side.

User Manual for CSAFE Toolset Page 8

£ Design Template Library =]
Rules: .
@Panerns Mame: ‘ ‘ DeSIQn
00 ClusterServer template
@) styles Descriptions | Non-Functional Properties | Stuctural on § .
8] Local schemes details
Specify a rule description here:
T RS0 Rnown As: DeSIQn
[| template list
2. Related Rules:
3. Intent
Describe the situation in which the Fact may apply.
4. Context
Describe justification For the Fact.
5. Mativation:
[Describe the Fact solutian,
&)

Fig. 13. Design template library window

A new design template could be added by clicking:

This would display the ‘New Design Template’ dialog that requests for the
design template XML specification, name and category as shown in Fig. 14.

New Design Template =
Source XMIGML: | | [Browse|
Name: [|
Category: Pattern |v

Pattern
Style
Lacal Scheme

Fig. 14. ‘New Design Template’ dialog

Clicking the ‘Browse’ button assessing the design template specification file
where a file filter is implements to keep unwanted files from appearing in the
directory listing (refers to Fig. 15.)

User Manual for CSAFE Toolset Page 9

Open %]

Look In |ﬁ'| i | " ’_

= ClusterServerzm|
= SemiceOrderProvision.xml
= Three-tier proxy serverxml

File Mame: ClusterSerserxml
Files of Type: §=xml, =xmi ‘ -
* sl * xmi [

Open_ | [Cancel| |-

Fig. 15. Filter files for design template specification

Clicking ‘OK” button in “New Design Template’ dialog added the design
template to the template tree (refers to Fig. 16) considering that parsing is
implemented successfully (no error).

82 Design Template Library (2= B3
Rules:
@] Patterns Mame: |ClusterSer\rer |
| ClusterSenver
&) Styles | Descriptions | Mon-Functional Properties | Stuctural | Specification |
------ Three-tier proxy server
@) Local schemes Spetify a rule description here

! ServiceOrderProvision 1. Also Known As

2 Related Rules

\ =D

3. Intent:

This patterns cluster starts off with Server Clustering, which Focuses on using server clusters to design an infrastructure tier that meets
specific avallabilty and scalabiity requirements. A server cluster is two of more servers that are interconnected to Form a unified virtual
computing resource,

4. Context

Clustering servers increases the avalabilly of s system by snsuring that if a server becomes unavalable bscauss of Failurs or planned
dawntime, another server in the cluster can assume the workload, ensuring that the application remains avaikable bo users, Clustering s
enhances scalabilty by supporting mare usars at the current lsvel of performance or by mpraving spplication performancs For the current
users,

4. Motivation:

in enterpriss application has ta mest ever-increasing operational demands, including higher availabilty, improved performance, and the ability
o maintain these demands as the load on applications increases. This creates the need for application and supporting infrastructure designs
that maximize scalability and availability.

(ox] [eancen] (2pt]

Fig. 16. ClusterServer pattern is organise in the design template tree

Error message are flagged by the XMI/XML parser when mismatched occurs
such as for example duplicated design template name, design template
specification is non-conformance to XML schema and etc. (refers to Fig. 17 —
Fig. 20).

User Manual for CSAFE Toolset Page 10

HNew Design Template ’:i

Source XMIBML: BettingsinorayiNetBeans_projects\CEAF ElsrelcsateiibClusterServer xmi| [Browse]

Name: [clusterserver |
Category: |Patlem ‘ - |
Cuplicate name

Fig. 17. Error message of design template with duplicated nhame

%]

8 Parse error: Element type M|['was not declared

Fig. 18. Error message of hon-conformance XML schema

[X]

e Parse ertor: Undeclared 1D value 'la80e5am12d259622bFmm7 dd4'was referred to by an IDREFIDREFS aftribute

Fig. 19. Error message when missing template element in the specification

%]

e File 'C#Documents and Settingsinorwy/DeskioplEDDIS Source/ClusterServer2 xmi' not found.

Fig. 20. Error message when XMI/XML schema was not found

A design template could be deleted by selecting the design template node on the
tree and clicking:

Delete

and a delete dialog is display to confirm deletion as in Fig 21. After selecting
“Yes’, the design template is removed from the template tree.

User Manual for CSAFE Toolset Page 11

Confirm]

?) Remaove design template ClusterSenver ?

(ves] (o]

Fig. 21. Delete confirmation dialog

Design template details such its descriptions, contributions (non-functional
properties), configuration and specification can be viewed by selecting a
template node. For example Fig. 22 shows an example of ClusterServer design
template descriptions.

If the design template is described using iXML description, its descriptions and
contributions are automatically captured from the specification. However, if it
is being described using XMI then these details are fills in manually. Fig. 22
shows ClusterServer pattern which being described using XM, its descriptions
are enter manually and follow by clicking ‘Apply’ button.

Mame: ‘CIusterSer\fer

Descriptions | Mon-Functional Properties Structural Specification

Specify a rule description here:

1. Also Known As

2. Related Rules:

|]

3. Intent:

This patterns cluster skarts off with Server Clustering, which Focuses on using server clusters to design an infrastructure tier
that meets sperific availahility and scalability requirements. & server cluster is bwo or mare servers that are interconnected
o Form & unified virtual computing resource,

4. Context:

Clustering servers increases the availability of a system by ensuring that if a server becomes unavailable because of Failure
or planned downtime, another server in the cluster can assume the workload, ensuring that the application remains available
o users. Clustering also enhances scalability by supporting more users at the current level of performance or by improving
application performance For the current users.

5. hotivation:

An enterprise application has to meet ever-increasing operational demands, including higher availability, improved
performance, and the ability to maintain these demands as the load on applications increases. This creates the need for
application and supparting infrastruckure designs that maximize scalability and availability .

|@ | cancel | Apply |

Fig. 22. ClusterServer pattern descriptions

Related Rules field is disabled, a value in enters by clicking:

User Manual for CSAFE Toolset Page 12

This will open the ‘Design Template’ dialog, where we can choose reference to
other closely related design templates as shown in Fig. 23.

Design Template %]
Avallable Design Templates: Selected Design Template(s):
ClusterServer |? ServiceOrderProvision
Three-tier proxy server |:]

&

|App\y’ | Cancel

Fig. 23. ‘Design Template’ dialog

The second tab the dependency and contribution that template may possess
shown in weighting factor. An example given is ClusterServer pattern as shown
in Fig. 24.

MName ‘C|U‘STEFSENEW

Desctiptions | Non-Functional Properties | Structural | Specification

Specity & rule contributions here:

D Quality Sub-Quality Refinerment Weight
1|Perfarmance ResponseTime... ClusterServer is maintaining performance Medium |
2|Performance ResponseTime... |ClusterServer is maintaining performance Mediurm
3|Performance Throughput_PL |ClusterServer is maintaining performance Mediurm
4|Perfarmance Throughput_UPL |ClusterServer is maintaining performance Medium
5|Reliability HAvailahbility ClusterServer is improving availability using active redundancy and automatic re.._|High
B|Maintainability Requirement ClusterSerer complexity may compromise systerm maintainability. Low

2} AINAL =] k) RE=11~3 2 rve QIMRIEXTY Ma QM Rromise B T AN BT Q' b’

Quality. [Perfarmance]

Sub-Quality. [RespanseTime_PL [] weignt

Refinement

ClusterServer is maintaining performance,

|

Fig. 24. ClusterServer pattern contributions

Again, since ClusterServer pattern is described in XMI its contributions are
manually entered. Concern and sub-concern fields are disabled, values for these
fields are enters by clicking:

—

User Manual for CSAFE Toolset Page 13

This will open the ‘Quality Descriptions’ dialog, where we can choose related
concern and sub-concern for the template and clicks ‘OK’ as shown in Fig. 25.
Weighting factor of this contribution is selected from a weight drop down box
as in Fig. 26.

Quality Descriptions FA
List of concemns/subconcemns:
Concern | Sub-Cancern| Unit Name | Unit Type Notes
Business Cost verbal Business cost intensity. -
Business Platfarm verhal Business platform
Business Schedule verhal Business schedule intensity.
Component |[Availability verbal Component availability,
Component |Cedification hool Component cedification
Component |[Cost GEF numeric Component cost charge yearly,
Component |In required numeric Component reguired interfaces.
Component |[Cut provided numeric Component provided interfaces
Component |Services verbal Component tagged services
Component |Standard verhal Component standard protocol
Cormponent [Version numeric Cormponent version
Maintainability| Reguirerent verbal Maintainability of requirement refers to the r_ |
[or] [ctose

Fig. 25. Contribution of design template

Quality. [Maintainability 1]
Sub-Quality |T|me H:] Weight "
Refinement: High We|ght|ng
Medium f 1
L owr actor
L]

Fig. 26. Assigning weighting value for the contribution

The third tab the structural which illustrates template configuration. An
example is ClusterServer pattern as shown in Fig. 27.

User Manual for CSAFE Toolset Page 14

Mame: [ClusterSener

| Descriptions | Mon-Functional Properties | Structural | Specification |

Specify a rule configuration here:

Path |C.iDocuments and Settingsinorwy/MetBeans_projects/CSAF Efsroic safelrlib/ClusterServerv2 png ‘ [Browse]

L

=< cOmponet ==

_ClusterSesver
== component ==
sl A DocumentRegistryl
IDiscovery IDiscoveny lAccess lAccess

== component == == component ==
G DocumentRequesterd ClusterServer
== component ==
J‘»---->o - - >0—

DocumentRegistiy...n

IRegistry IRegistry lAccess2 lAccess2

Fig. 27. ClusterServer pattern structural

Clicking

display ‘Open’ dialog which allows structural file to be retrieved as in Fig. 28.

Open /Fj

Lookin: [Co e [~] (&) (&)(=) =]

%] ClusterServen2.png
.ﬂ SericeOrderProvisionvz.png
.ﬂ Three-tier Proxy Servern2 png

File Marme |CIusterSeNew2 phg ‘

Files of Type |’ipg,*png,*gif ‘V‘

Fig. 28. Open dialog browse template structure file

The forth tab shows the design template specification. An example is
ClusterServer pattern as shown in Fig. 29.

User Manual for CSAFE Toolset Page 15

Name |C\uster59war

| Descriptions | Non-Functional Properties | Structural | Specification

HMIHML Specification:

<¥MILheadsr =<#MLdocumentation:
XML exporter =MNetbeans XMI Writer <{%MI exporter >
<¥MILexporteryersion:=1.0 <[¥MI exporterversion:
<fxMI.documentation:>
<[¥MLheader =
<¥MIL.content >
<UML:Model xmiid = TaB0e5am1 2d259622b7mm7e7h' name = 'model 1" isSpecification = False'
isRoot = false’ isLeal = False' isbstract = False'>
<LIML:Namespace. ownedElement =
=ML Component =mi ‘Ta80e5am12d25062207mm7 ek’ nam DocumentRequesterd’
wisibility = 'private’ isSpecification = false' isRoot = false' isLeaf = False’
isAbstract = False isfctive = False'>
<UML:ModelElement client Dependency =
<UML:Dependency =miidref = Tad0eSaml 2d259622b7mm7df0 >
<IML:Dependency xmi.idref = '1a80eSam1 2d259622b7mm7dez!) >
<UML:Abstraction xmi.idref = 'TaB0s5am1 2d259622b7mm7dd4’f >
<JUML: ModelElement cientDependency >
=fUML:Campaonent =
<UML:Component xmi.id = 'TaB0e5am1 2d259622b7mm7e59" nam ‘Clusterserver'
visibiliby = ‘private’ isSpecification = False' isRoot = False' isLeaf = False'
ishbstract = Talse' ishctive = Talse'>
<UML:MadelElement client Dependency =
<ML:Dependency xmiidref = ‘Tag0eSaml 2d259622b7mm7e1b >
<UML:Abstraction xmi.idref = 'Ta80s5am12d259622b7mm7dce'f >
<IML:Abstraction xmi.idref = 'Tad0e5am12d259622b7mm7dba =
<UML:Dependency xmi.idref = T7cd44d18m12d4Fa92982mm7 e =
<fUML:ModelElement clisntDependency »
=fUML: Component >
<UML:Component xmi.id

= "Taf085am12d253622b7mm7e47" name = ‘DocumentRegistry 1" -

Fig. 29. ClusterServer pattern specification

3.5 Updating Quality Index List

List of quality could be view and updates in the Quality Index by clicking:

Taols | Help

| Design Template Library

Q Component Library
Quality Index

TZ) Generate ML Template

This brings up Quality Index window as in Fig. 30 that listed a quality
descriptions such as its concern, sub-concern, unit name, unit type and notes.

Cualty Descriptions

Listof concemalsubroncems

| Concern | Sub-Concem | UnitMame | Unid Type
UBiness Cosl werbal Busingss cost inbens ,m

[Business '_P_I_at!brm :wemal :Busunz 55 patiorm |
[Business Schadule weral Business schadule inlensity |
[Campanent wallabily ertal |Companert availatility |
{component Cartification bagl Cormponent cerification |
|Companent [Cost =3 numeric |companent cost charga yeary |
comgonent n required [— |camponant required inferfaces |
|camanent out [prowaen [nurnent |Component provded intertaces. !
[Component Parsistent | rerbal |Component persistent techaalogy |
|Companent Senaces | ierbal |Component tagged serces i

‘Companent Standard werbal Componant standard protacel
[Cormpaonent Version numerc Component version |
|Efficiency Marnory % threshold numeric E!

ciency of mamony refers o the scance resourc
|Efficiency Processor & threshold nurmeric Efficiency of memory 1afers bo the searce resoure

eceibility Erpendabity werbal The effort required fo modify an oparabonal prog
aintsnabilty Requiement | wemal Mintaimabany of requireent refers o the rale of
aintainability Technology rerbal [Maintainability of technology refers 1o technology
Meairi Fnability Time) :mnnlhs :uur'nenc :NaimamaM-ﬁ- oftime refers 10 elapse time farm., |

Fig. 30. Quality index window

User Manual for CSAFE Toolset

A new quality detail could be added into the list by clicking:

Page 16

This will instantly provide a pop-up ‘New Quality’ dialog which requests for
few details to be entered such as concern, sub-concern, unit name — optional
(e.g. months, GBP etc.), unit type and notes — optional (refers to Fig. 31). We
can type the first few letters of the concern and sub-concern, and the

autocomplete will finish the entry (refers in Fig. 32).

New Quality

[
concern: ‘Componem | Subconcern: |Certification |
Lnit Name: ‘ || Lnit Type: { i' Mumeric [, Werhal i' Buuleanl
Mates
(Component cartiFicatinn|
{
i
[ok] [close
Fig. 31. Quality unit type numeric, verbal or boolean
New Quality 3
Concem: I‘Cuhpuﬂem | ISubcuncem. |
Unit Mame: | Unit Type li Murneric ‘:‘ Verbal l:' Boolean
Motes:
|
New Quality X |

Concern |Cnmpnnent | Suhcnncern'||Cemﬂcannn ||

Unit Mame | | Unit Type: (® Mumetic () Verbal () Boolean

Motes:

S
|E| | Cluse|

Deleting a quality from the list is achieved in the same way by clicking:

=

Fig. 32. Autocomplete feature for concern and sub-concern fields

User Manual for CSAFE Toolset Page 17

A delete confonfirmation dialog is display, and upon accepting ‘Yes’ the
quality will be removed from the list.

3.6 Generating iXML Template
iXML metamodel for architecture design and design template could be

explored by clicking:

Tools | Help

'] Design Template Library

| Component Library
Quality Index

L Genetate ML Template

That brings up iIXML template window as in Fig. 33 that described the
metamodels including explanation of its elements. Template metamodel is
displayed when design template is selected from the drop down list (Fig. 34).

iXML Template |

=) Generate

ML metamodel |Architectural Design ¥ | Elements: |Component |' |
Iarchitectural Design
Descriptions Design Termplate

Denotes as encapsulated, distributable, and executable piece of software that provides and receives services through well-defined inkerfaces (e.g
Order, Customer and Shopping Cart).

Template

iXML METAMODEL : ARCHITECTURAL DESIGN A

<IELEMENT iXML {component™, interface®, connector*)

«|ELEMENT component {component. description, component.interface®, component.connector®,
component. composite™®, component.constraint®, component. property ™)
IATTLIST companent

narne.id COATA #REQUIRED

type COATA #IMPLIED

visibility COATA #REQUIRED >

«|ELEMENT component.description (#PCDATA)=

Fig. 33. iXML template window

User Manual for CSAFE Toolset Page 18

XML Template =3
(= Generate
i¥ML metamodel |[Design Template ¥ | Elements: [Name ‘ hd |
Architectural Design
Destriptions: Design Template

The design template name.

J’ Template W

XML METAMODEL : Design Template

[u] »

<|ELEMEMT %ML {category, rname, alsoknownas, relatedrules, intent, context, motivation, contributions,
configuration) >

<|--CATEGORY: pattern, style, local schemea --=
<|ELEMEMT cateqory (#PCDATA)=

<|ELEMEMT rname (#PCDATA)=

<|ELEMENT alsoknownas (#PCDATA)>
<|ELEMENT relatedrules {relatedrule description®)>

<|ELEMEMT relatedrule. description EMPTY =
<IATTLIST relatedrule.description mame COATA #REQUIRED >

Fig. 34. iXML metamodel of design template

Architecture design and design template elements are shown respectively as in
Fig. 35 and Fig. 36.

XML Template =
(= Genarate
ML metamodel |Architectural Design | V| Elements: |Interface | ~7
Camponent P
) | | Architecture
Descriptions Interface desi
; - - - onnectar esign
Defined a collection of one or more operation but not the implementation. Interf} | t
component offers b its environment) or required (characterize services that thefTOPETY elements
OrderEntry and AccessCantrol), Constraint

J' Template]

XML METAMODDEL : ARCHITECTURAL DESIGN

] »

<IELEMEMT i¥ML (component®; interface™®, connector®):

<IELEMENT component (component.description, component.interface*®, component, connector®,
component. composite®, cormponent.constraint ¥, component.property ™ s
<IATTLIST component

name.id COATA #REQUIRED

type CDATA #IMPLIED

visibility COATA #REQUIRED:>

<IELEMENT component.description (#PCDATA =

Fig. 35. Architecture design elements

User Manual for CSAFE Toolset Page 19

XML Template =
(=) Generate

XML metamodel |Design Template | 7 ‘ Elements ‘Calegnw ‘ -

Narme
Categary
150 Known As DeSign
Related Rules template

Intent
Context elements

Mativation
CDmI’\buTIUﬂ

Descriptions |
Type, i.e. style, design pattern, local scheme. ‘

oo |

iXML METAMODEL : Design Template

[u] »

<|ELEMEMT i¥ML (category, mame, alsoknownas, relatedrules, intent, context, motivation, contributions,
configuration)=

< |-CATEGORY: pattern, style, local scheme -
<|ELEMEMT category (#PCDATA)

<|ELEMENT rname [#PCOATA)=

<I|ELEMEMT alsoknownas (#PCDATA)>
«|ELEMENT relatedrules (relatedrule.description*)=

< |ELEMENT relatedrule. dascription EMPTY =
<|ATTLIST relatedrule. description rmame CDATA #REQUIRED > -

Fig. 36. Design template elements

Clicking

= Generate

would allows the metamodel description to be saved (refers to Fig. 37).

Save B

saveln 23 New Folder | '| |ﬁ| i£| "_3!| i_;‘:@

File Mame: [paML_arcr] |
Files of Tyne: [All Files [~]

[Csave | [cancal] ||

Fig. 37. Generates iXML template

3.7 Starting an Architectural Analysis Project

CSAFE provides two ways of conducting architectural analysis. The first takes
as input an existing architecture and improves it through a process of structural,

User Manual for CSAFE Toolset Page 20

quality and conformance analysis. The second assumes no architecture exists
and uses the approach as a way of identifying possible starting architectural
templates

Let starts with the first way, where an architecture design exists and going to be
retrieved by clicking:

Mew Project...

Mew Architecture...

L=l Open Project...

I Save Project...
Exit

This opens a ‘New Project’ dialog which requires location of architecture
design specification and project name as in Fig. 38.

New Project ;1
Name and Location
Architectural Location | | | Browse
Project Mame: | |
|_ | Cancel

Fig. 38. “New Project’ dialog

Fig. 39 is an extension of locating process when Browse button it clicked. The
Open dialog returns architecture specification path from a computer directory.
File filter again is implemented, the filter only display XMI or XML
architecture design specification format.

Open ;{

Look In |Q GWPE Source

=] GVPE_Bpecxml

File hame ‘GVPS_Spec.xml

|
Files of Type: ‘*xml,*xmi ‘V‘

\ Cpen \Cancel

Fig. 39. Browse architecture design specification

User Manual for CSAFE Toolset Page 21

If ‘New Project” goes OK, meaning the parser successfully parsed the
specification, a tree view of the architecture is displayed in the project area as in
Fig. 40

Root (project name)

oo OVpS
=l Systern Design
todfa (connectars)

Connectors between subsystems

=0 Mavigator Subsystem; may consists more that one in system
o (COnhectars) desian
& Database-= |DataCentre -= CC_Cansale 9
- 1
o Map -= IMapCe -» CC_Console - Connectors between components in a subsystem
& Database-= IDatalD -= VD _Console
& Map-= MaplvD -= IVD_Consale

=-£] cC_console Component

=-E] tntertaces) Interface

= (provided) IControlCentre
Login —

ED ManageDriver

% Marageiap Services of the
ManageObstruction H

ED ManageParking interface

ED viewwvehicle —

= [required] IDataCentre

------ =% [required] IMapCC
+-£] Database

#-& | WD_Console

-5 Map

Fig. 40. Tree view of architecture design

The list of symbols employed by the interface is described below:
—i :required -0 :provided

A, . Lo .
ES :private E3 :public

However, when mismatched occurs an error message is flagged by the parser.
Examples of errors include missing referenced elements (e.g. service,
component etc.), mismatched connector configuration, reference schema not
found, specification is non-conformance to XML schema and etc. (refers to Fig.
41 - Fig. 43).

Error f.{

e Farse errar: required string (expected "component”)

[oK]

Fig. 41. Error message of non-conformance XML schema — tag found not being defined

Error FA

0 Service 'SighalTraffic' not faund!

(oK)

Fig. 42. Error message of missing architecture element — referenced service not in specification

User Manual for CSAFE Toolset Page 22

Error ';1
0 IVD_Consolex not found!
[oK

Fig. 43. Error message of mismatch configuration — referenced connector between components not
valid

The second way for conducting an analysis is where we assume no architecture
exists, clicks:

Mew Project...
Mew Architecture..

L2 Open Project...

& save Project...
Exit

This opens the ‘New Architecture Wizard” window (refers to Fig. 44). The
wizard consists of two steps; firstly searching for suitable design templates as
according to system goals, and secondly choose an appropriate design template
and generates an architecture specification.

8 New Architecture Wizard CJ rﬂJ u

Steps: Search design templates

1. Search design templates Quality constraints of desion:
Coneern Sub-Concern [A Mew
EE

2, Results search template

Design termplate category:

Fatiern
Stle
Local Scheme

| search

[m]m]w

Search results:

#* Concarn Sub-Concern

(o) o) () (el

Fig. 44. New Architecture Wizard window

Clicks | & iy

to enters system goals in to the quality design list. This would display ‘Quality
Descriptions’ dialog as in Fig. 45.

User Manual for CSAFE Toolset

Quaiity

%]

List of concemsisubcancems

Concem | Sub-Concern
Waintainakility |Reguirement
Waintainability Technalogy
Wairtainability Time
Performance RespongeTi..
ResponseTi...
Throughput_
Throughput_
Availahility
Integrity

Performance
Ferformance
Performance
Reliahility
Security

Unit Name

months
seconds
seconds
transaction
transaction
%

Unit Type
werbal
werbal
numeric
numeric
numeric
numeric
numetic
numeric
werbal

Motes
haintainakility of requirement refers to the ro.
Maintainability of technology refers o techno.
Maintainability of ime refers to elapse time .
Performance of response time during peak 1.
Performance of responsge time under-peak |
Performance of thraughput during peak load.
Perormance of throughput under-peak 10ad
Reliability of availahility according to service ...
Security of integrity is ensuring that data sho.

@ Close

Fig. 45. Quality description dialog

Removing goal from the list is achieved by clicking;

.

When “Search’ button is clicks, searching is conducted. Status message is
flagged (Fig. 46) and the results are displayed on lower panel (Fig. 47). Proceed

‘Next’ to Ste

p 2.

[X]

* \ Successfully mapping for selected concems and subconcems
in accordance with selected categories -
Pattern, Style, Local Scherme,

Fig. 46. Search result status message

B2 New Architecture Wizard

Steps:

2, Reslts search template

1. Search design templates

Search design ternplates

Guality constraints of design:

Reliability
naintainability
Maintainahility

Concern
Awailability
Reguirement
Technology

Sub-Concern

Cesign template category.

Pattem
Style
Local Scheme

| Search

Search results: =
Concern Sub-Concern ClusterServer Three-tier proxy ser.. ServiceOrderProvis.
1 Reliability Availability High Mediurm High
2 Maintainahility Requirement Low High High
3 Maintainahility Technology Low High A

@ l:] [Cancel

Fig. 47. Wizard step 1

Page 23

Search
results

User Manual for CSAFE Toolset Page 24

Step 2 of the wizard requires project name to be entered and an architecture
alternative to be selected (Fig. 48). Upon clicking “Finish’ the toolset generates
specification for the selected design template under that project name. The
project architecture design could be retrieved from Open dialog as in Fig. 49.

£ New Architecture Wizard rﬂ rq m

Steps: Create architecture

Froject Name: Froject! |

Architecture Design Alternatives: |ClusterSerer

ClustarSetver
Three-tiar prosy server
‘SeniceOrderProvision

Fig. 48. Wizard step 2

Open r_‘i

Loak In ‘@ Projectt ‘ . | @ @ |

T sre
@] Project! csafe

File Mame. |Fru]ecﬂ csafe ‘

Files of Twpe: |A\I Files

|~]

Fig. 49. Open dialog retrived generated speicication

3.8 About and Helps

CSAFE toolset provides assistant thru Help menu. Clicks:

Help

Help
About

User Manual for CSAFE Toolset

Page 25

brings Help window that firstly explained about CSAFE toolset (refers to Fig.
50). Simply proceed assiatnt by clicking next navigation button on the top panel
to view contents of CSAFE tutorials Fig. 50. Fig. 51 is an example of step by
step instruction for creating a new project.

Help

CSAFE TOOLSET
Help and How-1o

The toolsetis developed to assists Component-based Software Architecture
Analysis Framewark (CBAFE)

CSAFE is a negotiation-driven frarmewark far architecture analysis to support
componentbased soffware development The framewark is intended for black-hox
dewelopment, but will allow white box development situations where blackbox
development is notfeasible. The CSAFE is underscored by an iterative process of
scenario formulation, analysis, negotiation and architectural improvernent

The process assumes a repository of reusahle components and is supported by
atemplate collection of architectural styles, patterns and local schemes. The
analysiz must address the basic difficulty of formulating meaningful scenario to
analyse interesting aspects of system designed

The input to this toolset is system architectural design that could be described
using UMLEMI or iXML architectural description language.

The toolset provides

® Structure checker. ldentifies mismatehes between provided and required
interfaces and defects in dynamic component interaction

® Quality checker. Identifies inconsistencies and mismatches between
desired guality attributes (dependability, organisational, component, etc.)
and systern context

® Conformance checker. Yerifies architectural adherences to design
heuristics and styles

The Help provide you a tutorial fo use this toolset. Click here.

| X]

Working with project:

@ Create a new project
@ Open project

Working with scenario:

Create a new scenario
@ Delete scenario

Caonducting architectural analysis

@ Formulate a scenario

@ Mapping architectural design
@ Rating alternatives design

® Mapping services

Mapping Components

Modifving architectural design:

& Generate score graphs

& Generate contributions graphs
@ Generate trade-off graphs

@ Generate repont

Architectureal Checker:

& Conformance

| & Quality

® Structural
maintaining Rules Manager:

& Add a rule template

Fig. 50. Help window and CSAFE tutorial contents

x|

lorking with project

Create a new project:

@ Click File' menu and selects ™ew Project...’ option

& |n pop-up dialog, browse architectural design source file ("xmi ar *xml)
and enters
project name

@ Clicks "0K button,

@ Source file is paree and architectural design is display as tfree nodes in
left pane of working panel

Open project:

@ Click File' menu and selecis ‘Open Project..’ option

@ |n pop-up dialog, browse csafe project file (* csafe)

@ Clicks 'Open’ button

@ Project open and architectural design is display as tree nodes in left
pane of warking panel

-

Fig. 51. Step by step tutorial

User Manual for CSAFE Toolset Page 26

A quick information about CSAFE i.e version and contacts could be viewed by
clicking:

Help
About

This opens the About screen as in Fig. 52.

‘ About =

"CSAFE TOOLSET %%

for COMPONENT-BASED SOFTWARE ARCHITECTURAL ANALYSIS FRAMEWORK

Prototype ver.
Novia Admodisastro. Lancaster University.
hitp:/iwww.admodisa.com/csafe

Fig. 52. About screen

Appendix D:

EDDIS Detail Specifications &
Results

D1. Detail Requirements

EDDIS details requirements are described m Table D1.1.

Table D1.1 EDDIS details requirements

Viewpoint Requirement
ID Role/Type ID Description Rationale Ranking
Vp, | EDDIS_User R1.1 EDDIS users shall be able to To provide a Essential
(Operator) login on to the system via a universal access to
Web-based interface using valid | EDDIS services
usernames and passwords.

R1.2 Once logged in, EDDIS users will | To provide a Important
have access to a set of services simple mechanism
determined by the permissions for managing user
associated with their accounts. account

R1.3 EDDIS shall allow users to search | Basic EDDIS Essential

and identify documents, which
interest them. A document
search will initiated by a search
criterion and a list of databases
to be searched. The output will
be a set of document identifiers.

functionality

224

Appendix D EDDIS Detail Specifications & Results
Viewpoint Requirement
ID Role/Type ID Description Rationale Ranking
R1.4 EDDIS shall allow users to Basic EDDIS Essential
determine the location of functionality
documents. A documents locate
service will be initiated by a set
of document identifiers and the
output shall be a set of location
identifiers.
R1.5 EDDIS user shall allow users to Basic EDDIS Important
order documents. A document functionality
order will be initiated by a set of
document and location
identifiers. The output will be a
set of order identifiers and
electronic/hardcopy documents.
Vp, | EDDIS_ R2.1 EDDIS shall provide facilities for | To provide a Important
Administrator setting up and managing user central EDDIS
(Operator) accounts. administration
management.
R2.2 EDDIS shall allow admin to Basic EDDIS Essential
create account for EDDIS user. administration
Creating a new account require functionality
user name, matrix/staff no. and
user level e.g. Undergraduate,
Postgraduate and Staff.
R2.3 EDDIS shall allow admin to Basic EDDIS Important
delete EDDIS user account. An administration
account delete require matrix or | functionality
staff no.
R2.4 EDDIS shall allow admin to Basic EDDIS Essential
assign access level for EDDIS administration
user. functionality
Vp; | Document_ R3.1 EDDIS shall be able to access a Document Important
Registry centralized document registry to | retrieval standard
(Component) obtain document and location used in document
identifiers using the Z39.50 registry
document retrieval standard.
Vp, | Document_ R4.1 The document order client will Document Important
Supplier be use the Z39.50 document retrieval standard
(Component) retrieval standard. used by document
suppliers
Vps | EDDIS_ R5.1 The system shall run on Most users are Essential
Consortium Microsoft Windows 2000 and likely to use a
(Organisation) Windows XP. Windows-based
PC to access EDDIS
services.
R5.2 | The system shall be develop Under relatively Important
according to schedule and cost strict delivery date
estimated. and budget.

225

Appendix D EDDIS Detail Specifications & Results
Viewpoint Requirement
ID Role/Type ID Description Rationale Ranking
R5.3 | The system shall ensure that a To ensure that a Important
reasonable level of performance | reasonable level of
is maintained across the services | performance is
at all times. given to users.
R5.4 The system shall ensure that To ensure that a Essential
availability of service is given to reliable service is
EDDIS users accordingly. given to users.
R5.5 | The system shall ensure thatitis | To ensure EDDIS Useful

easy to maintain that allow for
graceful replacements or
extensions of components.

services are easily
maintainable
according to
requirements.

226

Appendix D

EDDIS Detail Specifications & Results

D2. Service Descriptions

EDDIS service descriptions are shown in Table D2.1 - D2.6.

Table D2.1 User_validation service description

EDDIS: S1.1.1 User_validation

Actors

EDDIS_User, EDDIS_Administrator

Description

il,

2.
3.
4

EDDIS request login
EDDIS operators enters a login
Verify login against a set of username-password pairs in the database
If login is valid:
4.1 System initialise operator account permission
else
4.2 System prompts the operator to re-enter login with three attempts.

Entry conditions

Login € set of valid username-password pairs

Exit conditions

System reset use account permission
Closes operator account

Constraints

B GRS INEEST S

Service shall be maintained in 12 months time or less.

Service shall be maintained using updated technology.

Service shall be provided using only certified components.

Service shall be provided by inhouse components.

Service shall be provided using version 4.0 or greater components.

Table D2.2 Document_services service description

EDDIS: S1.2.1 Document_services

Actors

EDDIS_User

Uses

User_validation

Extends

Document_search, Document_locate, Document_order

Description

1.
2.

EDDIS user enters a username and password

If username and password are valid:

2.1 System initialise user account permissions

2.2 Display the services available to the user

else

2.3 System prompts the user to re-enter username and password

Entry conditions

Valid username
Valid password

Exit conditions

System reset use account permission
Closes user account

Constraints

= PR B

OB O S

Service shall have response time under peak load equals to or less than
0.75 seconds.

Service shall have response time peak load equals to or less than 4
seconds.

Service shall have throughput peak load equals to or less than 150 per
second

Service shall be maintained according to user requirement.

Service shall be maintained in 18 months time or less.

Service shall be provided by inhouse components.

Service shall conform to Z39.50 document retrieval standard.

Service is provided by component which has 5 provided interfaces or
less.

227

Appendix D

EDDIS Detail Specifications & Results

Table D2.3 Admin_services service description

EDDIS: S2.1.1 Admin_services

Actors

EDDIS_Administrator

Uses

User_validation

Description

1.
2.

EDDIS user enters a username and password

If username and password are valid:

2.1 Display administrator managing options.

2.2 If create, add EDDIS user info

2.3 If delete, delete EDDIS user info

2.4 If manage, set EDDIS user access level

else

2.5 System prompts the user to re-enter username and password

Entry conditions

Valid username
Valid password

Exit conditions

Closes administrator account

Constraints

= W RNIENE

Service shall be maintained according to user requirement.
Service shall be provided by in-house components.
Service shall be provided using version 0.3 or greater components.

Table D2.4 Document_search service description

EDDIS: S1.3.1 Document_search

Actors EDDIS_User, Document_Registry
Description 1. EDDIS user enters search criterion and a set of document databases
2. If document is found a set of document identifiers is displayed else a
“document not found” message is displayed
3. Search criterion is retained in user workspace for future searches
Entry conditions 1. Document_search eavailable_services
2. Document databases < set of user permissible databases.
Exit conditions 1. System access conditions are reset
Constraints 1. Service conforms to Z39.50 document retrieval standard.
2. Service shall have an availability of 60 % or more between 8:00hr —

22:00hr Monday to Friday.

Table D2.5 Document_locate service description

EDDIS: S1.4.1 Document_locate

Actors EDDIS_User, Document_Registry
Description 1. EDDIS user enters document identifier and a set of catalogues
2. If location is found a set of locations identifiers is displayed else a
“location not found” message is displayed
3. Location identifiers is retained in user workspace for future locates
Entry conditions 1. Document_locate €available_services
2. Document catalogues < set of user permissible catalogues
Exit conditions 1. System access conditions are reset
Constraints 1. Service conforms to Z39.50 document retrieval standard.
2. Service shall have an availability of 60 % or more between 8:00hr —

22:00hr Monday to Friday.

228

Appendix D

EDDIS Detail Specifications & Results

Table D2.6 Document_order service description

EDDIS: S1.5.1 Document_order

Actors EDDIS_User, Document_Supplier
Description 1. EDDIS user enters document identifier and location identifiers
2. If order is successful a set of order identifiers and electronic documents
is displayed else a “document is not available” is displayed
3. Order is retained in user workspace for future order references
Entry conditions 1. Document_order €available_services
2. Set of selected suppliers c set of user permissible suppliers
Exit conditions 1. System access conditions are reset
Constraints 1. Service conform to Z39.50 document retrieval standard
2. Document order must be accompanied by a signed copyright
acceptance form.
3. Service shall be maintained in 18 months time or less.
4. Service shall have an availability of 45% between 8:00hr — 18:00hr

weekday Monday to Friday.

229

Appendix D

EDDIS Detail Specifications & Results

D3. Constraint Descriptions

EDDIS constramt descriptions are shown in Table D3.1.

Table D3.1 EDDIS constraint descriptions

Concern Sub-concern ID Description Rationale Scope
1-Performance 1-Response Cl1.1 Under-peak load To ensure that a document
time under transaction reasonable level _services
peak load complete is of performance is
equals or less given to users.
than 0.75
seconds
2-Response C1l21 During peak load | To ensure that a document
time peak load transaction reasonable level _services
complete is of performance is
equals or less given to users.
than 4 seconds.
3-Throughput C.1.3.1 | At peakload To ensure that a document
peak load system is able to reasonable level _services
complete 150 of performance is
transactions per given to users.
second.
2-Reliability 1-Availability C.2.1.1 | System service To ensure document
has an availability | sufficient access _search,
of 60 % or more time. document
between 8:00hr — _locate;
22:00hr Monday document
to Friday. _registry
C.2.1.2 System service To ensure document
has an availability | sufficient access _order;
of 45% between time. document
8:00hr — 18:00hr _supplier
weekday Monday
to Friday.
3-Maintainability | 1-Time C3.11 Maintainable Critical user_
(Trigger) every 12 months components validation
or less.
C3.1.2 Maintainable Moderate document
every 18 months components _order;
or less. document
_supplier
C3.1.3 Maintainable Moderate document
every 18 months components _services
or less.
2-Technology C3.21 Adapting to Security user_
current technology validation
technologies. updated.
3-Requirement | C.3.3.1 Configuration To ensure document
based on user services _services

requests.

gracefully replace
or extendable.

230

Appendix D EDDIS Detail Specifications & Results
Concern Sub-concern ID Description Rationale Scope
C.3.3.2 Configuration To ensure admin_
based on user services services
requests. gracefully replace
or extendable.
4-Business 1-Cost C4.11 System Under strict System
development budget
according to cost
estimated
2-Schedule C4.21 System Under strict System
development delivery date
according to
schedule
estimated.
3-Platform C4.3.1 The system shall Most users are System
run on Microsoft likely to use a
Windows 2000 Windows-based
and Windows XP PC to access
EDDIS services
5-Component 1-Availability C5.1.1 Document_suppli | Materials document
er subscribe to provided by 3rd _registry
available web party which not
services available in local
library
Document_regist | Materials document
C.5.1.2 ry subscribe to provided by 3rd _supplier
available web party which not
services available in local
library
C.5.1.3 System services is | Components user_
in-house build available in local validation,
library.
C5.1.4 System services is | Components admin_
in-house build available in local services
library.
C5.1.5 System services is | Components document
in-house build available in local _services
library.
2-Standard C5.21 Service conforms | Document document
to 239.50 retrieval standard | _registry
document used in
retrieval document
standard. registry
C5.2.2 Service conforms | Document document
to 239.50 retrieval standard | _supplier
document used in
retrieval document
standard. supplier
C5.2.3 Service conform Document document
to 239.50 retrieval standard | _services
document used in

retrieval standard

document
registry/supplier

231

Appendix D

EDDIS Detail Specifications & Results

Concern Sub-concern ID Description Rationale Scope
3-Cost C5.3.1 Subscription cost | Under strict document
less than 500GBP | budget _registry
yearly

C.5.3.2 Subscription cost | Under strict document
less than 650GBP | budget _supplier
yearly

4-Version C54.1 Component Updated services | user_
version is greater validation
than or equals to
4.0.

C.5.4.2 Component Updated services | admin_
version is greater services
than or equals to
0.3

5-In C.5.5.1 | The service To reduce EDDIS document
requires five or document _services
less services. services
complexity
6-Certification C.5.6.1 Trusted services To provide user_
are required reliable user validation
access.

C.5.6.2 Trusted services To provide document

are required reliable _registry
document
discovery.

C.5.6.3 Trusted services To provide document
are required reliable _supplier

document
provider.

232

Appendix D EDDIS Detail Specifications & Results

D4. Concrete Component Descriptions

Concrete component descriptions described as the following:

AdminManager_1

Properties:

Component(Version) 0.2
Component(Availability) Cots
Maintainability(Requirement) User

Interfaces:

IManage: Admin_services, acct_create, acct_remove, acct_setaccess

addUser name:String, id:String, category:integer
deleteUser id:String
setAccess id:String
AdminManager_2
Properties:
Component(Version) 0.4
Component(Availability) Inhouse
Maintainability(Requirement) User

Interfaces:

IManage: Admin_services, acct_create, acct_remove, acct_setaccess

addUser name:String, id:integer, category:integer
deleteUser id:integer
setAccess id:integer
AdminManager_3
Properties:
Component(Version) 0.4
Component(Availability) Inhouse
Maintainability(Requirement) User

Interfaces:

IManage: Admin_services, acct_create, acct_remove, acct_setaccess

addUser name:String, id:integer, category:integer
deleteUser id:integer
setAccess id:integer
Browser_1
Properties:
Component(Version) 2.0
Maintainability(Technology) updated
Maintainability(Requirement) user

233

Appendix D

EDDIS Detail Specifications & Results

ClusterServer_1

Properties:

Component(Availability) inhouse
Component(Certification) no
Component(Version) 1.0

Component(Services)

accessSearch, accessLocate

Component(Standard)

739.50

Interfaces:

IRegistry: accessLocate

setLocate

| doclD:integer

IDiscovery: accessSearch

setSearch

| author:String, title:String

ClusterServer_2

Properties:

Component(Availability) inhouse
Component(Certification) no
Component(Version) 2.0

Component(Services)

accessSearch, accessLocate

Component(Standard)

739.50

Interfaces:

IRegistry: accessLocate

setLocate

| doclD:integer

IDiscovery: accessSearch

setSearch

| author:String, title:String

DocumentDatabase_1

Properties:

Component(Availability) web service
Component(Certification) no
Component(Version) 2.0

Component(Services)

Component(Standard) 739.50
Component(Cost) 400
Maintainability(Requirement) vendor
Reliability(Availability) 45
Maintainability(Technology) updated
Maintainability(Requirement) vendor
Maintainability(Time) 12

Interfaces:

IDatabase: accessSearch, accessLocate, accessOrder

setSearch author:String, title:String
setLocate doclID:String
setOrder locID:String

234

accessSearch, accessLocate, accessOrder

Appendix D EDDIS Detail Specifications & Results

DocumentRequesterA_1

Properties:

Component(Version) 0.2
Component(Availability) inhouse
Component(In) 4
Component(Out) 2
Component(Standard) 739.50
Maintainability(Time) 24
Maintainability(Requirement) user
Reliability(Availability) 55
Performance(ResponseTime_UPL) 0.5
Performance(ResponseTime_PL) 4
Performance(Throughput_PL) 125
Interfaces:

IRequestA: setSearch, setLocate

Search author:String, title:String
Locate doclD:String

DocumentRequesterA_2

Properties:

Component(Version) 0.2
Component(Availability) inhouse
Component(In) 4
Component(Out) 2
Component(Standard) 739.50
Maintainability(Time) 18
Maintainability(Requirement) user
Reliability(Availability) 65
Performance(ResponseTime_UPL) 0.5
Performance(ResponseTime_PL) 3.5
Performance(Throughput_PL) 160
Interfaces:

IRequestA: setSearch, setLocate

Search author:String, title:String
Locate doclD:String

DocumentRequesterB_1

Properties:

Component(Version) 0.2
Component(Availability) inhouse
Component(In) 4
Component(Out) 2
Component(Standard) 739.50
Maintainability(Time) 24
Maintainability(Requirement) user
Reliability(Availability) 55
Performance(ResponseTime_UPL) 0.5
Performance(ResponseTime_PL) 4

235

Appendix D

EDDIS Detail Specifications & Results

Performance(Throughput_PL)

125

Interfaces:

IRequestB: document_services, document_search, document_locate, document_order

Search author:String, title:String
Locate doclID:String
Order locID:String
DocumentRequesterB_2
Properties:
Component(Version) 0.2
Component(Availability) inhouse
Component(In) 4
Component(Out) 2
Component(Standard) 739.50
Maintainability(Time) 18
Maintainability(Requirement) user
Reliability(Availability) 65
Performance(ResponseTime_UPL) 0.5
Performance(ResponseTime_PL) 3.5
Performance(Throughput_PL) 160

Interfaces:

IRequestB: document_services, document_search, document_locate, document_order

Search author:String, title:String

Locate doclD:String

Order locID:String
DocumentSupplier_1

Properties:

Component(Availability) web service

Component(Certification) yes

Component(Standard) 739.50

Component(Cost) 600

Component(Version) 4.1

Component(Services) accessOrder

Reliability(Availability) 85

Maintainability(Technology) updated

Maintainability(Requirement) vendor

Interfaces:

ISupplier: accessOrder

setOrder | locID:String
DocumentSupplier_2

Properties:

Component(Availability) web service

Component(Certification) yes

Component(Standard) 739.50

Component(Cost) 500

236

Appendix D

EDDIS Detail Specifications & Results

Component(Version) 4.1

Component(Services) accessOrder

Reliability(Availability) 85

Maintainability(Technology) updated

Maintainability(Requirement) vendor

Interfaces:

ISupplier: accessOrder

setOrder | locID:integer
DocumentRegistry_1

Properties:

Component(Availability) web service

Component(Certification) No

Component(Version) 2.0

Component(Services) accessSearch,accessLocate

Component(Standard) 739.50

Component(Cost) 400

Maintainability(Requirement) Vendor

Reliability(Availability) 75

Interfaces:

ISearch: accessSearch

setSearch author:String, title:String

ILocate: accessLocate

setLocate doclID:integer

DocumentRegistry_2

Properties:

Component(Availability) web service
Component(Certification) No

Component(Version) 2.0
Component(Services) accessSearch,accessLocate
Component(Standard) 739.50
Component(Cost) 700
Maintainability(Requirement) Vendor
Reliability(Availability) 75

Interfaces:

ISearch: accessSearch

setSearch author:String, title:String
ILocate: accessLocate

setLocate doclID:integer

DocumentRegistryl 1

Properties:

Component(Availability) web service
Component(Certification) No

Component(Version) 2.0

Component(Services) accessSearch,accessLocate
Component(Standard) 739.50

Component(Cost) 400

237

Appendix D

EDDIS Detail Specifications & Results

Maintainability(Requirement)

Vendor

Reliability(Availability)

75

Interfaces:

IAccess: accessSearch, accessLocate

setSearch

author:String, title:String

setLocate

doclID:integer

DocumentRegistry...n_1

Properties:

Component(Availability) web service
Component(Certification) No
Component(Version) 2.0

Component(Services)

accessSearch,accessLocate

Component(Standard) 739.50
Component(Cost) 700
Maintainability(Requirement) Vendor
Reliability(Availability) 75

Interfaces:

IAccess: accessSearch, accessLocate

setSearch

author:String, title:String

setLocate

doclD:String

DocumentProvider_1

Properties:
Component(Availability) web service
Component(Certification) yes
Component(Standard) 739.50
Component(Cost) 500
Component(Version) 4.1
Component(Services) accessOrder
Reliability(Availability) 85
Maintainability(Technology) updated
Maintainability(Requirement) vendor
Interfaces:
IOrder: accessOrder
setOrder | locID:String
DocumentProvider_2
Properties:
Component(Availability) web service
Component(Certification) No
Component(Standard) 739.80
Component(Cost) 750
Component(Version) 4.1
Component(Services) accessOrder
Reliability(Availability) 85
Maintainability(Technology) Updated

238

Appendix D

EDDIS Detail Specifications & Results

Maintainability(Requirement) | Vendor

Interfaces:

IOrder: accessOrder

setOrder | locID:String
ProxyServer_1

Properties:

Component(Certification) Yes

Maintainability(Technology) Updated

Maintainability(Requirement) User

Interfaces:

IRequestC: confConn

Access |
ValidManager_1

Properties:

Component(Availability) Inhouse

Component(Certification) Yes

Component(In) 3

Component(Out) 3

Component(Version) 2.0

Component(Services)

user_validation,acct_permission

Business(Platform)

Windows 2000/XP

Maintainability(Time)

10

Maintainability(Technology)

updated

Interfaces:

ILogin: User_validation

validateUser

username:String, pwd:String

Logout

IAuthorization: Acct_permission

setLogin

isLogin:Boolean

resetCondition

ValidManager_2

Properties:

Component(Availability) inhouse
Component(Certification) yes
Component(In) 3
Component(Out) 3
Component(Version) 2.0

Component(Services)

user_validation,acct_permission

Maintainability(Time)

18

Maintainability(Technology)

updated

Interfaces:

ILogin: User_validation

validateUser

username:String, pwd:String

Logout

239

Appendix D EDDIS Detail Specifications & Results

IAuthorization: Acct_permission

setLogin isLogin:Boolean

resetCondition

240

1vé

D5. SMART

Quality concern weights and design template contributions calculated using SMART 1n Table D5.1 for Scenario 1 of

EDDIS.

Table D5.1 SMART for EDDIS - Scenario 1

S1: ClusterServer S2: Service-Order Provision S3: Three-tier proxy server
Concern Sub-Concern Scope (cs) (SoP) (TPS)
s. s* 7] s. s* 7] s. s* 7]
Performance ResponseTime_UPL | S1.2.1 2 0.08 0.20 0.641 2 0.08 0.21 0.818 2 0.08 0.21 0.795
ResponseTime_PL S1.2.1 2 0.08 2 0.08 2 0.08
Throughput_PL S1.2.1 2 0.05 2 0.05 2 0.05
Reliability Availability §1.3.1 3 0.12 0.30 3 0.12 0.31 2 0.08 0.21
Availability S1.4.1 3 0.12 3 0.12 2 0.08
Availability S1.5.1 3 0.08 3 0.08 2 0.05
Maintainability | Requirement S1.2.1 1 0.01 0.14 3 0.04 0.30 3 0.04 0.38
Requirement S2.1.1 1 0.01 3 0.04 3 0.04
Technology S1.1.1 1 0.03 0 0.00 3 0.08
Time S1.1.1 1 0.03 3 0.08 3 0.08
Time §1.5.1 1 0.04 3 0.12 3 0.12
Time S1.2.1 1 0.01 3 0.04 3 0.04

(q xipuaddy

SJNSRY P SU()_[]EDI_H.’)QQS e SIAdA

Gre

Quality concern weights and design template contributions calculated using SMART in Table D5.2 for Scenario 2 of

EDDIS.
Table D5.2 SMART for EDDIS - Scenario 2
S1: ClusterServer S2: Service-Order Provision S3: Three-tier proxy server
Concern Sub-Concern Scope (CS) (sor) (TPS)
s. s* V] s. s* K s. s* V]
Performance ResponseTime_UPL | S1.2.1 2 0.22 0.66 | 0.666 2 0.22 | 0.667 | 0.666 2 0.22 0.667 0.666
ResponseTime_PL S1.2.1 2 0.22 2 0.22 2 0.22
Throughput_PL S1.2.1 2 0.22 2 0.22 2 0.22

(1 Xpuaddy

SJNSRY P SU()DEDI}!.’)QQS e SIAdA

Appendix D EDDIS Detail Specifications & Results

Report snippets of the results and analysis process generated by the toolset are

shown m Fig. D6.1. Full reports extracted from the report pane for Scenario 1 1s

shown 1n Table D6.1.

B2 assessment

’?31 Print

L =

[Scenario: scenario 1

Template Name: ClusterServer

(subsystem connectors)
IDx - 15uppliet - D

This design enables the system ko maintain good performance while mproving availabilty by using active redundancy and
lautomatic restart during Fallover, However, duster-server complexity is kel ko compromise system maintainabilty.

WalidManager - uthorization - DocumentReq

-z >

(subsystem:} admintanager : null[%]
(interfaces:)
(provided) Manage : public
acct_reate
acct_remove
acct_seraccess
sAdmin_services
(required) IAutharization : public

(subsystem:) DocumentSupplier : null (%]
(interfaces)
(provided) [Supplier : public
1racressOrder

(subsystem:} validManager : null (%]
(interfaces:)
(provided) Tuthorization : public
siAcct_permission
(provided) ILogin ; public

=]

E-::l Print

INotes:

lslocated to a separate hardware {i

|close to the users, often onthe

[Template Marne: Three-tisr proxy server

IThis is typical reference architecture for a modern web-based system, A tier is a partitioning of functionality that may be
.. web browsers cient, web server and database server), This improves
Imaintainiability whie hiding the complezity of distributed processing, Requests from individual browsers may First arrive at
la proxy server, which exists to improve the performance of the Web-based system. These servers cache frequently
[accessed Web pages that users may retrieve them witholt having to access the Wieb site., They are typically lacated
rezaur

netyork, <o that they savs siarificant and

[Proxy servers are also used to res
lsomewhat like a Frewall.

]
[}

Assessment

F,E:J Frint

L [

ltsubsystem connectors:)
walidiManager -> Iautharization - |

= L

ltsubsystem:) Three-tier Proxy : n
fconnectors:y

ProscyServer - IRequestC - Broi
|ARplication_Lagic - IEnCryption -
[Document_Database - Databas

lccomporents:)
lapplication_Logic : <concrete
linterfaces:)
(provided) IEncryption | private
{required) IDatabase : private

Browser 1 <concretes nul [%]
finterfaces:)
(required) IRequestC : private

Documert_Database : <concrete!
[interfaces:)

Template Name: ServiceOrderProvisian
Notes:

This template represents a lacal (in-house) design solution For an cniine digital ibrary that may require document search,
lacates and order services. The template enforces the separation search and locate services which reside in the same
component, from the order service. This may imply that there are constraints on the order in which threads should access
the resaurces, The design mproves maintainabiiy of tme and requiremert by providing a systematic allocation towards
mainkenance ime for the docLment main services and allowing the document server ko mainkain the arder service more
effectively. The rule also provides a better way to control the avalabilly by alawing longer duration of order service ta
be served. However, ssparation of order services may sightly ffect performance af response time and throughpu,

(subsystem connectors:)
Walidianager - [AUEhorization -> DocumentR equesters
Valichanager - [Autharization -> AdminManager

b . nd
(rismatches:)

> mismatch:. Companent{ivalabillty) must be equals to inhouse.
The actual valus for Companent{Avaiabiity) for adminManager_3 is cots

_3[66 %]

> OK:: The actual value For Component(itersion) For AdminManager_3is 0.4
) for

% OK:: The actual value for Rex o 3 user
(interfaces:)
(provided) Manage : public
cct_create

1acct_pemove
et _setaccess
dmin_services

trequired Lavtharization : putlic

(subsystem:) ServiceOrder _Provision : null [%]
(connectors:)

[DocumentProvider -» I0rder - DocumentRequester

Fg. D6.1 Service Order Provision reports

Table D6.1 Full reports extracted from report pane for Scenario 1

Scenario: scenario 1

Template Name: ClusterServer

Notes:

This design enables the system to maintain good performance while improving availability by using active

redundancy and automatic restart during failover. However, cluster-server complexity is likely to compromise

system maintainability.

243

Appendix D

EDDIS Detail Specifications & Results

(subsystem connectors:)

DocumentSupplier -> ISupplier -> DocumentRequesterA
ValidManager -> IAuthorization -> DocumentRequesterA
ValidManager -> |Authorization -> AdminManager

(subsystem:) AdminManager : null [%]
(interfaces:)
(provided) IManage : public
::acct_create
::acct_remove
::acct_setaccess
::Admin_services
(required) IAuthorization : public

(subsystem:) DocumentSupplier : null [%]
(interfaces:)
(provided) ISupplier : public
::accessOrder

(subsystem:) ValidManager : null [%]
(interfaces:)
(provided) IAuthorization : public
::Acct_permission
(provided) ILogin : public
::User_validation

(subsystem:) _ClusterServer : null [%]

(connectors:)

ClusterServer -> IDiscovery -> DocumentRequesterA
ClusterServer -> IRegistry -> DocumentRequesterA
DocumentRegistryl -> |Access -> ClusterServer
DocumentRegistry...n -> IAccess2 -> ClusterServer

(components:)
ClusterServer : <concrete> null [%]
(interfaces:)
(provided) IDiscovery : private
::accessSearch
(provided) IRegistry : private
::accessLocate
(required) IAccess : private
(required) IAccess?2 : private

DocumentRegistry...n : <concrete> null [%]
(interfaces:)
(provided) IAccess2 : private
::accessLocate
::accessSearch

DocumentRegistryl : <concrete> null [%]
(interfaces:)
(provided) IAccess : private
::accessLocate
::accessSearch

DocumentRequesterA : <concrete> null [%]
(interfaces:)
(provided) IRequestA : public
::document_locate

244

Appendix D EDDIS Detail Specifications & Results

::document_search
(required) IAuthorization : public
(required) IDiscovery : private
(required) IRegistry : private
(required) ISupplier : public

Template Name: ServiceOrderProvision

Notes:

This template represents a local (in-house) design solution for an online digital library that may require
document search, locates and order services. The template enforces the separation search and locate services
which reside in the same component, from the order service. This may imply that there are constraints on the
order in which threads should access the resources. The design improves maintainability of time and
requirement by providing a systematic allocation towards maintenance time for the document main services
and allowing the document server to maintain the order service more effectively. The rule also provides a better
way to control the availability by allowing longer duration of order service to be served. However, separation of
order services may slightly affect performance of response time and throughput.

(subsystem connectors:)
ValidManager -> |Authorization -> DocumentRequesterB
ValidManager -> IAuthorization -> AdminManager

(subsystem:) AdminManager : AdminManager_3 [66 %]
(mismatches:)
>> mismatch:. Component(Availability) must be equals to inhouse.
The actual value for Component(Availability) for AdminManager_3 is cots
>> OK:: The actual value for Component(Version) for AdminManager_3 is 0.4
>> OK:: The actual value for Maintainability(Requirement) for AdminManager_3 is user
(interfaces:)
(provided) IManage : public
::acct_create
::acct_remove
::acct_setaccess
::Admin_services
(required) IAuthorization : public

(subsystem:) ServiceOrder_Provision : null [%]
(connectors:)

DocumentProvider -> I0rder -> DocumentRequesterB
DocumentRegistry -> ISearch -> DocumentRequesterB
DocumentRegistry -> ILocate -> DocumentRequesterB

(components:)
DocumentProvider : <concrete>DocumentSupplier_2 [83 %]
(mismatches:)
>> OK:: The actual value for Component(Standard) for DocumentSupplier_2 is Z39.50
>> OK:: The actual value for Component(Availability) for DocumentSupplier_2 is web service
>> OK:: The actual value for Component(Cost) for DocumentSupplier_2 is 500 GBP
>> OK:: The actual value for Component(Certification) for DocumentSupplier_2 is yes
>> OK:: The actual value for Reliability(Availability) for DocumentSupplier_2 is 85 %
(interfaces:)
(provided) IOrder : private
::accessOrder

DocumentRegistry : <concrete>DocumentRegistryl_1 [80 %]

(mismatches:)
>> mismatch:: Component(Certification) must be equals to yes.

The actual value for Component(Certification) for DocumentRegistryl_1 is no
>> OK:: The actual value for Component(Cost) for DocumentRegistryl_1 is 400 GBP
>> OK:: The actual value for Component(Standard) for DocumentRegistryl_1 is Z39.50

245

Appendix D EDDIS Detail Specifications & Results

>> OK:: The actual value for Component(Availability) for DocumentRegistryl_1 is web service
>> mismatch:: Component(Certification) must be equals to yes.
The actual value for Component(Certification) for DocumentRegistryl_1 is no
>> OK:: The actual value for Component(Standard) for DocumentRegistryl_1 is Z39.50
>> OK:: The actual value for Component(Availability) for DocumentRegistryl_1 is web service
>> OK:: The actual value for Component(Cost) for DocumentRegistryl_ 1 is 400 GBP
>> OK:: The actual value for Reliability(Availability) for DocumentRegistryl_ 1 is 75 %
>> OK:: The actual value for Reliability(Availability) for DocumentRegistryl_ 1 is 75 %
(interfaces:)
(provided) ILocate : private
::accessLocate
(provided) ISearch : private
::accessSearch

DocumentRequesterB : <concrete> null [%]
(mismatches:)
>> mismatch:: Component(Certification) must be equals to yes.
The actual value for Component(Certification) for DocumentRegistryl_1 is no
>> OK:: The actual value for Component(Cost) for DocumentRegistryl_ 1 is 400 GBP
>> OK:: The actual value for Component(Standard) for DocumentRegistryl_1 is Z39.50
>> OK:: The actual value for Component(Availability) for DocumentRegistryl_1 is web service
>> mismatch:: Component(Certification) must be equals to yes.
The actual value for Component(Certification) for DocumentRegistryl_1 is no
>> OK:: The actual value for Component(Standard) for DocumentRegistryl_1 is Z39.50
>> OK:: The actual value for Component(Availability) for DocumentRegistryl_1 is web service
>> OK:: The actual value for Component(Cost) for DocumentRegistryl_ 1 is 400 GBP
>> OK:: The actual value for Reliability(Availability) for DocumentRegistryl 1 is 75 %
>> OK:: The actual value for Reliability(Availability) for DocumentRegistryl_1is 75 %
(interfaces:)
(provided) IRequestB : public
::document_locate
::document_order
::document_search
::document_services
(required) IAuthorization : public
(required) ILocate : private
(required) IOrder : private
(required) ISearch : private

(subsystem:) ValidManager : null [%]
(interfaces:)
(provided) IAuthorization : public
::Acct_permission
(provided) ILogin : public
::User_validation

Template Name: Three-tier proxy server

Notes:

This is typical reference architecture for a modern web-based system. A tier is a partitioning of functionality that
may be allocated to a separate hardware (i.e. web browsers client, web server and database server). This
improves maintainability while hiding the complexity of distributed processing. Requests from individual
browsers may first arrive at a proxy server, which exists to improve the performance of the Web-based system.
These servers cache frequently accessed Web pages that users may retrieve them without having to access the
Web site. They are typically located close to the users, often on the same network, so that they save significant
communication and computation resources. Proxy servers are also used to restrict users’ access to certain Web
sites. In this case the proxy server is acting somewhat like a firewall.

(subsystem connectors:)
ValidManager -> |Authorization -> AdminManager

246

Appendix D

EDDIS Detail Specifications & Results

ValidManager -> IAuthorization -> DocManager

(subsystem:) Three-tier Proxy : null [%]
(connectors:)

ProxyServer -> IRequestC -> Browser
Application_Logic -> IEncryption -> ProxyServer

Document_Database -> IDatabase -> Application_Logic

(components:)
Application_Logic : <concrete> null [%]
(interfaces:)
(provided) IEncryption : private
(required) IDatabase : private

Browser : <concrete> null [%]
(interfaces:)
(required) IRequestC : private

Document_Database : <concrete> null [%]
(interfaces:)
(provided) IDatabase : private
::accessLocate
::accessOrder
::accessSearch

ProxyServer : <concrete> null [%]
(interfaces:)
(provided) IRequestC : private
::document_services
(required) IEncryption : private
(required) ILogin : private
(required) IManage : private
(required) IQuery : private

247

Appendix E:

GVPS Detall Specificaions &
Results

El. GVPS Software Requirements Specification

248

Software Requirements
Specification

for

Guided Vehicle Parking
System

Version 1.0
Prepared by Novia Admodisastro

Lancaster University

Copyright © 2011 by Admodisastro. Permission is granted to use, modify, and distribute this

Software Requirements Specification for Guided Vehicle Parking System Page ii

Table of Contents
Table Of CONTENTSooiiiiieee s i
REVISION HISTONY ... e I
Lo INTFOAUCTION .. 1
1.1 PUIDOSE ..ttt st nreean 1
1.2 Intended Audience and Reading SUQQESLIONSccccevvvviieeieie s 1
1.3 0T (1T Aol oL RSO TSR 1
2. OVErall DESCIIPLIONcoouiiiiiieiii et 2
2.1 Operating ENVIFONMENToceiiiie et 2
2.2 Design and Implementation Constraintsccoocvvoveienieneeieneeese e 2
2.3 Assumptions and DePendenCIESccceiveieriiie e 2
2.4 Priority Of REQUITEMENTScuiiiiieieee et e 2
2.5 F AN o] o] 1=V - 14 L] LSS 3
3. REQUITEMENTSeiiiiie ettt e e sna e teeneesneene s 3
3.1 Vehicle REQUITEMENTScviiiiiieie et 3
3.2 GVPS REQUITEMENTS......ecveeieiieeie ettt ettt et ne e 3
3.3 Non-Functional REqQUIFEMENES..........ccveiiiieiieieiee e 4
34 SUMIMAIY .ttt sttt e e be e te e sse e ereeenteeteesbeesreesaeenneas 5
4. ServiCe DESCIIPLIONScciuiiieeiiieieeie et 7
5. Constraint DeSCHIPTIONScccveiieeiie e 11
Appendix 1: Lancaster University Car Parking Specification.................... 13

Revision History

Name Date Reason For Changes Version

Software Requirements Specification for Guided Vehicle Parking System Page 1

1. Introduction

1.1 Purpose

This document describes detailed requirement specification for a Guided
Vehicle Parking System (GVPS) for Lancaster University. The objective is to
provide drivers with accurate and timely parking information and thus reduce
their travel times while decreasing number of cars searching for empty spaces.

The GPVS consist of two main components which are In-Car Display (ICD)
and Control Centre.

ICD allow a user driving a car to enter the university campus, and simply be
selecting a destination on their in-car screen, be assigned to the best available
space on the closest possible car park to their destination. When leaving the
university, the system, will also provide directions and back to the exit.

ICD communicate with the central server and display a map of the campus
roads and car parks, highlighting the route to be taken and showing the correct
direction to be taken at junctions and roundabouts both visually and audio. ICD
also informs users of different traffics messages according to its locations and
distance to an incident, such as traffic signs, and road-works and indicates
alternative routes as appropriate.

The system also provides a Control Centre for administrative users who can

monitor the status of each vehicle and car park on campus, and enable
closure of sections of road in case of emergency or maintenance.

1.2 Intended Audience and Reading Suggestions

This is a technical document meant for system developers and users.

1.3 Product Scope

As Lancaster University is piloting the GVPS for other UK institutions, it must
be designed to read in common traffic and structural details found on a
university campus including road layout, buildings, and parking spaces.
Appendix 1 provides Lancaster University parking specification.

Software Requirements Specification for Guided Vehicle Parking System Page 2

2. Overall Description

2.1 Operating Environment

The system shall operate on the Windows XP platform. It requires Microsoft
SQL Server 2000 to host the database tables and a Ethernet LAN for client-
server access to the database server.

2.2 Design and Implementation Constraints

Because of the existing windows platform and forthcoming Windows Local
Area Network (LAN), the system shall be developed using Component-Based
Software Development (CBSE) approach using JavaBeans component model.
This will leverage existing expertise held by the developers. The database
tables will be hosted on Microsoft SQL Server 2000 and accessed via JDBC.

2.3 Assumptions and Dependencies

For the system to run effectively, a database server must be installed on a
server machine. This server machine must be accessible across a LAN. We
are assuming that we will have a LAN running and server machine to host the
database.

2.4 Priority of Requirements

Within in this document, all requirements are categorised under three priority

levels:

e ESSENTIAL (3): This means that the requirement is crucial for all GVPS
components (IVD, Control Centre and/or Simulator), if they are to
adequately deliver commitments made on them by operators and
stakeholders.

e [IMPORTANT (2): This means that the requirement may prove extremely
useful in assisting GVPS in delivering their commitments i.e. reducing the
amount effort required by the organisation’s staff by increasing the level of
automation.

e USEFUL (1): This means the requirement could prove useful in processing
IVD, Control Centre and/or Simulator requests, but it is far more likely to
only be of use to a subset of GVPS operators and stakeholders.

Software Requirements Specification for Guided Vehicle Parking System Page 3

2.5 Abbreviations

GVPS Guided Vehicle Parking System
LAN Local Area Network
CBSE Component-Based Software Development
Prio. Priority
RFID Radio Frequency ldentification Tags

3. Requirements

3.1 Vehicle Requirements

Access to the campus wireless network

Onboard computer with small LCD display, input device and voice
synthesis capability.

An onboard GPS system with accuracy of 2m. (can be read by onboard
computer).

Odometer with accuracy better than 1m in 50m. (can be read by onboard
computer).

3.2 GVPS Requirements

3.2.1 ICD

Connect; To enable drivers either holding a car permit or visitor to access
GVPS 24/7.
Login; The GVPS will automatically identify the vehicle by means of a
RFID tag embedded in the campus parking permits, or display
identification page for visitor.
o Permit holder: Earlier registration require them to provide detail as the
following:
1. Driver name
2. Vehicle registration no.
3. Vehicle type (i.e. Car — C, Disabled — D, or Van/Lorry — O)
4. Permit type (i.e. Staff — F or Student — S)
They will be assigned:
1. RFID (auto generate ID)
o0 Visitor (V): Vehicle without permit will automatically identify as a visitor
vehicle and will be assigned a temporary ID.
1. Vehicle registration no.

Software Requirements Specification for Guided Vehicle Parking System Page 4

2. Vehicle type (i.e. CV, DV, or OD)

o Destination; To enable drivers to enter their campus destination at an
entrance and calculate provide routing according to shortest route.

e Guide; To guide the driver of the vehicle to a designated parking place
(given as a particular car park) as close to the destination as possible,
taking into account the type of vehicles (C, D, or O) and driver categories
(F, SorV).

o Exit; To guide the driver of the vehicle to an exit.

Traffic messages; To informs drivers of different traffics messages
according to its locations and distance to an incident, such as traffic signs
(refer Appendix A), and road-works and indicates alternative routes as
appropriate.

e Wrong turning; To informs drivers of wrong turning is made and re-
calculate route.

e Display; The display in the vehicle will show the position of the vehicle on
a map and provide timely guidance to direct the driver to the designated
parking space. The GUI will also allow the user to interact as deemed
necessary.

3.2.2 Control Centre

Login; To enable admin to access GVPS 24/7 in a secure environment.
Driver accounts; To manage driver accounts.

Map; To manage map including to parse the map.

Vehicle status; To monitor the status of all vehicles that accessing GVPS.
Car parks; To monitor car parks on campus.

Road closure; To enable closure of sections of road in case of emergency
or maintenance.

e Display; To provide visualization tracking for all vehicle accessing GVPS.

3.3 Non-Functional Requirements

The main non-functional categories associated with the system(s) include:

o Efficiency; GVPS shall efficiently manage to scarce computational
resources (i.e. CPU cycles and memory) to handle high consumptions
tasks e.g. drawing and displaying map, and monitoring vehicles.

e Performance; GVPS shall provides reasonable level of performance VD
and control centre to receiving and sending data.

Reliability; GVPS shall allow driver for 24/7 access.

Security; GVPS shall provides a secure environment for admin and control
privacy.

Flexibility; GVPS shall be expendable for any other UK institutions.
Documentation / Online help;

Training;

Software Requirements Specification for Guided Vehicle Parking System Page 5

3.4 Summary

The GVPS requirements are summarize as in Table 3.1. These requirements
represent viewpoints of GVPS operators, component and stakeholder.
1. GVPS Operators:

Driver; Driver is a person whom interested to access In Vehicle
Display (IVD). IVD helps them to navigate the road campus to find
a car park and to exit campus. Driver is either member of Lancaster
University or visitor.

Driver type member is require to register his/her vehicle to the
GVPS management to ensure appropriate parking space (based on
permit type) is been assigned.

Unrecognised vehicle is assume as Driver type visitor and being
assign a temporary ID which only allow him/her for visitor parking
space. However, visitor can indicate disability requirement.

Admin; Admin is a person whom responsible to manage GVPS
system such as vehicle handling, parking space handling, road
obstruction handling, assigning car park to driver and able to view
all vehicle connecting GVPS.

2. GVPS Components:

Traffics; Existing component that consist of dynamic traffic signal
from campus such as traffic lights and speed detector.

3. GVPS Stakeholders:

Consortium; Consortium is Lancaster University whom invested in
GVPS and wanted the system to be delivered in certain duration of
time. The consortium may represent domain characteristic and
constraints that may influence the system requirements.

Table 3.1. GVPS requirements summary

Viewpoint Requirement
ID Role/Type ID Description Rationale Ranking
Vp1 | GVPS_Driver R1.1 | To enable drivers either holding a | To provide 2
(Operator) car permit or visitor to access connection to GVPS
GVPS 24/7. server.
R1.2 | To be able to logon to the system | To provide an 3
using valid RFID or registration access to IVD
number. services.
R1.3 | To guide the driver of the vehicle | Basic IVD 3
to a designated parking place functionality

(given as a particular car park) as
close to the destination as

possible.

R1.4 | The display in vehicle will show Basic IVD 3
the position of the vehicle on a functionality
map.

R1.5 | To guide the driver of the vehicle | Basic IVD 3
to an exit. functionality

R1.6 | To informs drivers of different To provide an alert 2

traffics messages according to its | to the driver.
locations and distance to an
incident

R1.7 | To informs drivers of wrong To guide driver on B

Software Requirements Specification for Guided Vehicle Parking System

Page 6

turning is made and re-calculate
route

track to destination.

Vpz2 | GVPS_ R2.1 | To enable admin to access To provide an
Administrator GVPS 24/7 in a secure access to Control
(Operator) environment. Centre services.

R2.2 | To manage driver accounts i.e. To provide a
add/delete/update accounts. mechanism to

manage registered
vehicles.

R2.3 | To manage map i.e. add/delete To provide a
map. mechanism to

manage map.

R2.4 | To manage car parks on campus | To provide a
by providing the status of car mechanism to
parks. monitor the status of

car parks in campus

R2.5 | To enable closure of sections of To provide a notice
road in case of emergency or for any road
maintenance. obstruction

R2.6 | To monitor the status of all To provide a
vehicles accessing GVPS. mechanism to track

status of all vehicle.

Vps | GVPS_ R3.1 | The IVD client will act as an To provide real time
Traffics observer for traffics signal traffics message to
(Component) broadcast. the driver.

Vps | GVPS_ R4.1 | The system shall efficiently GVPS shall manage
Consortium manage scarce computational resources for high
(Organisation) resources (i.e. CPU cycles and c'onsumpyions tasks

memory). (i.e. drawing and
displaying map, and
monitoring vehicles)
systematically.

R4.2 | The system shall ensure a GVPS shall provide
reasonable level of performance reasonable level of
is maintained across the services | performance IVD
at all times. and control centre to

receiving and
sending data.

R4.3 | The system shall provide 24/7 GVPS shall be
access. accessible by driver

to find car parking
and admin to
monitor parking
areas.

R4.4 | The system shall enforce The network should
authentication policies to avoid provide a secure
loss of data integrity or environment and
confidentiality control privacy.

R4.5 | The system shall promote XML GVPS shall be
data map format and driver flexible and reusable
independence on map resources. | to be adopted for

any other UK
institutions

GVPS map shall be
easily interpreted
and upgraded to be
adopted for any
other UK institutions.

R4.6 | The system shall be develop

according to schedule and cost
estimated.

Software Requirements Specification for Guided Vehicle Parking System Page 7

4. Service D

GVPS service desc

escriptions

riptions are shown in Table 4.1 — 4.13.

Table 4.1 SetupConnection service description

GVPS: S1.1.1 SetupConnection

Actors

GVPS_Driver

Description

1. GVPS driver find connection
2. If connection is valid then
2.1 If map not exist
2.1.1 GVPS driver load new map and assign map 1D
2.1.2 System initialise server connection
2.2 else if map exist
2.2.1 Choose and load map
2.2.2 System initialise server connection
2.3 else
2.3.1 prompt an error message — connection cannot be established

Entry conditions

Valid connection
Valid vehicle registration

Exit conditions

System reset vehicle
Closes server connection

Constraints

The service shall be available on Microsoft Mobile platform
Service shall have a reasonable level of performance at all times
The service shall have 24/7 access availability.

whpPIdEINE

Table 4.2 LoginlVD service description

GVPS: S1.2.1 LoginlVD; S1.2.2 Validate

Actors

GVPS Driver

Description

1. System prompt vehicle registration page
2. If RFID tag is valid
2.1 System initialise driver system permissions
2.2 Display the services available to the driver
else
2.3 Driver enter vehicle registration no and type (C-V, D-V, or O-V)
2.4 System assigned temporary ID
else
2.5 System prompts an error message

Entry conditions

Valid RFID or Vehicle Registration No.

Exit conditions

System access conditions is reset
Closes user account.

Constraints

RFID is conforms to standard passive tag protocol.
The service shall be easy to maintain to current technology and
reguirements.

Il [ol o

Table 4.3 SearchParking service description

GVPS: S1.3.1 SearchP

arking; S1.3.2 Request Parking

Actors

GVPS Driver

Description

1. GVPS driver enters destination (building/department) name
2. If destination is found then
2.1 If vehicle is type D then
2.1.1 A nearest parking space to the destination D type will be
reserved
else if vehicle is type C and eligibility is F
2.1.2 A nearest parking space to the destination C type with
eligibility F will be reserved
else if vehicle is type C and eligibility is S
2.1.3 A nearest parking space to the destination type C with S
eligibility will be reserve

Software Requirements Specification for Guided Vehicle Parking System

Page 8

else if vehicle is type C and eligibility is V
2.1.4 A nearest parking space to the destination type C with V
eligibility will be reserve
else if vehicle is type O and eligibility is F
2.1.5 A nearest parking space to the destination type O with F
eligibility will be reserved
else if vehicle is type O and eligibility is S
2.1.6 A nearest parking space to the destination type O with S
eligibility will be reserved
else if vehicle is type O and eligibility is V
211 A nearest parking space to the destination type O with V
eligibility will be reserved
Shortest path to the destination will be calculated
Car park is reserved until users release destination.

Entry conditions

Vehicle_RFID eavailable_RFID
Map databases c set of user permissible databases

Exit conditions

System access conditions is reset

Constraints

Lol Eanll IS ol ol o

Car space allocation is restricted with vehicle type, eligibility and
availability.

Shortest path taking into consideration of route alternative when road
obstruction occurs.

Table 4.4 NavigateRoute service description

GVPS: S1.4.1 NavigateRoute

Actors GVPS Driver

Description 1. If map found,
1.1 Map and its entities is display
else

1.2 prompt error message “map not found!”

2. Display vehicle location in a map
3. Re-draw vehicle movements on the map.
Entry conditions 1. Vehicle_RFID eavailable RFID
2. Map databases c set of user permissible databases
Exit conditions 1. System access conditions is reset
Constraints 1. Mapis given in coordinate (x,y) in txt file.
Table 4.5 Exit service description
GVPS: S1.5.1 Exit
Actors GVPS Driver
Include IVD_Console
Description 1. GVPS driver selects exit south or north.
2. If exit destination is valid
2.1 Shortest path to the exit will be calculated.
2.2 Car space is release.
else
2.3 An error message “invalid exit” is display.
Entry conditions 1. Vehicle_RFID eavailable_RFID
2. Map databases c set of user permissible databases
Exit conditions 1. System access conditions is reset
Constraints 1. Service conforms to communication server protocol standard.

Table 4.6 Traffic service description

GVPS: S.1.6.1 BroadcastTrafficSignal

Actors Traffic, GVPS_Driver
Description 1. System observe signal from Traffic or ControlCentre.
2. If signal message from Traffic is valid

2.1 Checked traffic signs message

2.2 Broadcast appropriate message to GVPS Driver.
else

2.3 An error message “invalid signal” is display.

Software Requirements Specification for Guided Vehicle Parking System

Page 9

Entry conditions

Vehicle_RFID eavailable_RFID
Map databases c set of user permissible databases

Exit conditions

System access conditions is reset

Constraints

winin =

traffic messages.

4. The service shall able to read standard signal broadcast by Traffic.

The service shall have a reasonable level of performance of broadcasting

Table 4.7 WrongTurning service description

GVPS: S1.7.1 WrongTurning

Actors

GVPS_Driver

Description

1. If system navigation not equals to destination

1.1 Prompt message “wrong route”

1.2 Re-calculate shortest path from location to destination
Prompt new routing to the GVPS driver.

Entry conditions

Vehicle_RFID eavailable_RFID
Map databases c set of user permissible databases

Exit conditions

Ll [l

System access conditions is reset

Constraints

Table 4.8 Login service description

GVPS: S2.1.1 Login; S2.1.2 ValidateAdmin

Actors

GVPS_Administrator

Description

(SO)

else

GVPS admin request for login

GVPS admin enters a username and password

Verify login against a set of username-password pairs in the database
If username and password are valid:

4.1 System initialise user account permissions

4.2 Display the services available to the user

4.3 System prompts the user to re-enter username and password with

three attempts.

Entry conditions

Valid username
Valid password

Exit conditions

System access conditions is reset
Closes user account.

Constraints

NPk wwD

requirements.

The service shall provide a reasonable level of security.
The service shall be easy to maintain to current technology and

Table 4.9 ManageDriver service description

GVPS: S2.2.1 ManageDriver

Actors

GVPS_Administrator, GVPS Member

Description

1. GVPS admin manage for driver account

2. If add driver then system request driver:
Driver name — provide char(25)
Car plat number — provide alphanumneric(7)
Parking permit type — select from combo box
Vehicle permit — select from combo box

3. If remove driver

3.1 system request search driver

4. If driver is found

4.1 delete driver details from database

5. If search driver then

5.1 system request driver name or car plat number

6. If driver is found

6.2 driver details is displayed

else

6.2 display message “driver not found”

Software Requirements Specification for Guided Vehicle Parking System

Page 10

Entry conditions

Manage_map available_services
Vehicle databases c set of permissible databases

Exit conditions

System access conditions is reset

Constraints

N =N e

Parking permit type A or B
Vehicle permit type C, D, or O

Table 4.10 ManageMap service description

GVPS: S2.3.1 ManageMap; S2.3.2 ParseMap; S2.3.3 Map Entities

Actors

GVPS_Administrator

Description

1.
2.
3.

GVPS admin search for campus map.

GVPS admin browse map directory

If map is found

3.1 System parse map entities and display map
else

3.2 error message displayed “Map not found”

Map directory is retained in user workspace for future locates

Entry conditions

Manage_map cavailable_services
Vehicle databases c set of permissible databases

Exit conditions

System access conditions is reset

Constraints

[l Ll [ol £

Map entities is in *.txt file.

The service should allow flexibility and reusability to parse different type of

map entities.

Table 4.11 ManageParking service description

GVPS: S2.4.1 ManageParking

Actors GVPS_Administrator
Description 1. GVPS admin monitor parking status in university campus
2. If a vehicle assigned to a car park,
2.1 parking space is reduce to 1
3. If avehicle exit from a car park,
3.1 parking space is increase to 1
4. Car parks and its parking spaces are retained in working space.
Entry conditions 1. Manage_map cavailable_services
2. Vehicle databases c set of permissible databases
Exit conditions 1. System access conditions is reset

Constraints

Table 4.12 ManageObstruction service description

GVPS: S2.5.1 ManageObstruction

Actors GVPS_Administrator
Description 1. GVPS admin manage road obstruction in university campus.
2. If obstruction
2.1 GVPS admin enters a set of obstructed road segments and notify
IVD
3. If obstruction resolved
3.1 GVPS admin remove the road segments and notify IVD.
Entry conditions 1. Manage_map cavailable_services
2. Vehicle databases c set of permissible databases
Exit conditions 1. System access conditions is reset

Constraints

Table 4.13 ViewVehicleStatus service description

GVPS: S2.6.1 ViewVehicleStatus; S2.6.2 VehicleTracker; S2.6.3 TrafficTracker

Actors GVPS_Administrator

Description 1. If map found,
1.1 Map and its entities is display
else

1.2 Prompt error message “map not found!”

Software Requirements Specification for Guided Vehicle Parking System Page 11
2. Display vehicles location in a map
3. Re-draw each vehicle movements on the map.
Entry conditions 1. Manage_map eavailable_services
2. Vehicle databases c set of permissible databases
Exit conditions 1. System access conditions is reset
Constraints 1. Map is given in coordinate (x,y) in txt file.
2. The service shall be effectively managed.
5. Constraint Descriptions
GVPS constraint descriptions are shown in Table 5.1.
Table 5.1 GVPS constraint descriptions
Concern Sub-concern ID Description Rationale Scope
1-Efficiency 1-Memory C1.1.1 | The system shall To ensure bottle S2.6.2
efficiently manage neck and effective
consumptions of resource
memory. management.
2-Processor C1.2.1 | The system shall To ensure bottle S2.6.2
efficiently manage high | neck and effective
consumptions of resource
processor. management.
2-Performance 1-Response C.2.1. GVPS shall allow | To ensure that a | System
time 1 provide reasonable | reasonable level of
level of performance | performance is
IVD and Control Centre | given to drivers and
to receive and send | admin
data
3-Reliability 1-Availability C3.1.1 | GVPS shall allow | To ensure | S1.1.1
driver for 24/7 access. sufficient GVPS
access time.
4-Security 1-Integrity C4.1.1 | GVPS shall provide a | Secure control | S2.1.1
secure environment for | centre for admin
admin access.
C4.1.2 | GVPS shall provide a | Secure RFID for | S1.2.1
secure environment for | drivers
control privacy
5-Flexibility 1- C5.1.1 | GVPS shall be flexible | Must be able to | S2.3.1
Expendability to be adopted for any | read common
other UK institutions traffic and map
structural details.
6-Business 1-Cost C6.1.1 | System development | Under medium | System
according to cost | budget
estimated
2-Schedule C6.2.1 | System development | Under normal | System
according to schedule | delivery date
estimated.
3-Platform C6.3.1 | The system shall run | Sufficient support | S1.2.1
on Microsoft Windows | for intended | S1.3.1
Mobile purpose S1.5.1
S1.7.1
4-Component | C6.4.1 | The system shall | Leverage existing | System
Model develop using | expertise held by

JavaBeans component
model

the developers.

Software Requirements Specification for Guided Vehicle Parking System Page 12
7-Component 1-Availability C7.1.1 | GVPS_Traffic Using existing S1.6.1
subscribe to available | component in
traffics components. navigation system
2-Standard C7.2.1 | RFID is conform to | Vehicle navigation | S1.2.1
standard passive tag | standard for
control accessing 1VD.
3-Persistent C7.3.1 | The database hosted | Sufficient support | S2.2.1
on Ms. SQL Server | for intended | S2.3.1
2000 accessed via | purpose

JDBC

Software Requirements Specification for Guided Vehicle Parking System Page 13

Appendix 1. Lancaster University Car Parking
Specification

Car parks monitored: 23
Parking spaces monitored: 500
Type of vehicles:

o Car(C)

o Car-disabled (D)

o Van/Lorry (O)

e Permits and eligibility:

o Staff (F)

o Students (S)

o Others: Visitor (V) — All visitor’s vehicle (that is any vehicle not
displaying a staff, students or contractor parking permit) will require
either a pay and display ticket when parked on campus.

e Car parks locations:

0 Alexandra Park Drive 30 0 North Drive 20 spaces
spaces o0 North East Drive 20 spaces
o0 Bowland Ave. 15 spaces 0 North West Drive 20 spaces
o Bowland Avenue 28 spaces 0 Physics Ave. 20 spaces
o Cartmel West Ave. 15 spaces 0 Rossendale Ave. 20 spaces
o Farrer Avenue 72 spaces o South Bowland Ave East 15
0 Fylde Ave 15 spaces spaces
o Gillow Ave. 15 spaces 0 South Drive 20 spaces
o Graduate North Ave. 20 0 South Drive 56 spaces
spaces 0 South East Drive 36 spaces
o John Creed Ave. 10 spaces o Tower Ave. 10 spaces
0 Library Ave. 15 spaces 0 Whewell Building 6 spaces
0 Lonsdale South Ave. 20
spaces
o0 Management School 12
spaces

e Visitor car parks are in the following locations:
o Farrer Avenue 72 spaces
0 South Drive 56 spaces
0 Bowland Avenue 28 spaces
o Management School 12 spaces
0 Whewell Building 6 spaces
e The map entities:
0 Car parks and spaces as describe above.
0 Roads: 56 roads segments
o Traffic signs
i) Traffic lights
i) Pedestrian
iif) Bus stops

Software Requirements Specification for Guided Vehicle Parking System

o Entrances:
i) A6 North Entrance

o Buildings:
Ash House
Biological and Environmental
Science
Bowland Annex
Bowland College
Bowland Hall South
Bowland Hall North
Bowland Lecture Theatre
Bowland North
Bowland Tower
Bowland Tower East
Bowland Tower South
Central Workshops and Stores
CETAD
Chaplaincy Centre
Computer Services
Conference Centre
County College
County South
County West
Engineering Building
Faraday Building
Former Cartmell College
Former County College
Furness College
Furness Residences
Fylde College

Campus map is as Fig. A1.1:

Fylde Residences
George Fox Building
Great Hall and Peter Scott
Gallery

Grizedale College

Health Centre

InfoLab21

Jack Hylton Music Rooms
John Creed Buiding
Lancaster Environment Centre
LEC Workshops

Library

LUTV - Round House
Management School
Nuffield Theatre

Pendle Bar

Pendle College

Physics Building

Post Office

Pre-school Centre
Reception Building
Ruskin Library

Slaidburn House

Sports Centre

University House
Whewell Building

Fig. AL1.1. Lancaster campus map

Page 14

Appendix E GVPS Details Specifications & Results

E2. 1XML ADL Specification of GVPS

GVPS architecture detailed specification is shown in Table F2.1.

Table E2.1. iXML ADL Spedification of GVPS

<?xml version = '1.0' encoding = 'UTF-8' ?>

<IDOCTYPE iXML SYSTEM "/Documents and Settings/norwy/NetBeans_projects/csafe/iXML.dtd">
<iXML>

<component name.id = 'CC_Console' type =" visibility = 'private'>

<component.description>

CC_Console component is for administrative users who can monitor the status of each vehicle and car
park on campus, and enable closure of sections of road in case of emergency or maintenance.
</component.description>

<component.interface name.idref = 'IDataCentre' port.idref = 'r'/>

<component.interface name.idref = 'lMapCC' port.idref ="'r'/>

<component.interface name.idref = 'lControlCentre' port.idref = 'p'/>

<component.interface name.idref = 'lRouteObs' port.idref = 'p'/>

<component.connector name.idref = 'IDataCentre -> CC_Console'/>

<component.connector name.idref = 'IMapCC -> CC_Console'/>

<component.constraint concern = 'Security' subconcern = 'Integrity' type = 'invariant' state = 'EL' value
= 'authentication_policies' scope = 'Login'/>

<component.constraint concern = 'Component' subconcern = 'Persistent' type = 'precondition' state =
'EL' value = 'SQL Server' scope = 'ManageDriver'/>

<component.constraint concern = 'Component' subconcern = 'Persistent' type = 'precondition' state =
'EL' value ='SQL Server' scope = 'ManageMap'/>

<component.property concern = 'Component' subconcern = 'Availability' value = 'inhouse'/>
</component>

<component name.id ='IVD_Console' type =" visibility = 'private'>

<component.description>

ICD_Console component provides services to the driver to navigate campus to and from parking space
using a valid registration number or RFID tag.

</component.description>

<component.interface name.idref ='IVehicle' port.idref = 'p'/>

<component.interface name.idref ='IDatalVD' port.idref = 'r'/>

<component.interface name.idref = 'IMapIVD' port.idref ="'r'/>

<component.interface name.idref = 'lRouteObs' port.idref = 'r'/>

<component.connector name.idref = 'IRouteObs -> IVD_Console'/>

<component.connector name.idref = 'IDatalVD -> IVD_Console'/>

<component.connector name.idref = 'IMaplIVD -> IVD_Console'/>

<component.constraint concern = 'Component' subconcern = 'Standard' type = 'precondition’ state =
'EL' value = 'PassiveTag' scope = 'LoginlVD'/>

<component.constraint concern = 'Security' subconcern = 'Integrity' type = 'invariant' state = 'EL' value
= 'authentication_policies' scope = 'LoginlVD'/>

<component.constraint concern = 'Reliability' subconcern = 'Availability' type = 'precondition’ state =
'GT' value = '100' scope = 'SetupConn'/>

<component.constraint concern = 'Business' subconcern = 'Platform' type = 'invariant' state = 'EL' value

264

Appendix E GVPS Details Specifications & Results

='Windows Mobile' scope = 'LoginlVD'/>

<component.constraint concern = 'Business' subconcern = 'Platform' type = 'invariant' state = 'EL' value
='Windows Mobile' scope = 'SearchParking'/>

<component.constraint concern = 'Business' subconcern = 'Platform' type = 'invariant' state = 'EL' value
='Windows Mobile' scope = "Exit'/>

<component.constraint concern = 'Business' subconcern = 'Platform' type = 'invariant' state = 'EL' value
='Windows Mobile' scope = 'WrongTurning'/>

<component.property concern = 'Component' subconcern = 'Standard' value ="' PassiveTag'/>
<component.property concern = 'Component' subconcern = 'Availability' value = 'Inhouse'/>
<component.property concern = 'Business' subconcern = 'Platform' value = 'Windows Mobile'/>
</component>

<component name.id = 'avpsDB' type =" visibility = 'private'>

<component.description>

The component provides persistent storage of driver, vehicle and campus entities.
</component.description>

<component.interface name.idref = 'IDataCentre' port.idref = 'p'/>

<component.interface name.idref = 'IDatalVD' port.idref ='p'/>

<component.interface name.idref = 'IDataMap' port.idref = 'p'/>

<component.property concern = 'Component' subconcern = 'Persistent' value = 'SQL Server'/>
<component.property concern = 'Component' subconcern = 'Availability' value = 'inhouse'/>
</component>

<component name.id = 'Map' type =" visibility = 'private'>

<component.description>

The component provides services to visualise campus entities including traffic signal
</component.description>

<component.interface name.idref = 'IMaplIVD' port.idref = 'p'/>

<component.interface name.idref = 'IMapCC' port.idref = 'p'/>

<component.interface name.idref = 'IDataMap' port.idref = 'r'/>

<component.connector name.idref = 'IDataMap -> Map'/>

<component.constraint concern = 'Component' subconcern = 'Availability' type = 'invariant' state = 'EL'
value =" inhouse' scope = 'TrafficSignal'/>

<component.constraint concern = 'Flexibility' subconcern = 'Expendability' type = 'invariant' state = 'EL'
value = 'xml-based' scope = 'DrawMap'/>

<component.constraint concern = 'Efficiency' subconcern = 'Memory' type = 'postcondition' state = 'LE'
value = '20' scope ="' VehicleTracker '/>

<component.constraint concern = 'Efficiency' subconcern = 'Processor' type = 'postcondition' state =
'EL' value = '75' scope = 'VehicleTracker'/>

<component.property concern = 'Component' subconcern = 'ComponentModel' value = 'JavaBeans'/>
</component>

<component name.id = 'Navi' type = 'subsystem’ visibility = 'public'>
<component.description>Subsystem</component.description>

<component.composite name.idref = 'CC_Console'/>

<component.composite name.idref = 'lVD_Console'/>

<component.composite name.idref = 'avpsDB'/>

<component.composite name.idref = 'Map'/>

<component.constraint concern = 'Business' subconcern = 'Schedule' type = 'invariant' state = 'EL'
value = 'moderate' scope = 'System'/>

<component.constraint concern = 'Business' subconcern = 'Cost' type = 'invariant' state = 'EL' value =
'moderate' scope = 'System'/>

<component.constraint concern = 'Business' subconcern = 'ComponentModel' type = 'precondition’

965

Appendix E GVPS Details Specifications & Results

state = 'EL' value = 'JavaBeans' scope = 'System'/>

<component.constraint concern = 'Performance' subconcern = 'ResponseTime_UPL' type =
'postcondition' state = 'LE' value = '0.5' scope = 'System'/>

<component.constraint concern = ‘'Performance' subconcern = 'ResponseTime PL' type =
'postcondition’ state = 'LE' value = '4' scope = 'System'/>

</component>

<interface name.id = 'IDataCentre' type =" port = 'p' visibility = 'private'>
<interface.description>avpsDB provides this interface to CC_Console</interface.description>
<interface.service name = 'ValidateAdmin'>
<service.operation name.idref = 'validate'/>
</interface.service>

<interface.service name = 'ParseMap'>
<service.operation name.idref = 'parseMap'/>
</interface.service>

<interface.service name = '‘ManageParking'>
<service.operation name.idref = 'queryDriver'/>
<service.operation name.idref = 'queryParking'/>
</interface.service>

<interface.operation name = 'parseMap' ret = "'>
<operation.param name = 'map' type ='String'/>
<operation.param name = 'entities' type ='vector'/>
</interface.operation>

<interface.operation name = 'validate' ret ="">
<operation.param name = 'username' type ='String'/>
<operation.param name = 'pwd' type ='String'/>
</interface.operation>

<interface.operation name = 'queryDriver' ret = "'>
<operation.param name = 'driverID' type ='String'/>
<operation.param name = 'vehiclelD' type ='String'/>
</interface.operation>

<interface.operation name = 'queryParking' ret = ''>
<operation.param name = 'parkArealD' type ='integer'/>
</interface.operation>

</interface>

<interface name.id = 'IDataCentre' type =" port = 'r' visibility = 'private'>
<interface.description>CC_Console requires this interface</interface.description>
<interface.operation name = 'parseMap' ret = "'>
<operation.param name = 'map' type ='String'/>
<operation.param name = 'entities' type ='vector'/>
</interface.operation>

<interface.operation name = 'validate' ret ="">
<operation.param name = 'username' type ='String'/>
<operation.param name = 'pwd' type ='String'/>
</interface.operation>

<interface.operation name = 'queryDriver' ret ="'>
<operation.param name = 'driverID' type ='String'/>
<operation.param name = 'vehiclelD' type ='String'/>
</interface.operation>

<interface.operation name = 'queryParking' ret = ''>
<operation.param name = 'parkArealD' type ='integer'/>

266

Appendix E GVPS Details Specifications & Results

</interface.operation>

</interface>

<interface name.id = 'IDatalVD' type =" port = 'p' visibility = 'private'>
<interface.description>avpsDB provides this interface to IVD_Console</interface.description>
<interface.service name = 'ValidateDriver'>

<service.operation name.idref ='authenticate'/>

</interface.service>

<interface.service name = 'RequestParking'>

<service.operation name.idref ='queryParking'/>

</interface.service>

<interface.operation name = 'authenticate’ ret = ''>
<operation.param name = 'vehicleNo' type ='String'/>
<operation.param name = 'rfidNo' type ='String'/>
</interface.operation>

<interface.operation name = 'queryParking' ret = 'integer'>
<operation.param name = 'dest' type ='String'/>
</interface.operation>

</interface>

<interface name.id = 'IDatalVD' type =" port = 'r' visibility = 'private'>
<interface.description>IVD_Console requires this interface</interface.description>
<interface.operation name = 'authenticate' ret = ">
<operation.param name = 'vehicleNo' type ='String'/>
<operation.param name = 'rfidNo' type ='String'/>
</interface.operation>

<interface.operation name = 'queryParking' ret = 'integer'>
<operation.param name = 'dest' type ='String'/>
</interface.operation>

</interface>

<interface name.id = 'IMapCC' type =" port = 'p' visibility = 'private'>
<interface.description>Map provides this interface to CC_Console </interface.description>
<interface.service name = '‘DrawMap'>

<service.operation name.idref = 'connectWaypoint'/>
</interface.service>

<interface.service name = 'TrafficTracker'>

<service.operation name.idref = 'trafficTracker'/>
</interface.service>

<interface.service name = 'VehicleTracker'>

<service.operation name.idref = 'showVehicle'/>

</interface.service>

<interface.operation name = 'showVehicle' ret = ">
<operation.param name = 'vehiclelD' type ='String'/>
</interface.operation>

<interface.operation name = 'connectWaypoint' ret = ''>
<operation.param name = 'coord' type ='String'/>
</interface.operation>

<interface.operation name = 'trafficTracker' ret = ">
</interface.operation>

</interface>

<interface name.id = 'IMapCC' type =" port = 'r' visibility = 'private'>
<interface.description>CC_Console requires this interface</interface.description>

267

Appendix E GVPS Details Specifications & Results

<interface.operation name = 'showVehicle' ret = ">

<operation.param name = 'vehiclelD' type ='String'/>
</interface.operation>

<interface.operation name = 'connectWaypoint' ret = ''>
<operation.param name = 'coord' type ='String'/>
</interface.operation>

<interface.operation name = 'trafficTracker' ret ="'>
</interface.operation>

</interface>

<interface name.id = 'IMaplVD' type =" port = "p' visibility = 'private'>
<interface.description>Map provides this interface to IVD_Console</interface.description>
<interface.service name = 'NavigateRoute'>

<service.operation name.idref = 'calculateRoute'/>

<service.operation name.idref = 'drawRoute'/>

</interface.service>

<interface.service name = 'TrafficSignal'>

<service.operation name.idref = 'traffiCast'/>

</interface.service>

<interface.operation name = 'calculateRoute' ret = ''>
<operation.param name = 'dest' type ='String'/>
</interface.operation>

<interface.operation name = 'drawRoute' ret = ''>

<operation.param name = 'coord' type ='String'/>
</interface.operation>

<interface.operation name = 'traffiCast' ret = ">
</interface.operation>

</interface>

<interface name.id = 'IMaplVD' type =" port = 'r' visibility = 'private'>
<interface.description>IVD_Console requires this interface</interface.description>
<interface.operation name = 'calculateRoute' ret = ''>
<operation.param name = 'dest' type ='String'/>
</interface.operation>

<interface.operation name = 'drawRoute' ret = ">

<operation.param name = 'coord' type ='String'/>
</interface.operation>

<interface.operation name = 'traffiCast' ret = ">
</interface.operation>

</interface>

<interface name.id = 'IRouteObs' type =" port = 'p' visibility = 'private'>
<interface.description>Map provides this interface to IVD_Console</interface.description>
<interface.service name = 'ManageObstruction'>

<service.operation name.idref = 'routeObstruction'/>
</interface.service>

<interface.operation name = 'routeObstruction’ ret = ''>
<operation.param name = 'route' type ='vector'/>
</interface.operation>

</interface>

<interface name.id = 'IRouteObs' type =" port = 'r' visibility = 'private'>
<interface.description>IVD_Console requires this interface</interface.description>
<interface.operation name = 'routeObstruction’ ret = ''>

268

Appendix E GVPS Details Specifications & Results

<operation.param name = 'route' type ='vector'/>
</interface.operation>

</interface>

<interface name.id = 'IDataMap’ type =" port = 'p' visibility = 'private'>
<interface.description>Map provides this interface to IVD_Console</interface.description>
<interface.service name = '‘ManageEntities'>

<service.operation name.idref ='getEntities'/>

<service.operation name.idref ='getCoord'/>

</interface.service>

<interface.operation name = 'getEntities' ret = ''>
</interface.operation>

<interface.operation name = 'getCoord' ret = ''>
</interface.operation>

</interface>

<interface name.id = 'IDataMap’ type =" port = 'r' visibility = 'private'>
<interface.description>IVD_Console requires this interface</interface.description>
<interface.operation name = 'getEntities' ret = ''>
</interface.operation>

<interface.operation name = 'getCoord' ret = ''>
</interface.operation>

</interface>

<interface name.id = 'IControlCentre' type =" port = 'p' visibility = 'public'>
<interface.description>CC_Console provides this interface</interface.description>
<interface.service name = 'Login'>

<service.operation name.idref ='login'/>

</interface.service>

<interface.service name = '‘ManageDriver'>

<service.operation name.idref ='updateDriver'/>

</interface.service>

<interface.service name = '‘ManageMap'>

<service.operation name.idref ='updateMap'/>

</interface.service>

<interface.service name = 'ViewVehicleStatus'>

<service.operation name.idref ='viewStatus'/>

</interface.service>

<interface.operation name = 'login' ret = ">

<operation.param name = 'username' type ='String'/>
<operation.param name = 'pwd' type ='String'/>
</interface.operation>

<interface.operation name = 'updateDriver' ret = ">

<operation.param name = 'driverID' type ='String'/>

<operation.param name = 'vehiclelD' type ='String'/>
</interface.operation>

<interface.operation name = 'updateMap' ret = "'>

<operation.param name = 'maplD' type ='String'/>

<operation.param name = 'mapEntity' type = 'vector'/>
</interface.operation>

<interface.operation name = 'viewStatus' ret = ">

<operation.param name = 'coord' type ='String'/>
</interface.operation>

269

Appendix E

GVPS Details Specifications & Results

</interface>

<interface name.id = 'IVehicle' type ="' port = 'p' visibility = 'public'>
<interface.description>IVD_Console provides this interface</interface.description>

<interface.service name = 'SetupConn'>
<service.operation name.idref = 'connect' />
</interface.service>

<interface.service name = 'LoginlVD'>
<service.operation name.idref = 'loginIVD' />
</interface.service>

<interface.service name = 'SearchParking'>
<service.operation name.idref = 'searchParking' />
</interface.service>

<interface.service name = 'Exit'>

<service.operation name.idref = 'exit' />
</interface.service>

<interface.service name = 'WrongTurning'>
<service.operation name.idref = 'reroute’' />
</interface.service>

<interface.operation name = 'connect' ret = 'vector'>
<operation.param name = 'mapName' type ='String'/>
</interface.operation>

<interface.operation name ='loginlVD' ret = ''>
<operation.param name = 'vehicleNo' type ='String'/>
<operation.param name = 'rfidNo' type ='String'/>
</interface.operation>

<interface.operation name = 'searchParking' ret = 'integer'>

<operation.param name = 'dest' type ='String'/>
</interface.operation>

<interface.operation name = 'exit' ret = 'boolean'>
<operation.param name = 'parkID' type ='integer'/>
<operation.param name = 'exitGate' type ='integer'/>
</interface.operation>

<interface.operation name = 'reroute' ret = "'>
<operation.param name = 'coord' type ='String'/>
</interface.operation>

</interface>

<connector name.id = 'IDataCentre -> CC_Console' type =" role ="">

<connector.required>

<required.component name.idref = 'CC_Console'/>
<required.interface name.idref = 'IDataCentre'/>
</connector.required>

<connector.provided>

<provided.component name.idref = 'avpsDB'/>
<provided.interface name.idref = 'IDataCentre'/>
</connector.provided>

</connector>

<connector name.id = 'IDatalVD -> IVD_Console' type =" role ="">

<connector.required>
<required.component name.idref = 'lVD_Console'/>
<required.interface name.idref = 'IDatalVD'/>

270

Appendix E GVPS Details Specifications & Results

</connector.required>

<connector.provided>

<provided.component name.idref = 'avpsDB'/>
<provided.interface name.idref = 'IDatalVD'/>
</connector.provided>

</connector>

<connector name.id = 'IMapCC -> CC_Console' type =" role =''>
<connector.required>

<required.component name.idref = 'CC_Console'/>
<required.interface name.idref = 'lMapCC'/>
</connector.required>

<connector.provided>

<provided.component name.idref = '"Map'/>
<provided.interface name.idref = 'IMapCC'/>
</connector.provided> </connector>

<connector name.id = 'IMapIVD -> IVD_Console' type =" role =''>
<connector.required>

<required.component name.idref = 'lVD_Console'/>
<required.interface name.idref = 'lMaplVD'/>
</connector.required>

<connector.provided>

<provided.component name.idref = 'Map'/>
<provided.interface name.idref = 'IMapIVD'/>
</connector.provided>

</connector>

<connector name.id = 'IDataMap -> Map' type =" role = ">
<connector.required>

<required.component name.idref = 'Map'/>
<required.interface name.idref = 'lDataMap'/>
</connector.required>

<connector.provided>

<provided.component name.idref = 'avpsDB'/>
<provided.interface name.idref = 'IDataMap'/>
</connector.provided>

</connector>

<connector name.id = 'lRouteObs -> IVD_Console' type =" role = ">
<connector.required>

<required.component name.idref = 'lVD_Console'/>
<required.interface name.idref = 'IRouteObs'/>
</connector.required>

<connector.provided>

<provided.component name.idref = 'CC_Console'/>
<provided.interface name.idref = 'IRouteObs'/>
</connector.provided></connector>

</iXML>

271

E3. SMART

Quality concern weights and design template contributions calculated using SMART in Table E3.1 for Scenario 1 of GVPS.

Table E8.1 SMART for GVPS - Scenario 1

S1: ClusterServer Pattern S2: Proxy Pattern
Concern Sub-Concern Scope
s. s* 7] s. s* K1
Efficiency Memory S2.6.2 2 0.09 0.17 | 0.521 3 0.13 0.26 0.824
Processor S2.6.2 2 0.09 3 0.13
Flexibility Expendability S1.2.1 N/A 0.00 0.00 3 1.00 0.17
Performance ResponseTime_UPL S1.2.1 2 0.67 0.24 2 0.67 0.24
ResponseTime_PL S1.2.1 2 0.67 2 0.67
- Reliability Availability S1.5.1 3 1.00 0.12 0 0.00 0.00
E Security Integrity S1.2.1 1 0.06 0.12 3 1.00 0.35
Integrity S2.1.1 1 0.06 3 1.00

A Xipuoddy

SIS Xy SUONEIAAS S[EI(] SAAD)

Appendix F:

Design Templates

Design templates of ClusteServer pattern, Proxy pattern, ServiceOrderProvision local

scheme, Three-tier proxy serverarchitectural style are shown m Table F1.1 - F1.4

Table F1.1 ClusterServertemplate

Category Pattern
Name ClusterServer
Also-Known- -

As

Related-Rules

Intent

This patterns cluster starts off with Server Clustering, which focuses on using server
clusters to design an infrastructure tier that meets specific availability and scalability
requirements. A server cluster is two or more servers that are interconnected to
form a unified virtual computing resource.

Context

Clustering servers increases the availability of a system by ensuring that if a server
becomes unavailable because of failure or planned downtime, another server in the
cluster can assume the workload, ensuring that the application remains available to
users. Clustering also enhances scalability by supporting more users at the current
level of performance or by improving application performance for the current users.

Motivation

An enterprise application has to meet ever-increasing operational demands,
including higher availability, improved performance, and the ability to maintain
these demands as the load on applications increases. This creates the need for
application and supporting infrastructure designs that maximize scalability and
availability.

273

Appendix F

Design Templates

Configuration

<< component ==
_ClusterServer
=< component »»
T T = T T >0 DocumentR egistryl
IDiscoveny IDiscovery lAccess lAccess
=< cotponent == =< component ==
O DocumentR equesteri ClusterS erver
i\ == component ==
ST >O - O DocumentRegistry...n
IRegisty IRegistry lAccess2 1Access2?

Consequences Performance.Response time = {ClusterServer is maintaining performance., M}
Performance.Throughput = { ClusterServer is maintaining performance., M}
Reliability.Availability = {ClusterServer is improving availability using active
redundancy and automatic restart during failover., H}
Maintainability.Requirement = {ClusterServer complexity may compromise system
maintainability., L}

Maintainability.Technology = {ClusterServer complexity may compromise system
maintainability., L}
Maintainability.Time = {ClusterServer complexity may compromise system
maintainability., L}
Security.Integrity = {Clustering onto two or more server may comprise integrity of
data., L}
Efficiency.Memory = {ClusterServer provides space optimisation through resources
sharing, M}
Efficiency.Proccesor = {ClusterServer provides time optimisation through resources
sharing, M}

Table F1.2 Proxy pattern template

Category Pattern

Name Proxy

Also-Known-As Surrogate

Related-Rules

Decorator, Adapter

Intent

The pattern makes the clients of a component communicate with a representative
rather than to the component itself. Introducing such a placeholder can serve many
purposes, including enhanced efficiency, easier access and protection from
unauthorised access.

Context

Proxy is applicable whenever there is a need for more versatile or sophisticated

reference a component. Some common situations in which the pattern is

applicable:

1. Remote proxy — where clients of remote components should be shielded from
network addresses and inter-process communication protocols.

2. Protection proxy — where components must be protected from unauthorised
access

3. Cache proxy — where multiple simultaneous access to a component must be
synchronised

4. Counting proxy — where accidental deletion of components must be prevented or
usage statistic collected

5. Virtual proxy — where the processing or loading of a component might costly,
while partial information about the component might be sufficient

274

Appendix F Design Templates

6. Firewall Proxy — where local clients should be protected from the outside world

Motivation One reason for controlling access to a component is to defer the full cost of its
usage until we actually need it. Until that point we can use some light objects
(proxies) exposing an identical interface as the heavy objects to the Client. When
the proxy is accessed it forwards the request to the real subject. This ability to
control the access to a component can be required for a variety of reasons: caching,
access control, synchronisation, lazy creation, remote access.

Configuration o T S
_proxy
- == componert =» == component »»
=< component =» 5
- == —_— Proi - =5 _ Subject
g [>0 v —(--20 "
IProxy IProxy IRequest IRequest J\
.
b IBase A/Iats:
L O
The Client is NOT part ofthe panemlj IBase
I
<< component »»
AbstractBase

Consequences Efficiency.Memory = {The proxy provides space optimisation through caching and
lazy construction when the cost of data access and rendering is reduce, H}
Efficiency.Proccesor = {The proxy provides time optimisation through caching and
lazy construction when the cost of data access and rendering is reduce, H}
Performance.ResponseTime = {A virtual proxy helps to implements a ‘load-on-
demand strategy’ that avoid unnecessary loads and usually speeds up the
application, however complex implementation would cause less efficiency due to
indirection, M}

Reusability.Modularity = {The proxy provides weak coupling between clients and
subsystems, M}

Flexibility.Expendability = {A remote proxy decoupling clients from the locations of
remote server components, H}

Security.Integrity = {Protection proxy and smart references allow additional
housekeeping tasks when a component is accessed, H}

Table F1.8 ServiceOrder Provision template

Category Local scheme

Name Service-Order Provision

Also-Known-As Order Provision

Related-Rules -

Intent A document may require a search, locate and order service. This design template
ensures that the order service resides in a component that is separate from search
and locate services.

Context When the document manager requires search, locate and order services, restricting
document order in a separate execution is good a strategy. A requestor component
can obtain document and location identifiers from a centralized document registry
before placing a document order. Document orders are placed with the document
supplier component.

Motivation DocumentManager may require services of DocumentServer which consists of
ISearch and ILocate, and DocumentServer which consists of IOrder.

275

Appendix F

Design Templates

Configuration

=« component , subsystem =»
ServiceOrder_Provision

C--->0
ISearch ISearch
<= component »»
le< companent , web sarvics ==
G DocumentRegistry
IRequestB
l\ -- 20
ILocate ILocate
10rder
)
4
O
10rder

l<= componert , web service >>
DocumentProvider

Consequences

Performance.ResponseTime = {contributes flexibility in the communication with
document provider , M}

Performance.Throughput = {contributes flexibility in the communication with
document provider, M}

Maintainability.Time = {contributes towards maintenance time for the document
main services, H}

Maintainability.Requirement = {allows the document server maintain the order
service more effectively, H}

Reliability.Availability = {improves the availability of related services which allows
longer duration of order service to be served, H}

Table F1.4 Three-tier proxy servertemplate

Category

Style

Name

Three-tier proxy server

Also-Known-
As

Three-Tier Client/Server Architecture

Related-Rules

Intent

A tier is a partitioning of functionality that may be allocated to a separate physical
machine (i.e. web browsers client, web server and database server) which improves
maintainability while hiding the complexity of distributed processing.

Context When we have to design applications for distributed enterprise information systems
where usually some desktop components will access or modify shared resources,
mostly located within a non-active database.

Motivation Partition application functionality into three tiers: front-end clients, application

servers (domain server) and a database storage. The front-end clients tier consists of
cosmponents unique to every user include application specific logic & the user
interface. The application server tier, supported by a multi-user environment, holds
the shared parts of application & bussiness logic. This tier needs services like
transaction, concurrency control & security. The task of the database storage tier is to
manage persistency of certain data/info and to execute the database transaction.

276

Appendix F

Design Templates

Configuration

== componert , subsystem ==
Three-tier Proxy

== companent »> << companent => =< companent »>
22 component > SR D) ProxyServer o Application_Logic Document Database
Browser .
IEncryption
RequestC IRequestC IDatabase
2

f
[
IDatabase
IEncryption

Consequences

Performance.ResponseTime = {The requests from individual browsers may first arrive
at a proxy server, which exists to improve the performance of the Web-based system,
M}

Performance.Throughput = {The proxy server is typically located close to the users,
often on the same network, so that they save tremendous amount of both
communication and computation resources, M}

Reliability.Availability = {Functionality routine accessibility, M}
Maintainability.Requirement = {A tier is a partitioning of functionality improves
maintainability while hiding the complexity of distributed processing, H}
Maintainability.Technology = {A tier is a partitioning of functionality improves
maintainability of technology require, H}

Maintainability.Time = {The partitioning of functionality allows components loosely
coupling hence improve time to maintains it, H}

Security.Integrity = {The proxy server is also used to restrict users’s access to certain
Web sites. In this case the proxy server is acting somewhat like a firewall, H}

277

Appendix G:

Quality Descriptions

Quality descriptions are shown i Table G.1.

Table G.1 Quality descriptions

Concern SubConcern Unit Unit Notes
Type* | Name

Performance ResponseTime_upl | N Seconds Performance of response time under-
peak load.

Performance ResponseTime_pl N Seconds Performance of response time during
peak load.

Performance Throughput_upl N Trans/per | Performance of throughput under-

second peak load.

Performance Throughput_pl N Trans/per | Performance of throughput during

second peak load.

Reliability Availability N % Reliability of availability according to
service access time.

Maintainability | Requirement Vv Maintainability of requirement refers
to the role of stakeholder who is able
to request for maintaining
architectural components.

Maintainability | Time N Months Maintainability of time refers to
elapse time for maintaining the
architectural components.

Maintainability | Technology \Y Maintainability of technology refers
to technology require for maintaining
architectural components.

Component Standard Vv Component standard protocol

Component Cost N GBP Component cost charge yearly

278

Appendix G

Quality Descriptions

Concern SubConcern Unit Unit Notes
Type* | Name

Component Version N Component version

Component Availability \Y Component availability

Component Certification B Component certification

Component In N Required Component required interfaces

Component Out N Provided Component provided interfaces

Component Services Y Component tagged services

Business Cost Y Business cost intensity

Business Schedule N Months Business schedule intensity

Business Platform Vv Business platform

Security Integrity \Y Security of integrity refers to the
extent to which access to software or
data by unauthorised persons can be
controlled.

Flexibility Expendability Vv Flexibility of expendability refers to
the degree and effort to which the
program can be extended.

Reusability Modular Vv Reusability of modular refers to the
functional independence of program
components.

Efficiency Memory N % Efficiency of memory refers to the
scarce resource is effectively uses.

Efficiency Processor N % Efficiency of memory refers to the
scarce resource is effectively uses.

Legends: N-—Numeric V-—Verbal B-—Boolean
Quality Defimtions

Quality defimtions described below are adopted from [Iso01][McCall77]:

o Lihciency - FEfficiency 1s refers to the level of use of scarce computational

resources such CPU cycles and memory.

0 Memory: Memory mvolves space and time spent using the resources.

0 Processor: Processor mvolves space and time spent using the resources.

o Performance - Performance 1s about timing, events occur and the system must

respond to them.

0 Response Time: Managing the mterprocess communication volume and data

access frequencies

279

Appendix G Quality Descriptions

0 Throughput: The speed with which a component processes data.

o Reliabiity - Reliability is concerned with system failure and its associated
consequences. A system faillure occurs when the system no longer deliver
consistent with its specification.

0 Availlability: Availability 1s concerned with the proportion of elapsed time that
the component 1s able to be used.

o Mamtarmability - Maintamability refers to the change which can occur to any aspect
of a system.

0 Requirement: Mamtainability of requirement refers to the role of stakeholder
who 1s able to request for maintaiming architectural components.

0 Time: Mamtanability of requirement refers to elapse time for mamntaining the
architectural components.

0 Technology: Maintainability of requirement refers to technology require for
maintaiing architectural components.

o Hexibility - Flexibility refers to the effort required to modify an operational
program (or part thereof).

0 Expendability - Flexibility of expendability refers to the degree and effort to
which the program can be extended.

o Reusability - Reusability 1s the ease with which an existing component can be
reused
0 Modulanty - Reusability of modularity refers to the functional independence

of program components.

e Security - The ability to prevent unauthorized access to program or data
0 Integrity - Security of integrity refers to the extent to which access to software

or data by unauthorised persons can be controlled.

280

Glossary

ADL
AHP
ASAAM
ATAM
CADL
CBD
CBSE
COTS
CPU
CSAFE
DFC
EDDIS
EJB

FOSS

Architecture Description Language

Analytic Hierarchical Process

Aspectual Software Architecture Analysis Method
Architecture Trade-oft Analysis Method
Component Architecture Description Language
Component-based System Development
Component-based Software Engineering
Commercial Off-The-Shelf

Central Processing Unit

Component-based Software Architecture analysis FramEwork
Distributed Feature Composition

Electronic Document Delivery Interchange System
Enterprise JavaBeans

Free cOmponentS Open Source

281

GC Garbage Collector

GUI Graphical User Interface
GVPS Guided Vehicle Parking System
IVD In-Vehicle-Device

JDK Java Development Kit

JVM Java Visual Machine

NEC National Electronic Company
NFR Non-Functional Requirement
OCS Open Control System

OTS Off-The-Shelf

PID Process ID

POS Point-Of-Sales

SMART Simple Multi-Attributes Rating Technique

XML Extensible Markup Language

282

References

[Abowd97]

[Admodisastro06]

[Admodisastro08]

[Admodisastro10]

[Admodisastrol 1a]

Abowd, G., Bass, L., Clements, P., Kazman, R. and Northrop, L.:
Recommended Best Industrial Practice for Software Architectural
FEvaluation. Technical Report CMU/SEI-96-TR-025. Pittsburgh, PA,
Software Engineering Institute. Carnegie Mellon University. 1997.
Admodisastro, N. and Kotonya, G.: Towards an Integrated Approach
to Architectural Analysis in Component-based Sofiware Development.
Proceeding of the Work in Progress Session in the 32" IEEE
FuroMicro Conference. 2006.

Admodisastro, N. and Kotonya, G.: Architectural Analysis
Approaches: A Component-Based System Development Perspective.
Proceeding of the International Conference on Software Reuse
(ICSR). Springer-Verlag, Berlin Heidelberg, 2008; LNCS 5030: 26-38.
Admodisastro, N. and Kotonya, G.: An Architectural Analysis
Approach for Black-box Component-Based Systerns. Proceeding of
the 2" GSTF International Conference on Software Engineering (SE),
Phuket, Thailand. 2010; 68-74.

Admodisastro, N., Kotonya, G.: An Architecture Analysis Approach

for Supporting Black-box Software Development. Proceeding of the

283

References

[Admodisastrol 1b]

[Advant10]

[Aoyama 01]

[Aoyama98]

[Auto10]

[Babar04a]

[Babar04b]

[Babar(07]

Furopean Conference on Software Architecture. Springer-Verlag,
Heidelberg, 2011; LNCS 6903: 180-189.

Admodisastro, N. and Kotonya, G.: Usability Requirements for
Architectural Analysis Tool to Support CBD. Proceeding of the 2"
International Conf. User Science and Engineering (-USer). IEEE
Computer Society, 2011; 118-123.

Advant: ABB Control Svysterns. Available:
http://www.abb.com/controlsystems, 2010.

Aoyama, M.: CBSE in Japan and Asia. In G. T. Hemneman and W.T.
Council, Component-Based Sofiware Engineering: Putting the Pieces
Together. Addison-Wesley. 2001.

Aoyama, M.: New Age of Sofiware Development: How Component-
based Software Engineering Changes the Way of Sofiware
Development. International Workshop on Component-Based
Software Engineering, 1998.

Auto: Automotive-Articles. Available:
http://www.Innerauto.com/Automotive_Articles/, 2010.

Babar, M.A. and Gorton, L.: Comparison of Scenario-Based Software
Architecture Evaluation Methods. Proceeding of the Asia-Pacific
Software Engieering (APSEC). IEEE Computer Society, Washington
D.C., 2004; 600-607. DOI: 10.1109/APSEC.2004.38.

Babar, M. A., Zhu, L. and Jeffery, R.: A Framework for Classifying and
Comparing Software Architecture Evaluation Methods. Proceeding of
the 2004 Australian Software Engineering Conference (ASWEC).
IEEE Computer Society, 2004; 309-318. DOL
10.1109/ASWEC.2004.1290484.

Babar, M. A. and Gordon, L: A Tool for Managing Sofiware
Architecture Knowledge. Proceeding of the 2nd Workshop on
SHAring and Reusing architectural Knowledge Architecture,
Rationale, and Design Intent (SHARK). IEEE Computer Society,
2007; 11-17. DOI: 10.1109/SHARK-ADI.2007.1

284

http://www.abb.com/controlsystems
http://www.innerauto.com/Automotive_Articles/
http://dx.doi.org/10.1109/SHARK-ADI.2007.1

References

[Barbacci05]

[Bashroush04]

[Bass05]

[Becker06]

[Bond05]

[Britannical(]

[Brown96]

[Buschmann96]

[Chung95a]

Barbacci, M.R.: SET Architecture Analysis Techniques and When to
Use Them. CMU/SEI-2001-TN-005. Carnegie Mellon Software
Engineering Institute. 2005.

Bashroush, R., Spence, 1., Kilpatrick, P. and Brown, T. J.: Towards
and Automated Evaluation Process for Software Architectures.
IASTED on Sofiware Engineering, 2004; 418: 182.

Bass, L., Clements, P. and Kazman, R.: Sofiware Architecture in
Practice. 2" Ed. SEI Series in Software Engineering. Addison Wesley.
2005.

Becker, S., Brogi, A., Gorton, 1., Overhage, S. and Romanovsky, A.
and Twoli, M.: Towards an Engineering Approach to Component
Adaptation. R. H. Reussner et al. (Eds.): Architecting Systems.
Springer-Verlag, Berlin Heidelberg 2006; LNCS 3938: 193-215. DOI:
10.1007/11786160.

Bond, G.W., Cheung, E., Goguen, H.H., Hanson, K.J., Henderson,
D., Karam, G.M., Purdy, K.H., Smuth, T.M., Zave, P.: Experience
with Component-Based Development of a Telecommunication
Service. Proceeding of the ACM Sigsolt Symposium on Component-
Based Software Engineering (CBSE). Springer-Verlag, Berlin
Heidelberg, 2005; LNCS 3489: 298-305.

Encyclopaedia Britannica: Science & Technology: Engineering.
Available:
http://www.britannica.comy/EBchecked/topic/187549/engineering,

2010.

Brown, A. and Wallnau, K.: Engieering of Component-based
System. Proceedings of the 2" IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), 1996; 7-15.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Sofiware Architecture: System of Patterns. Vol. 1.
Wiley Series in Software Design Pattern, Wiley. 1996.

Chung, L., Nixon, B. and Yu, E.: An Approach to Building Quality

mto Software Architecture. Proceeding of the Conference of the

285

http://www.britannica.com/EBchecked/topic/187549/engineering
http://www.google.co.uk/url?sa=t&rct=j&q=ieee%20international%20conference%20on%20engineering%20of%20complex%20computer%20systems&source=web&cd=2&ved=0CDYQFjAB&url=http%3A%2F%2Fwww.iceccs.org%2F2011%2F&ei=WebsTt25OoeW8QOOqMWRCg&usg=AFQjCNFILu6Bgw___S1Ol5KHnjYJ_dhuKA
http://www.citeulike.org/user/bkohler/author/Buschmann:F
http://www.citeulike.org/user/bkohler/author/Meunier:R
http://www.citeulike.org/user/bkohler/author/Rohnert:H
http://www.citeulike.org/user/bkohler/author/Sommerlad:P
http://www.citeulike.org/user/bkohler/author/Stal:M

References

[Chung95b]

[Clements95]

[Clements96]

[Coplien97]

[Crnkovic02]

[Cs10]

[Darwin95]

[Dashofy02]

[Dobrica02]

[EkstedtO2]

Centre for Advanced Studies on Collaborative Research (CASCON).
IBM Press, Canada, 1995; 13-25.

Chung, L. and Nixon, B. A.. Dealing with Non-Functional
Requirements: Three FExperimental Studies of Process-Oriented
Approach. Proceeding of International Conference on Software
Engmmeermg (ICSE). ACM Press 1995; 25-37. DOL
10.1145/225014.225017.

Clements, P.: From Subroutines to Subsystems: Component-Based
Software Development. The American Programmer, 1995; 8(11).
Clements, P., and Northrop, L.: Soffware Architecture: An Executive
Overview. CMU Technical report CMU/SEI-96-TR-003. Pittsburgh,
PA, Software Engineering Institute. Carnegie Mellon University. 1996.
Coplien, J.O.: Idioms and Patterns as Architectural Literature. IEEE
Software: Special Issue on Olyects, Patterns and Architectures, 1997,
14(1): 36-42.

Crnkovic, 1., Larsson, M. (Editors): Bulding Reliable Component-
Based Software Systems. Artech House Publisher. 2002.

CS240: Group Project Sofiware Desigry/Project Skills. Available:
http://www.comp.ancs.ac.uk/” andreas/Teaching AUML.htm , 2010
[10/21/2010].

Darwin J. M., Dulay, N., Eisenbach, S., and Kramer, J.: Specifying

Disazbuted Sofiware Architectures. Proceeding of the 5" European
Software Engineering Conference (ECSA). 1995; 137-153.

Dashofy, E.M.,Hoek, A.v.d., and Taylor, RN. An Infrastructure for
the Rapid Development of XML -based Architecture Description
Languages. Proceedings of the 24" International Conference on
Software Engineering (ICSE). 2002; 266-276.

Dobrica, L. and Eila, N.: A Survey on Software Architecture Analysis
Methods. IEEE Transaction on Software. Engmeering. 2002; 28(7):
638-653. DOI: 10.1109/TSE.2002.1019479.

Fkstedt, M. and Johnson, P.. FExploring Architectural Analysis

Credibthity from a Developer Perspective. Proceeding on the

286

http://www.comp.lancs.ac.uk/~andreas/Teaching_AUM.htm

References

[Fayad97]

[Feblowitz98]

[FellerO2]

[Gamma9)]

[Garlan97]

[Gillies96]

[Grau05]

[HeinemanO1]

[Hutchinson05]

[Hutchinson06]

Australasian - Workshop on Software and System Architecture
(AWSA). 2002. DOI: 10.1.1.16.1268

Fayad, M. and Schmidt, D. C.. Object-Ornented Application
Frameworks. Communications of the ACM, 1997; 40(10): 32-38.
Feblowitz, M. D. and Greenspan, S. J.: Scenario-Based Analysis of
COTS Acqusition Impacts. Requirements Engmeering, 1998; 3(3-4):
182-201.

Feller, J. and Fitzgerald, B.: Understanding Open Source Sofiware
Development. Addison-Wesley. 2002.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns:
FElements of Reusable Object-Oniented Sofiware. Addison-Wesley
Professional. 1995.

Garlan, D., Monroe, R., and Wile, D.: ACME: An Architecture
Description Interchange Language. Proceedings of the 1997
Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), 1997; 169-183.

Gillies, A.: Software Qualitv: Theory and Management. International
Thomson Computer Press. 1996.

Grau, G., Franch, X., Maiden, N. A. M.: REDEPEND-REACT: an
Tool Proceeding IEEE

Architecture Analysis International
Conference on Requirement Engineering (RE). IEEE Computer
Society 2005; 455-456. DOL: 10.1109/RE.2005.55.

Heineman, G. T. and Council, W.T.: Component-Based Sofiware
Engmeering: Putting the Pieces Together. Addison-Wesley. 2001.
Hutchinson, J., and Kotonya, G.: Patterns and Component-Oriented
System Development. Proceeding of the EuroMicro Conf. on SEAA,
2005; 126-133.

Hutchinson, J., and Kotonya, G.: A Review of Negotiation 1 echniques
m Component-Based Sofiware Engmeering. Proceeding of the

EuroMicro Conf. on SEAA. IEEE Computer Society, Washington
D.C. 2006; 152-159. DOI: 10.1109/EUROMICRO.2006.12

287

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=sr_1_1?s=books&ie=UTF8&qid=1287494035&sr=1-1

References

[Iso01]

[Jacobson97]

[JavalO]

[Javall]

[Kazman96]

[Kazman98]

[Khosravi04]

[Klein99]

[Kotony(3]

[Kotonya04a]

International Standard: ISO/IEC 9126-1. Institute of Electrical and
Klectronic Engineers, Part 123: Quality Model Available:
http://www.iso.ch [2001]

Jacobson, 1., Griss, M. and Jonsson, P.: Sofiware Reuse: Architecture
Process and Organization for Business Success. Addison-Wesley,
Reading. 1997.

Java SE Desktop Technologies. Introducing Java Beans. Available:
http://java.sun.com/developer/online Training/Beans/Beans1/ [2010]
Java SE Documentation, Java Visual VM. Available:
http://download.oracle.com/javase/6/docs/technotes/guides/visualvim/in
dex.html [2011]

Kazman, R.: Tool Support for Architecture Analysis and Design. Joint
Proceedings of the 2 International Software Architecture Workshop
(ISAW-2) & International Workshop on Multiple Perspectives in
Software Development on SIGSOFT 1996 Workshops. ACM Press.
New York, USA, 1996; 94-97. DOI: 10.1145/243327.243618
Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H. and
Carriere, J.: The Architectural Tradeofl Analysis Method. Proceeding
of IEEE International Conference on Engmneering of Complex
Computation System (ICECCS), 1998, 68-78. DOL
10.1109/ICECCS.1998.706657.

K. Khosravi, and Y.G. Guéhéneuc. Quality Model for Design Patterns.
Summer 2004.

Klein, M. and Kazman, R.: Amribute-Based Architectural Styles.
Technical Report CMU/SEI-99-TR-22. Pittsburgh, PA, Software
Engmeering Institute. Carnegie Mellon University. 1999.

Kotonyo, G., Sommerville, 1. and Hall, S.: 7owards a Classification for
Component-Based Software Engimeering Research. Proceeding of the
29th IEEE EuroMicro Conference. 2003; 43-52.

Kotonya, G. and Hutchinson, J.. Viewpomts for Specilying
Component-Based Systems. Component-Based Software Engineering,

Proceeding of the 7" International Symposium on Component-Based

288

http://www.iso.ch/
http://java.sun.com/developer/onlineTraining/Beans/Beans1/
http://download.oracle.com/javase/6/docs/technotes/guides/visualvm/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/visualvm/index.html

References

[Kotonya0O4b]

[Kotonya0)al

[KotonyaO5b]

[Kotonya07]

[Kotonya08]

[Kung-Kiu04]

[Kurpjuweit02]

[Lau07]

[L108]

Software Engineering (CBSE). Springer-Verlag, Berlin, 2004; LNCS
30564: 114-121.

Kotonya, G., Hutchinson, J. and Bloin, B.: COMPOSE: Method for
Formulating and Architecing Component and Service-Oriented
Systems. In Z. Stojanovic, and A. Dahanayake, eds., Service-Oriented
Sofiware System Engineering: Challenges and Practices. 1dea Group
Inc. 2004.

Kotonya, G, Hutchinson, J. Managing Change i CO15-Based
Systems. Proceeding of the IEEE International Conference on
Software Maintenance (ICSM). IEEE Computer Society, Washington
D.C., 2005; 69-78. DOI: 10.1109/ICSM.2005.61.

Kotonya, G. and Hutchinson, J.: Analysing the Impact of Change i
COT5-Based Systems. Proceeding of the ICCBSS. Springer-Verlag,
Heidelberg, 2005; LNCS: 3412: 212-222. DOI: 10.1007/b105900
Kotonya, G, Hutchinson, J. A.: Service-Oriented Approach for
Specitving Component-Based Systems. Proceeding of the ICCBSS.
Springer-Verlag, Heidelberg, 2007; LNCS 3412: 150-162. DOI:
10.1109/ICCBSS.2007 .4

Kotonya, G.: An Architecture-Centric Development Environment for
Black-Box Component-Based Systems. Proceeding of the European
Conference on Software Architecture (KCSA). Springer-Verlag,
Heidelberg, 2008; LNCS 5292: 98-113.

Kung-Kiu, L: Component-Based Development Case Studies. World
Scientific, 2004.

Kurpjuweit, S.: A Family Tools to Integrate Software Architecture
Analysis and Design. PhD Thesis. Software Engineering Institute.
Carnegie Mellon University, USA. 2002.

Lau, L. and Wang, Z.:. Software Component Model. IEEE
Transaction on Software Engineering; 2007; 33(10): 709-124.

Li, J. et al.: A State-of-the-Practice Survey of Risk Management in
Development with Off-the-Shelf Software Components. IEEE

Transactions on Sofiware Engineering, 2008; 34(2).

289

http://www.ecsa2008.cs.ucy.ac.cy/
http://www.ecsa2008.cs.ucy.ac.cy/

References

[Luckham95]

[Liiders00]

[Luer0O1]

[McCall77]

[MedvidovicO0)]

[Medvidovic02]

[Medvidovic07]

[Medvidovic96)]

[Msdn10]

[Obbink07]

Luckham, D. C. et al: Specificaion and Analysis of System
Architecture Using Rapide. [IEEE Transactions on Sofiware
Engmeering, 1995; 21(6): 336-354. DOI: 10.1109/32.385971.

Liaders, F.: Architectural Styles in Component-Based Software
Engmneering. Seminar in Component-Based Software Engineering:
State of the Art. Milarden University. Visteras, Sweden. 2000.

Luer, C., and Rosenblum S. D.. WREN an Environment for
Component-Based Development. ACM SIGSOFT" Sofiware
Engieering Notes, 2001; 26(5): 207-217.

J.A. McCall, P.K. Richards, and G.F. Walters: Factors in Sofiware

Quality. RADC-TR-77-369. US Department of Commerce, 1977.
Medvidovic, N. and Taylor, R. N.: A Classification and Comparison
Framework for Soltware Architecture Description Languages. IEEE
Transaction Sofiware Engineering, 2000; 26(1): 70-93.

Medvidovic, N. et al.: Modeling Software Architectures in the Unified
Modeling Language. ACM Transactions on Software Engineering and
Methodology, 2002; 11(1): 2-57.

Medvidovic, N. and Dashofy, E.M.: Moving Architectural Description
from Under the Technology Lamppost. Information and Software
Technology, 2007; 49(1): 12-31. DOI: 10.1016/j.nfsof.2006.08.006.
Medvidovic, N., Oreizy, P., Robbins, J. E. and Taylor, R. N.: Using
Obyect-Oriented 1ypmg To Support Architectural Design m the C2
Style. Proceeding of ACM SIGSOFT1°96: 4th Symposium on the
Foundations of Software Engineering. ACM Press, New York 1996;
24-32. DOLI: 10.1145/250707.239106.

MSDN: Performance and Reliability Pattern. Available:
http://msdn.microsoft.com/en-us/library/ff648802.aspx, 2010 [Jan. 01,
2011].

Obbmk, H, Kruchten, P, Kozaczynski, W, Hilliard, R, Ran, A,
Postema, H., Lutz, D., Kazman, R., Tracz, W., Kahane, E.: Software
Architecture Review and Assessment (SARA) Report. Available:

290

http://dx.doi.org/10.1016/j.infsof.2006.08.006
http://doi.acm.org/10.1145/250707.239106
http://msdn.microsoft.com/en-us/library/ff648802.aspx

References

[Papazoglou08]

[Perry92]

[Persse01]

[Pilone0)]

[Pressman09]

[Rami03]

[RedependReact07]

[Saaty90]

[Saniabille01]

[Shaw96]

[Shepetukha01]

[Sommerville10]

http://kruchten.com/philippe/architecture/SARAv1.pdf [6 December
2007]

Papazoglou, M.P.: Web Services: Principles and Technology. Prentice-
Hall. 2008.

Perry, D.E., and Wolf, A. L.: Foundations for the Study of Software
Architecture. ACM SIGSOFT' Sofiware Engmneering Notes, 1992;
17(4): 40-52.

Persse, J. R.: Implementing the Capability Maturity Model. Wiley,
New York. 2001.

Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. Oreilly. 2005.
Pressman, R.: Software Engineering: A Practitioner’s Approach. 7" Ed.
McGraw Hill. 2009.

Rami, B., and Wollgang, E.. Evaluating Sofiware Architectures:
Development, Stability and Evolution. Proceeding of ACS/IEEE
International Conference on Computer System and Applications
(AICCSA). IEEE Computer Society Press 2003; 47-56. DOI:
10.1109/AICCSA.2003.1227480.

REDEPENDREACT: The REDEPEND-REACT Homepage.
Available: http://www.lsi.upc.es/~ ggra/REDEPEND-
REACT/index.html [2 December 2007].

Saaty, T.L.: The Analvtic Hierarchy Process. McGraw-Hill, New
York. 1990.

Samabille, R., TFavre, J-M., and ledru, Y.. Helping Various
Stakeholders to Understand a Very Large Component-Based Software.
Proceeding of the 27" IEEE EuroMicro, 2001; 104-111.

Shaw, M. and Garlan, D.: Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall. 1996.

Shepetukha, Y., and Olson, D. L.: Comparative Analysis of
Multattribute Techniques Based On Cardinal and Ordinal Inputs.
Mathematical Computing Modelling, 2001: 34: 229-241.

Sommerville, L.: Sofiware Engincering. 9" d. Addison-Wesley. 2010.

291

References

[Spagnoli06]

[StaffordO1a]

[Stafford0O1b]

[Stafford98]

[Summers06]

[Tekinerdogan(04]

[Tran99]

[UmlO1]

[Upadhyaya08]

Spagnoli, L., Almeida, 1., Becker, K., Blois, A. P., and Werner, C.:
Adaptation and Composition within Component Architecture
Specification. Proceeding of the International Conference on Software
Reuse (ICSR). Springer-Verlag, Berlin Heidelberg, 2006; LNCS 31490:
142-155. DOI: 10.1007/11763864.

Stafford, J., and Woll, A.: Software Architecture. pp. 371-388. In G. T.
Hememan and W.T. Councl, Component-Based Software
Engineering: Putting the Pieces Together. Addison-Wesley. 2001
Stafford, J.A., Richardson, DJ. and Wolf, A. L.: Architecture-Level
Dependence Analysis for Software Systems. International Journal of
Sofiware Engieering & Knowledge Engineering. 2001; 11(4): 431-451.
DOI: 10.1.1.40.6873.

Stafford, J. A., Richardson, D. J. and Woll, A. L.: Aladdmn: A Tool for
Architecture-Level Dependence Analysis of Software Systems.
Technical Report CU-CS-858-98. University of Colorado, 1998.

M. Summers, 240 Report. Technical Report. Computing Department,
Lancaster University. 2006.

Tekinerdogan, B.: ASAAM: Aspectual Sofiware Architecture Analysis
Method. Proceeding on Working IEEE/IFIP Conference on Software
Architecture (WICSA). IEEE Computer Science, Washington, D.C.,
2004; 5-14. DOI: 10.1109/WICSA.2004.1310685

Tran, Q. and Chung, L.: NFR-Assistant: Tool Support for Achieving
Quality. Proceeding of IEEE, Symposium on Application - Specific
System and Software Engineering and Technical (ASSET). IEEE
Computer Society, 1999; 284-289. DOL
10.1109/ASSET.1999.756782

Unified Modeling Language. UML® Resource Page. Last updated on,
2010. Available: http://www.uml.org/, 2010 [Oct. 21, 2010]

Upadhyaya, B.P.: Component Based Sofiware Development - An
Industrial Experience with a Labour Market Information System.
Proceedings of 19" Australian Software Engineering Conference
(ASWECQC), 2008; 497-506.

292

http://doi.ieeecomputersociety.org/10.1109/WICSA.2004.1310685
http://www.britannica.com/EBchecked/topic/187549/engineering

References

[van den Brand01]

[Vieira0O0]

[VigderO1]

[Vigder96]

[Volgyesi02]

[Wallnau02]

[Wallnau03]

[WeissO1]

[WikipedialO]

van den Brand, M.GJ., Heering, J., de Jong, H.A., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju,
JJ., Visser, E., Visser, J.: The ASF+SDF Meta-Environment: a
Component-Based Language Development Environment. Proceedings
of 10" International Conference on Computational Complexity (CCC),
2001; 365-370.

Vierra, M. E. R., Dias, M. S., and Richardson, D. J.: Analyzing
Software Architecture with Argus-I. Proceeding of the International
Conference Software Engineering (ICSE). ACM Press, New York,
USA, 2000; 758-761. DOIL: 10.1109/ICSE.2000.870489.

Vigder, M.: The Evolution, Maintenance and Management of
Component-Based Systems. pp. 527-539. In G. T. Heineman and
W.T. Council, Component-Based Sofiware Engineering: Putting the
Preces Together. Addison-Wesley. 2001.

Vigder, M., Gentleman, M., Dean, J.: COTYS Sofiware Integration:
State of the Art. Institute for Information Technology. National
Research Council. 1996.

Volgyesi, P., Ledeca, A.. Component-Based Development of
Networked Embedded Applications. Proceedings of 28" IEEE
EuroMicro Conference on Component-Based Software Engineering,
2002; 68-73.

‘Wallnau, K.C., Hissam, S.A. and Seacord, R.C.: Building Systemn from
Commercial Components. SEI Series i Software Engineering.
Addison-Wesley, Reading. 2002.

Wallnau, K.C.: Volume IlI: A Technology for Predicable Assembly
from Certifiable Components. Technical Report CMY/SEI-2003-TR-
009. Pittsburgh, PA, Software Engineering Institute. Carnegie Mellon
Unuversity. 2003.

Weiss, M.: Patterns and Non-Functional Requirements. Technical
Paper. Carleton University. 2001.

‘Wikipedia: Software Component. Available:
http://www.wikipedia.org/wiki/Software_component, 2010.

293

http://www.wikipedia.org/wiki/Software_component

References

[Xml10] XML and XMI. CORBA®, XML and XMI®. Last updated on
Available: http://www.omg.org/technology/xml/index.htm, 2010 [June
25, 2009].

294

http://www.omg.org/technology/xml/index.htm

	1 FrontCover
	Novia Admodisastro
	PhD in Computing
	Computing Department
	Lancaster University
	/
	A thesis submitted for the degree of Doctor of Philosophy
	October 2011

	2 ToC
	CH1 Introduction_FINAL
	1.1 CBSE in Practice
	1.2 Challenges for Developing Systems from Components
	1.3 Motivation for Research
	1.4 Objectives
	1.5 Research Contributions
	1.6 Thesis Structure

	CH2 Background_FINAL
	2.1 Software Architecture
	2.2 Architecture and System Quality
	2.2.1 Achieving Qualities: Architectural Styles, Patterns, Custom, Metrics, and Scenarios
	2.3 Software Architecture Evaluation
	2.4 Component-Based Software Engineering Process
	2.4.1 COMPOSE Model
	2.4.2 Pressman Model
	2.4.3 Brown Model
	2.5 Summary

	CH3 Background_FINAL
	3.1 Design Challenges in CBD
	3.1.1 Necessary Requirements for Architectural Analysis
	3.2 Architectural Analysis Approaches
	3.2.1 NFR-Framework
	3.2.2 REDEPEND-REACT
	3.2.3 ATAM
	3.2.4 ASAAM
	3.2.5 Chaining Framework
	3.2.6 ARGUS-I
	3.2.7 Odyssey-Adapt
	3.2.8 Engineering Framework
	3.3 Methods Summary
	3.4 Summary

	CH4 Framework_FINAL
	4.1 The Framework
	4.1.1 Weaving Requirements and Architectural Design
	4.1.2 Architecture Parsing
	4.1.2.1 Constructing Baseline System Architecture
	4.1.2.2 XMI/XML Parser
	4.1.2.3 CSAFE Architecture Description Language – iXML
	4.1.3 Formulating Analysis Scenarios
	4.1.4 Analysis
	4.1.5 Trade-off Analysis and Rating - Negotiation
	4.2 The Toolset
	4.2.1 CSAFE Toolset Architecture
	XMI/XML Parser

	1. System designer selects the XMI/XML architectural specification from the analysis repository.
	2. System designer enters project name and clicks OK.
	3. The XMI/XML parser parses the architectural specification and checks it against XML schema/DTD.
	4. The XMI/XML parser creates a design schema for the architecture.
	5. The XMI/XML parser stores the architectural vectors in analysis repository.
	6. The tool organizes the architectural elements into a tree hierarchy.
	Scenario Formulator
	Analyser
	Trade-off Analyser - Negotiator
	Design Template Repository
	Component Repository
	Report Generator

	4.3 Summary

	CH5 EvaluationEDDIS_FINAL
	5.1 The Case Study
	5.2 EDDIS Viewpoints and Requirements
	5.2.1 Constructing the baseline EDDIS Architecture
	5.3 The Analysis
	5.3.1 Formulating EDDIS Analysis Scenarios
	5.3.2 Analysing EDDIS Architecture
	5.3.3 Revising EDDIS Architecture
	Sensitivity analysis
	5.4 Summary

	CH6 EvaluationGVPS_FINAL
	6.1 The Case Study
	6.2 GVPS Viewpoints and Requirements
	6.3 The Analysis
	6.3.1 Documenting the GVPS Architecture
	6.3.2 Formulating GVPS Analysis Scenarios
	6.3.3 Analysing GVPS Architecture
	6.3.4 Refining GVPS Architecture
	6.4 Runtime Comparison of GVPS Architectures
	6.4.1 Methodology
	Experiment Scenario 1: One student vehicle and one visitor vehicle under normal road conditions
	Performance and resource analysis for Experiment Scenario 1
	CPU and memory profiles for Experiment Scenario 1
	Experiment Scenario 2: Two student vehicles and three visitor vehicles under normal road conditions
	Performance and resource analysis for Experiment Scenario 2
	CPU and memory profiles for Experiment Scenario 2
	Experiment Scenario 3: Two student vehicles, three visitor vehicles and two road closures
	Performance and resource analysis for Experiment Scenario 3
	CPU and memory profiles for Experiment Scenario 3
	6.5 Summary

	CH7 Conclusion_FINALR1
	7.1 Framework Objectives Revisited
	7.3 Opportunities and Future Work
	7.4 Reflection

	Appendix A. iXML Schemas
	A1. iXML Schema for Architecture Design Description
	A2. iXML Schema for Design Template Description
	A3. iXML Schema for Component Description

	Appendix B. CSAFEToolset Analysis & Design
	B1. CSAFE Use-Case Descriptions & Sequence Diagrams
	1. System designer browses and selects XMI/XML architectural specification from Analysis Repository.
	2. System designer enters project name and clicks OK.
	3. The XMI/XML parser parses the architectural specification and checks against XML schema/DTD.
	4. The XMI/XML parser creates design schema.
	5. The XMI/XML parser stores architectural vectors in analysis repository.
	6. The tool organizes architectural elements in tree hierarchy and each element detail description is display on the description form.
	1. System designer enters scenario descriptions (i.e. name, author and comment). A date and time automatically captures.
	2. System designer clicks ‘OK’.
	3. The tool create new scenario in the analysis repository and display a new a scenario template on Elicit & Prioritise display.
	4. System designer selects a node (composite component, service, interface or connector) from tree project and the constraint description is shows on the Elicit & Prioritise display.
	5. Then the system designer can starts to weight each of the constraint description.
	6. The system designer clicks ‘Save’ and the weighting values are store in Analysis Repository.
	1. System designer executes mapping design use-case.
	2. System designer selects conformance checker and retrieves analysis data from Analysis Repository.
	3. The tool executes rating design use-case.
	4. System designer selects quality checker and retrieves analysis data from Analysis Repository.
	5. The tool executes mapping services use-cases and executes mapping component use-cases
	6. System designer selects structural checker and retrieves analysis data from Analysis Repository.
	1. System designer selects scenario name, quality concerns and design template categories.
	2. The system design form submits this request to design control which then queries desired concerns and matching categories from design template repository.
	3. The query results are passes to design control which then conduct comparison and matching.
	1. System designer selects scenario name, rating control submits the requests to analysis repository and retrieves mapping results.
	2. Rating control then retrieves the design contributions from design template repository and passes the results to rating form to display rating for each design template.
	3. Then the system designer instantiated desired alternatives designs and its justifications.
	4. These architectural instantiation are store in architecture database.
	1. System designer enters scenario name and service control requests results of selected design templates from architecture database.
	2. Then, the system designer selects required alternative design and service control requests related design components from design template repository to be displayed in the list.
	3. The system designer selects a service to map, again service control query design component details and submits the results back to the control.
	4. Then, service control compare and match the selected service onto appropriate design component.
	5. The results are store in architecture database and submit to service form to be displayed onto a panel by establishes a link between the service and the design component.
	1. System designer enters scenario name and component control requests results of selected design templates from architecture database.
	2. Then, the designer selects required alternative design and component control requests related design components from architecture database to be displayed in list on component form.
	3. The system designer selects a component to map, component control query design component details and submits the results back to the control.
	4. Then, service control compare and match the selected design component onto concrete component.
	5. The results are store in architecture database and submit to component form to be displayed onto a panel by establishes a tag between the design component and the concrete component.
	1. System designer enters scenario name and assess control requests formulated scenarios and its results from analysis repository.
	2. Then, assess control submits a query for design contributions to template design library.
	3. The query results are passes back to assess control.
	4. Subsequently, mean values are calculated and the results are passes to assess template to be displayed.
	1. System designer selects contribution level (e.g. level 1: best architectural designs, level 2: concern, level 3: sub-concern).
	2. ContrGraph request data from Analysis Repository and calculate these dataset.
	3. Contribution bar chart is display on assessment template.
	4. System designer selects architectural design.
	5. ScoreGraph request data from Analysis Repository and calculate these dataset.
	6. Scores pie charts are display on assessment template.
	7. System designer selects architectural design.
	8. TradeOffGraph request data from Analysis Repository and calculate these dataset.
	9. Component trade-off line chart is display on assessment template.
	1. System designer selects a scenario.
	2. Report request architectural design alternatives details from architecture database.
	3. Report display report to the system designer.
	4. System designer requests to print the report.
	5. Report raster and print the report.
	1. System designer browses and selects XMI/XML design template specification and clicks OK.
	1. The XMI/XML parser parses the rule specification and checks against XMI/XML schema.
	2. The XMI/XML parser stores rule descriptions in rules repository
	3. The tool organizes the rule in tree hierarchy and each element detail description is display on the description form.
	1. System designer browses and selects XMI/XML component specification and clicks OK. The parser parses the component specification and checks against XMI/XML schema.
	2. The XMI/XML parser stores component descriptions in component repository
	3. The tool organizes the component in tree hierarchy and each element detail description is display on the description form.
	B2. CSAFE Class Diagrams

	Appendix C.CSAFEToolset User Manual
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience and Reading Suggestions

	2. System Requirements
	3. System Features
	3.1 Main Windows
	3.2 Toolbar Menus
	3.3 Managing Component Library
	3.4 Managing Design Template Library
	3.5 Updating Quality Index List
	3.6 Generating iXML Template
	3.7 Starting an Architectural Analysis Project
	3.8 About and Helps

	Appendix D. EDDIS Specification & Results
	D1. Detail Requirements
	D2. Service Descriptions
	D3. Constraint Descriptions
	D4. Concrete Component Descriptions
	D5. SMART
	D6. Reports

	Appendix E. GVPS Specifications & Results
	E1. GVPS Software Requirements Specification
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience and Reading Suggestions
	1.3 Product Scope

	2. Overall Description
	2.1 Operating Environment
	2.2 Design and Implementation Constraints
	2.3 Assumptions and Dependencies
	2.4 Priority of Requirements
	2.5 Abbreviations

	3. Requirements
	3.1 Vehicle Requirements
	3.2 GVPS Requirements
	3.2.1 ICD
	3.2.2 Control Centre

	3.3 Non-Functional Requirements
	3.4 Summary

	4. Service Descriptions
	5. Constraint Descriptions
	E2. iXML ADL Specification of GVPS
	E3. SMART

	Appendix F. Design Templates
	Appendix G. Quality Descriptions
	Quality Definitions

	Glossary
	References

