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Abstract

Intermittent demand appears when demand events occur only sporadically.
Typically such time series have few observations making intermittent de-
mand forecasting challenging. Forecast errors can be costly in terms of un-
met demand or obsolescent stock. Intermittent demand forecasting has been
addressed using established forecasting methods, including simple moving av-
erages, exponential smoothing and Croston’s method with its variants. This
study proposes a neural network (NN) methodology to forecast intermittent
time series. These NNs are used to provide dynamic demand rate forecasts,
which do not assume constant demand rate in the future and can capture
interactions between the non-zero demand and the inter-arrival rate of de-
mand events, overcoming the limitations of Croston’s method. In order to
mitigate the issue of limited fitting sample, which is common in intermittent
demand, the proposed models use regularised training and median ensembles
over multiple training initialisations to produce robust forecasts. The NNs
are evaluated against established benchmarks using both forecasting accu-
racy and inventory metrics. The findings of forecasting and inventory metrics
are conflicting. While NNs achieved poor forecasting accuracy and bias, all
NN variants achieved higher service levels than the best performing Cros-
ton’s method variant, without requiring analogous increases in stock holding
volume. Therefore, NNs are found to be effective for intermittent demand
applications. This study provides further arguments and evidence against
the use of conventional forecasting accuracy metrics to evaluate forecasting
methods for intermittent demand, concluding that attention to inventory
metrics is desirable.
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1. Introduction

There are many cases where items in an inventory control system are
requested infrequently, resulting in sporadic or intermittent demand. Time
series of intermittent demand differ from conventional series in the respect
that they have multiple periods of zero demand (Croston, 1972). Willemain
et al. (2004) identified intermittent demand in several scenarios, such as
heavy machinery and respective spare parts, aircraft service parts, electron-
ics, maritime spare parts, etc, while Syntetos and Boylan (2005) explored
intermittency in the automotive spare parts. Ghobbar and Friend (2003)
looked at the demand of aircraft maintenance parts, which are often of high
value. Johnston et al. (2003) identified that such items can account for up
to 60% of the total stock value. Due to their slow moving nature, such items
are at greatest risk of obsolescence. This can have substantial impact on
the operations of organisations, which tie resources in stocking items of this
nature. In practice, as Ghobbar and Friend (2003) observed, companies hold
more stock than needed due to inaccurate demand expectations and often
without achieving the desired service levels. Inaccuracies can arise from both
the magnitude and the timing of the demand. Therefore, in order to support
inventory holding and replenishment decisions accurate demand forecasts are
necessary.

Croston (1972) observed that conventional time series methods, such as
exponential smoothing, did not perform well and proposed an alternative
forecasting method suited to intermittent demand time series. Research has
shown that Croston’s method is appropriate to use for forecasting intermit-
tent demand time series and provides improvements over conventional time
series methods, for e.g. see Willemain et al. (2004) and Johnston and Boy-
lan (1996). Syntetos and Boylan (2001) showed that the original Croston’s
method is biased and proposed a modified version that corrected the problem
(Syntetos and Boylan, 2005), demonstrating improved accuracy. Levén and
Segerstedt (2004) proposed an alternative modification to Croston’s method,
attempting to avoid the bias of the original method. Boylan and Syntetos
(2007) showed that this is not the case and the method by Levén and Segerst-
edt (2004) is still biased, however in a different manner. Its bias, in contrast

2



to Croston’s method, does not vary with the smoothing of the demand in-
tervals. They demonstrated that this method is more biased than Croston’s,
in particular for highly intermittent series.

Hyndman and Shenstone (2005) argue that Croston’s method is an ad-
hoc method with no properly formulated underlying stochastic model. As
it is based on exponential smoothing, they argue that it assumes continuous
data, including negative values, which of course is not true for intermittent
demand data that are integer-valued and non-negative. Furthermore, Cros-
ton (1972) stated that his method assumes that the demand size and the
inter-demand intervals are independent. However, Willemain et al. (1994)
questioned this assumption of independence. Nonetheless, this has been re-
tained in later work that improves upon Croston’s original method, see for
e.g. Syntetos and Boylan (2001, 2005); however this has not been proven
to be true and in many cases it is taken for granted without testing this
assumption on the available data. Therefore, as Hyndman and Shenstone
(2005) find, Croston’s method is inconsistent with the properties of inter-
mittent demand, but of practical usefulness as it has been shown empirically
to outperform conventional methods (Willemain et al., 1994; Syntetos and
Boylan, 2001).

This paper proposes a Neural Network (NN) method for intermittent
demand time series forecasting. The motivation behind this work is based
on the nonparametric, data assumption free nature of NNs. In particular,
the feedforward multilayer perceptrons, that are employed here, have been
proven by Hornik et al. (1989) and Hornik (1991) to be universal approxi-
mators, therefore, in theory, able to capture the data generating process of
intermittent demand time series. Zhang et al. (1998) and Dahl and Hylle-
berg (2004) argue that NNs are flexible models that do not require human
experts to prescribe rigid model structures. The proposed NN method al-
lows for interaction between the demand size and the inter-demand intervals
of demand events, or their lags, if such can be identified from the data and
there is no need for expert input. Naturally their flexible nature is advan-
tageous for capturing the intermittent demand structure. Gutierrez et al.
(2008) proposed a NN method for lumpy demand time series that outper-
formed, in their experiments, Croston’s method and Syntetos and Boylan
(2005) modification. However, as section 2 discusses, it has significant limi-
tations. The work in this paper aims to provide a less restrictive framework.
The basic concepts from Croston’s method are retained, but expanded to al-
low for modelling dynamics in either the demand volume or its inter-demand
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intervals and any interactions between them. Boylan and Syntetos (2007) ob-
served that little work has been done to model this interaction, even though
their independence has been questioned (Willemain et al., 1994). Further-
more, the proposed method expands on previous work by providing dynamic
forecasts, allowing the predicted demand rate to vary for different forecast
horizons, thus being more flexible than the constant that is the norm in in-
termittent demand forecasting. NNs have often been seen as data hungry
models. Markham and Rakes (1998) provide evidence thatNNs require large
sample size to outperform conventional statistical methods. Intermittent de-
mand time series, especially when only non-zero demand is modelled, as is
the case here, have typically very few observations. Therefore, conventional
NN training is not practical and regularised networks are proposed instead
to mitigate the problem of small sample size.

The proposed NNs for intermittent demand are evaluated against a num-
ber of fast moving and intermittent demand forecasting benchmark models.
These are assessed using both bias and accuracy metrics of point forecasts,
which is the conventional approach for comparing different forecasting meth-
ods, as in Syntetos and Boylan (2005). Gardner (1990), Teunter and Duncan
(2009) and Syntetos et al. (2010) dispute this and argue in favour of stock
control metrics, which are more directly related to the decision making prob-
lems that an organisation faces. Assessing the performance of the proposed
method and benchmarks in both ways provides evidence that relying solely
on forecasting metrics can result in misleading findings. Although no supe-
riority of the NNs over benchmark methods is identified when forecasting
accuracy is considered, a clear advantage of NNs is found when looking at
stock control metrics. Service level improves significantly, without increas-
ing the holding volume substantially. Therefore, the proposed NNs offer
important improvements over the standard benchmarks.

The rest of the paper is structured as follows: section 2 discusses existing
forecasting approaches for intermittent demand items and presents the novel
NNs, while sections 3 and 4 discuss the experimental setup and the results
respectively. Section 5 concludes after a discussion of the findings.

2. Methods

2.1. Croston’s Method and Modifications

The standard method for intermittent demand forecasting is considered
to be Croston’s method, as proposed originally by Croston (1972) and later
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corrected by Rao (1973). Instead of forecasting an item in the conventional
way, for instance using Exponential Smoothing, the time series is broken
into its constituent elements; the non-zero demand size zt and the inter-
demand intervals xt. Note that the original time series contains periods of
zero demand. Demand is assumed to occur as a Bernoulli process, therefore
the inter-demand intervals are geometrically distributed with a mean x̄. The
non-zero demand is assumed to follow the normal distribution. Both zt and xt

are forecasted using single exponential smoothing (SES), with the smooth-
ing parameter α identical for both. Croston (1972) suggests a smoothing
parameter between 0.1 and 0.3, while Syntetos and Boylan (2001) advise α
to be no greater than 0.15. The resulting estimates z′t and x′

t are only up-
dated when demand occurs and remain constant otherwise. The forecast Y ′

t

is given by:

Y ′

t =
z′t
x′

t

. (1)

The multi-step ahead forecast is a constant with value equal to Y ′

t . Note
that if demand occurs every period, then xt is a vector of ones and therefore
Y ′

t = z′t, in other words Croston’s method is identical to SES. This method
will be named CR − SES hereafter. Syntetos and Boylan (2001) showed
that Croston’s method is biased, due to the division in (1), and suggested a
modified version (Syntetos and Boylan, 2005):

Y ′

t =
(

1− α

2

) z′t
x′

t

. (2)

This modified version uses the same assumptions as the original method,
and in this work is named CR − SES − SB. As discussed in section 1
these assumptions have been challenged. However the modified version has
demonstrated good empirical performance, superior to the original method
(Syntetos and Boylan, 2005, 2006). Shale et al. (2006) showed that if the
orders arrive as a Poisson process then the appropriate modification becomes:

Y ′

t =

(

1− α

2− α

)

z′t
x′

t

. (3)

This model is named CR − SES − SH in this paper. The same study
discusses an obvious modification of Croston’s method, which replaces SES
for the estimation of z′t and x′

t in 1 with Moving Averages (MA) of length k,
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resulting in method CR−MA. The inversion bias discussed by Syntetos and
Boylan (2001) exists again and the respective modifications for the Syntetos-
Boylan approximation is:

Y ′

t =

(

k

k + 1

)

z′t
x′

t

, (4)

resulting in model CR−MA− SB and for Shale et al. is:

Y ′

t =

(

k − 1

k

)

z′t
x′

t

, (5)

which is named here CR − MA − SH. A basic benchmark model that
follows Croston’s method philosophy, and does not appear in the literature,
would be to assume no smoothing in either zt and xt, essentially estimating
both z′t and x′

t using the random walk, i.e. their forecast would be equal
to the last historical value. This is equivalent to setting either α or k in
the above models to 1. This parameterless benchmark is employed in this
study to show the improvement in the performance of the above models,
if any, due to forecasting the demand and the inter-demand intervals using
either exponential smoothing or moving averages, which require setting a
parameter. This model is named CR−Naive.

Careful consideration of equation 1 reveals that Croston’s method does
not provide a demand forecast for the time series, rather than a “demand-
rate” forecast. Y ′

t in this case is the average expected demand in each future
period and not the point forecast of the demand for the future periods. This
is a significant difference in comparison to conventional time series models.
For example if the forecast is 0.25 that should be interpreted that there is a
demand of 1 unit over four periods, or the demand-rate per period is 0.25.
Therefore, the model output is not violating the integer valued nature of
intermittent demand time series.

2.2. Conventional Time Series Models

Syntetos and Boylan (2005) report that Moving Averages (MA) and Sin-
gle Exponential Smoothing (SES) are often used in practice to forecast in-
termittent demand time series. Given demand dt under MA of order k the
forecast is:

Y ′

t =

∑k

i=1
dt−i

k
. (6)
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For SES with smoothing parameter 0 ≤ α ≤ 1 the forecast is:

Y ′

t = αdt−1 + (1− α)Yt−1. (7)

Due to the periods of zero demand both models are expected to perform
badly for a time series that exhibits intermittent demand. A simple bench-
mark that any more complex forecasting model should outperform is the
random walk, or naive model, which essentially assumes that the forecast is
equal to the last observed value. Both MA and SES devolve into the Naive
by setting either k or α to 1 respectively.

2.3. Neural Networks

Neural Networks (NNs) are flexible nonlinear data driven models that
have attractive properties for forecasting. Traditional statistical time-series
methods can often fit poorly to the underlying data generating process, be-
cause of their restrictive functional forms. On the other hand, NNs are
flexible models that learn the data generating process from the data without
requiring human intervention. Furthermore, traditional forecasting methods
often rely on restrictive data assumptions, which the neural networks do not
have. Zhang et al. (1998) list multiple forecasting applications where NNs
have been employed successfully. Adya and Collopy (1998) found that of
73% of the papers reviewed NNs to outperform established benchmarks.
The most commonly used form of NNs for forecasting is the feedforward
Multilayer Perceptron (MLP ). Zhang et al. (1998) provide a detailed de-
scription of these models and how to use them for forecasting. The one-step
ahead forecast Y ′

t is computed using inputs that are lagged observations of
the time series. I denotes the number of input pi of the NN . The functional
form is

Y ′

t = β0 +
H
∑

h=1

βhg

(

γ0i +
I
∑

i=1

γhipi

)

. (8)

In equation (8), w = (β,γ) are the network weights with β = [β1, . . . , βH ]
and γ = [γ11, . . . , γHI ] for the output and the hidden layers respectively. The
β0 and γ0i are the biases of each neuron, which function as the intercept
in a regression for each neuron. H is the number of hidden nodes in the
network and g(·) is a non-linear transfer function, which is usually either the
sigmoid logistic or the hyperbolic tangent (TanH) function and provides the
nonlinear capabilities to the model. Their functional form allows them to
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model interactions between inputs, if any. The hidden nodes are connected
to a linear output node that produces the forecast. The network can be
seen as a nonlinear autoregressive model that can be naturally extended to
include multivariate inputs (Connor et al., 1994).

Neural networks are often seen as “data-hungry” models, requiring large
samples to train on. This can be a major drawback for intermittent demand
applications. The reason for this is their large number of degrees of freedom;
for a typical three layer MLP it is (I + 1)H + 1. A large sample is also
needed to accommodate the complex nonlinear optimisation problem that
needs to be solved to find the connecting weights and biases. In order to avoid
overfitting to the in-sample data it is common practice with NNs to split the
in-sample data into two subsets, the training and the validation samples. The
network is optimised on the training sample, while its accuracy is recorded on
the validation sample. If the error on the validation sample starts increasing,
while on training is reducing, that signals that the network is overfitting to
the data and training is stopped. The weights and biases that give the lowest
error on the validation sample are retained. It is crucial to avoid overfitting
in order to achieve good out-of-sample forecasting performance.

Therefore, only a portion of the in-sample data is available to solve a hard
nonlinear optimisation problem with many degrees of freedom. Training can
often get trapped in local minima of the error surface. In order to avoid a
poor quality local minimum, training is initialised several times with different
random starting weights and biases. The best initialisation is retained as the
final model, which is selected on minimum validation sample error.

NNs have been explored by Gutierrez et al. (2008) for lumpy demand
forecasting applications. Lumpy demand time series exhibit high variability
of the non-zero demand (Syntetos et al., 2005). They use standard MLPs
with a particular architecture and set of inputs. They propose using 3 hidden
nodes in a single hidden layer with two inputs. The first input is the last
observed demand. Note that this is not the last non-zero demand as in the
conventional Croston’s method. The second input is the number of periods
separating the last two non-zero demand transactions. The output of the
model represents the predicted demand, in a similar way to SES. The models
are trained using the standard back-propagation algorithm with momentum
(Rumelhart et al., 1988). They report that NNs outperformed SES, CR−
SES and CR− SES − SB with different smoothing parameters on a set of
24 time series.

It is interesting to focus on the NN training particulars of this study. The
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time series contained 967 daily observations, providing a substantial sample
for NNs to train effectively. Gutierrez et al. (2008) do not use a validation
sample that is useful in mitigating the tendency of NNs to overfit in the
training data (Bishop, 1996), as discussed above. Therefore, they provide
strong evidence that NNs can perform well in intermittent demand applica-
tions even with very rudimentary training setups. However, as they identify,
this requires abundance of data, which is not seen in other intermittent de-
mand studies that use only a few years of monthly data, for e.g. see Syntetos
and Boylan (2005).

In this paper the implementation of NNs for intermittent demand is re-
visited in order to provide a more flexible framework. Initially the sample
size problem is addressed, so as to allow such models to be applicable in
a variety of intermittent demand problems, in particular for short time se-
ries. Similar to traditional statistical models, NNs are optimised based on
a one-step ahead mean squared error loss function. As Hornik et al. (1989)
showed neural networks are universal approximators and in practice prone to
overfitting, unless special care in training is taken. This can be mitigated by
using regularised cost functions for neural network. Bishop (1996) discusses
a simple and commonly used form of regularisation, where the cost function
F is changed into:

F = γ

∑N

i=1
(ei)

2

N
+ (1− γ)

∑n

j=1
(wj)

2

n
. (9)

The first part of the cost function is the conventional mean squared error
loss ofN one-step ahead ei errors. The second part of F is keeping the weights
of the network wj small, by penalising large weights, essentially making the
network response smoother and less likely to overfit. The performance ratio
γ controls the size of regularisation. MacKay (1992) proposes a Bayesian
regularisation framework where γ is determined by the data automatically.
A major advantage of regularisation is that a validation sample is no longer
required in order to avoid overfitting to the in-sample data, thus the imple-
mentation of NNs for intermittent demand problems becomes feasible for
even small samples.

A straightforward use of NNs in forecasting intermittent demand would
be to replace the SES in Croston’s method with neural networks. The fore-
cast of non-zero demand z′t and inter-demand intervals x′

t could be calculated
using two separate networks, which would be consecutively divided as in the
conventional Croston’s method. However such an approach would suffer from
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a number of limitations: firstly, it is based on the original Croston’s method
and therefore is bound to output biased forecasts, due to the division in (1).
Secondly, such a model would not allow capturing potential interactions be-
tween zt and xt. This can be solved easily by forecasting both from a single
NN . The neural network now uses lags from both the non-zero demand
and inter-demand intervals as inputs and outputs predictions for both sep-
arately, capturing any existing interactions. In contrast to the intermittent
demand literature, this model does not assume that the demand and the
inter-demand intervals are independent and aims to capture any bivariate
effects, if present. Moreover, the NNs output a dynamic forecast due to
their autoregressive nature. They are able to predict different values for dif-
ferent forecast horizons according to the time series dynamics, in contrast to
Croston’s method.

The resulting z′t and x′

t have to be divided as in (1) to provide the fore-
casts, thus the model suffers from the inversion bias discussed by Syntetos
and Boylan (2001). In order not avoid imposing any assumptions, a data
driven de-biasing coefficient c is calculated. If Yt is the in-sample forecast of
the neural network, c is calculated by solving the regression:

zt
xt

= cYt. (10)

Multiplying the out-of-sample demand-rate forecasts Y ′

t by c de-biases
the forecasts. The resulting forecast, in contrast to Croston’s method is not
constant, but dynamic. The resulting model,1 NN −Dual, is illustrated in
figure 1.

A more elegant way to avoid biasing the forecasts is to model the network
to output the required demand-rate directly, instead of introducing the sub-
sequent division step. Similar to NN −Dual this model uses lags from both
zt and xt to output directly Y ′

t . The division and the required de-biasing is
left to the network to approximate from the data resulting in even greater
flexibility. Note that this is different to the model proposed by Gutierrez
et al. (2008). The proposed model outputs demand-rate instead of demand
point forecasts, making it more suited to the nature of intermittent demand

1Simpler NN implementations discussed above, i.e. separate NNs for forecasting zt
and xt, non-debiased versions and NNs that provide contant forecasts instead of dynamic
have been experimented with. It was found that all these models were encompassed by
NN −Dual and therefore not presented here.
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Figure 1: The NN −Dual architecture, with variable number of demand IDn and interval
IIm lagged inputs and hidden nodes Hh, which use the TanH activation function. Two
linear output nodes provide the demand and interval forecasts.

time series. These networks do not require any special modelling for bias
as is needed by the original Croston’s method and its modifications, as the
division in (1) is not required. Furthermore, this specification allows for mul-
tiple lags of zt and xt, therefore capturing any time series dynamics. Again
a dynamic forecast is produced.2 Figure 2 illustrates this class of proposed
networks, NN −Rate.

3. Empirical evaluation

3.1. Dataset

In order to evaluate the performance of the proposed neural networks a
large scale simulation of 1000 items is designed. The dataset used by Syn-
tetos and Boylan (2005) is used to identify realistic parameters to simulate
intermittent demand time series. This dataset contains 3000 time series de-
scribing the demand of automotive spare parts for two years in monthly
buckets. The empirical distributions of non-zero demand and inter-demand

2It is possible to produce a constant forecast variant, closer to the original Croston’s
method. However, no advantages for this were identified and only the dynamic version is
discussed here.
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Figure 2: The NN −Rate architecture, with variable number of demand IDn and interval
IIm lagged inputs and hidden nodes Hh, which use the TanH activation function. A single
linear output provides the demand rate forecast.

intervals were estimated.3 Based on those, new monthly intermittent time
series were constructed. Each time series has 236 observations, out of which
36 observations, 3 years of history, are used as in-sample data, 100 are used
as out-of-sample data over which the performance of the different models is
evaluated and the remaining 100 are used as burn-in period for the simula-
tion. Since the models are assessed not only in terms of forecasting accuracy
but also using inventory metrics, it is necessary to simulate the stocks and
orders for each item. In order to achieve realistic levels for each, irrespective
of initial stock and orders, the simulation is run for the burn-in period before
any statistics are collected from the out-of-sample evaluation period. This
allows each model to reach its normal behaviour and stock levels.

It was argued in section 1 that the independence between the non-zero
demand and the inter-demand interval is often taken for granted, which may
not always hold. Section 2 presented NN models capable of capturing depen-
dence between the variables in a linear or nonlinear way. Figure 3 provides

3Well known distributions provided a poor fit.
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Figure 3: Boxplot of non-zero demands for each inter-demand interval. Mean of the
distribution is plotted as a circle, while background colouring is the density as estimated
by a Gaussian kernel. Darker areas signify higher density.

boxplots of the non-zero demand for each inter-demand interval of the origi-
nal dataset from Syntetos and Boylan (2005). The data for the boxplots has
been pooled across all time series of the dataset. The mean of each group of
non-zero demand has been plotted as a circle. The density of the distribu-
tion corresponding to each boxplot has been estimated using Gaussian kernel
density estimation and is provided as grayed background for each boxplot.
Darker areas signify higher density. The plot has been capped to demands
up to 20, as higher demands up to 416 are outliers and would make reading
it harder. It is apparent that the distribution of non-zero demand changes
for different inter-demand intervals; hence they are not independent as as-
sumed by Croston’s method. Furthermore, the relationship between zt and
xt is not linear. A 2nd order polynomial was identified to fit better the data,
specified automatically using the Bayesian Information Criterion, revealing
the presence of significant nonlinearities. Therefore, the NNs are expected
to be able to capture this nonlinear relationship, thus improving their per-
formance. Note that NNs, as universal approximators, are not restricted by
the nature of the nonlinearity.

3.2. Accuracy Metrics

Measuring forecasting accuracy for intermittent demand time series is not
straightforward. Although it is trivial to measure the Mean Absolute Error
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(MAE) for each time series separately, in order to summarise the results
across several time series scale-independent errors must be used. Intermittent
time series have zero values making relative-to-the-series scale independent
errors, such as the Mean Absolute Percentage Error (MAPE), impossible to
calculate. Relative errors, such as the Geometric Mean Relative Absolute
Error (GMRAE), require the calculation of a benchmark model, which is
often the Naive. This can result in zero denominator, making the calculation
of such errors impossible. Syntetos and Boylan (2005) argue that an error
measure that is robust to such problems is the Relative Geometric Root Mean
Square Error (RGRMSE) based on the work by Fildes (1992). However, for
this set of experiments, due to the naive based benchmarks and the time
series models, it is possible to have zero individual errors, which consequently
in zero geometric mean error. Hyndman and Koehler (2006) proposed the
use of Mean Absolute Scaled Error (MASE) instead, which is essentially
the out-of-sample MAE of the method to be evaluated, across the relevant
forecast horizon, divided by the in-sample one-step ahead Naive forecast.
This error measure minimises the probability of zero or infinite error due to
calculation. However, its interpretation is very unclear, as well as what the
relative differences between different sizes of the error mean. Therefore a fully
satisfactory error measure for intermittent demand is not readily available.

If the difference in magnitude between the error of different methods is
not required and the focus is on the ranking of the models then using average
ranks of MAE has several advantages. MAE is calculated as

∑ |et|/n, where
et = At − Ft and n the number of samples; At being the actual demand for
period t and Ft the forecast for the same period. MAE is not biased in any
way and does not suffer from any problems with zero values or with aggrega-
tion of individual errors that may be zero. Using ranks of MAE overcomes
its scale dependent nature and it is possible to summarise results across dif-
ferent time series. The ranking of each forecasting model for each time series
is calculated and then the average ranks across all time series. This becomes
a powerful non-parametric accuracy error, being easily incorporated in the
calculation of non-parametric statistical tests that can highlight significant
differences between the models. In this study more than two models are
compared and therefore pairwise tests cannot be used, as the multiple com-
parisons will make statistical inference misleading. Demšar (2006) discusses
alternative methods to compare several models simultaneously. Demšar sug-
gests first using the Friedman test, a non-parametric analogue to ANOVA
that identifies if at least one of the models is different from the rest. If signif-
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icant differences are identified, then one should apply the post-hoc Nemenyi
test to rank the models and identify further differences. A similar approach
is used to aggregate Mean Error (ME) figures across time series to measure
forecasting bias. ME is calculated simply as

∑

et/n.
All forecasts are three-steps ahead, as it will be discussed in detail in the

inventory simulation design. Therefore 98 out-of-sample multi-step ahead
forecasts are produced and their respective errors calculated using MAE, in
a rolling origin scheme as discussed by Tashman (2000).

3.3. Inventory Simulation Design

In order to calculate inventory metrics, an inventory simulation is setup.
The commonly applied in practice order-up-to policy (T ,S) is used, as per
Teunter and Sani (2009). The review time is set to monthly (T = 1), while
the order-up-to level S can be calculated as:

S = D̂ + kσ̂L, (11)

where D̂ is the demand over the lead time period, k is a safety factor for
achieving target service level and σ̂L is the variance of the error of the fore-
casts for the respective lead time L. D̂ is conventionally calculated as LY ′

t+1,
i.e. the one-step ahead demand forecast is multiplied by the lead time to
find the total demand over the period. This calculation is fine as long as the
demand forecast is constant, which is true for Croston’s method and its mod-
ifications. However this is not true for the proposed neural network models
that can output dynamic forecasts, whose values are not equal over different
forecast horizons. Therefore D̂ =

∑L

i=1
Y ′

t+i, i.e. the sum of the forecasted
demand over a given forecast horizon (or supply lead time). σ̂L for multi-step
forecasts is approximated as

√
Lσ̂1, where σ̂1 is the one-step ahead forecast

standard error, i.e. the square root of the mean squared error (MSE). The
approximation can be avoided by directly calculating the empirical MSE for
the relevant forecast horizon. Finally, k is calculated from the normal dis-
tribution, depending on the desired service level. In this simulation the lead
time is set L = 3, forcing the forecast horizon to be three periods as well.
Service levels for 0.80, 0.90, 095 and 0.99 are considered.

In each period of the simulation, the realised demand for each item is
subtracted from the holding stock H. If the stock falls below S, then an order
S −H is placed with a lead time L = 3. If the order cannot be serviced, an
out-of-stock event is measured. To simplify the simulation, unserviced orders
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are considered lost. Service level α and β are measured. The former measures
the probability of not having a stock-out event, while the latter measures the
magnitude in units of serviced demand over the full expected demand. By
definition service level α ≤ service level β. Furthermore, holding volume and
backlog volumes are tracked. These metrics allow us to consider trade-off
curves between stock-holding and backlog volumes and holding stock and
service levels as in Teunter et al. (2010) and Syntetos et al. (2010). Both
holding and backlog volumes are scaled by the average non-zero demand for
each time series. This way they become scale-independent and therefore it
is possible to summarise them across time series.

To initialise the simulation each item is assumed to have full stock, H = S.
However, to mitigate any bias from this assumption the simulation has a
”‘burn-in”’ period of 100 iterations before any statistics are collected. This
brings the initial holding stocks of the out-of-sample period to reasonable
levels for each forecasting model. The results that follow in the next section
are based on data after this initial ”‘burn-in”’ period.

3.4. Methods

Forecast are created for each item based on the methods discussed in
section 2. All Croston’s variants based on exponential smoothing are run
modelled with α = {0.05, 0.10, 0.15, 0.20}. Identical values for the smoothing
parameter are used for SES. All MA and moving average Croston’s variants
are modelled using k = {3, 5}.

For the NNs three different settings for the number of input lags and
hidden nodes are used. Both I and H take values from 1 to 3. These are
retained to relatively small values in order to keep the model degrees of free-
dom into a reasonable range in comparison to the size of the in-sample data.
This way, the maximum degrees of freedom for three lags for each input
and three hidden nodes is 22. All other network settings are kept constant.
Networks are regularised and a γ = 0.9 is used. The networks are trained
using the Levenberg-Marquardt algorithm, which requires setting the µLM

and its increase and decrease steps. Here µLM = 10−3, with an increase step
of µinc = 10 and a decrease step of µdec = 10−1. For a detailed description
of the algorithm and the parameters see Hagan et al. (1996). This training
algorithm allows for fast training, essential for large scale forecasting applica-
tions. The maximum training epochs are set to 1000. The training can stop
earlier if µLM becomes equal or greater than µmax = 1010. The training of all
networks is initialised with random weights 5 times to avoid getting trapped
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in a bad local minimum. Note that a large number of initialisations is not
needed due to the regularisation, that forces the weights to converge to small
values. Since no validation sample is required for training, it is not possible
to select between the different training initialisations without overfitting to
the training set. To avoid this an ensemble over all initialisations is consid-
ered. The median of the forecasts of all five training initialisations is the final
output. This step robustifies further the models against overfitting, which
is crucial for small samples. Finally, all inputs are linearly scaled between
[−0.8, 0.8].

The network model proposed by Gutierrez et al. (2008) is also used as a
benchmark, named NN −GSM , with one significant modification. Instead
of using the standard back-propagation with momentun, regularised loss and
the Levenberg-Marquardt training algorithm are used to allow training the
networks in small samples, similar to the other NNs. Furthermore, an en-
semble of 5 training initialisations is used to produce forecasts, similar to the
other network models. These changes substantially increases the robustness
of the model. Initial results using the original training method were very
poor and were discarded from the study. The poor results were attributed
to the small training sample.

Including all the parameter combinations, in total 45 models are simu-
lated in this study. To facilitate the analysis of the results, only the best
performing parameters of each model will be presented in section 4. The
criteria for selecting the model is minimum in-sample mean MAE rank, as
realistically it is impossible to pick a model on out-of-sample statistics, in-
cluding inventory metrics.

4. Results

4.1. Accuracy Metrics

Table 1 provides the average ranks for in- and out-of-sample ME and
MAE. In brackets the relative model rank is provided. Friedman test for
both ME and MAE indicated significant differences between the models with
p-value of 0.000. The critical distance for the Nemenyi test was found 0.66,
0.58 and 0.54 for significance levels 1%, 5% and 10% respectively. Models
with average ranks different more than the critical distance are significantly
different in performance. Figure 4 provide visually the results of the Nemenyi
test at 5% significance. Models grouped by the vertical brackets have no
evidence of statistically significant differences.
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Considering the ME, a striking result is that the conventional time series
models, namely the Naive, MA and SES, are the least biased. Croston’s
method and its modifications follow. The severely biased CR − SES is
corrected by both CR−SES−SB and CR−SES−SH in-sample. However,
out-of-sample this is not true. The CR −MA method performs well, while
its corrections do not improve its bias. All neural networks are strongly
biased. Although table 1 gives the impression of different rankings between
the models, consulting the Nemenyi results in figure 4 reveals that there is
no evidence to support significant differences in many cases, in particular for
the NNs.

Table 1: Accuracy Metrics

Model
rank of ME rank of MAE

in-sample out-of-sample in-sample out-of-sample

Naive 5.62 (1) 2.60 (1) 20.10 (13) 18.65 (13)
MA 6.67 (2) 2.98 (2) 15.27 (11) 12.02 (9)
SES 7.56 (3) 3.25 (3) 13.12 (9) 9.13 (7)

CR-Naive 9.31 (6) 5.11 (4) 18.44 (12) 16.42 (11)
CR-MA 7.97 (4) 6.04 (6) 15.10 (10) 11.63 (8)

CR-MA-SB 10.32 (8) 11.84 (9) 10.18 (6) 6.76 (5)
CR-MA-SH 12.58 (10) 13.56 (10) 8.61 (2) 4.93 (3)

CR-SES 15.83 (13) 5.26 (5) 10.42 (7) 4.96 (4)
CR-SES-SB 10.05 (7) 7.49 (7) 9.52 (4) 4.57 (2)
CR-SES-SH 9.26 (5) 9.72 (8) 9.07 (3) 4.53 (1)

NN-GSM 12.33 (9) 14.93 (12) 9.99 (5) 14.88 (10)
NN-Dual 14.21 (12) 13.81 (11) 5.32 (1) 9.08 (6)
NN-Rate 12.74 (11) 19.14 (13) 12.83 (8) 18.21 (12)

Considering the MAE a different picture emerges. In-sample the NN −
Dual perform best. The Croston’s method variants follow with the con-
ventional time series models averaging last, as expected. Out-of-sample the
ranking differs substantially. The modified Croston, both for CR−SES and
CR −MA rank first. However, figure 4 shows that only CR − SES − SH
is statistically different from the original method CR − SES. SES follows
together with NN −Dual after almost all Croston’s modifications. The re-
maining NN models follow. Similar to the result for ME, NN −Rate ranks
almost last, outperforming only the naive.

Based on the results from the accuracy metrics there is little benefit
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of NN for intermittent demand over the original and modified Croston’s
method. The same is true for the NN −GSM model proposed by Gutierrez
et al. (2008), in contrast to their findings. However, it it important to note
that this study uses short monthly intermittent time series instead of daily
long lumpy demand series, as in their original study, that may explain the
different findings.

CR−Naive − 4.49
CR−SES  − 4.59

CR−SES−SB  − 6.97
CR−SES−SH  − 8.15

CR−MA − 5.24

CR−MA−SB − 9.55

CR−MA−SH − 10.73

Naive − 2.38
MA − 2.72

SES − 2.96

NN−GSM − 10.45
NN−Dual − 10.27

NN−Rate − 12.51

ME

CR−Naive − 10.75

CR−SES  − 3.18
CR−SES−SB  − 3.60

CR−SES−SH  − 2.37

CR−MA − 8.15

CR−MA−SB − 4.72

CR−MA−SH − 3.09

Naive − 12.14

MA − 8.42

SES − 6.46

NN−GSM − 9.33

NN−Dual − 7.42

NN−Rate − 11.37

MAE

Figure 4: Nemenyi test results for out-of-sample ranks of ME and MAE. For model in-
cluded in vertical brackets there is no evidence of significant differences at 5% level.

4.2. Inventory Metrics

The story presented by inventory metrics is substantially different to the
accuracy metrics. Service levels α and β as well as scaled holding and backlog
volumes at the end of the simulation are provided for four different target
service levels in tables 2 and 3 respectively. Models can have high service
levels by retaining more stock, therefore evaluating solely the service levels
separately does not provide any insight. To overcome this the inventory-
backlog efficiency is examined. This trade-off curve between scaled holding
and backlog volume shows at what cost of unmet demand the holding volume
is kept low.

Examining the time series models it is apparent that the high service
level of the Naive and CR − Naive comes at a substantial cost in stock
holding. MA and SES perform very similarly considering service levels and
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Figure 5: Realised service levels α and β against target service and scaled backlog volume
and scaled holding volume trade-off curve for best performing models.

Table 2: Realised Service Levels α (β).

Model
Target Service Level

80% 90% 95% 99%

Naive 95.0% (97.1%) 96.2% (97.9%) 97.0% (98.5%) 98.1% (99.1%)
MA 87.4% (91.8%) 90.0% (93.7%) 91.7% (95.0%) 94.0% (96.7%)
SES 86.6% (91.2%) 89.2% (93.2%) 90.9% (94.5%) 93.5% (96.3%)

CR-Naive 92.6% (95.5%) 94.3% (96.7%) 95.4% (97.5%) 97.0% (98.4%)
CR-MA 86.4% (91.0%) 89.1% (93.2%) 91.0% (94.5%) 93.6% (96.4%)

CR-MA-SB 82.8% (88.2%) 86.2% (91.0%) 88.5% (92.8%) 91.8% (95.2%)
CR-MA-SH 82.1% (87.6%) 85.6% (90.5%) 88.0% (92.4%) 91.4% (95.0%)

CR-SES 84.6% (90.0%) 87.5% (92.3%) 89.5% (93.7%) 92.4% (95.8%)
CR-SES-SB 83.9% (89.2%) 87.0% (91.7%) 89.1% (93.3%) 92.2% (95.5%)
CR-SES-SH 83.7% (89.0%) 86.8% (91.6%) 89.0% (93.2%) 92.0% (95.4%)

NN-GSM 90.9% (94.6%) 92.7% (95.9%) 94.0% (96.7%) 95.7% (97.8%)
NN-Dual 88.9% (93.2%) 91.0% (94.8%) 92.4% (95.8%) 94.6% (97.2%)
NN-Rate 93.2% (96.3%) 94.6% (97.2%) 95.5% (97.7%) 96.8% (98.5%)
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Table 3: Scaled Holding (Backlog) Volume.

Model
Target Service Level

80% 90% 95% 99%

Naive 693.0 (8.1) 750.5 (6.2) 797.6 (5.0) 885.2 (3.3)
MA 396.8 (18.8) 446.0 (15.4) 485.8 (13.0) 559.2 (9.5)
SES 361.6 (20.1) 408.4 (16.6) 446.5 (14.2) 516.7 (10.4)

CR-Naive 617.8 (11.3) 672.3 (8.9) 716.7 (7.3) 798.6 (5.0)
CR-MA 374.5 (20.1) 422.8 (16.5) 462.0 (14.0) 534.3 (10.2)

CR-MA-SB 309.3 (24.9) 357.1 (20.5) 396.1 (17.4) 467.8 (12.8)
CR-MA-SH 296.7 (25.9) 344.5 (21.4) 383.5 (18.2) 455.4 (13.4)

CR-SES 291.3 (23.3) 335.2 (19.3) 371.1 (16.5) 437.6 (12.2)
CR-SES-SB 310.6 (23.8) 356.7 (19.7) 394.2 (16.8) 463.6 (12.4)
CR-SES-SH 306.9 (24.1) 353.0 (19.9) 390.5 (17.0) 459.9 (12.6)

NN-GSM 446.2 (14.0) 492.3 (11.5) 530.3 (9.7) 601.1 (7.1)
NN-Dual 378.5 (17.1) 422.8 (14.1) 459.1 (11.9) 526.9 (8.8)
NN-Rate 485.7 (10.8) 532.8 (8.8) 571.4 (7.4) 643.3 (5.3)

stock efficiency. CR − SES and its modifications appear to achieve higher
service levels for the same stock holding level in comparison to CR − MA
and its modifications, however there are no substantial differences between
them. The CR− SES − SB is chosen as the best model of this family.

The comparison between the best statistical model with the NNs is facili-
tated in figure 5. Figure 5 plots the service levels and trade-off curve between
the best models of all different model groups in order to avoid cluttering the
graphs. Considering the realised service levels α and β, curves that are higher
dominate others. The dotted diagonal line is the ideal performance, where
the realised and the target service levels match. The proposed NN − Rate
achieve the highest realised service level for all different target service levels,
followed by NN − GSM and NN −Dual. NNs overall dominate Croston
based methods. The third subplot in figure 5 provides the trade-off curves
between scaled holding and backlog volumes. Curves that are closer to the
bottom-left corner of the plot dominate others, as they achieve lower backlogs
with lower holding volume. Here all four models appear to be on the same
level. Therefore, NN−Rate offers substantially better realised service levels
without needing to jump to a different trade-off holding and backlog curve.
Notably, NN − Dual trade-off curve marginally dominates other models,
while providing higher service levels than the best Croston’s variant.
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4.3. Discussion

The results suggest that NNs are good contesters for intermittent de-
mand forecasting problems. This work proposed a framework to construct
robust networks for short intermittent time series that are prevalent in prac-
tice, extending on the work of Gutierrez et al. (2008) who demonstrated
good performance of NNs in the presence of long daily lumpy time series.
The proposed NNs are able to capture the interaction between the non-
zero demand and the inter-demand intervals that is assumed non-existent by
Croston’s method and its variants. Furthermore the proposed models are
able to capture the dynamics of the time series and therefore are not re-
stricted to outputting constant forecasts. Although NN−Dual still requires
de-biasing of the forecasts, NN − Rate do not, as no inversion bias in in-
troduced. NN −Rate was found to be the best performing model, reaching
substantially higher service levels with minimal small increase in the holding
volumes, while its corresponding inventory trade-off curve was at the same
level of other competing models.

The simulation in this study used both accuracy and inventory metrics.
Inventory metrics, such as service levels and holding stock, are directly related
to organisations’ inventory performance and are closely related to decision
making. On the other hand, forecasting accuracy metrics are more abstract.
However, these are often assumed to be related to inventory performance
(Tashman, 2000) and often the forecasting literature stops at reporting only
accuracy metrics. Levén and Segerstedt (2004) showed that keeping track
of both accuracy and inventory metrics can lead to insightful findings for
intermittent demand. This paper provided further evidence of the usefulness
of investigating both accuracy and inventory metrics. In particular, find-
ings suggest that accuracy metrics alone, can sometimes lead to misleading
conclusions for intermittent demand. Inventory metrics were evaluated fol-
lowing the suggestions of the literature(for e.g. see Levén and Segerstedt,
2004; Eaves and Kingsman, 2004; Syntetos and Boylan, 2006). For instance,
Eaves and Kingsman (2004) reach a similar conclusion. Selection of a fore-
casting method by forecasting accuracy and inventory metrics differ. Fore-
casting accuracy should be distinguished from the stock control performance
of a model. There is a substantial body of literature discussing this issue
(for e.g. see Gardner, 1990; Sani and Kingsman, 1997; Syntetos and Boylan,
2006; Strijbosch et al., 2011), raising the importance of evaluating inventory
metrics, beyond forecasting accuracy. The disconnect between forecasting
accuracy and inventory metrics is also illustrated in the argument by (Stri-
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jbosch et al., 2011); it is common practice to optimise forecasting models
on the one-step ahead forecasting error, while the models are deployed to
aid longer lead time inventory decisions. The disconnect between the two is
discussed thoroughly in the previous references.

In this study, based on robust accuracy metrics NN showed poor fore-
casting performance, while the opposite was found true, based on the in-
ventory simulation. NN − Rate outperformed other alternatives. Syntetos
and Boylan (2005) and Hyndman and Koehler (2006) argued that measur-
ing forecasting accuracy for intermittent demand time series is not trivial.
One has to consider the presence of zeros in the demand, and potentially
in the forecasting errors. This can make many well established error mea-
sures impossible to calculate and weaken the reliability of those that can be
calculated. For instance, Teunter and Duncan (2009) concluded that mean
absolute deviation favoured under-forecasting. Furthermore, measuring fore-
casting performance for intermittent demand time series in the conventional
way can be shown to erroneous in a more fundamental way and should not
be used for model selection purposes. Croston’s method and its variants, as
well as the NNs proposed here, do not output the point forecast demand
for each period, rather a ”‘demand-rate”’ as discussed in section 2. Conse-
quently, measuring the deviation of the raw time series against the demand
rate forecast of the models is not meaningful. To illustrate this point further,
consider the following example; suppose that for a time series the demand for
the next three periods is (0,0,9). The optimum Croston’s forecast would be
a demand rate per period of three units, or (3,3,3) for the next three periods,
resulting in zero excess stock and covering fully the demand. Such a fore-
cast can be interpreted as a demand of 9 units distributed over a number of
periods, since the exact timing of the demand event is unknown. However,
no matter which error metric is employed there will always be forecasting
error. This is due to the focus of conventional metrics on individual time pe-
riods and the importance they put on the timing of the demand. Wallström
and Segerstedt (2010) propose two novel measures of bias, the number of

shortages and periods in stock that avoid this issue. The advantage of these
measures is that they are based on notions of cumulative error, therefore not
focusing on a specific time periods, as conventional error measures do. There-
fore, more research in such kind of error metrics and their implementation in
practice is desirable.
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5. Conclusions

This study proposes a series of neural network models for intermittent
demand forecasting. Two models are proposed, namely the NN −Dual and
NN − Rate. Both are bivariate models that allow interactions between the
demand and the inter-demand intervals of intermittent items, an extension
to conventional intermittent demand modelling. The networks employ re-
gularised cost functions and median ensembles to produce robust forecasts
and make them applicable to time series with short in-sample history that is
often the case for intermittent demand data. The performance of the models
is measured using both accuracy and inventory metrics. The results are con-
flicting and it is argued that the accuracy metrics provide misleading findings
and in fact are erroneous for intermittent demand data. Based on realised
service levels and trade-off curves between holding and backlog volumes the
proposed neural network models out-perform conventional Croston’s method
and its modifications. NN − Rate achieves the highest service rates in the
simulation at the expense of small increase in the holding stock, which is how-
ever much lower than time series methods that reach similarly high service
levels by overstocking, such as the Naive and CR−Naive.

An inventory simulation of 1000 time series, based on the dataset by Syn-
tetos and Boylan (2005) is used to provide empirical evidence of the neural
networks’ performance. Further simulations, particularly with different le-
vels of intermittency, will allow exploring further the conditions under which
the proposed neural networks perform well for intermittent time series and
explore further the effects of training sample size for their performance.
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