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We investigate the dynamics and synchronization of two inertia ratchets interacting indirectly
through a stochastic dynamical environment. We examine resonant oscillations in their syn-
chronous and asynchronous modes; and we determine the effects of the interaction with the
environment on the system’s response and synchronization. We show that noise-induced multi-
resonance and noise-enhanced synchronization emerge from the ratchets’ interaction with their
noisy environment. The simultaneous quenching of the chaotic regimes, and the domain of gain
parameters for efficient control, are identified. It is shown that optimal transport can be achieved,
implying that an inertia ratchet can take advantage of its noisy environment to enhance its rich
dynamical and transport properties.

Keywords: Stochastic ratchets; Synchronization; Chaos; Multiresonance

1. Introduction

The non-equilibrium dynamics of particles in a ratchet potential (i.e. a periodic potential that lacks re-
flection symmetry) has long been considered a problem of fundamental importance in statistical physics
[Hänggi & Bartussek, 1996; Astumian, 1997; Jülicher et al., 1997; Reimann et al., 1997]. It has become the
subject of strong research focus recently on account of its relevance to diverse areas of physics, chemistry
and biology. An important characteristic of a ratchet system is that, when it is subjected to a station-
ary non-equilibrium perturbation, particle motion in one particular direction is favoured. Several different
models have been introduced in attempts to understand the generation of unidirectional motion from such
non-equilibrium fluctuations. They have been classified by Hänggi & Bartussek [1996]. Among them, our
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interest centres on the rocking ratchet system, in which the particles move in an asymmetric periodic
potential subject to spatially-uniform, time-periodic forces of zero average. In one example, Jung et al.
[1996] studied the effect of finite inertia in a deterministically-rocked periodic potential. They considered
the non-stochastic deterministic case in which noise is absent, thus allowing for the possibility of obtaining
chaotic as well as regular dynamics. In some respects, this deterministically induced chaos can mimic the
role of noise, thereby steering the system to exhibit current flow in either direction. Following this work,
Mateos [2000] established a relationship between the bifurcation and transport properties. In particular,
he showed that current reversals occur at critical bifurcation points associated with type-I intermittency
[Son et al., 2003], arousing wide interest [Barbi & Salerno, 2000; Arizmendi et al., 2001; Al-Khawaja, 2005;
Li, 2006; Kenfack et al., 2007]

Quite generally, a coupling between two systems can result in synchronization, and it has been shown
that a coupling between ratchets can cause them to synchronize [Vincent et al., 2004, 2005; Kostur et al.,
2005; Vincent & Laoye, 2007b,a; Lu et al., 2008; Mateos & Alatriste, 2008; Zarlenga et al., 2009; Xu et al.,
2009; Vincent et al., 2010b,a]. The resulting synchrony has implications for their transport properties and
particularly for the control of directed transport [Vincent & Laoye, 2007b; Xu et al., 2009; Lu et al., 2008].
Previous synchronization studies assumed that the two ratchets interact directly via non-stochastic linear
or nonlinear couplings. In the context of interactions in some physical and living systems, there is evidence,
however, that the coupling may not always be direct [Steele et al., 2003; Strogatz et al., 2005; Taylor et al.,
2009; Zamora-Munt et al., 2010; Fischer et al., 2006]. For instance, populations of cells, e.g. suspensions
of yeast in nutrient solutions, may undergo transitions to coordinated activity that is believed to arise
through communication via chemicals diffusing in the surrounding medium [Katriel, 2008; Taylor et al.,
2009]. Similarly, walkers coupled to the oscillations of the Millennium bridge achieved synchrony with one
another when the number of walkers on the bridge was sufficiently large [Strogatz et al., 2005; Zamora-
Munt et al., 2010]. Another situation is found in semiconductors, where some authors have considered a
system of semiconductor lasers coupled to a central laser with and without time-delays [Fischer et al.,
2006; Zamora-Munt et al., 2010]. These studies suggest that an indirect channel could be used to couple
systems, such that the dynamics of all the systems might simultaneously be modified by tuning the physical
characteristics of the channel. Such an interaction scheme has also been used to demonstrate the role played
by indirectly coupled oscillators in circadian rhythms [Camacho et al., 2004; Rompala et al., 2007].

Moreover, it is well known that noise is ubiquitous in both artificial and natural systems [Anishchenko
et al., 2007; Schimansky-Geier et al., 2003; Zhou et al., 2002; Zhou & Kurths, 2002]. Thus, the interactions
between synchronizing systems are also unavoidably subject to the effects of stochastic perturbations.
In this direction, noise-induced and noise-enhanced resonances and synchronization have been reported
in linearly coupled chaotic systems [Maritan & Banavar, 1994; Zhou et al., 2002; Zhou & Kurths, 2002;

Garćıa-Álvarez et al., 2009; Kenfack & Singh, 2010; Senthilkumar & Kurths, 2010]. Zhou et al. [2002]
showed both numerically and experimentally that noise can enhance phase synchronization; and in [Zhou
& Kurths, 2002], noise-induced phase synchronization and its mechanism for nonidentical chaotic systems

driven by common noise was revealed. Recently, Garćıa-Álvarez et al. [2009] showed that noise and (direct)
coupling are often competing factors in the induction of synchronization; and their coexistence can inhibit
the synchronization independently induced by either. The synchronization of noisy-coupled chaotic systems
has also been investigated from nonlinear control approaches [Lin & He, 2005; Chen, 2007; Tang et al.,
2008; Sun & Cao, 2007a,b].

In the light of the foregoing, we investigate in this paper the effects of noisy coupling on the dynamics
and synchronization of two inertia ratchets that are coupled via a stochastic dynamical environment. We
will show that resonance oscillations that exist in the absence of coupling are destroyed when the ratchets
interact via a noiseless channel. However, the gradual activation of noise induces multiple resonances. It
is also shown that synchronization can be induced and enhanced in the weakly-coupled regime where
synchrony does not occur in the noiseless case. Furthermore, we explore the dynamical environment to
control the underlying chaotic dynamics and transport property by choosing appropriate coupling gain;
and we show that optimal transport may be achieved even in the presence of noise. The results that
we present below show that a noisy environment can significantly enhance the performance of a system.
The rest of the paper is organized as follows. In Sec. 2, we describe the model. In Sec. 3, we examine
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the resonance oscillations and synchronization for both the noiseless and noisy cases. The corresponding
influence of the environment on chaos and on the transport properties are discussed in Sec. 4. The paper
is concluded in Sec. 5.

2. Ratchet Model

We consider a deterministic particle moving in an asymmetric potential while being driven by a zero-
average, time-dependent, periodic external force. The dynamics is exclusively deterministic. Thus we con-
sider a deterministically rocked ratchet that satisfies the following dimensionless inertial dynamics [Mateos,
2000],

s̈+ λṡ+
dv(s)

ds
= F0 cos(ωt) (1)

where v(s) is the asymmetric ratchet potential, and F0 and λ are the forcing strength and the damping
parameter, respectively. The period associated with the frequency ω of the linear motion around the minima
of the ratchet potential is used as the natural unit in which to scale time, implying that all quantities are
in dimensionless units. Thus the dimensionless potential v(s) is given by

v(s) = C − 1

4π2δ
[sin 2π(s− x0) + 0.25 sin 4π(s− x0)] (2)

where C ≃ 0.0173 and δ ≃ 1.6 are fixed potential parameters. The periodic potential v(s) has an infinite
number of potential wells as shown in Fig. 1. It is shifted by a value x0 in order to place one of the minima
at the origin.

The dynamics and transport of the single ratchet system (1) and (2) have been investigated when under
the influence of noise [Arizmendi et al., 2001; Li, 2006]. Arizmendi et al. [2001] showed that the consequence
of disorder (noise) is the appearance of current reversal and chaotic diffusion on regular trajectories; whereas
on some chaotic trajectories disorder induces regular motion. Similarly, Li [2006] showed that at low noise
the transport is mainly chaotic and at high temperature it is mainly stochastic. Here, we consider two
inertia ratchets (1) coupled via a noisy channel. The channel is a stochastic and dynamical environment
which provides feedback into the systems, through a gain. The system is simply expressed as

ẍ+ λẋ+
dv(x)

dx
= F0 cosωt+ k(z − x)

ÿ + λẏ +
dv(y)

dy
= F0 cosωt+ k(z − y)

ż = k(x− z) + k(y − z) + ξ(t) (3)

with

v(·) = C − 1

4π2δ
[sin 2π((·)− x0) + 0.25 sin 4π((·)− x0)], (4)

where the stochastic term ξ(t) is Gaussian white noise of zero mean (i.e. ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = 0) and
correlation ⟨ξ(t)ξ(t′)⟩ = 2Dδ(t− t′), with D being the intensity of the noise. v(·) is the asymmetric periodic
potential, k the coupling coefficient or control gain parameter and other quantities are as in Eq. (1). Notice
that the characteristics of our system (3) are such that: (i) the two ratchets are not directly coupled to
one another, rather, the interaction is provided by a common stochastic dynamical environment; (ii) the
environment (with state space z) is dynamical and stochastic while each ratchet (x, y) is deterministic;
and (iii) when D = 0 the dynamics of system (3) is deterministic. Since the coupling environment consists
of both deterministic and stochastic dynamics, the parameters k and D play key roles in the systems’
dynamics. In the limit D → 0, deterministic dynamics predominates while in the limit D → ∞, stochastic
effects predominate. Although D may assume the value zero, k remains nonzero so long as the oscillators
interact with the environment.

We point out that our system (3) could be useful in the description of certain biological systems,
such as two cells in which oscillatory reactions take place through communication via chemicals diffusing
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Fig. 1. The ratchet potential (2) for C = 0.0173, δ ≃ 1.6 and x0 = −0.19

within the surrounding medium, wherein the generation of macroscopic oscillations is determined by the
ability of the cells to synchronize with each other or, as we consider here, when each of the systems
synchronizes separately with their common environment [Katriel, 2008]. Extending the purely deterministic
configurations earlier presented by Katriel [2008], Strogatz et al. [2005], Zamora-Munt et al. [2010], Fischer
et al. [2006] and Zamora-Munt et al. [2010], our model also assumes that the common environment may
be under the influence of noise, because noise is of course omnipresent in real life situations.

3. Synchronization and Resonance Oscillations

3.1. Synchronous mode

Let us first consider the channel to be a noiseless environment, that is, D = 0. In this case, the two systems
could be in either a synchronous or an asynchronous mode. We define the full synchronization mode for
D = 0 as a periodic motion satisfying the condition: x(t) = y(t) = s(t). Based on this assumption we
can, by adding the first two expressions in (3), obtain the following system characterizing the synchronized
state

s̈+ λṡ+
dv(s)

ds
= F0 cos(ωt) + k(z − s),

ż = 2k(s− z), (5)

with v(s) given by equation (2). The stability of the synchronized dynamics given by Eq. (5) can easily
be verified by using Lyapunov stability theory and Linear Matrix Inequalities (LMI), as we have recently
shown [Vincent et al., 2010b]. Resmi et al. [2010] employed a method based on Lyapunov exponents, and
this can readily be applied by making appropriate approximations like those used by Vincent et al. [2010b].
We leave this stability analysis for verification by the reader. An important feature of the synchronized
dynamics given by Eq. (5) is the non-vanishing property of the interaction term as found in elastically
coupled oscillators [Vincent et al., 2010b,a] where the coupling vanishes in the synchronized state. Here, in
contrast, the ratchets never decouple, implying that there is always a constant in-and-out flow of energy
from the channel to-and-from each of the systems. We focus our attention on the effect of this control
on the periodic oscillations and synchronization dynamics. We examine in Fig. 2 the dependence of the
amplitude of vibration on the external forcing amplitude for both the coupled and uncoupled systems and
for different driving frequencies (ω). We found that, for a given frequency, there is a forcing amplitude F0

at which the amplitude of vibration attains its peak value. As ω increases, larger F0 is required for the
system to vibrate at maximum amplitude as depicted in Fig. 2(b). Notably, for ω = 0.5, the peak occurs
at F0 ≈ 0.24 as shown in 2(a) and for higher driving frequencies, the peaks occur at F0 ≈ 0.49, 0.59, 0.73
and 0.83 for ω = 0.6, 0.7, 0.8 and 0.9, respectively. Furthermore, Fig. 2(a) shows that the coupling strength
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Fig. 2. Amplitude of harmonic oscillation in x(t) as a function of F0 showing (a) a resonant peak for λ = 0.75, and ω = 0.5
at F0 = 0.24 when uncoupled (k = 0;D = 0) and its disappearance when coupled (k = 0.5;D = 0); and (b) for higher driving
frequencies ω = 0.6, 0.7, 0.8, and 0.9 when uncoupled.

has a profound effect on the system’s response. For instance, for k = 0.5 the resonant response that occurs
in the uncoupled system disappears completely. This effect was also observed for other frequencies.

To examine the effect of the control gain parameter k on the synchronization process, we first show
in Fig. 3 the system’s response to the control gain parameter for F0 = 0.5; that for the uncontrolled case,
k = 0 is indicated by the horizontal line. For k ≥ 0.1 the system undergoes a rapid decrease in its response
as k increases, reaching a minimum at k = 0.5; and thereafter attaining steady-state. This implies that,
by making a suitable choice of k one can optimize the channel for efficient transport control. To ascertain
whether or not this maximum and minimum correspond to synchronization transitions, we can make use
of the error state L, an index that provides a good measure of the synchronization quality. The error state
for a given trajectory over a long time dynamics T , is given by:

L =
1

T

∫
0

T [
(x2 − x1)

2 + (ẋ2 − ẋ1)
2
]1/2

dt. (6)

In general, if L2 → 0 or L2 ≤ ϵ, where ϵ is some small tolerance (say, 0.005), then the coupled ratchets
may be assumed to have attained their fully synchronized state. In Fig. 4, we have plotted L2 and x(t)
as functions of k. For k ≥ kc = 0.08, L2 → 0 indicating full synchrony. Near kc, the system oscillation is
maximum, implying that the oscillation resonance in Fig. 3 is connected with the onset of full synchrony.
Our simulation results also reveal that the minimum in Fig. 3 does not correspond to any change in the
system dynamics.
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Fig. 3. Amplitude of harmonic oscillation in x(t) as a function of control gain parameter k, for the synchronous mode. The
dashed horizontal line denotes the uncontrolled case (k = 0). and for different noise strength D, namely D = 0, 10−4, 10−3

and 2× 10−3, respectively. Other parameters are λ = 0.75, ω = 0.5, and F0 = 0.5.

 0

 0.4

 0.8

 0  0.05  0.1  0.15  0.2

L
2

k

kc

 1.25

 1.5

 1.75

A
m

p

Fig. 4. Synchronization index L2 and Amplitude in x(t) as functions of k for the same parameters as in Fig. 3. The critical
coupling (≈ 0.08) coincides with the onset of the maximum peak in Fig. 3.

3.2. Asynchronous mode

We define the periodic motion satisfying x(t) ̸= y(t) as the asynchronous mode. With the synchronous
solution, x(t) = y(t) = s(t) move in rhythm as a composite system with state space s(t), each asynchronized
system moving independently with the solutions x(t) and y(t), such that the controlled equation in this
case satisfies Eq. (3). To consider the effect of the channel on the amplitude of the ratchets, we present
in Fig. 5 the amplitude of vibration as a function of the control gain parameter for the same values as in
Figs. 3 and 4. Note that the two ratchets have the same parameters, leading to the same dynamics. Fig.
5, also shows that there are ranges of k where the amplitude decreases with k. For our set of parameters,
we find that when 0.1 < k < 0.24 and 0.46 < k < 0.69, the channel can turn the system in an unfavorable
direction where the amplitude of oscillation is decreased.

3.3. Effects of Noise

We now consider the effects of noise on our system. We will show that a noisy environment can induce
multi-resonance oscillations as well as enhancing the quality of synchronization. In the presence of noise
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Fig. 5. Amplitude of harmonic oscillation in x(t) as a function of control gain parameter k for the asynchronous mode. The
dashed horizontal line denotes the uncontrolled case (k = 0). λ = 0.75, ω = 0.5, and F0 = 0.5.

(D ̸= 0), the full synchronization mode is given by the following system

s̈+ λṡ+
dv(s)

ds
= F0 cos(ωt) + k(z − s)

ż = 2k(s− z) + ξ(t) (7)

with v(s) given by equation (2). We now consider separately the induction by noise of multi-resonance and
synchronization:

(i) Noise-induced multi-resonance: For k = 0 and D = 0 the resonance disappears as shown in Fig. 2. The
response of the system is also robust for some very small noise intensities (D ≤ 10−4). However, as the
noise intensity approaches D ≈ 0.002 (see Figs. 3 and 5) multiple resonances/multi-resonance oscillations
suddenly appear. Figs. 3 and 5 illustrate this phenomenon for different noise intensities and for increasing
coupling strengths k. Moreover, the multi-resonance appears to be more prominent at larger values of k.
Further evidence of noise-induced multi-resonance oscillations can be seen in Fig. 6 where the amplitude
of harmonic oscillations in x(t) is plotted as a function of F0 for two different noise intensities: D = 0 and
D = 0.005. Remarkably, however, the multi-resonance oscillations are annihilated at larger noise intensities,
where the amplitudes exhibit irregular behaviour.

(ii) Noise-enhanced synchronization: Fig. 4 (lower panel) shows that complete synchrony does not occur for
weak coupling strength in the absence of noise (D = 0). In particular, for k = 0.005 and k = 0.05, L2 takes
on approximate values of 0.4 and 0.05, respectively. In this regime, the synchronization can be enhanced
by switching on the noise term. To illustrate this, in Fig. 7, we plot the synchronization index L2 vs D for
k = 0.005 and k = 0.05. For k = 0.005, we see in Fig. 7(a) that for small noise strength, the synchronization
performance is not enhanced. However as D rises, the quality of synchronization improves. For k = 0.05
around the burst prior to the occurrence of stable synchronization for D = 0, it is evident that noise
enhances very significantly the quality of synchronization for almost all D values with some bursts in
synchronization being evident (Fig. 7(b)).

In the regime of synchronization, say k = 0.1 shown in Fig. 3, we also observed that noise assists the
complete synchrony between the two ratchets as they interact with the environment (See Fig. 7(c)). These
scenarios indicate that noise does not destroy synchronization; rather, synchronization can be enhanced
by the presence of the noisy environment. For further increase in k to k > 0.1 (not shown), the system is
globally synchronized for all k and D, implying that synchronization also occurs for large k values in the
presence of noise. Kenfack & Singh [2010] recently reported that synchronization would not occur even
for large coupling strength where noise enhanced the stochastic dynamics of two coupled underdamped
bistable oscillators, due to topological and nondeterministic nature of the systems. Our results here show a
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Fig. 6. Amplitude of harmonic oscillation in x(t) as a function of the parameter F0 showing the appearance of multi-resonance
oscillations for noise intensities D = 0 and D = 0.005. The other parameters are: k = 0.5, λ = 0.75 and ω = 0.5.

contrary situation where noise can indeed enhance and sustain synchronization at large coupling. However,
whether this is also applicable to bistable oscillators and in line with stochastic resonance as studied by
Kenfack & Singh [2010] remains an open problem.

To complete this picture, we examine synchronization quality in the parameter space of D and k by
estimating the synchronization index (L2) as functions of both the noise intensity D and the coupling
strength k. In Fig. 7(d), we have scanned the quantity L2 so as to reveal its characteristic behavior
and determine the range of noise intensity capable of enhancing synchronization. In general, L2 takes on
minimum and maximum values of 0 and 1, respectively. In our calculation, we have truncated the range
of values of L2 > 0.05; and, in addition, assumed that when L2 ≤ ϵ = 0.005, the ratchets have reached
the complete (strongest) synchronization manifold and that, elsewhere, the systems move away from this
manifold. We have identified five regions as denoted by the colorbars, where white and blue are adjacent
and the variation runs between the extremes of white and yellow; white is the region where complete
synchrony is expected to take place and blue denotes the weakest synchronization regime. From Fig. 7(d),
it is evident that the strongest synchronization quality will typically be achieved for k ≤ 0.05 and for almost
all D values. Notice that this corresponds to the weak coupling regime in Fig. 3 where, in the absence of
noise the coupled ratchets are not synchronized (L2 > 0.005 is the cut-off). Thus, with noisy interaction,
the complete synchronization state could be reached in regimes where it was impossible without noise. As
we move from the white (strongest synchrony) regime to yellow, we observe the appearance of Arnol’d
tongue-like structures at the transition boundaries separating the regions, suggesting that the coupled
ratchets could exhibit phase synchronization. The significant of our results is that inertia ratchets, though
exhibiting rich transport properties could in addition take advantage of a noisy environment to enhance
the conversion of random fluctuations into directed motion in the absence of bias forces.

4. Control and Optimal Transport

Consider two identical inertia ratchets coupled via the dynamical environment given by equations (3) and
(4). Their dynamics for the synchronous and asynchronous modes in the chaotic regime are exactly the
same. To explore the effect of control on the two chaotic ratchets we have simulated them and show in
Fig. 8 their phase portrait and the effect of the control gain parameter on their dynamical response. In
the region of critical chaos (e.g. F0 = 0.0892845, λ = 0.1 and ω = 0.67), the ratchet is highly sensitive to
initial conditions, some of which can lead to very different trajectories (see Fig. 8(a) for k = 0). Taking into
account the effect of control one can observe that, for k = 0.05, the system’s chaotic regime has given way
to a quasiperiodic dynamics (see Fig. 8(b)); and then by further increasing the value of the control gain
parameter k, it is clear that between k = 0.2 and k = 0.5 the system passes through a bi-periodic regime to
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Fig. 7. Synchronization index L2 as functions of the noise intensity D showing: (a) weak enhanced synchrony for k = 0.005,
(b) strongly enhanced synchrony for 0.05 and (c) sustained synchrony for 0.1, respectively. The other parameters are λ = 0.75
and ω = 0.5.

Fig. 8. Phase portraits for increasing control gain parameter. (a) k = 0 (chaotic orbits), (b) k = 0.05 (quasiperiodic orbits of
period-2), (c) k = 0.2 (periodic-2 orbit), and (d) k = 0.5 (periodic-1 orbit). Note that D = 0. The case for D ̸= 0 is same as
D = 0 because the attractors are robust to noisy effects.

a periodic regime and remains periodic thereafter. Thus, the environment suppresses the chaotic dynamics.
It can potentially provide an excellent approach for the stabilization of irregular transport fluctuations,
including current reversals in the ratchet.

We now turn to the effect of the environment on transport. Here, transport is measured quantitatively
by the current J , which in turn is defined as the time-average of the average velocity over an ensemble
of initial conditions. Over a fixed time [Mateos, 2000; Kenfack et al., 2007] the current in system (5) is
defined as

J =
1

M − nc

1

N

M∑
l=nc

N∑
j=1

ṡ(j)(tl). (8)

where N is the total number of trajectories, tl the observation time andM the total number of observations.
This gives the average velocity, which is then further time-averaged over the number of observations
(M − nc). To ensure that a converged current is obtained, some transient effects are cut-off and this is
denoted by nc [Kenfack et al., 2007]. With increasing k, the current J is stabilized and reaches a peak value
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Fig. 9. Current Jµ
max in the units of 10−3 as function of k and F0 showing current enhancement with increasing driving

frequency, ω. Jµ
max has optimum value around k = 1.0 and within the range 0 ≤ F0 ≤ 0.35.

Fig. 10. Current Jµ
max in the units of 10−3 as function of D and k for ω = 0.3 showing regimes of weak, moderate and

enhanced transports. Jµ
max has optimum value around weak k and strong D; and minimum for larger k and weak D.

for fixed F0. In view of the irregular fluctuations as well as the multiple current-reversals, it is convenient
to define a new quantity, the maximum current computed over a coupling interval (0 ≤ k ≤ 1.0) and for
0 ≤ F0 ≤ 1.0. The absolute value of the maximum current is denoted Jµ

max.
Figure 9 provides a global view of the effect of the environment on transport in the form of 3D

plots for selected driving frequencies. Note that Jµ
max with the four associated colorbars showing different

regions, indicating values of Jµ
max as it increases from minimum (yellow) to maximum (blue) are clearly

identified. The yellow color denotes regions in which the environment has an insignificant or minimal
effect on transport at a given frequency; while the blue color represents the regime where the environment
optimizes the magnitude of the current. Starting with ω = ω1 = 0.3 (Fig. 9(a)), the optimum value of Jµ

max

is 8× 10−3 and occurs within the weak-amplitude or forcing regime, typically F0 < 0.1. If the range of k is
further increased to k = 2.0, we find that the optimum value of Jµ

max is further enhanced, lying within the
same F0 regime shown in Fig. 9(a). This implies that as the coupled ratchets are driven into a coherent
state by their environment, the current is readily amplified.

The parameter regime of current amplification also depends on the frequency ω of the external driving.
For ω = ω2 = 0.5, we observe that Jµ

max, in the range of k shown takes an optimum value of 6 × 10−3

within a broader range of F0 which is lower than the optimum value of Jµ
max for ω1 as shown in Fig. 9(b).

Further increase in the frequency to moderate values, say ω = ω3 = 0.67 as in Fig. 9(c), shows that the
forcing amplitude regime for which optimal transport can be achieved is also at larger coupling strength.
Moreover, in this moderate ((ω2, ω3) = (0.5, 0.67)) frequency regime, the influence of the environment on
transport is more pronounced. However, as the frequency rises, the effect of the environment weakens and
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the behavior seen at low frequencies gradually returns again as shown in Fig. 9(d).
Finally, we demonstrate enhanced transport in the present of noise. Fig. 10 reveals that, in the weak-

coupling region where multi-resonances and enhanced synchrony arose due to stochastic effects, the currents
also exhibit maxima in the parameter space of D and k for ω = 0.3. Again, enhanced current can arise over
a broad range of noise intensity. With the combination of large coupling and weak noise intensity, small
currents will be obtained; while large coupling strength and large noise intensity will give rise to moderate
currents. This same observation was also made for the other frequencies shown in Fig. 9.

5. Conclusion

To summarize, we have examined the resonance oscillations and synchronization between two identical
ratchets coupled indirectly via a noisy environment. The noisy environment was found to play a significant
role in the dynamics and synchronization processes. In the absence of noise and coupling there are of course
no resonance oscillations; whereas, when the interaction becomes noisy multi-resonance oscillations are
induced. Noise was also found to enhance synchronization quality in the weak-coupling parameter regime
where the systems were unsynchronized in the absence of noise, as well as assisting the synchronization
performance in the synchronized state where the coupling strength is typically strong. Furthermore, we
have demonstrated that the properties of the ratchets can conveniently be altered by changing the feedback
gain of the environment, thus, providing an efficient means of controlling the underlying dynamics and
the corresponding transport properties. In this way, steady transport can be achieved for appropriately
chosen values of the control gain parameter k. The control gain regime for optimal transport has also
been identified in amplitude-frequency parameter space. For relatively strong coupling, we have shown
that optimal transport can be achieved over a broad range of amplitudes for moderate frequencies. The
import of our results in general is that useful transport in real macroscopic systems may be enhanced
by allowing the system to interact with its environment. Specifically, the rich transport properties of
inertia ratchets may significantly be enhanced through the systems’ interaction with a noisy environment.
Our analysis of the two-ratchet system, leading to synchronized regular motion, could be extended to a
system of n identical or nonidentical ratchets whose collective dynamics can be adjusted by playing on the
characteristics properties of its environment.
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