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We consider the phase dynamics of an ensemble of Kuramoto oscillators whose eigen-

frequencies are perturbed to model the openness of living systems, and we show that it
exhibits time-localized epochs of synchrony. A new quantitative measure is used to show
that the model compares well with electroencephalography (EEG) data recorded from
a healthy awake human.
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1. Introduction

Globally-coupled nonlinear oscillators are found in a diverse range of self-

synchronizing ensembles in physics, chemistry, communications and living systems.

Often, they are open, dissipative, and function far from thermodynamic equilibrium.

Systems of this kind frequently exhibit order, e.g. through spontaneous synchroniza-

tion [1, 2]. In what follows, we model a class of open, self-synchronized, oscillatory

systems relevant to e.g. the collective behavior of neurons in the brain.

Brain models may be grouped into (a) neuron models [3], and (b) macroscopic

field models [4–6]. Such models may include stochastic forcing terms [7] to account

for the unpredictability of neuronal firing dynamics brought about by the brain’s

complex connectivity. We will make use of the Kuramoto model, a class (b) model

increasingly being applied in neuroscience [8–10], for which the dynamics are based

solely upon phase because any amplitude dynamics is assumed negligible. Here we

emulate macroscopic brainwave dynamics with a modified form of the model. We

use each Kuramoto oscillator to represent a cluster of neurons (i.e. a macrocolumn)

that mutually interact to yield coherent oscillatory behavior. A potential difficulty

is that Kuramoto models force all members of the ensemble to behave in a syn-

chronized manner for sufficiently strong coupling, so that there is a danger of the

model becoming too highly synchronized to represent a healthy human brain. We
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therefore make use of an “open phase dynamics” approach to model macroscopic

brain activity as seen in electroencephalography (EEG) signals, in particular to

try to encompass their intermittent synchronization. Synchrony is seen as being

disrupted by information/matter flow [11]. This results in alternating epochs of

synchronized and de-synchronized states caused by the openness to environmental

influences, while feedback mechanisms inherent in the Kuramoto system allow the

system to self-regulate and maintain stability.

In Sec. 2 we introduce the Kuramoto model and propose a method of general-

izing it to describe open systems where the influence of the environment cannot be

neglected. We summarize in Sec. 3 a recently-introduced method for quantifying

the degree of synchronization in an ensemble of coupled oscillators in terms of a

quantity κ, and we apply these ideas to a human EEG signal in Sec. 4. In Sec.

5 we apply the generalized Kuramoto system to provide a minimalistic model of

macroscopic brain function using phase dynamics. Openness is simulated, not by

smooth time-varying functions (as in classic non-autonomous oscillatory systems),

but instead by discrete discontinuous change in the system’s state, representing

its response to the environment. These changes are effected by perturbing some of

the oscillators away from their natural eigenfrequencies. We show that the result

is episodic synchronization. Estimating the time-scales of this intermittency from

the EEG data, and using κ as a measure, we show that the model can provide a

satisfactory description of the episodic character of EEG synchronization. In Sec.

6 we summarize the results and draw conclusions.

2. An open phase-dynamics model

In the simplest case, a self-synchronizing system of oscillators is closed. If their

dynamics is governed, to a good approximation, by phase dynamics then it may be

described by the classic Kuramoto model [1, 2]:

ϕ̇p(t) = ωp +
K

N

N∑
q=1

sin(ϕq(t)− ϕp(t)), p = 1, . . . , N. (1)

Here ϕp is the phase of the pth oscillator at time t with eigenfrequency ωp chosen

at random from a unimodal, symmetric probability density g(ω). Coupling between

the N nodes is all-to-all, with strength K ∈ R+. Initially, at time t = 0, all the

phases are randomly selected from a uniform distribution [0 . . . 2π). The collective

behavior is quantified by the complex order parameter:

r(t) = Ψ(t)eiΦ(t) =
1

N

N∑
q=1

eiϕq(t), (2)

where Φ(t) is the average phase and the mean field amplitude 0 < Ψ(t) < 1 is a

measure of the system’s macroscopic coherence (i.e. synchronization). The nearer

Ψ is to unity, the higher the degree of global synchronization; zero denotes the

incoherent (de-synchronized) state.
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A natural generalization of this Kuramoto system is to extend it to the open

case. This is typically realized by the addition of a noise term to Eq. (1), where

statistically-independent equally-distributed noisy forces are applied to each oscil-

lator [2]. The noise term is commonly Gaussianly-distributed with zero mean. An-

other class of openness can be achieved by adjusting Eq. (1) such that ωp and/or K

become time-dependent in a deterministic manner; for example the coupling term

could be K(t) = tK/τ leading to complete system-wide synchronization in time

t ≈ τ
∣∣ωmax

p

∣∣ /K (where
∣∣ωmax

p

∣∣ is the highest eigenfrequency amongst N oscillators

and τ ∈ R+). In [9], each oscillator was subject to an independent Gaussian white

noise and, in addition, the coupling parameter was ramped up in time to simulate

a decrease in anæsthetic concentration.

Here we create, instead, a class of open systems where the pth oscillator in

the network has its eigenfrequency perturbed to a new frequency picked from a

stochastic distribution. After sufficient time, all oscillators will have their origi-

nal eigenfrequency perturbed and then later reset; after which the cycle repeats.

Conceptually this is similar to considering a set of driven “Huygens’ pendulums”

(each of approximately the same eigenfrequency) hanging from, and coupled via, a

wooden beam; knocking any one or more of the pendulums will represent introduc-

ing information (or noise) into the system but, with sufficient time, it will return

to its original state. Unless kicked in this way this system can carry no information

and is closed.

In general, if a perturbation occurs too frequently, it will tend to completely de-

synchronize the system: if there is insufficient time for the transients to die away,

the system will be in a continuous state of agitation. If the system is sufficiently

strongly coupled, and the rate at which oscillators are perturbed is sufficiently slow,

then it will tend towards a synchronized state.

The kick to each eigenfrequency represents a flow of information/energy/matter

in and out of the system, corresponding to its openness. In this sense, our sys-

tem represents a discrete, nonautonomous, Kuramoto model with a special time-

dependent term χp(t) which perturbs the eigenfrequency:

ϕ̇p(t) = ωp +
K

N

N∑
q=1

sin(ϕq(t)− ϕp(t)) + χp(t). (3)

The perturbation to the eigenfrequency χp(t) is chosen at random from a unimodal,

symmetric probability density g(χ); this distribution is distinct from g(ω). In many

biological systems the external environment could have a non-equilibrium proba-

bility distribution g(χ), or there could exist a mechanism which selects only certain

oscillators (particles or information); here we choose the external environment of

the system to perturb the system such that g(χ) has a non-stationary, non-zero

time-dependent mean that represents the extent to which the system is perturbed.

In our model, for a pseudo-random length of time the noise term in each Kuramoto

oscillator will be perturbed to a ‘new’ frequency randomly selected from g(ω), after
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which the oscillator is returned to its original state; the process will then repeat

after a pseudo-random length of time. This process represents the response of neu-

ronal networks to ‘pulses’ of incoming information, after which the network returns

to the quiescent state until another pulse is received.

3. A quantitative method for comparing models and real data

It is essential to be able to estimate quantitatively how well the model agrees with

real time-series data. To achieve this, we make use of a new parameter κ [12],

providing a measure of the degree and nature of the coherence or synchronization

in the system. Consider N time-series signals of the form

s(t) =
1

N

N∑
n=1

sn(t), (4)

where sn(t) ∈ R is the nth signal. The Hilbert transform gives an analytic signal:

r(t) =
1

N

N∑
n=1

an(t)e
iϕn(t), (5)

with an(t) ∈ R+. The first moment of the magnitude of Eq. (5) and the first

moment of the square of Eq. (5) may be expressed respectively as:

M1
|r| =

1

N

√
NJ + (N2 −N)JK, (6)

M1
r2 =

1

N2

{
NL+ (N2 −N)LM

}
, (7)

with

J =

∣∣∣∣∫ ∞

0

αP (α)dα

∣∣∣∣2 , K =

∣∣∣∣∫ π

−π

eiθP (θ)dθ

∣∣∣∣2 , (8)

L =

∫ ∞

0

α2P (α)dα, M =

∫ π

−π

ei2θP (θ)dθ,

where the random variables α and θ have stochastic distributions P (α) and P (θ)

respectively. The quantity κ is defined

κ =
M2

|r| −
(
M1

|r|

)2

M1
r2

(9a)

=
variance(|r(t)|)
mean(r2(t))

(9b)

where M2
|r| = M1

r2 . Hence a single time-series signal (e.g. from an EEG channel) can

be Hilbert-transformed, from which κ can be found with Eq. (9b). This is directly

comparable with κ calculated from a model using Eq. (4–9a).

The rescaled variance of the mean field, κ, provides a useful means of distin-

guishing between the different states of a coupled ensemble, regardless of the total
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strength of the mean field. As oscillators synchronize into a steady state, the am-

plitude of the mean field oscillations stabilizes and the variance falls. If all sn(t)

signals are perfectly synchronized then κ → 0 (or equivalently the mean-field am-

plitude Ψ(t) → 1). Conversely, if the ensemble is de-synchronized and each signal

sn(t) is composed of Gaussian white noise with zero mean and width σ, then both

the real and imaginary parts of Eq. (5) belong to independent Gaussian distri-

butions. It follows that an(t) belongs to a Rayleigh distribution and ϕn(t) to a

uniform distribution. Therefore when P (α) is a normalized Rayleigh distribution

(with α > 0, σ > 0) and P (θ) is a normalized uniform distribution, the maximally

de-synchronized noisy case has,

κ = 1− π

4
≃ 0.215 (10)

with M1
|r| = σ

√
π
2N , M2

|r| = M1
r2 = σ2 2

N . Consequently for the Kuramoto model,

where an(t) = 1 ∀ n, t, the partially synchronized case yields 0 < κ < 0.215 which

is analogous to 1 > Ψ(t) > 0 as defined in Eq. (2) indicating the degree of partial

synchronization.

Consider a multi-stable system, in the simplest case making transitions be-

tween two states. Define ε to be the ratio of the mean-field amplitude of the less-

synchronized state to the more-synchronized state, and similarly define τ to be the

portion of time spent in the more-synchronized state divided by the portion of time

in the less-synchronized state. An estimate of κ is then:

κ ≈ 1− [τ + (1− τ)ε]
2

τ + (1− τ)ε2
. (11)

For a constant and high mean-field amplitude (Ψ(t) ≈ 1 ∀ t), ε = 1 so that, as re-

quired, κ = 0. Crucially, however, these intermittent cases can result in κ > 0.215.

Elsewhere [12] we have used the classic Kuramoto Eq. (1) but with a time-dependent

coupling K(t). This parameter was periodically pulsed between two values in order

to switch the whole ensemble between the synchronized and desynchronized states.

From this we concluded that the smaller the proportion of time spent in the syn-

chronized state, the higher κ becomes – tending towards unity for small τ ; in this

instance if τ . 0.78 then κ > 0.215

4. Analysis of brainwaves using EEG

EEG signals measured on the forehead are the superposition of post-synaptic po-

tentials resulting from the synchronous activity of tens of thousands of neurons

in the cerebral cortex. The brain maintains a balance between having either too

much, or insufficient, synchronization between neurons; either state will potentially

impair information transmission or processing (for example too much synchrony is

seen in epilepsy and Parkinson’s disease [13, 14]). We interpret the mean electric

field measured by EEG, and the mean field of an ensemble of Kuramoto oscillators,

as being analogous. In order to guide our modeling, κ will be applied to an EEG

time-series signal to gauge the nature of the synchronization.
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Fig. 1. (Color on-line) Wavelet transform analysis of the EEG signal from a typical [16–19] awake,
healthy subject. (a) shows the time-averaged wavelet amplitude, with alpha and gamma peaks at
9.9 Hz and 29.5 Hz respectively. Vertical dashed lines indicate the alpha band (8–13 Hz) and the

portion of the gamma (25–35 Hz) centered about the peak amplitude. The full wavelet transforms
(b) and (c) show the time-frequency characteristics of the signal for the alpha (c) and gamma (b)
bands. The intensity of activity at each frequency is indicated by the color scale.

We use a single EEG time-series signal taken from the EU FP6 BRACCIA

project data-set. The measurements were recorded from a healthy, relaxed, awake

adult with eyes closed; extensive data analysis of the BRACCIA data set (not shown

here) demonstrates that our selected EEG signal is typical. It is free of movement

artifacts. BISTM Quatro (two channel) electrodes were located on the forehead,

and 20 minutes of data were sampled at 1200 Hz. Fig. 1 shows the frequency

spectrum, with obvious peaks in the alpha (8–13 Hz) and gamma (>20 Hz) bands

at 9.9 Hz and 29.5 Hz, respectively (we follow Steriade, 2006 [15] and coalesce

traditional beta (13–30 Hz) and gamma (>30 Hz) into a single gamma band).

Viewing these signals in the time-frequency domain (Fig. 1(b) and 1(c)) reveals the

occurrence of large-amplitude (red) epochs, indicating high synchronization: if the

superposition of membrane potentials adds constructively, these epochs will indicate

periods of time when the there is more synchrony. The greater intermittency of high-

synchronization epochs in the gamma band corresponds to the attribution of gamma

as reflecting neuronal synchrony amongst small, localized ensembles carrying out

specific cognitive tasks [16]. On the other hand, alpha activity is considered to

reflect the synchronization/desynchronization of more substantial neuronal groups

over larger distances, hence facilitating higher-order cognitive tasks (i.e. those of

longer duration) [16,17].

To estimate the nature of this synchronization the 20 minute EEG time series

signal was Hilbert-transformed, after which Eq. (9b) was used to obtain κ over

windows of 60 s; from which the mean and standard deviation of κ were calculated.

Exactly the same procedure was also carried out on a signal composed of Gaussian

white noise in order to compare brain dynamics with random processes.
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For the recording from this awake but inactive subject it was found that for

the alpha band, κα = 0.235 ± 0.018 and κnoise = 0.215 ± 0.009; for gamma, κγ =

0.227 ± 0.015 and κnoise = 0.215 ± 0.008. Values calculated from the full signal

(without windowing) were very similar. Alpha activity was less intermittent, i.e.

had longer periods of synchrony, than gamma activity. This result is consistent with

present knowledge of these rhythms, since gamma is known to be associated with

more spatially and temporally localized activity than alpha [16]. The proximity

of the κγ value to κnoise is reasonable, since the more spatially and temporally

localized, and the less synchronous, a signal becomes, the more it resembles noise.

In addition to intermittency, amplitude synchronization may also result in κ >

0.215 but this is unlikely in a highly coupled system; so our EEG κ values indicate

either amplitude synchronization (possibly intermittent) and/or purely intermittent

phase coherence. Moreover Fig. 1(b) and 1(c) confirm the intermittent nature of

increased synchrony.

5. Modeling brain dynamics as an open system

In humans the relatively thick cortex is directly responsible for the EEG voltages,

but it is also strongly influenced by other brain regions, notably the thalamus. To

create a useful model of brain dynamics it is necessary, at the very least, to con-

sider the brain as two separate but connected regions: the thalamus and the cortex.

Simplistically the thalamus is responsible for transmitting, filtering and generally

organizing information flow, while the cortex is responsible for all the information

processing, including cognitive functions. In our model we consider a half (positive

frequencies only) unimodal Cauchy distribution g(ω) of background low frequen-

cies; note that its mean would be zero if both halves were included. Additionally, we

have two active symmetric unimodal Cauchy distributions g(χ) of higher frequen-

cies (notionally emanating from the cortex). It is the higher frequencies introduced

through χp(t) that are responsible for the intermittency. In a phase dynamics pic-

ture, intermittency may be thought of as arising from frequency modulation i.e. in

the absence of amplitude modulation.

There are many studies reporting intrinsic rhythms associated with particular

local groups of neurons, e.g. clock-like delta in some thalamic neurons [20–22], but

here we take a more global view. The frequency spectra of EEG time-series signals

show that the awake brain is primarily concerned with processing incoming infor-

mation and is perturbed away from its intrinsic resting state by external demands.

Consequently the awake EEG (Fig. 1) contains significant power at higher frequen-

cies (predominantly 20–50 Hz) compared with an asleep EEG (not shown here).

However, in the awake but inactive brain with eyes closed, a rhythm of ∼ 10 Hz is

also clearly visible. This alpha rhythm is associated with active inhibition of corti-

cal areas [17] and as such is a less intermittent characteristic than activity in the

gamma band. We consider first the most prominent features in Fig. 1 for which we

set the mean of g(χ) to be 30 and 10 Hz, respectively, for the gamma and alpha
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Fig. 2. (Color) For a subset of gamma oscillators the mean field (a) and averaged ϕ̇(t) (b) are
depicted. The mean phase ⟨ϕ̇p(t)⟩ is the sum of each oscillator in the subset divided by the number
of oscillators in the subset. The nature of the noise introduced by g(χ) is shown through ⟨ϕ̇p(t)⟩.
The mean field (a) is subject to the effect of the other oscillators in the network so is directly

influenced by the noise and perturbed by the rest of the network. In (c), values of ϕ̇(t) from the
model are plotted as a histogram, with the data separated into frequency bins over a range of
1–40 Hz. These histograms are comparable to the wavelet transforms in Fig. 1, with the same
color scale indicating high (red) to low (blue) synchrony. In (c), the left panel is for stationary

g(χ), i.e. the closed Kuramoto system Eq. (1) and on the right are results for our open model
Eq. (3) showing intermittency. The simulation uses a fourth order Runge-Kutta algorithm with
N = 500 oscillators; of these 20% are unperturbed and of the remaining 80% half belong to the

alpha band (centered around 10 Hz) and half to the gamma band (centered around 30 Hz). The
coupling is set at K = 5 rad/s.

sub-ensembles, with a half-width of 0.1 Hz in each case.

Initially the eigenfrequencies for all N oscillators are selected from g(ω) and

20% of all oscillators remain as a background and never have their eigenfrequencies

perturbed, nominally representing cortical neurons that are strongly influenced by

thalamic input. In order to create the intermittency, R(t) determines the period of

time during which the remaining 80% of oscillators are temporarily perturbed away

from their eigenfrequencies (χp(t) ̸= 0), before being returned again (χp(t) = 0).

The alpha and gamma bands each contain 40% of the oscillators. The perturbed

frequency of the pth oscillator is selected from g(χ) and applied through the χp(t)

term; χp = 0 represents neuronal groups with little or no excitatory input and

conversely χp ̸= 0 represents excitatory processes. At the end of each interval

Ra(t) a new Ra+1(t) is selected using Ra+1(t) = Γ + 2Γ(η(t) − 1/2) where Γ

is a constant background rate (different for the two bands) and η(t) is number

drawn from a uniform distribution with zero mean; in the gamma sub-ensemble

by Γ = 20 × 0.05s and in the alpha sub-ensemble by Γ = 180 × 0.05 s. The Γ for

each band is guided by examination of the EEG data (Fig. 1(b) and 1(c)) in order

to ensure that approximately the right number of synchronized events occur. The

term χp(t) ̸= 0 over an interval of 1
2Ra(t) in both sub-ensembles. At the beginning

of every time length Ra(t) the mean of g(χ) is adjusted by 2π(30 + 3(ξ(t) − 0.5))
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in the gamma sub-ensemble and 2π(10 + 2(ξ(t)− 0.5)) in the alpha sub-ensemble,

where ξ(t) is a number drawn from a uniform distribution over the interval [0, 1].

In summary the mean frequency of g(χ) is adjusted at the beginning of the time

interval Ra(t). Afterwards its value is updated to Ra+1(t); and then the whole

process repeats.

The left plot in Fig. 2(c) shows model results for the case where g(χ) is station-

ary, i.e. the closed Kuramoto system (1): the 10 and 30 Hz bands do not exhibit

time-variability, in stark contrast to the left plot in Fig. 2(c) showing the model

results for our open system. In the closed case the alpha and gamma sub-ensembles

have κ ≃ 0.19 ± 0.02 which is consistent with the stationary partially-coupled

case; in the open case the alpha sub-ensemble has κ = 0.24 ± 0.02 and gamma

κ = 0.22 ± 0.01 (standard deviation obtained with a 20 min signal split into 60 s

windows). These values are very similar to the EEG results where κα = 0.23±0.02,

κγ = 0.23 ± 0.01. With a phase dynamics approach, intermittency is evidently

necessary to obtain realistic κ values.

6. Conclusion

We have shown that, if extended to include a noise term to simulate the effect of

the environment, an ensemble of Kuramoto oscillators can provide a satisfactory

description of the intermittent and episodic character of the synchronization seen

in EEG signals. We used the parameter κ [12] to quantify the degree and type

of synchronization, enabling the model to be compared with real data. When the

epochs of synchronization in the model occur on similar time-scales to those seen

in the EEG time-series, both the model and the EEG data yield similar values of

κ ∼ 0.23. This is to be compared with the classic Kuramoto model which, in the

absence of intermittent synchronization, with or without white noise, exhibits κ

values in the range 0 < κ < 0.215, where 0.215 represents the white noise limit.

Intermittency is an integral aspect of brain dynamics and should be taken into

account when modeling. Because much of the information (or matter or energy)

flow is unpredictable from the perspective of a cell receiving it, this intermittency

must be incorporated within the model by the introduction of a term that is subject

to some degree of noise (randomness). We have suggested one way of doing so, but

there are of course other possible approaches that can be explored in the future.

Given that most biological systems are open in the sense that both matter and

information pass continuously in and out, and that many of these systems are self-

synchronizing, we believe that our approach will be widely applicable.
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