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Abstract

We study Tullock’s (1980) n-player contest when each player has an independent prob-

ability 0 < p ≤ 1 of participating. A unique symmetric equilibrium is found for any n and

p and its properties are analyzed. In particular, we show that for a fixed n > 2 individ-

ual equilibrium spending as a function of p is single-peaked and satisfies a single-crossing

property for any two different numbers of potential players. However, total equilibrium

spending is monotonically increasing in p and n. We also demonstrate that ex-post over-

dissipation is a feature of the pure-strategy equilibrium in our model. It turns out that

if the contest designer can strategically decide whether to reveal the actual number of

participating players or not, then the actual number of participants is always revealed.
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1 Introduction

Contest theory, which started from Tullock’s famous paper,1 standardly assumes that the

number of players is fixed.2 However, sometimes players do not know the actual number of

players participating in the contest. For example, in many rent-seeking contests an individual

lobbyist does not know how many other lobbyists are competing for the rent when she exerts

her effort.3 In this paper, we consider Tullock’s n-player contest where each player has an

independent probability 0 < p ≤ 1 of participation.

We show that such contests have a unique symmetric equilibrium which can be described

in closed form. We analyze properties of this equilibrium and compare individual and total

equilibrium spending in the standard Tullock model and in our case. Note that the standard

Tullock model is a special case of our model where the participation probability is one (i.e.

p = 1). Individual equilibrium spending, X∗(r, V, n, p), depends on four parameters: the

marginal return, the prize value, the number of potential players, and the probability of

participation. It turns out that individual equilibrium spending is strictly increasing in the

marginal return and the value of the prize for any fixed n and p. Therefore, total equilibrium

spending is also strictly increasing in the same parameters. These observations are, of course,

consistent with the standard Tullock model where p = 1.

We show that individual equilibrium spending as a function of the participation probabil-

ity p is single-peaked. Moreover, for any number of potential players n, the unique positive

probability which maximizes individual equilibrium spending is always strictly less than one.

Therefore, each active player spends more under some uncertainty about the number of players

than under certainty. There are several reasons why it is important to know about individual

equilibrium spending. Sometimes the contest outcome depends solely on the winner’s individ-

ual spending. In many R&D races, for instance, losing firms end up with no right to produce

so their effort and investments are socially wasteful. In this case, total spending is not impor-

tant but the individual spending made by the winning firm is. Our analysis suggests that it

can be beneficial for society to have some degree of uncertainty in this case.

We also demonstrate that a single-crossing property4 holds for individual equilibrium
1Models similar to Tullock’s (1980) have been studied in the literature on advertising and rivalry for market

shares. Friedman’s (1958) paper is probably one of the first in the literature.
2Surveys of the contest literature can be found in Nitzan (1994), Szymanski (2003), Congleton, et al. (2007),

and Konrad (2007).
3The same situation often takes place in R&D races when firms do not know the actual number of R&D

race competitors. Another example is a standard lottery where one player wins a unique main prize. Typically,

when players buy lottery tickets they do not know the actual number of players.
4This property is different from the Spence’s single crossing condition that has an important role in signaling,

contract theory, and mechanism design.
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spending: for a fixed marginal return and a prize value, any two individual equilibrium spend-

ing curves (as functions of p) with different potential numbers of players cross only once. This

property is surprising and important. First, the single-crossing property helps to identify the

unique probability which maximizes individual equilibrium spending: We prove that two ad-

jacent individual equilibrium spending curves cross at the peaked point of the curve with a

higher number of potential players. Second, based on the single-crossing property, we show

that the interval of participation probabilities is divided into two parts. If p > 0.9, then the

standard contest result that individual equilibrium spending is decreasing in the number of

participating players holds. However, if 0 < p < 0.9, then the above result does not hold.

It turns out that the comparative statics are much simpler for total equilibrium spending

than individual equilibrium spending. Although individual equilibrium spending is strictly

increasing in only two out of four parameters, total equilibrium spending is strictly increasing

in all four parameters. In particular, unlike individual equilibrium spending, ex-ante total

equilibrium spending (as a function of probability p) is maximized under certainty when

p = 1.

Our model provides another possible answer for a long-standing question about over-

dissipation in equilibrium. Since Krueger (1974), Posner (1975), and Tullock (1980), there

have been many attempts including Corcoran (1984), Corcoran and Karels (1985), Higgins, et

al.(1985), Michaels (1988), and Leininger and Yang (1994) to explain over-dissipation within

a theoretical framework. Now it is a well-known result that ex-ante over-dissipation is not

consistent with equilibrium behavior.5 Ex-ante over-dissipation never takes place in our model

either. Since total equilibrium spending is monotonically increasing in p, the highest expected

(ex-ante) total spending is achieved in Tullock’s case p = 1.

Hillman and Samet (1987) and Baye, et al. (1994, 1999) show that ex-post over-dissipation

can take place as a particular realization of a mixed-strategy equilibrium. We demonstrate that

ex-post over-dissipation is a natural feature of the pure-strategy equilibrium if the number of

players is stochastic. The intuition for this observation is straightforward. If the participation

probability is below one, p < 1, the actual number of players in the contest can be different

from the expected number of players. We demonstrate that if n > 3 and the actual number

of players is much higher than the expected number of players, then ex-post over-dissipation

occurs. However, the expected number of players always coincides with the actual number of

players if p = 1 and, therefore, ex-post over-dissipation never takes place in that case.

Games with an uncertain or stochastic number of players are a natural extension of games
5Recently, Baharad and Nitzan (2008) have shown that over-dissipation is possible in equilibrium, when the

contestants distort their winning probabilities.
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with a fixed number of players. In auction theory, McAfee and McMillan (1987) were the

first to study models with a stochastic number of bidders. They show that standard auc-

tion theory is sensitive to the assumption that the number of players is common knowledge.

Levin and Smith (1994) consider auctions with stochastic entrants resulting from endogenous

entry. They extend the revenue-equivalence and ranking theorems and show that the seller

and society can benefit from policies that reduce market thickness. Levin and Ozdenoren

(2004) investigate bidders’ and sellers’ responses to ambiguity about the number of bidders in

standard auctions with independent private valuations. They show that the general revenue

equivalence result breaks down under ambiguity about the number of bidders. Myerson (1998)

develops a mathematical framework to analyze games with population uncertainty and shows

special properties of Poisson games.6

Myerson and Wärneryd (2006) and Münster (2006) are the first to consider contests with

a stochastic number of players. Myerson and Wärneryd (2006) analyze a model with infinitely

many potential players where the number of players is a random variable. They show that

if it is known for certain that there will be at least one participant, then total equilibrium

spending is strictly lower in a contest with population uncertainty than in a non-uncertain

contest with the same expected number of players. In our model, the number of players is a

random variable which follows the binomial distribution. Even though we do not require that

there has to be at least one participant in the contest, we are also able to demonstrate the same

result as in Myerson and Wärneryd (2006). Münster (2006) considers a model similar to ours.

However, he focuses on the players’ risk attitudes and shows that equilibrium rent seeking

efforts are lower under risk aversion if and only if the expected fraction of active contestants

is low.

Finally, we analyze a situation when the contest designer privately learns the actual number

of players in the contest. It turns out that ex-ante the contest designer and the players are

indifferent whether the information about the actual number of participants is revealed or not.

Moreover, if the contest designer can strategically reveal his private information, the number

of actual players is always revealed in equilibrium.

The rest of the paper is organized as follows. In the next section, we set up the model

and describe the unique symmetric equilibrium. We focus on the properties of individual

equilibrium spending in Section 3. Section 4 is devoted to the properties of total equilibrium

spending. Information revelation about the actual number of players is analyzed in Section 5.

We conclude in Section 6. All proofs are in the Appendix.
6In a Poisson game, the number of players is a random variable which follows the Poisson distribution.
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2 The Model

Consider a contest with n potential risk neutral players. We assume that each potential player

participates (becomes active) in the contest with an independent probability p ∈ (0, 1]. All

active players compete for a single prize of value V . The timing of the game is as follows. First,

nature chooses the active players. Then, without knowing the actual number of participants,

each active player i makes an expenditure, denoted by Xi ≥ 0. The winner of the contest is

determined by the following contest success function

Pi(Xi; M) =


1
|M| , if Xj = 0 for all j ∈M,
Xr

i
Xr

i +
∑

j∈M Xr
j
, otherwise,

(1)

where r > 0, M is the set of active players in the contest, and |M| denotes the cardinality of

M. If player i participates in the contest, she maximizes the following objective function

max
Xi

V ·

 ∑
M∈PNi

p|M|(1− p)|Ni\M|Pi(Xi; M)

−Xi, (2)

where Ni is the set of player i’s possible opponents and PNi is the set of all subsets of Ni.

The first order condition for player i is

V ·

 ∑
M∈PNi

p|M|(1− p)|Ni\M|
rXr−1

i

∑
j∈MXr

j

(Xr
i +

∑
j∈MXr

j )2

− 1 = 0. (3)

We focus on a symmetric equilibrium where X1 = ... = Xn = X∗. Then, the first order

condition (3) becomes

X∗ = rV ·

 ∑
M∈PNi

p|M|(1− p)|Ni\M| |M|
(|M|+ 1)2

 . (4)

Note that there are Cn−1
|M| different ways to make a set which has exactly |M| elements from

the set Ni. Using this fact, we can rewrite the individual spending (4) as follows

X∗ = rV ·
(
Cn−1

n−1p
n−1 (n− 1)

n2
+ ...+ Cn−1

1 p1 (1− p)n−2 1
22

)
,

where Cn−1
j = (n−1)!

j!(n−j−1)! .

Now we can state the main result of this section.

Theorem 1. Suppose that 0 < r ≤ n+1
n . Then, there exists a unique symmetric pure-strategy

equilibrium where each player’s expenditure is

X∗(r, V, n, p) = rV ·

(
n−1∑
i=1

Cn−1
i pi (1− p)n−i−1 i

(i+ 1)2

)
. (5)
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It is easy to see now that the original Tullock model is a special case of our model where

all players participate in the contest with probability 1. Thus, we get the following corollary.

Corollary 1 (Tullock’s individual spending). If 0 < r ≤ n+1
n and p = 1, then

X∗(r, V, n, 1) =
(n− 1)
n2

rV. (6)

3 Individual Spending

In this section we examine the impact of each parameter on individual equilibrium spending,

X∗(r, V, n, p), and show that p and n have non-monotonic effects on individual equilibrium

spending.

First, we consider marginal return, r, and prize value, V . It is straightforward to see from

(5) that individual equilibrium spending is strictly increasing in both r and V . This means

that Tullock’s (p = 1) finding that individual equilibrium spending is a strictly increasing

function of marginal return and prize value is robust to introducing a stochastic number of

players.

Consider next the remaining parameters, the number of players, n, and the participation

probability, p. Note that if there are only two potential players, then individual equilibrium

spending is monotonic (strictly increasing) in the probability of participation, p, because

X∗(r, V, 2, p) =
rV

4
p. (7)

However, our next example demonstrates that individual equilibrium spending is not mono-

tonic in the probability of participation for n ≥ 3.

Example 1. Suppose that n = 3 and r = V = 1. Then

X∗(1, 1, 3, 0.8) = 0.222 < X∗(1, 1, 3, 0.9) = 0.225 > X∗(1, 1, 3, 1) = 0.222.

This example shows that individual equilibrium spending can be higher if there is some degree

of uncertainty (p < 1) than under certainty (p = 1). The following theorem demonstrates that

this observation is true in general: individual equilibrium spending is single-peaked in p.

Theorem 2 (Single-Peaked Property). For any n ≥ 3, there exists a unique p∗(n) ∈ (0, 1) that

maximizes individual equilibrium spending. Moreover, for given r, V , and n, X∗(r, V, n, p) is

single-peaked in p.
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In order to see the intuition behind this property, consider individual equilibrium spending,

expression (5), which can be rewritten in the following way

X∗(r, V, n, p) =

(
n∑

i=1

q(i− 1; p)x(r, V, i)

)
, (8)

where x(r, V, i) = i−1
i2
rV is individual equilibrium spending in the contest with i actual players

and q(i; p) = Cn−1
i pi(1 − p)n−i−1 is the probability that an active player faces exactly i

opponents in the contest (there are i + 1 players in the contest). In other words, individual

equilibrium spending, (8), is a weighted average of individual equilibrium spending in the case

of 1, 2, 3, ..., n actual players, where the corresponding weight represents the binomial density

assigned to the number of actual opponents of the active player. Note that if an active player

faces zero opponents, then she is the only player in the contest and her equilibrium spending

is zero (see the success function (1)). Moreover, it is a well-known result that individual

equilibrium spending decreases (if i ≥ 2) in the number of players in the contest without

uncertainty. Therefore,

x(r, V, 2) > x(r, V, 3) > ... > x(r, V, n− 1) > x(r, V, n) > x(r, V, 1) = 0. (9)

Note that if p is very small (very close to zero) in (8), then most of the weight is given to the

first coefficient, x(r, V, 1) = 0, so that individual equilibrium spending is also very small. Now

if p increases, most of the weight shifts from the first to the second coefficient x(r, V, 2) and

individual equilibrium spending increases. Finally, if p increases more, most of the weight shifts

from the second coefficient to coefficients three, four and so on. Since the second coefficient is

the biggest among all the coefficients, individual equilibrium spending will decrease.7 Figure

1 illustrates the intuition for n = 4.8
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0.40
0.50
0.60
0.70
0.80
0.90

1 2 3 4

Equilibria Spending, x(r,V,n)
Binomial Weights, q(n;p)
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Equilibria Spending, x(r,V,n)
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1 2 3 4

Equilibria Spending, x(r,V,n)
Binomial Weights, q(n;p)

Figure 1: (a) small p (b) p = p∗ (c) large p

7Note that the very last effect is absent if n = 2. Hence, individual equilibrium spending is monotonically

increasing in p if n = 2.
8Note that r and V are chosen such that x(r, V, 1) + x(r, V, 2) + x(r, V, 3) + x(r, V, 4) = 1.
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The Single-Peak Property means that for any given n there exists a unique participation

probability, denoted by p∗(n), that maximizes individual equilibrium spending. How will

this probability change if n increases? In order to investigate that, we need to understand

the relationship between two different individual spending curves with different numbers of

potential players. The following identity demonstrates the connection between two adjacent

individual spending curves.

Theorem 3. Suppose that n ≥ 3, then

(n− 1)(X∗(r, V, n, p)−X∗(r, V, n− 1, p)) ≡ p · ∂X
∗(r, V, n, p)
∂p

. (10)

Since the right-hand side of (10) can be equal to zero only at p∗(n) from the single-peak

property, the individual equilibrium spending curves X∗(r, V, n, p) and X∗(r, V, n − 1, p) can

only intersect once if p ∈ (0, 1). Moreover, the intersection point must be the peak point of

the curve X∗(r, V, n, p). This gives the following corollary:

Corollary 2. For all n ≥ 2, curve X∗(r, V, n, p) intersects curve X∗(r, V, n+ 1, p) at the peak

point of X∗(r, V, n+ 1, p).

The following theorem states even stronger results that p∗(n) and X∗(r, V, n, p∗(n)) de-

crease as n increases. These results are derived directly from the single-peak property and

identity (10).

Theorem 4. Suppose that r and V are given. Then,

i) p∗(n) strictly decreases as n increases;

ii) X∗(r, V, n, p∗(n)) strictly decreases as n increases.

Let us examine how individual equilibrium spending changes if n increases. In the original

Tullock (1980) model, individual equilibrium spending is a strictly decreasing function of the

number of players. However, the following example shows that this is not the case under

uncertainty.

Example 2. Suppose that p = 0.8 and r = V = 1. Then

X∗(1, 1, 2, 0.8) = 0.2 < X∗(1, 1, 3, 0.8) = 0.2222 > X∗(1, 1, 4, 0.8) = 0.2053.9

When do we have a non-monotonic relationship between n and individual equilibrium

spending? Does the presence of some degree of participation uncertainty always guarantee

this non-monotonicity? To answer these questions, we first show that any two individual

equilibrium spending curves with different number of potential players cross only once on the

interval p ∈ (0, 1].
9Münster (2006) also points this possibility out.
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Theorem 5 (Single-Crossing Property). For any 2 ≤ m < n, there exists a unique p(m,n) ∈
(0, 1] such that

X∗(r, V,m, p(m,n)) = X∗(r, V, n, p(m,n)). (11)

The intuition for the single-crossing property is as follows. Consider two different numbers

of potential players 2 ≤ m < n. If p is very small (very close to zero) in (8), most of the weight,

(1−p)m−1 and (1−p)n−1, is given to the first coefficient, x(r, V, 1) = 0, in the weighted average.

Since 2 ≤ m < n, individual equilibrium spending is higher for n potential players (it puts

less weight on the first coefficient). If p is very close to one, individual equilibrium spending

in our model becomes very close to what it would be in Tullock’s model and hence is higher

for m potential players. Since individual equilibrium spending is continuous in p, it has to be

a “crossing” point for two individual equilibrium spending curves with different numbers of

potential players. Theorem 5 shows that such a crossing point is unique.

Theorems 4 and 5 demonstrate that the individual equilibrium spending curves do not

intersect to the right of p∗(3). This implies that we observe the non-monotonic relationship

between n and individual equilibrium spending if and only if the participation probability is

smaller than p∗(3) = 0.9.

Corollary 3. Suppose that r and V are given. Then the individual equilibrium spending,

X∗(r, V, n, p), is monotonically decreasing in n if and only if 0.9 < p ≤ 1.

Corollary 3 describes the whole range of p where Tullock’s monotonicity result holds:

more players lead to less individual spending. The intuition behind this result is as follows:

Since there is monotonicity in the extreme case p = 1 and individual equilibrium spending

is continuous in the parameter p, monotonicity should hold in some neighborhood of the

Tullock’s model. Corollary 3 describes this neighborhood. Note that (from the single-crossing

property) if p is smaller than p∗(3) = 0.9 (the crossing point of the individual spending curves

with n = 2 and n = 3), individual spending with three potential players is higher than the

individual spending with two potential players. This means that monotonicity no longer holds

when p < 0.9. All results of this section are summarized in Figure 3.

4 Total Spending

In this section, we examine the impact of each parameter on total equilibrium spending. Even

though in the previous section we showed that individual equilibrium spending is not mono-

tonic in p and n, here we demonstrate that total equilibrium spending is indeed monotonic

in all parameters. Next, we show that ex-post over-dissipation can occur. Finally, we discuss

properties of total equilibrium spending if the expected number of players, pn, is fixed.
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Figure 2: Equilibrium individual spending when rV = 1.

4.1 Properties

LetN∗ and T ∗ denote the ex-ante expected number of players and the ex-ante total equilibrium

spending, respectively. Then

N∗ = Cn
np

nn+ Cn
n−1p

n−1(1− p)(n− 1) + ...+ Cn
1 p(1− p)n−11 = np. (12)

Note that the expected number of players is the same as an expectation of the random variable

that follows a binomial distribution B(n, p) where the probability of success is p and the

number of trials is n.

The expected total equilibrium spending is

T ∗(r, V, n, p) = np ·X∗(r, V, n, p) = rV ·

(
n∑

i=1

Cn
i p

i (1− p)n−i

(
1− 1

i

))
. (13)

From equation (13), it is straightforward to see that the total spending increases as either V

or r increases.

Consider now how a participation probability and the number of potential players affect

total equilibrium spending. We will only discuss the effect of the participation probability

here. Similar reasoning can be applied to the number of potential players. From Theorem 2,

it is clear that for a small p < p∗(n) the expected number of players and individual equilibrium

spending will both increase if p increases. Therefore, total equilibrium spending will increase

too. However, if p ≥ p∗(n), then an increase of p has two different effects on the expected total

equilibrium spending. First, it always increases the expected number of players (see equation

(12)). Second, it decreases individual equilibrium spending. Note that the second effect gets
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Figure 3: Expected total equilibrium spending. rV = 1.

stronger as p increases. In the extreme case when p = 1 the second effect reaches its peak.

However, as is well-known in the literature, even in this case the first effect is stronger. The

following theorem states this formally.

Theorem 6. Suppose that r and V are given. Then,

i) for any n ≥ 2, the expected total equilibrium spending increases as p increases;

ii) for any p ∈ (0, 1], the expected total equilibrium spending increases as n increases.

Figure 3 illustrates Theorem 6.

4.2 Over-dissipation

In this subsection, we show that if the actual number of players in the contest is “much higher”

than the expected number of players, then ex-post over-dissipation can occur.

The possibility of ex-post over-dissipation is reminiscent of a similar observation in auction

literature. For example, Levin and Smith (Proposition 3, 1994) study auctions with stochastic

entrants and show that entry would be excessive from social and private points of view in the

common-value auction.

Denote RT ∗(r, V, n, p; k) as actual total spending, where k is the actual number of players.

Then in the symmetric equilibrium,

RT ∗(r, V, n, p; k) = k ·X∗(r, V, n, p).

Ex-post over-dissipation takes place if and only if actual total spending exceeds the prize value,
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V . That is,

RT ∗(r, V, n, p; k) = k ·X∗(r, V, n, p) > V. (14)

From (14) and (5), it follows that ex-post over-dissipation occurs if

n ≥ k > k∗ :=
1

r ·
(∑n−1

i=1 C
n−1
i pi (1− p)n−i−1 i

(i+1)2

) . (15)

It is clear from (15) that ex-post over-dissipation never happens if the critical number k∗ is

greater than the number of potential players k∗ ≥ n. This happens for small numbers of

potential players, n = 2, 3. For example, if n = 3, we get

V > 0.9V = RT ∗(4/3, V, 3, 0.9; 3) ≥ RT ∗(r, V, 3, p; k), for all r ∈ (0, 4/3] and p ∈ (0, 1].

The smallest number of potential players when ex-post over-dissipation is possible is 4:

RT ∗(5/4, V, 4, 2/3; 4) ≈ 1.049V > V.

Figures 4a and 4b illustrate ex-post under-dissipation in the case of n = 3 and ex-post over-

0.2 0.4 0.6 0.8 1

0.5

1

1.5

4k =
5k = 6k = 7k = 8k = 9k = 10k =

Overdissipation
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3k =

 
Realized
Total Spending

Figure 4: (a) realized total spending when n = 3 (b) realized total spending when n = 10

dissipation in the case of n = 10. We can see (Figures 4b) that ex-post over-dissipation can

occur if k ≥ 6. Moreover, the range of p where ex-post over-dissipation can occur becomes

wider as k increases.

It is important to note that ex-post over-dissipation never takes place in the certain world

because the actual number of players is the same as the expected number of players in this

case. Therefore, some uncertainty must be present in order to have ex-post over-dissipation.

This intuition is similar to the idea behind Baye, et al. (1994, 1999) who show that ex-post

over-dissipation can take place as a particular realization of a mixed-strategy equilibrium. We

summarize this subsection with the following theorem.
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Theorem 7. Ex-post over-dissipation takes place if and only if condition (15) holds. Moreover,

if n = 2 or 3, ex-post over-dissipation never occurs; for any n ≥ 4 there exist p ∈ (0, 1) and

r ∈ (0, n+1
n ] such that ex-post over-dissipation is possible.

4.3 The same expected number of players

In this subsection, we fix the expected number of players, n = np, and compare total equi-

librium spending across the total-equilibrium-spending curves in Figure 3. In particular, we

are interested in comparing total equilibrium spending when p = 1 and n = n, T ∗(r, V, n, 1),

with 0 < p = n
n < 1 and n > n, T ∗(r, V, n, n

n). Note that the expected number of players is

the same in both cases.

From equations (6) and (13), we obtain

T ∗(r, V, n, 1) = rV
(n− 1)
n

and

T ∗(r, V, n,
n

n
) = rV ·

(
n∑

i=1

Cn
i

(
n

n

)i(
1− n

n

)n−i( i− 1
i

))
. (16)

The following theorem presents the main result of this subsection that total equilibrium spend-

ing is strictly lower in any uncertain case in comparison with the certain case.

Theorem 8. Suppose that n ≥ 2. Then

T ∗(r, V, n, 1) > T ∗(r, V, n,
n

n
),

for any n > n.

Theorem 8 shows that uncertainty about the actual number of players induces lower ex-

ante under-dissipation. This result is consistent with Myerson and Wärneryd’s (2006) finding

for another distribution of potential players. They consider a contest with infinitely many

potential players where the number of players is a random variable with expectation µ > 1

and show that total equilibrium spending is strictly lower in such a contest than in a contest

where the number of players is known with certainty to be µ.

5 Comparing Revealing and Concealing Policies

In this section, we assume that a contest designer knows privately the realized number of

players as it is in Levin and Ozdenoren (2004). Then, the risk-neutral contest designer has

two different policies to consider: revealing his private information to the players or concealing

13



it. Which policy is better for the contest designer who wants to maximize the expected total

spending (which is equivalent to maximizing the expected individual spending in this case)?

To answer this question, we consider the following two different scenarios. First, we assume

that the contest designer can commit to always reveal or conceal the actual number of players

(before he observes the actual number of players). We demonstrates that ex-ante the contest

designer and the players are indifferent between whether the information about the actual

number of participants in the contest is revealed or not. Second, we consider a strategic

designer who can choose to either reveal or conceal the actual number of players after he

obtains the information. We show that even if the contest designer can strategically decide

whether to reveal the actual number of participating players or not, the actual number of

participants is always revealed.

5.1 Pre-commitment

Suppose that the contest designer can commit himself to always either reveal or conceal his

private information. Then, we have the following game:

1. The contest designer commits to reveal (subgame R) or conceal (subgame C) his private

information before the contest begins.

2. Nature chooses the number of active players.

3. The designer’s commitment is implemented.

4. Active players choose their individual spending.

5. The winner of the game is determined by the contest success function (1).

Note that subgame C has already been considered in Section 2. In subgame R, active

players face Tullock’s contest. The following result shows that ex-ante the contest designer

and the players obtain the same expected payoffs in subgames C and R.

Theorem 9. Ex-ante, both the contest designer and the players are indifferent between the

revealing and the concealing policies.

This result follows from the expected utility theorem and the fact that individual equilib-

rium spending is a weighted average of individual equilibrium spending in case of 1, 2, 3, ..., n

actual players, where the corresponding weights represent the binomial density assigned to

the number of actual players.

5.2 Strategic Designer

What if the contest designer can strategically decide whether to reveal the actual number of

participating players or not? To investigate this question, we consider the following game:
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1. Nature chooses the number of active players.

2. After observing the number of actual players, the contest designer decides either to reveal

(R,i) or conceal (C) it.

3. Active players choose their individual spending.

4. The winner of the game is determined by the contest success function (1).

Note that the contest designer’s action at stage 2 depends on the realized actual number

of players. Each player observes either C (subgame C) or (R,i) (subgame (R,i)) and makes

her spending decision. Note that in the subgame (R,i) (the contest designer reveals that the

actual number of players in the contest is i), Tullock’s contest takes place and each active

player spends

X̂∗(R, i) = x(r, V, i) =
i− 1
i2

rV. (17)

In subgame C, each player updates her belief about the actual number of players according

to Bayes’ rule. Denote by f(j + 1, p) the player’s posterior belief that there are exactly j

opponents (or j + 1 players including herself) in the contest. The analysis in Section 2 shows

how to construct a unique symmetric equilibrium. Then, individual equilibrium spending is

the weighted average:

X̂∗(C) =
n∑

i=1

f(i; p)x(r, V, i). (18)

Let us look at the contest designer’s decision problem. Given X̂∗(R; i) and X̂∗(C), the contest

designer reveals i if

X̂∗(R; i) > X̂∗(C). (19)

From (9) and (17), the amount of individual spending as a function of the total number of

players in the contest (the subgame (R,i)) can be strictly ranked as follows:

X̂∗(R, 2) > X̂∗(R, 3) > ... > X̂∗(R,n− 1) > X̂∗(R,n) > X̂∗(R, 1) = 0. (20)

Therefore, i = 2 is revealed in the equilibrium because X̂∗(R; 2) (the highest individual spend-

ing) is always greater than X̂∗(C), which is a convex combination of some X̂∗(R; i) for i 6= 2.

Since i = 2 is revealed in the equilibrium (the designer chooses subgame (R,2)), there is zero

probability to have two actual players in the contest in subgame C, or f(2; p) = 0. Therefore,

i = 3 should also be revealed in the equilibrium because X̂∗(R; 3) is now greater than X̂∗(C),

which is a convex combination of some X̂∗(R; i) for i 6= 2, 3. Since i = 3 is revealed in the

equilibrium (the designer chooses the subgame (R,3)), there is zero probability of having three

actual players in the contest in subgame C, or f(3; p) = 0. After applying the same logic to

i = 4, 5, ....n recursively, we obtain the following result.
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Lemma 1. There is no symmetric perfect Bayesian equilibrium in which the contest designer

conceals the number of active players i > 1.

Lemma 1 demonstrates that in any symmetric perfect Bayesian equilibrium, either (a) the

actual number of players is always revealed, or (b) only i = 1 is concealed. It is important to

note that concealing i = 1 means that f(1; p) = 1 and f(i; p) = 0 for all i 6= 1. Hence,

Theorem 10. In any symmetric perfect Bayesian equilibrium, full revelation takes place for

any p ∈ (0, 1) and n ≥ 2.

The last result is surprising because it demonstrates that the strategic designer cannot

take advantage of his private information about the actual number of players.

6 Conclusion

In this paper, we consider Tullock’s n-player contest where each player has an independent

probability of participating. We find a unique symmetric equilibrium and analyze its proper-

ties. The most important observations are:

1. Even though individual equilibrium spending is not monotonic in the potential number

of players and the participation probability, total equilibrium spending is monotonic in all

parameters.

2. Ex-post over-dissipation is a natural feature of the unique symmetric pure-strategy equi-

librium.

3. If the contest designer can privately learn the actual number of the contest participants,

he will always reveal his private information.

There are several natural extensions of our paper. First, it would be interesting to test our

theory in the experimental lab. In particular, our predictions about single-peak and single-

crossing properties of individual equilibrium spending and monotonicity of total equilibrium

spending should be checked.

Finally, the actual number of players in our contest follows Binomial distribution, B(n, p).

This assumption captures the main source of the population uncertainty that results from

the uncertainty each individual faces. Moreover, it is a well-known result that the binomial

distribution converges towards the Poisson distribution with parameter λ = np as n goes to

infinity while the product np remains fixed.10 In this sense, we analyze a finite version of the

“Poisson contest.”
10See, for example, Feller (1968).
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A Appendix: Proofs

Proof of Theorem 1. In order to verify that (5) is indeed an equilibrium, we have to check

the second order condition and confirm that individual spending (5) leads to a non-negative

expected payoff for each player.

In the symmetric equilibrium, player i’s expected payoff is

V ·

(
n−1∑
i=0

Cn−1
i pi (1− p)n−i−1 (1− r)i+ 1

(i+ 1)2

)
≥ 0. (21)

It means that each player prefers to spend (5) instead of nothing, 0, given that each other

player also spends (5). Condition (21) is equivalent to

0 < r ≤
∑n−1

i=0 C
n−1
i pi (1− p)n−i−1 1

(i+1)∑n−1
i=0 C

n−1
i pi (1− p)n−i−1 i

(i+1)2

. (22)

The second order condition, from equation (3), is

V ·

( ∑
M∈PNi

p|M|(1−p)|Ni\M|
r
∑

j∈MXr
j

(Xr
i +

∑
j∈MXr

j )3
(

(r−1)Xr−2
i (Xr

i +
∑
j∈M

Xr
j )−2rX2r−2

i

))
≤ 0.

In the symmetric equilibrium, this condition becomes

0 < r ≤
∑n−1

i=0 C
n−1
i pi(1− p)n−i−1 i

(i+1)2∑n−1
i=0 C

n−1
i pi(1− p)n−i−1 i(i−1)

(i+1)3

. (23)

Note that if 0 < r ≤ n+1
n , then inequalities (22) and (23) always hold.

Proof of Theorem 2. Fix n ≥ 3. Taking a derivative in (5) with respect to p yields

1
rV
· ∂X

∗(r, V, n, p)
∂p

=
(n− 1)(1− p)n−2

4
+

n−2∑
i=1

(n− 1)!
i!(n− i− 2)!

pi(1− p)n−i−2

(
i+ 1

(i+ 2)2
− i

(i+ 1)2

)
=

1
rV
· ∂X

∗(r, V, n, p)
∂p

= (n− 1)(1− p)n−2

(
1
4
−G(p, n)

)
, (24)

where

G(p, n) =
n−2∑
i=1

Cn−2
i

(
p

1− p

)i( i2 + i− 1
(i+ 1)2(i+ 2)2

)
. (25)

Note that
1
rV
· ∂X

∗(r, V, n, 0)
∂p

=
(n− 1)

4
> 0

and since n ≥ 3

1
rV
· ∂X

∗(r, V, n, 1)
∂p

=
−n2 + 3n− 1
n2(n− 1)

=
−n(n− 3)− 1
n2(n− 1)

< 0.
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Since 1
rV ·

∂X∗(r,V,n,p)
∂p is a continuous function of p on the interval [0, 1], there must exist

an interior p∗(n) ∈ (0, 1) such that 1
rV ·

∂X∗(r,V,n,p∗(n))
∂p = 0. Now, we shall show that p∗(n) is

unique.

Note that G(p, n) > 0 for all p ∈ [0, 1] and function G(p, n) is strictly increasing in p since

∂

∂p
G(p, n) =

n−2∑
i=1

Cn−2
i

(
p

1− p

)i−1 i

(1− p)2

(
i2 + i− 1

(i+ 1)2(i+ 2)2

)
> 0. (26)

It means that G(p, n) is equal to 1/4 only at the unique point p∗(n). Therefore, there exists

a unique p∗(n) such that 1
rV ·

∂X∗(r,V,n,p∗(n))
∂p = 0. Finally, from equations (24) and (26) it is

clear that if p < p∗(n) (p > p∗(n)), then ∂X∗(r,V,n,p)
∂p > 0(< 0). This completes the proof.

Proof of Theorem 3. From equation (5), we have

X∗(r, V, n, p)−X∗(r, V, n− 1, p)
rV

=

= pn−1 (n− 1)
n2

+
n−2∑
i=1

Cn−1
i pi (1− p)n−i−1 i

(i+ 1)2
−

n−2∑
i=1

Cn−2
i pi (1− p)n−i−2 i

(i+ 1)2

= pn−1 (n− 1)
n2

+
n−2∑
i=1

(Cn−2
i + Cn−2

i−1 )pi (1− p)n−i−1 i

(i+ 1)2
−

n−2∑
i=1

Cn−2
i pi (1− p)n−i−2 i

(i+ 1)2

=
p

(n− 1)

(
n−1∑
i=1

Cn−1
i pi−1 (1− p)n−i−1 i2

(i+ 1)2
−

n−2∑
i=1

Cn−1
i pi (1− p)n−i−2 i(n− i− 1)

(i+ 1)2

)

=
p

(n− 1)
· 1
rV

∂X∗(p, n)
∂p

. (27)

Proof of Theorem 4. First, we shall show that p∗(n) strictly decreases as n increases. From

equation (24), the unique optimizer p∗(n) must satisfy

G(p∗(n), n) =
1
4
. (28)

Since

G(p, n+ 1)−G(p, n) =(
p

1− p

)n−1(n2 − n− 1
n2(n+ 1)2

)
+

n−2∑
i=1

i

n− i− 1
Cn−2

i

(
p

1− p

)i( i2 + i− 1
(i+ 1)2(i+ 2)2

)
> 0,

for any p ∈ (0, 1) and ∂G(p∗,n)
∂p∗ > 0, we get

p∗(n) > p∗(n+ 1), for n ≥ 2. (29)
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Second, we shall show that function X∗(r, V, n, p∗(n)) strictly decreases as n increases.

From Theorem 3, we have

X∗(r, V, n, p∗(n)) = X∗(r, V, n− 1, p∗(n)). (30)

From (29), it follows that p∗(n) < p∗(n−1). By the definition of p∗(n−1) and its uniqueness,

we get

X∗(r, V, n− 1, p∗(n− 1)) > X∗(r, V, n− 1, p∗(n)). (31)

Therefore, from (30) and (31)

X∗(r, V, n− 1, p∗(n− 1)) > X∗(r, V, n, p∗(n)).

Proof of Theorem 5. First, we show that two curves X∗(r, V,m, p) and X∗(r, V, n, p)

intersect. Note that G(0, n) = G(0,m) = 0. Therefore, from (24), we get

∂X∗(r, V, n, 0)
∂p

>
∂X∗(r, V,m, 0)

∂p
> 0. (32)

From (5) and (6), we have

X∗(r, V, n, 0) = 0 = X∗(r, V,m, 0) (33)

and

X∗(r, V, n, 1) =
(n− 1)
n2

rV <
(m− 1)
m2

rV = X∗(r, V,m, 1). (34)

Continuity of X∗(r, V, n, p) in p together with (32), (33), and (34) provide the existence of an

interior solution of equation (11). Now, we demonstrate that this interior solution is unique.

From Theorem 3, if m = n − 1, then there exists a unique interior solution of equation

(11), p(n − 1, n) = p∗(n). It means that for all n > m ≥ 2 the following equations have a

unique interior solution

X∗(r, V, n, p∗(n)) = X∗(r, V, n− 1, p∗(n))

and

X∗(r, V,m, p∗(m+ 1)) = X∗(r, V,m+ 1, p∗(m+ 1)).

Moreover, from Theorem 4

X∗(r, V, n, p) > X∗(r, V, n− 1, p), if 0 < p < p∗(n)
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and

X∗(r, V, n, p) < X∗(r, V, n− 1, p), if p > p∗(n).

Analogously,

X∗(r, V,m, p) < X∗(r, V,m+ 1, p), if 0 < p < p∗(m)

and

X∗(r, V,m, p) > X∗(r, V,m+ 1, p), if p > p∗(m).

Since n > m, Theorem 4 gives p∗(n) < p∗(m). Therefore,

X∗(r, V, n, p) > X∗(r, V,m, p), if 0 < p < p∗(n)

and

X∗(r, V, n, p) < X∗(r, V,m, p), if p > p∗(m).

Hence, two curvesX∗(r, V,m, p) andX∗(r, V, n, p) can cross only on the interval p ∈ [p∗(n), p∗(m)].

Note that function X∗(r, V,m, p) is strictly increasing and function X∗(r, V, n, p) is strictly de-

creasing on the interval p ∈ [p∗(n), p∗(m)]. Therefore, if there exists a solution of equation

(11), it must be unique.

Proof of Theorem 6. First, we prove part i). Equation (13) yields

1
rV n

· ∂T
∗(r, V, n, p)
∂p

=
n−1∑
i=1

Cn−1
i pi(1− p)n−i−1 i

(i+ 1)
−

n−2∑
i=1

Cn−1
i pi+1(1− p)n−i−2 (n− i− 1)i

(i+ 1)2

=
(n− 1)

2
p(1−p)n−2+

n−2∑
i=1

(
Cn−1

i+1 p
i+1(1−p)n−i−2 (i+ 1)

(i+ 2)
−Cn−1

i pi+1(1−p)n−i−2 (n− i− 1)i
(i+ 1)2

)

=
(n− 1)

2
p(1− p)n−2 +

n−2∑
i=1

pi+1(1− p)n−i−2 (n− 1)!
(i+ 1)!(n− i− 2)!

(
(i+ 1)
(i+ 2)

− i

(i+ 1)

)

=

(
n−2∑
i=0

Cn−1
i+1 p

i+1(1− p)n−i−2 1
(i+ 1)(i+ 2)

)
> 0.

We prove part ii) now. From equation (13), we have

1
rV

(
T ∗(r, V, k + 1, p)− T ∗(r, V, k, p)

)
=

pk+1 k

(k + 1)
+

k∑
i=1

Ck+1
i pi(1− p)k−i+1 (i− 1)

i
−

k∑
i=1

Ck
i p

i (1− p)k−i (i− 1)
i

=
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k+1∑
i=1

Ck
i−1p

i(1− p)k−i+1 (i− 1)
i
−

k∑
i=1

Ck
i p

i+1 (1− p)k−i (i− 1)
i

=

k+1∑
i=2

Ck
i−1p

i(1− p)k−i+1 1
i(i− 1)

> 0.

Proof of Theorem 8. From equation (13), we get

T ∗(r, V, n, p) = rV ·

(
1− (1− p)n −

n∑
i=1

Cn
i p

i(1− p)n−i 1
i

)
. (35)

Note that the function 1
i is strictly convex. By the Jensen’s inequality, we have

n∑
i=1

Cn
i p

i(1− p)n−i 1
i
>

(
∑n

i=1C
n
i p

i(1− p)n−i)2∑n
i=1C

n
i p

i(1− p)n−ii
=

=
(
∑n

i=1C
n
i p

i(1− p)n−i)2

n
=

(1− (1− p)n)2

n
. (36)

Combining inequality (36) with equation (35), we obtain

T ∗(r, V, n, p) < rV ·
(

1− (1− p)n − (1− (1− p)n)2

n

)
=

rV
(n− 1)
n

+ rV

(
2(1− p)n

n
− (1− p)n − (1− p)2n

n

)
< T ∗(r, V, n, 1)− rV (1− p)2n

n
.

The last inequality comes from the fact that n ≥ 2. This completes the proof.
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