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Abstract 

 

This paper presents a new approach that aims to incorporate prior judgmental forecasts 

into a statistical forecasting model. The result is a set of forecasts that are consistent with both 

the judgment and latest observations. The approach is based on constructing a model with a 

combined dataset where the expert forecasts and the historical data are described by means of 

corresponding regression equations. Model estimation is done using numeric Bayesian analysis. 

Semiparametric methods are used to ensure finding adequate forecasts without any prior 

knowledge of the specific type of the trend function. The expert forecasts can be provided as 

estimates of future time series values or as estimates of total or average values over any particular 

time intervals. Empirical analysis has shown that the approach is operable in practical settings. 

Compared to standard methods of combining, the approach is more flexible and in empirical 

comparisons proves to be more accurate. 

 

 

 

Keywords: combined forecasting, integration of judgmental and statistical methods, 

Bayesian methods, MCMC estimation. 

  

mailto:a.davydenko@lancaster.ac.uk


2 

 

Contents 

 

1. Introduction .............................................................................................................................. 3 

2. Building a Model Based on a Combined Set of Data .................................................. 5 

2.1. General Model Formulation ....................................................................................... 5 

2.2. Possible Specifications of Model Components ................................................... 6 

3. Bayesian Inference and MCMC Estimation ................................................................... 8 

4. Understanding Model Sensitivity and Comparative Performance: Simulation 

Examples ...........................................................................................................................................12 

5. Empirical Example ...............................................................................................................25 

6. Conclusions .............................................................................................................................29 

References ............................................................................................................................................31 

Appendix A. Pseudo-code for the MCMC Sampling Procedure ........................................34 

 

  



3 

 

1. Introduction 

Combining forecasts has proved a fertile area of research both theoretically and empirically. From 

the earliest work often ascribed to (Bates and Granger, 1969) through the influential survey article 

of (Clemen, 1989) to the most recent work of (Wallis, 2011) the results have almost invariably 

shown that combining forecasts leads to improved accuracy. Nowadays combining forecasts is 

apparently common in practice (Fildes and Goodwin, 2007). 

In this paper we consider a situation when forecasts are provided by experts at irregular or 

infrequent points of time and then must be updated as new data becomes available and, possibly, 

prorated into shorter-range forecasts. The frequency of updating short-term or medium-term 

forecasts needed for decision-making can be much higher than the frequency of obtaining new 

estimates from experts. Moreover, quite often prior expectations are given by experts in an 

aggregate form (for example, most probable total or average yearly values), while it is important 

for practical purposes to produce timely shorter-range forecasts as well. For example, product 

managers usually provide their estimates of total sales of a product corresponding to certain stages 

of its lifecycle. For the purposes of operations management this information must then be 

converted into weekly or daily predictions, which are recalculated in the light of new sales data. 

Similar problems are also common in financial forecasting when long-range forecasts are issued 

by analysts several times per year; however, continuous updating is required for obtaining short-

term forecasts to support trading decisions. 

In cases such as those mentioned above, well-known time series models based on 

analysing past data cannot ensure the desired quality of forecasts. Not taking into account 

important information available from experts leads to the risk of extrapolating irrelevant historical 

patterns and the inability to handle the likely impact of forthcoming ‘events’. It is also often the 

case that the amount of available historical data is insufficient to find estimates with reasonable 

confidence intervals. 

The need for the integration of management judgment and statistical methods in order to 

improve forecasts has been emphasised in many publications (for example, (Collopy and 

Armstrong, 1992; Goodwin, 2002; Goodwin, 2005) among many others). Practical evidence 

suggests that forecasting based on historical data alone can result in considerable losses to 

companies (Worthen, 2003). 

A widely used approach to compensate for the imperfections of purely extrapolative 

methods is making judgmental adjustments to statistical forecasts. However, this approach 

assumes producing statistical forecasts that are then revised by experts for each period of interest. 

Thus, frequent updating of short-term forecasts using this approach may require excessive human 
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participation and therefore may be impractical and inefficient. Moreover, finding an adequate 

statistical forecast for using it as a baseline for making judgmental adjustment is intractable in case 

of insufficient historical data or long-range horizons. An additional problem is that special events 

such as promotions can distort extrapolations of the trend obtained by statistical methods. 

Therefore experts may need to perform data cleansing or special correction of historical data and 

this task is not always straightforward. The same reasons limit the application of methods for 

combining independent judgmental and statistical forecasts. 

An alternative way to combining forecast information lies in using expert information as 

an input to statistical modelling. One known approach here is based on Bayesian modelling where 

experts provide prior probability density functions (PDFs) for model parameters (Zellner, 1971; 

West and Harrison, 1997; Yelland, 2004). Though (Yelland, 2004) demonstrates examples of 

successful implementation in the context of sales forecasting over the product lifecycle, the 

approach relies on the model’s parameters easily interpretable meaning. Usually experts are not 

competent in providing prior PDFs for model parameters, and therefore such methods are difficult 

to adopt in practice. Another approach to integrate judgmental and statistical methods is rule-based 

forecasting (RBF) proposed by (Collopy and Armstrong, 1992).  The idea of this approach is to 

use a system of rules that helps select and weight extrapolation techniques. However, extrapolative 

techniques can give unacceptably high level of uncertainty about future time series values in cases 

of insufficient data or more than several horizons-ahead forecasts. Moreover, the rules system 

itself is subjective and does not allow for calibrating the use of expert knowledge against the data. 

Perhaps as a consequence, RBF has not found its way into operational planning (Kusters, 

McCullough, and Bell, 2006). 

A further restriction on the existing methods of combining information is that no 

convenient mathematical models exist for prorating of aggregate expert forecasts (Kusters, 

McCullough, and Bell, 2006). Thus, most planners are restricted to using automatic extrapolation 

procedures that cannot take into account the causal effects known to experts. 

In summary, current methods of combining judgmental information with historical 

observations are often inflexible and are unable to provide useful prediction intervals. 

This paper presents an approach that allows the effective incorporation of prior expert 

information (covering a wide range of disparate forms) into a statistical forecasting model. In 

particular, the following features are taken into account: 

  (i) the expert information can be provided in a form of estimates of future time series 

values or as estimates of functions of future time series values representing 

aggregation in time (such as expected total or average values), over products, or 

over locations; also, forecasts can be provided by several experts; 
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 (ii) generally, the underlying data generation process can have complex features such 

as stochastic trends, non-linear dependencies, seasonal effects, non-negative 

domain, etc.; 

(iii) no prior knowledge of the specific type of the trend function is available; 

(iv) observations history can be limited and contain missing values, outliers or 

censored observations (for example, in the case of out-of-stock items). 

The proposed approach is based on constructing a model with a combined data set where 

available actual values and expert forecasts are described by means of corresponding regression 

equations. This allows the incorporation of judgmental information in order to derive the prior 

characteristics of the data generation process. Consistent forecasts are obtained with the use of 

Bayesian inference as characteristics of posterior probability density function for future time series 

values in accordance with a given loss function. The model we propose has two major benefits 

over existing approaches: it can incorporate judgmental information that is available in a wide 

variety of forms, and second, it can produce prediction intervals. Looking ahead, we see that when 

comparisons can be made with existing approaches, its accuracy is at worst comparable. 

This paper is in five further sections. Section two describes this new model for combining 

observations with judgmental forecasts. The model’s estimation is explained in section three while 

its sensitivity to the key assumption of judgmental error variance and its performance in a 

simulation exercise is explored in section four. Section five discusses an empirical example of 

applying the joint model in practical settings. Section six contains our conclusions as to the 

model’s advantages compared to combining forecasts. 

2. Building a Model Based on a Combined Set of Data 

2.1. General Model Formulation 

Let the history of observed values                until the present time   be known 

(    if no history is present). The future unknown time series values starting from     until 

some period   will be denoted as                   . Suppose both past and future time 

series values can be adequately represented by a set of regression equations: 

 

     (                    )                   (1) 

 



6 

 

where   – regression function,   – vector of regression parameters,    – vector of non-stochastic 

explanatory variables relating to period   that are known at time  ,     – lag order,    – noise 

term represented by some known stochastic process that can possibly have some unknown 

parameters. If     then    for           can be modelled as additional unknown 

parameters. 

Alongside the statistical data, it is assumed that a number of expert forecasts are available, 

which relate to  , and these are denoted as               . These forecasts are estimates of 

values of some known functions of the past and future time series elements: 

 

                           (2) 

 

where         – a function whose value is estimated by experts,    – error corresponding to expert 

forecast   ,   – number of judgmental forecasts. For example, if forecast    is an estimate of   , 

where        , then           . If    is an expected total value (i.e., cumulative forecast) 

for a period between     and             then         ∑   
   
     , etc. If, for example, 

two cumulative judgmental forecasts were available for the next two seasons each having   

disaggregated periods then     and         ∑   
   
     ,         ∑   

    
       . Further it 

will be assumed that the distribution of expert errors    and the parameters of this distribution can 

be estimated based on available data. One way to model the features of expert errors is to regress 

previous forecasts on known outcomes. 

Thus, equations (2) represent an additional set of observations   that are related to the 

future yet unobserved time series values  . The use of these additional observations allows us to 

build a model based on a combined set of data that includes both the observed time series elements 

  and the expert forecasts  . Ultimately, the forecasting task becomes that of finding estimates of 

the future time series values   in accordance with some specified loss function. A general scheme 

of estimating   based on Bayesian inference using hierarchical priors will be given in Section 3. 

 

2.2. Possible Specifications of Model Components 

The choice of regression function and exact specification of error models for    and    in 

model (1)-(2) depend on the nature of the process being forecast and on the features of expert 

errors. Various plausible specifications are possible, the requirement being that they should be 
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robust and flexible enough to accommodate both the historical data pattern and the expert 

forecasts. 

One approach that is widely used for modelling economic time series is to assume that 

time series elements are generated by a random walk with drift process: 

 

                            

 

where    – independent random fluctuation,   – unknown drift parameter required to reflect the 

presence of an expected upward or downward tendency. 

A more flexible approach that can be used to model processes with richer dynamics is to 

assume that the drift term gradually changes over time: 

 

                                       (3) 

 

where      – some analytical function of time argument  . 

A simple way to define      is to use a linear spline function, which is equivalent to using 

a piecewise linear approximation. When using spline functions, it is required to (i) select the 

number of spline knots and (ii) decide where they should be placed. It is known that generally the 

placement of knots has much less impact on the quality of fit compared to the number of knots 

(Stone, 1986). Therefore a standard practice is to use uniformly distributed knots. It is possible to 

start with a constant drift and if visual analysis shows that the fit is too rough, knots can be added. 

Our aim here is to select a minimal number of knots that would ensure a satisfactory representation 

of both expert opinion and available actual outcomes. Apart from the visual method, another 

method to select the number of knots is based on a backward elimination procedure (Smith, 1982). 

The procedure starts with a large number of equidistant knots (so that there are about four or five 

data points per one knot). Then the number of knots is reduced by one at a time until all the 

regression coefficients for the remaining knots become statistically significant. With regard to 

model (1)-(2), this method can be implemented based on assessing the posterior PDFs for the 

regression coefficients after estimating the combined model. Obtaining the posterior densities 

using the MCMC algorithm will be described in the next section. 

Various alternative approaches such as trigonometric approximation, penalised splines, 

Hermite splines, wavelets, Akima interpolation, and others are also available. But our experiments 

show that the linear splines with equidistant knots are usually sufficient to capture time series 

behavior in cases of gradual changes. Since we use splines to model the first difference of a time 
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series, the resulting process becomes a sum of a stochastic trend and a quadratic spline function, 

which in many situations is a sufficiently flexible model. 

The noise term    in equations (1) can be represented by a Gaussian distribution with an 

unknown variance. However, in order to ensure greater robustness of the model, a heavy tailed 

distribution can be chosen instead, such as a Student’s t-distribution with the degrees of freedom 

parameter taken as 5 or so (Venables and Ripley, 1998). 

If    takes only non-negative values, which, for instance, is common for demand 

forecasting, the conditional PDFs for    can be specified using a left-truncated Gaussian 

distribution. The use of this distribution is especially useful when modelling demand levels as it 

often provides a better representation of the actual demand patterns compared to the untruncated 

Gaussian distribution (Johnson and Thomopoulos, 2002). 

The expert errors    in equations (2) are modelled using a Gaussian or t-distribution with 

variances provided by experts or found based on previous forecasts unless there is enough 

empirical data to deduce another form of the distribution. The estimation algorithm outlined below 

allows a choice from a wide variety of possible distributions to represent the errors of expert 

forecasts. 

3. Bayesian Inference and MCMC Estimation 

 

One benefit of the Bayesian approach is that it allows for the use of complex models with 

a hierarchical structure of parameter dependencies (Geweke, 2005). The combined model 

represented by equations (1) and (2) has a hierarchical structure where   depends on  , and   

depends on other unknown parameters of the model. A general scheme of applying Bayesian 

methodology to find forecasts based on the combined model (1)-(2) is as follows. 

Let the time series model represented by equations (1) have the following parameters: 

  (i) the parameters of the regression function (previously defined as  ), 

 (ii) the parameters of the stochastic process that generates the random component   , 

and 

(iii) any additional variables that are used to fully specify the model (such as starting 

values of    when they are not yet observed). 

Let all the unknown parameters of model (1) be denoted as  . In accordance with the 

Bayesian approach, these parameters are treated as random variables. It will be assumed that the 

prior distributions for elements of   are taken as non-informative. The choice of priors when 

implementing numerical integration methods will be described below. Let the available values of 
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the explanatory variables    used in equations (1) be denoted as   〈          〉. Apart from 

 , the combined model (1)-(2) also includes the vector of unknown future time series elements   

as a random variable. 

The optimal forecast is found based on the marginal posterior PDF for future unknown 

time series values  . This PDF is defined as 

    |       ∫     |        

  

  (4) 

where    – the existence domain for   and      |       – the full joint posterior PDF for model 

parameters. 

Assuming a loss function        ̂ , where  ̂ – point forecast of  , is specified, the 

optimal point forecast is found based on the marginal posterior PDF by minimising the expected 

loss: 

    
 ̂

∫     ̂ 

  ̂

   |          (5) 

For a quadratic loss function, the optimal forecast is found as the mean of the marginal 

posterior PDF (Zellner, 1971):  ̂     |      . Quantiles of the marginal posterior PDF can be 

used as interval predictions. The diffuseness of this PDF may help assess whether any additional 

judgmental participation is needed. 

A general expression for the full joint posterior PDF      |       is obtained using a 

hierarchical structure of priors. Specifically, the joint posterior PDF      |     that is obtained 

based on the data set described by equations (1) is used as a joint prior PDF when finding estimates 

based on equations (2). In accordance with this approach, 

 

     |          |              |      

 

where   denotes proportionality,    |            |     – the likelihood function for   

derived based on equations (2),      |     – the joint posterior PDF for   and   given   and  . 

This posterior PDF is found as 

 

     |        |          |      

 

where    |       – the conditional PDF for   given  ,  , and   derived based on equations (1), 

   |     – the posterior PDF for   given   and   calculated from the prior PDF for  . 
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An exact analytic solution for evaluating the marginal posterior PDF for   is usually not 

available. A widely used approach for dealing with such problems is to implement numerical 

integration based on MCMC methods (Geweke, 2005). The purpose of MCMC methods is to 

sample values of unknown quantities from a distribution that eventually converges to the full 

posterior PDF. Empirical summary statistics are then used in order to draw inferences about the 

quantities of interest. 

Applying MCMC methods requires a model to be specified by means of a sequence of 

conditional PDFs. For the model under consideration, this sequence should include the conditional 

PDFs corresponding to time series elements     |                              the 

conditional PDFs corresponding to expert forecasts  (  |   )          and the prior PDF for 

model parameters                where    are the elements of  . In order to implement 

MCMC sampling, independent proper non-informative prior PDFs with sufficiently large 

variances are usually chosen according to the following widely accepted rules (Congdon, 2001): 

the inverted Gamma PDF in case of strictly positive parameters (such as variances) and the 

Gaussian PDF for parameters with         as the domain. 

Specifying a time series model by means of a sequence of conditional PDFs is common 

in Bayesian forecasting (Geweke, 2005). For simple linear autoregressive processes, obtaining 

corresponding models in terms of conditional PDFs presents no difficulties. Moreover, it is 

possible to specify more complex models (such as a regression model with ARIMA errors) when 

  includes not only parameters as usually conceived, but also latent variables convenient in model 

formulation. This extension immediately accommodates non-standard distributions and time 

varying parameters. Thus, for data points represented by equations (1), well-known models based 

on conditional PDFs can be used. The conditional PDFs corresponding to expert forecasts are 

obtained straightforwardly based on equations (2). 

The flexibility of Bayesian numeric analysis allows treating cases such as missing or 

censored variables in time series history with well-known approaches when specifying conditional 

PDFs. E.g., if an observation is censored from below then it can be modelled as an additional 

model parameter that has a left-truncated conditional PDF as suggested by (Chib, 1992). In this 

paper we will not focus in these issues, but in general the methodology is capable of handling 

these situations. 

Once the model is fully specified, MCMC sampling is performed as follows. 

Let   denote all the stochastic quantities of the joint model: 

 

  〈                                〉. 
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For each quantity   in  , let    denote all quantities from which   depends directly (the 

parents of  ). The conditional independence assumptions represented by the sequence of 

conditional PDFs mean that the full joint distribution of all quantities   has the following 

factorisation: 

      ∏   |   

   

  (6) 

For any quantity  , let the remaining quantities be denoted as    . Based on (6), the full 

conditional distribution    |     is found as 

   |                 |   ∏    |   

    

  

where    – all quantities from which   depends directly (the parents of  ),    – all quantities that 

depend directly on   (the children of  ),    – all quantities from which   depends directly (the 

parents of  ). Thus, having the sequence of conditional PDFs, obtaining the full conditional 

distribution for each quantity presents no difficulties. 

The major principle of MCMC estimation is to successively generate samples from the 

full conditional PDF of each unknown quantity given all the other quantities. Under broad 

conditions this process eventually provides samples from the joint posterior PDF of the unknown 

quantities. For the given model, by sampling each unknown   in   successively, a sample drawn 

from the marginal posterior PDF    |       is obtained. Based on this sample, the marginal 

posterior PDF is then approximated and optimal forecasts are found based on expression (5). 

In general, a direct method for sampling a random number from the full conditional PDF 

is unavailable. In such cases updating of random quantities can be performed in accordance with 

the Metropolis-Hastings method (Geweke, 2005). 

A pseudo-code for the MCMC sampling procedure is given in Appendix A. 

At present a number of software packages are available that can be used to implement 

MCMC estimation when a model is represented as a collection of conditional PDFs. These 

packages implement algorithms that are capable of identifying relevant terms when finding the 

full conditional PDFs, multiplying them together, and choosing a most appropriate sampling 

method. One of these packages is WinBUGS (Lunn et al., 2000) and this has been used to 

implement the examples below. 
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4. Understanding Model Sensitivity and Comparative Performance: 

Simulation Examples 

 

This section contains illustrative examples that aim to 

(i) demonstrate a practical situation where the proposed approach can be applied and 

corresponding types of prior judgmental information that can be incorporated into 

statistical modelling; 

(ii) assess potential gains in forecasting accuracy that can be achieved through the use 

of the proposed approach and describe the conditions under which its application is 

most efficient; 

(iii) show the advantages of using prior judgmental information as an input to statistical 

modelling in comparison with conventional methods for combining forecasts. 

The examples below consider most simple settings where available information contains 

a history of observations together with a single judgmental forecast relating to an individual 

period of time in future. The examples illustrate the sensitivity to input parameters and show how 

the combined forecast that incorporates prior judgmental information can change as new data 

becomes available. In order to assess the effectiveness of joint modelling depending on the 

accuracy of judgmental forecast, a Monte-Carlo experiment is conducted. For this experiment, 

judgmental forecasts are generated using a pre-defined model. Due to space constraints, it is not 

possible to illustrate all the procedures set out above and this paper describes only major 

principles underlying the proposed methodology. 

 

 

Examples Setup 

 
In order to illustrate the application of the joint model, we will use a time series of daily 

closing prices for Hewlett-Packard Company stock (Fig. 1). This time series was used by 

(Cowpertwait and Metcalfe, 2009) as an example of a financial time series that can be adequately 

described by means of a random walk (RW) with drift model. Here we shall assume the same 

model for the time series: 

 

                            (7) 

               

 

In a number of studies model (7) was found to be useful in predicting stock prices (see, 

e.g., Lo and MacKinlay, 2002). Thus, it was proven that stock prices are to a certain extent 
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predictable (which contradicts the weak-form ‘random walk’ hypothesis). Let us consider a 

situation where a history of daily observations containing six months (125 trading days) is 

available and it is needed to find forecast for forthcoming six months. Fig. 1 shows results of 

forecasting obtained using model (7). In these settings, point forecasts and corresponding 

prediction intervals (PIs) can be found using standard methods (see, e.g., Heij et al., 2004). From 

Fig. 1 it can be seen that the interval forecasts are quite diffuse and therefore statistical forecasting 

based on historical data alone leaves quite high uncertainty about the future time series values 

even when looking 25 to 50 days ahead. 

 

 
 

Figure 1. Daily closing prices of Hewlett-Packard stock. Statistical forecasts 

based on model (7) and corresponding 95% PIs. 

 

At the same time, apart from historical data experts can possess additional information 

about long-term behavior of prices, such as potential profitability of a company over a given 

period. The frequency of obtaining expert forecasts in stock markets analysis is typically about 

one year or six months. In the stock market a projected price of stock produced by investment 

analysts is also known as a ‘target price’. 

In the examples below we assume that model (7) is valid, but an investment analyst 

reports a six-months-ahead estimate,  , (or a six-month ‘target price’) alongside with the standard 

error of his/her estimate,   . Let the forecasting task be to find point and interval estimates of 

future unknown time series values given both time series historical data and the additional 
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information provided by an expert. We also assume that it is needed to automatically update 

forecasts in the light of new observations. 

 

 

Obtaining Forecasts using the Joint Model of the Judgmental Forecasts and the Time 

Series History 

We model the judgmental forecast   as if forecaster knows the real future price value 

     subject to some error   which is not correlated with any other variable: 

 

            ,             (8) 

          
  . 

 

In reality this dependency may be different, but by regressing past actuals on 

corresponding forecasts an appropriate model can be constructed. 

The joint model of judgment and time series based on equations (7) and (8) is 

     {
                                   

              
                                      

           (9) 

Based on model (9), forecasts are found in accordance with the procedures described in 

Section 3. A point forecast for origin    and horizon   is obtained as a posterior mean for       

given all the available data:  ̂            |                 . Corresponding prediction 

intervals for each period of interest are found as quantiles of        |                 . 

 

 

Examples of Results and Sensitivity to Input Parameters 

 

Fig. 2 shows forecast obtained using model (9) when      and     . The forecast 

shown on Fig. 2 has narrower PIs compared to the pure statistical forecast found using a random 

walk with drift model (see Fig. 1). The length of the PIs obtained using model (9) depends on   , 

and, as    becomes smaller, the predicted accuracy of final forecast becomes higher. To illustrate 

this effect, Fig. 3 shows forecasting results for     . 
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Figure 2. Results obtained using model (9) with      and     . 

 

 

 

 
Figure 3. Results obtained using model (9) with      and     . 
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Fig. 4 illustrates that the forecast from the joint model gets closer to the target price as 

the judgmental forecast standard error,   , takes smaller values. As    goes to infinity, the 

forecast from the joint model approaches the pure statistical forecast (that was shown on Fig. 1). 

 

 

 
 

Figure 4. Sensitivity of forecast obtained using model (9) to the standard error of 

judgmental forecast,   . 

 

Fig. 5 shows how forecasts are updated as new data becomes available (judgmental 

forecast is given as      and     ). It can be seen that in comparison with the pure statistical 

forecasting the joint model ensures narrower confidence bounds. Another advantage of the joint 

model is that it produces more stable estimates of the drift parameter. 

Fig. 5 may illustrate the following scenario. At origin 125 a six-month-ahead judgmental 

forecast is provided and the joint model forecast is found. Then at origins 150, 200, and 225 the 

joint model forecast is updated in the light of new data. The graphs shown for origins 150, 200, 

and 225 may also correspond to situations when judgmental forecaster makes a 100, 50, and 25 

days-ahead forecast, respectively. As can be expected, the longer the data, the more the 

judgmental forecast is discounted. In case of long-range judgmental forecasts, the joint model 

corrects them to a lesser extent. This happens because in this case the judgmental forecast 

becomes the major source of information about the process being forecast. 
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Figure 5. Updating forecasts using on the random walk with drift model (left side) and with the joint model 

(right side). Model forecasts and 95% PIs are shown for different origins. 
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Generally, provided that modelling assumptions are correct, the gains in accuracy that 

the joint model gives in comparison with pure statistical forecasting (or with other alternative 

methods) can be assessed through the examination of the corresponding PIs. 

Of course, the quality of forecast depends not only on the accuracy of judgmental forecast 

provided, but also on the statistical model used to describe a time series. In our previous examples 

we used a random walk with a constant drift model (described by equation 7). We saw that, when 

     and     , the joint model (9) gives forecast that differs from the initial judgmental 

forecast (see Fig. 2). This might be either because the initial judgment is inaccurate and needs 

correction or because the time series model is not flexible enough to describe future changes. 

What if we use a more flexible time series model while using the same judgmental inputs? Fig. 6 

presents the forecast from the joint model when we use a time-varying drift in the time series 

model instead of the constant drift. More specifically, we describe a drift as a linear function of 

the time argument:                  where            and             . 

Fig. 6 shows that using a more flexible model of time series resulted in final forecasts 

that are much closer to the initial judgment (in fact, the point forecast from the joint almost 

precisely corresponds to the initial judgmental forecast). But at the same time the PIs 

corresponding to the forecast from the joint model have become much wider (compare with Fig. 

2) as a result of increasing the number of its parameters. However, the PIs from the joint model 

are still narrower than those obtained based on the pure judgment. In addition, the joint model 

has allowed the calculation of the intermediate forecasts and corresponding PIs (for points from 

126 to 149) that would have been unavailable when using the judgmental forecast alone. 

The question of specifying an adequate time series model is highly important. Choosing 

an appropriate time series model can be done using the output of the Bayesian analysis based on 

the joint model. If posterior PDFs suggest that some parameter is not significant, it can be 

excluded from the model in order to avoid overparameterizaton. For the example shown on Fig. 

6, the parameter   that was specified above is not significant (the 95% highest density region 

contains zero) and therefore we can accept the simpler model (shown on Fig. 2) to be the more 

appropriate. But if a judgmental forecaster believes that the trend is better described by the more 

flexible time series model then it can be used instead. Then the joint model can be used to update 

forecast as new data becomes available. For example, Fig. 7 shows how the updated joint model 

forecast looks like at point 150 (when additional 25 observations have been collected after the 

initial judgmental forecast). As new data arrives, the updated forecast becomes based more on 

the data rather than on the initial judgment. 
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Figure 6. Forecasts form the joint model obtained using a time-varying drift time series 

model, origin 125. 

 

 

 
Figure 7. Forecasts form the joint model obtained using a time-varying drift time series 

model, origin 150. 
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Evaluating the Effectiveness of the Joint Model Compared to the Combination of 

Forecasts 

 

The established approach to incorporating judgmental forecast information with 

statistical forecasts is through combining of individual forecasts. The most popular method of 

combining individual forecasts is finding a weighted average of constituent forecasts proposed in 

(Bates and Granger, 1969) and this has proved hard to beat when compared to other methods of 

weighting the two sources of information (Wallis, 2011). When using this approach, the 

combined forecast is 

 

                                            (10) 

 

where   – judgmental forecast,      – random walk with drift forecast,       – optimal weights 

calculated depending on the features of errors of constituent forecasts. 

Formula (10) is more limited than the approach we have proposed and can be used only 

in situations when both judgmental and statistical forecast are available for a given period of 

interest. In the above settings this cannot always be done since judgmental forecast relates to      

only. And if, for instance, we needed to obtain a combined forecast of     , we would first need 

to obtain a judgmental forecast for that period of time. Therefore one important advantage of the 

joint model is that forecasts can be found for any period of time. This becomes possible because 

in a single model the available judgmental information is used to improve estimates of parameters 

of time series model and therefore relates to all time periods. 

But even when it is possible to separately construct both statistical and judgmental 

forecasts for subsequent combining, the joint model will still often be preferable for the following 

reasons. As mentioned by (Bates and Granger, 1969, p. 451), there are two kinds of independent 

information that may be missing in one forecast, but present in the other: (i) one forecast is based 

on information that the other forecast has not considered or (ii) the forecasts make different 

assumptions about the form of the relationship between the variables. Our proposed model 

corresponds to the first case: both the judgmental forecast and the historical data model use the 

same assumptions about the relationship between model variables. We assume the judgmental 

forecaster provides some additional information that is not contained in historical data. Let us 

consider how using the joint model (9) differs from using the conventional forecast combining 

scheme (10) in this case. 

Assume that the available data including judgment and historical observations 

corresponds to model (9). Then using model (9) we can find the best possible point forecast in 
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terms of some given loss. For instance, the posterior expectation for      is the best possible 

forecast of      in terms of MSE. This forecast optimally uses both the judgmental information 

and the historical data. At the same time, model (10) is only a simplification of model (9) because 

it does not take into account all the exact interdependencies between the judgmental forecast   

and the model parameters (that, in particular, include   and   ). Since      is estimated 

separately, some information about the model parameters contained in the judgmental forecast, 

 , will be lost when obtaining the combined forecast,   , using equation (10). Therefore, 

generally, equation (10) will produce forecasts that are not as accurate as those of model (9). 

Moreover, using model (10) we cannot refine our conclusions with regard to an updated estimate 

of the drift parameter,  , (and hence, about the presence of a predictable trend) using the 

judgmental forecast because we still use the pure statistical method (namely, the RW with drift) 

to estimate the time series model. But if we use the joint model (9) instead, it can help us estimate 

the time series model parameters, in particular the crucial drift parameter, using both the 

judgment and the historical data and then validate the model using the posterior distributions. In 

particular, to test the significance of the drift term, one might use the quantiles of the posterior 

PDF for  . Therefore the joint estimation gives us the advantages both of improved accuracy and 

in the ability to analyse the behavior of the model parameters in the presence of judgmental 

information. 

The advantages of the joint model of (1) and (2) can be illustrated using the following 

numerical example. It is known (see, e.g., Wallis, 2011) that if errors of constituent forecasts are 

identically independently distributed random variables then formula (10) produces forecasts with 

the following dispersion of errors: 

 

  
  

  
      

 

  
     

   

 

where   
  – MSE of forecast  , and     

  – MSE of forecast     . 

If      is based on model (7) then     
  can be estimated using standard methods (see, 

e.g., Heij et al., 2004). As previously, we assume that   
  is provided by experts. 

Suppose we want to find a forecast for      based on historical data of 125 days (as 

shown on Fig. 1). In this case     
      . Table 1 compares the dispersion of forecast errors 

estimated based on formula (10) and the dispersion of forecast errors that correspond to the joint 

model for different   
  values shown on Fig. 4 and     . The dispersion of the forecasting 

error of the joint model,    
 , was calculated based on the procedures described in Section 3. 
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Table 1: Gains in Quality of Forecasts in Comparison with Optimal Linear Combination 

 

Standard error Relative 

improvement in 

comparison with 

the optimal linear 

combination 

Judgmental 

forecast 

Statistical 

forecast (RW 

with drift) 

Optimal 

linear 

combination 

Forecast 

form the 

joint model 

                   (  
   
  

) 

3 5.18 2.60 2.53 2.55 % 

5 5.18 3.60 3.45 4.24 % 

10 5.18 4.60 4.05 12.03 % 

20 5.18 5.01 4.45 11.26 % 

30 5.18 5.10 4.99 2.24 % 

 

From Table 1 it can be seen that for the example given simultaneous estimation based on 

model (9) ensures higher quality of forecasts compared to combining independent forecasts using 

model (10). 

But an important qualitative advantage of the joint model is that it can be used to prorate 

aggregate judgmental forecasts, which is unattainable in case of combining forecasts. Moreover, 

sometimes it is difficult to find a statistical forecast needed for combining because of the lack of 

observations. When using the joint model, this does not cause difficulties. 

 

 

Monte-Carlo Evaluation of Effectiveness 

 

The aim of this experiment is to empirically assess the extent to which the joint model 

can improve short- and medium-term statistical forecasts when a long-term judgmental forecast 

is available. In particular, we consider the following experimental setup: (i) a judgmental 

forecaster provides a six-month (125 days) target price with accuracy   , (ii) an  -days-ahead 

forecast is required (      ) and must be updated each day as new actual observation 

becomes available. Knowing    and the real value of     , we simulate   random realizations 

of   in accordance with model (8). Based on a sufficiently large number of realizations, we 

evaluate relative effectiveness of the joint model for various values of    and  . 

Assume    and   are given. The evaluation procedure contains the following steps: 
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1) Evaluate the accuracy of the joint model (9): 

a. For each   in       

i. generate judgmental forecast   using model (8); 

ii. for each origin   from     to      , caluculate  -step-ahead 

forecast based on the joint model (9); 

iii. obtain MAE and MSE values for the forecasts obtained, 

denote them as     
     

 and     
     

, respectively. 

b. Calculate mean MAE and mean MSE for the joint model: 

   ̅̅ ̅̅ ̅̅ ̅     
 

 

 
∑     

     
 

   
         ̅̅ ̅̅ ̅̅      

 
 

 
∑     

     
 

   
   

2) Evaluate the accuracy of the random walk with drift model (7): 

a. For each origin   from     to      , calculate  -step-ahead statistical 

forecast based on the random walk with drift model. 

b. Calculate MAE and MSE values for the random walk with drift model, 

denote them as        and       , respectively. 

3) Compare    ̅̅ ̅̅ ̅̅ ̅     
 with        and     ̅̅ ̅̅ ̅̅      

 with       . 

A sufficiently large   is chosen in order to ensure that    ̅̅ ̅̅ ̅̅ ̅     
 and    ̅̅ ̅̅ ̅̅      

 are 

estimates of the population mean with an acceptable standard error (     ). 

For instance, let us first assume that experts predict real values with accuracy       . 

The results of this experiment are shown in Table 2. Analogously, relative MAEs and MSEs can 

be obtained for various values of   . Table 3 presents the results for relative MAEs. For relative 

MSEs the results obtained were similar. From Table 3 it can be seen that the medium-term 

forecasts (    ) can be markedly improved using the joint model (provided that judgments are 

reasonably accurate). At the same time, several days ahead forecasts can still be obtained with 

acceptable accuracy using the random walk with drift model. Therefore, in this example, the joint 

model proved to be the most efficient when what is required is to update medium-term forecasts 

in the light of new data while taking into account the initial expert forecast. 
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Table 2: The Comparison of Accuracy of the Joint Model (      ) 

and the Random Walk with Drift Model 

 

Horizon, 

  

Mean MAE 

of the joint 

model, 

   ̅̅ ̅̅ ̅̅ ̅     
 

MAE of 

the RW 

with drift, 

       

MAE ratio 

(the RW 

with drift is 

the 

benchmark) 

Mean 

MSE of 

the joint 

model, 

   ̅̅ ̅̅ ̅̅      
 

MSE of 

the RW 

with drift, 

       

MSE ratio 

(the RW 

with drift is 

the 

benchmark) 

1 0.26 0.26 1.00 0.17 0.17 0.99 

5 0.57 0.57 1.00 0.65 0.67 0.98 

10 0.81 0.81 1.00 1.09 1.15 0.94 

15 0.98 1.01 0.96 1.49 1.63 0.91 

20 1.15 1.25 0.92 1.99 2.30 0.86 

25 1.29 1.46 0.89 2.54 3.11 0.82 

30 1.36 1.58 0.86 2.85 3.72 0.76 

35 1.46 1.81 0.81 3.17 4.36 0.73 

40 1.48 1.89 0.78 3.18 4.69 0.68 

 

 

 

Table 3: MAE Ratios for Different Horizons and Different Dispersions 

 of Judgmental Forecast Error 

 

Horizon, 

  

MAE ratio for different values of 

the dispersion of judgmental forecast error,   
  

   1                                    

1 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 

10 1.00 0.99 1.00 0.99 0.99 1.00 1.00 1.00 

15 0.87 0.86 0.92 0.95 0.97 1.00 1.00 1.00 

20 0.72 0.73 0.90 0.91 0.94 1.00 1.00 1.00 

25 0.65 0.67 0.86 0.88 0.92 0.98 1.00 1.00 

30 0.57 0.59 0.81 0.82 0.90 0.97 0.99 1.00 

35 0.51 0.53 0.76 0.78 0.88 0.95 0.97 0.99 

40 0.50 0.49 0.74 0.76 0.87 0.95 0.97 0.98 
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5. Empirical Example 
 

This example demonstrates the use of the proposed approach in an application to 

Australian tourism demand data. Fig. 8 shows alternative forecasts for a time series containing 

seasonally adjusted monthly numbers of total short-term departures starting from January 2004 

(data taken from Australian Bureau of Statistics website). 

 

 

 

 

Figure 8. Tourism demand forecasts obtained using automatic forecasting methods (a,b) 

and the joint model (c). Conditional expectation estimates and 80% PIs are shown.  
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Fig. 8(a,b) shows the results of applying two popular automatic univariate forecasting 

algorithms, ARIMA and exponential smoothing. The two algorithms were implemented in 

accordance with (Hyndman and Khandakar, 2008) using the ‘forecast’ package (version 2.19) for 

the R system for statistical computing (R Development Core Team, 2007). The major idea behind 

these automatic forecasting algorithms is to select the model that minimises the AIC (Akaike 

information criterion) value amongst all possible alternative models. In all the models the error 

term is assumed to follow a normal distribution. In the case of the exponential smoothing 

approach, the best model is chosen from a collection of innovations state space models that 

underlie exponential smoothing methods. 

Suppose only first 27 points are available (from January 2004 till March 2006). On Fig. 

8(a,b) it can be seen that the use of the automatic forecasting algorithms for this series cannot 

ensure adequate extrapolation, especially for long-range horizons. Amongst all possible ARIMA 

models, the best model chosen according to the AIC is ARIMA(0,1,0), which is equivalent to a 

random walk model. However, the rest of the data has a pronounced upward trend that could not 

be detected based on the prehistory available. Predictions yielded by the automatically chosen 

exponential smoothing model are even worse since the AIC-based automatic model selection 

algorithm detects a downward trend in the data. Thus, the use of algorithms for automatic 

extrapolation based purely on historical data has the risk of choosing a wrong model, especially 

when conditions are changing or available data is limited. Moreover, even when an adequate 

model is chosen, its PIs may be unreasonably wide since such model will describe a very general 

stochastic process. 

The approach we proposed in this paper can be used to incorporate available expert 

forecasts into a statistical predictive model and thereby to improve the quality of forecasts (Fig. 

8(c)). Expert forecasts for this example were taken from a report issued by Tourism Research 

Australia (TRA) in April, 2006. Table 4 shows TRA forecasts along with examples of 

corresponding variances found based on forecasts with known outcomes. As a result of using 

both sets of data it becomes possible to narrow PIs and better approximate the process dynamics. 

Table 4: Expert Forecasts of Tourism Demand 

Year 2006 2007 2008 

Total departures (‘000 000)  st.dev. 50.38  1.1 52.61  3.2 54.38  4.9 
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Fig. 8(c) presents forecasts found using the following model. Assume the historical data 

containing      time series values is available:           . Let the expert forecasts given in 

Table 4 be denoted as           , and let the corresponding standard deviations of errors be 

denoted as   ,   ,…,   . In this example     expert forecasts that represent estimates of 

aggregated time series values are given. The future unknown time series values of interest will be 

denoted as               . The total number of time series values including past actual 

observations and future unknown values is     . The joint model that links the existing 

historical observations, expert forecasts, and future unknown time series values is 

 

 

{
 
 

 
 

 

 
                                           

     ∑   

    

             (    
 )                

 
(11) 

 

where    – all time indexes relating to year  ,   denotes a constant drift. The variance of    and the 

drift parameter,  , are treated as unknown model parameters with uninformative priors. Once the 

future unknown time series values,   ,        , are estimated, the corresponding estimates 

can be used as forecasts. We used a model with a constant drift since using more flexible models 

would contain insignificant parameters and therefore has the risk of overparameterisation. 

The unknown quantities of the model are given as   {                   }. The 

known quantities of the model are given as   {                        
    

      
 }. For 

each element of  , the posterior marginal PDF can be obtained using the MCMC algorithm 

described in Section 3. In order to calculate forecasts, one needs to obtain posterior marginal PDFs 

for future time series values,     |  ,        . Point forecasts (that are optimal in terms of 

a quadratic loss) are then found in the form of posterior means. Prediction intervals for each period 

of interest are found as quantiles of     |  . 

Table 5 compares the accuracy of different alternative forecasting approaches: (i) naïve 

method, (ii) automatic ARIMA forecasting based on the implementation described in (Hyndman 

and Khandakar, 2008) with exhaustive search of models, and (iii) the joint model (specified as 

(11)). Table 5 shows the accuracy of rolling-origin forecasts that have been calculated for different 

horizons. Forecasts from the above methods have been calculated for each origin from April, 2006 

till December, 2008. The results suggest that in the case of one-step-ahead forecasts the automatic 

ARIMA has outperformed both the naïve method and the joint model in terms of MAE. This may 

have happened due to the fact that the joint model does not take into account stationary 

autoregressive dependencies in differenced time series and therefore cannot process available data 
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as efficiently as the ARIMA model. However, for longer range horizons the joint model has 

outperformed the other methods. Thus, the advantages of the joint modelling become apparent 

when producing medium-range and long-range forecasts. 

Generally, of course, the gains in accuracy depend on the features of judgmental forecasts. 

That is, the gains are higher when judgmental forecasts are closer to the true dynamics of the 

process. However, it is also important that the variances of the judgmental estimates should be 

reasonable. Otherwise, the combined forecasts can be unjustifiably biased towards the estimates 

of the experts. Fig. 9 shows how the joint model forecast can change for alternative variances of 

expert forecasts. 

 

 

 

 

Figure 9. Results of forecasting depending on the variance of expert forecasts: (a) the 

variance is twice larger than that shown in Table 4, (b) the variance is half that shown in 

Table 4. Expert estimates of the mean values are the same as in Table 4. Conditional 

expectation estimates and 80% PIs are shown. 
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Table 5: MAE and RelMAE of Out-of-sample Tourism Demand Forecasts Relating to Periods 

from April, 2006 till December, 2008 

Horizon 

(months) 

MAE RelMAE 

Naïve 

forecast 

Automatic 

ARIMA 

Joint 

model (11) 

Naïve 

forecast 

Automatic 

ARIMA 

Joint 

model (11) 

1 0.100 0.092 0.099 1.00 0.92 0.99 

5 0.159 0.160 0.129 1.00 1.01 0.81 

10 0.310 0.322 0.177 1.00 1.04 0.57 

15 0.476 0.489 0.226 1.00 1.03 0.47 

 

6. Conclusions 

 

This paper has focused on the development of a new model and corresponding methods 

that aim to incorporate expert knowledge into a statistical prediction model. In contrast to the use 

of judgmental adjustments or combining independent forecasts this approach does not require 

calculating statistical forecasts based purely on historical data as a first step. Instead, it is assumed 

that expert knowledge and statistical data are used simultaneously when estimating unknown 

variables of a statistical forecasting model. Thus, this type of integration avoids the necessity of 

extrapolation based on scarce data and does not require excessive human participation. Also, 

forecasts for different horizons can be updated as new statistical data becomes available. 

An overview of existing methods has indicated that they often cannot be efficiently 

applied in practice because they require expert information to be provided in a way that does not 

correspond to the expertise of judgmental forecasters. The paper has considered more relevant 

problem definitions that assume that expert information is provided directly in a form of forecasts. 

These forecasts can relate either to single future elements or to their aggregated values. 

A general model has been described that is based on a combined data set consisting of 

historical data, values of possible explanatory variables, and expert information given in a form of 

forecasts. Appropriate model specifications have been suggested in order for the approach to be 

applicable in practical settings under flexible and realistic assumptions. The corresponding 

estimation techniques we have introduced are based on the use of the numerical Bayesian approach 

to estimating the conditional probability density function and its expectation. This enables using a 

wide variety of possible types of distributions and functional dependencies in order to achieve the 
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desired realism of models. The use of Bayesian inference also makes it possible to find exact 

estimates for small samples, to handle censored or missing observations, and to find interval 

predictions and optimal forecasts in terms of a specified loss function. 

The semi-parametric procedure suggested for model specification can be implemented in 

practice in a wide range of situations since it is based on quite general assumptions, does not 

require the knowledge of any specific parametrically specified trend function, and allows 

subjective information to be provided in a convenient way. 

The sensitivity of the approach has been explored showing the circumstances where it 

proves to be most effective. It has also been shown that in those situations where it can be 

compared directly with the approach of combining forecasts it proved more effective. The 

illustrative examples have shown that the quality of forecasts can be substantially improved as a 

result of applying the proposed modelling procedures. In particular, it has been possible to find 

more accurate forecasts, to obtain more useful prediction intervals, and to reduce the risk of 

extrapolating irrelevant patterns from historical data. 
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Appendix A. Pseudo-code for the MCMC Sampling Procedure 

Notation 

Let 

  〈                                          〉  〈          〉  

where            are the observed (historical) time series values till the present time  ; 

               are the unobserved time series values that we want to estimate; 

           are the available judgmental forecasts; 

           are the unknown parameters of model (1)-(2) (apart from               ). 

 

The total number of elements in   is        . 

 

Given 

1. Observed variables:   {          ,           }; 

2. Full specification of model (1)-(2) in the form of a set of the prior and conditional PDFs for 

the elements of  : 

    |                          ,          that are found based on equations (1); 

 (  |            )          that are found based on equations (2); 

               that are the non-informative priors. 

 

To Find 

Optimal (in terms of MSE) point forecasts of                and corresponding    PIs. 

 

Algorithm 

// STEP 1: initialize Markov chain 

for          do 

if    is an unobserved variable (i.e.,       ) then 

   
   

  some arbitrary initial value belonging to the domain of for   ; 

end if 

end for 
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// STEP 2: generate random samples (see remarks below) 

for                 do 

for          do 

if    is an unobserved variable (i.e.,       ) then 

if it is possible to draw a random number directly from 

    |          |       {  } ∏    |       { } 

          {  }

 

then     //use Gibbs sampling 

draw   
   

    (  |  
   

   
   

       
   

     
     

     
     

); 

else     //use random-walk Metropolis sampling 

draw         
     

   
  ;  //see remarks below 

draw           ; 

     {  
 ( |  

      
          

        
          

     )

 (  
     

|  
      

          
        

          
     )

}   

if     then   
   

   else   
   

   
     

; 

end if 

store   
   

; 

end if 

end for 

end for 

 

// STEP 3: estimate posterior means and percentiles, output results 

for            do 

select   such that    corresponds to   ; 

 ̂   ̂   |   
 

                
∑   

           
           ;  //see remarks below 

find  ̂ 
   and  ̂ 

   as (
   

 
)th  and (

 

 
)th sample percentiles based on   

   
            ; 

output  { point forecast  ̂ , prediction intervals ( ̂ 
  ;  ̂ 

  ) }; 

end for 
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Remarks 

1. The number of samples,         , should be sufficient to ensure that (i) the Markov chain 

has converged to its equilibrium distribution, (ii) the precision of the posterior estimates is 

acceptable. The simplest way to monitor convergence is visual inspection via trace plots of 

chain values (Kass et al., 1998), but various well-known statistics such as the Gelman-Rubin 

diagnostic (Gelman and Rubin, 1992) can be used as well. Once the chain has converged to 

its stationary state, the most popular way to find a Monte Carlo standard error for the posterior 

estimates is via the batch means method (see, e.g., Flegal, Haran, and Jones, 2008). 

2. When calculating the posterior estimates we must discard early iterations as they are too 

strongly influenced by starting values. Here we assume after a sufficient burn-in period 

containing         iterations the chain approaches its stationary distribution. 

3. The conditioning set needed to calculate     |      (up to some proportionality constant) is 

the Markov blanket of    that contains only   ’s parents, its children, and its children’s other 

parents. Therefore the elements needed for the calculation is usually much smaller 

than     . 

4. When using the Metropolis sampling, the choice of   
  should ensure the efficient acceptance 

rate (the fraction of candidate draws that are accepted) of somewhere between      and    . 

It is possible to use adaptive random walk procedures that adjust the standard deviation of the 

random walk in such way that the chain’s acceptance rate converges to the target acceptance 

rate (Atchade and Rosenthal, 2005). 


