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Abstract. A theorem of Laman gives a combinatorial characterisation of the graphs
that admit a realisation as a minimally rigid generic bar-joint framework in R2. A more
general theory is developed for frameworks in R3 whose vertices are constrained to move
on a two-dimensional smooth submanifold M. Furthermore, when M is a union of con-
centric spheres, or a union of parallel planes or a union of concentric cylinders, necessary
and sufficient combinatorial conditions are obtained for the minimal rigidity of generic
frameworks.

1. Introduction

A bar-joint framework realisation of a simple finite connected graph G = (V,E) is a pair
(G, p) where p = (p1, . . . , pn) is an assignment of the vertices v1, . . . , vn in V to framework
points in Rd. In the case of frameworks in the plane, there is a celebrated characterisation
of those graphs G whose typical frameworks are both rigid and minimally rigid. By rigid
we mean that any edge-length-preserving motion is necessarily a rigid motion. That is, a
continuous edge-length-preserving path p(t), t ∈ [0, 1], with p(0) = p, is necessarily induced
by a continuous path of isometries of Rd. The function p(t) is known as a continuous flex
of the framework (G, p) and minimal rigidity means that the framework is rigid with the
removal of any framework edge resulting in a nonrigid framework.
In the following theorem, due to Laman [13] the term generic means that the framework

coordinates of (G, p), of which there are 2|V | in number, are algebraically independent over
Q. This is one way of formalising the notion of a “typical” framework for G.

Theorem 1.1. A finite connected simple graph G = (V,E) with |V | ≥ 2 admits a mini-
mally rigid generic realisation (G, p) in R2 if and only if

(i) 2|V | − |E| = 3 and
(ii) 2|V ′| − |E ′| ≥ 3 for every subgraph G′ = (V ′, E ′) with |E ′| > 1.

Moreover every generic realisation (G, p) of such a graph is minimally rigid.

There is a well-known notion of infinitesimal rigidity, which coincides with rigidity in
the case of generic frameworks. See Gluck [6] and Asimow and Roth [1] for example.
However frameworks may be infinitesimally flexible while also being (continuously) rigid
so this is a stronger notion. The theorem above is due to Laman [13] in its infinitesimally
rigid formulation.
A graph satisfying (ii) above is said to be an independent graph for the plane, or simply

an independent graph when the context is understood. The terminology here relates to
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the connections between the rigidity of geometric framework structures and the theory
of matroids. We shall not need these connections which may be found, for example, in
Graver, Servatius and Servatius [7], Jackson and Jordan [11], [10] and Whiteley [29]. When
both (i) and (ii) hold then G is said to be a maximally independent graph for the plane.
These graphs are also referred to as Laman graphs or (2, 3)-tight graphs.
In what follows we analyse frameworks (G, p) supported on general smooth surfaces M

embedded in R3. In particular in Section 3, we define continuous and infinitesimal rigidity
and show that these notions are equivalent for completely regular frameworks in the sense
of Definition 3.3. Also we define the ambient degrees of freedom of a framework on a
surface M and obtain necessary counting conditions for minimally rigid completely regular
realisations. The development here is in the spirit of the well-known characterisations
of rigidity for free frameworks given by Asimow and Roth [1], [23], [2], where regular
frameworks were identified as the appropriate topologically generic notion. The primary
construct in rigidity theory is the rigidity matrix and for a framework (G, p) on M we
form a relative rigidity matrix RM(G, p), with |E| + |V | rows and 3|V | columns, which
incorporates the local normal vectors for M at the framework points. While we restrict
attention to embedded surfaces in R3 there are natural variants of these connections in
higher dimensions, as is also the case in Asimow and Roth [1].
In Section 4, we pay particular attention to the construction of Henneberg moves be-

tween frameworks (rather than graphs) which preserve minimal rigidity. These construc-
tions together with the graph theory of Section 2 are the central ingredients in the proof
of the main result, Theorem 5.4. This shows that there is a precise version of Laman’s
theorem for frameworks on a circular cylinder with the class of (2, 2)-tight graphs (see
Definition 2.2) playing the appropriate role.
The approach below embraces reducible surfaces and varieties and we also obtain

variants of Laman’s theorem for frameworks supported on parallel planes, on concen-
tric spheres and on concentric cylinders. As a direct corollary of this for the spheres and
planes cases we recover some results of Whiteley [28] on the rigidity of cone frameworks
in R3. On the other hand from the concentric cylinders case we deduce a novel variant
for point-line frameworks in R3 which have a single line.
We begin with some pure graph theory for (2, 3)-tight and (2, 2)-tight graphs and show

that, with the exception of the singleton graph K1 each (2, 2)-tight graph is generated
from K4 by the usual Henneberg moves together with the new extension move, as given
in Definition 2.10. The graph extension move is similar in spirit to the 2-sum move used
by Berg and Jordan [3] (along with the Henneberg 2 move) to generate all circuits for the
generic rigidity matroid in two dimensions. However the 2-sum move, combined with the
Henneberg moves, is not sufficient for our purposes. This is revealed by the (2, 2)-tight
graph formed by two copies of K4 sharing a single vertex.
There are spanning tree characterisations of (2, 3)-tight and (2, 2)-tight multi-graphs

which derive from a celebrated combinatorial result of Nash-Williams [16], [27], [15], and
such equivalences have proven useful in rigidity theory for the locally flat contexts, where
multi-graphs play a role. Although we do not need the spanning tree viewpoint we nev-
ertheless derive a spanning tree characterisation for (2, 2)-tight graphs which are simple,
Theorem 2.13.
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In all cases we are concerned with the usual Euclidean distance in R3 rather than surface
geodesics or other distance measures. We note that Whiteley [29] and Saliola and Whiteley
[25] examine first order rigidity for spherical spaces and various spaces where there is local
flatness. (See also Connelly and Whiteley [4] for global rigidity concerns and Schulze and
Whiteley [25] for transfer of metric results.) For the sphere there is an equivalence between
the direct distance and geodesic distance viewpoints which may be exploited. However
this is a very special case and in general one must take account of curvature and local
geometry. Thus on the flat cylinder, derived from R2/Z and direct distance in R2, a generic
K4 framework with no wrap-around edges has three (independent) infinitesimal motions,
while a typical K4 framework on the classical curved cylinder has only two.
The topic of frameworks constrained to surfaces is developed further in the sequel [18]

where a combinatorial characterisation has been obtained for minimally rigid bar-joint
framework on surfaces invariant under a singly generated isometry group. These so-called
type 1 surfaces include the standard cone and torus, as well as surfaces of revolution and
helicoids.

2. Graph Theory

The Henneberg 2 move (see e.g [7]) is an operation G → G′ on simple connected graphs
in which a new vertex of degree 3 is introduced by breaking an edge vivj into two edges
viw, vjw at a new vertex w and adding an edge wvk to some other vertex vk of G. The
operation maps the set of independent graphs (for the plane) to itself and also preserves
maximal independence. A key step in the standard proof of Laman’s theorem is to show
that if the independent graph G has a minimally rigid generic framework realisation then
so too does G′, and in Section 4 we pursue this in wider generality for Henneberg moves
on frameworks on smooth surfaces. However, for such rigidity preservation arguments to
be sufficient to characterise minimal rigidity we also need to know that the desired class
of graphs can be derived inductively by such tractable moves or related moves. This is a
purely graph theoretical issue and we now address this for Laman graphs (see Definition
2.2(a)), Laman-plus-one graphs (Definition 2.5) and (2, 2)-tight graphs (Definition 2.2(b)).
A Henneberg 1 move (see e.g. [7]) or vertex addition move G → G′ is the process of

adding a degree two vertex with two new edges which are incident to any two distinct
points of G.

Proposition 2.1. Every Laman graph G arises from a sequence

G0 → G1 → · · · → Gn = G

where G0 = K2, the complete graph on two vertices and where Gk → Gk+1 is either a
Henneberg 1 move or a Henneberg 2 move.

The starting point for the proof of this fact is the observation that if G is Laman with
no degree 2 vertex then there are at least 6 vertices of degree 3. Indeed, if ni is the degree
of the ith vertex then Σini = 2|E| and so

6 = 4|V | − 2|E| =
∑

i

(4− ni).

On any of these vertices there is a way of performing an inverse Henneberg 2 move on G to
create a Laman graph. This was established by Laman [13] and requires some care for one
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can easily see that there are non-Laman graphs which become Laman after a particular
Henneberg 2 move.
Define f(H) = 2|V (H)| − |E(H)| for any graph H = (V (H), E(H)). This could be

referred to as the freedom number of H (representing a sense of the total degrees of
freedom when the vertices are viewed as having two degrees of freedom). We remark that
the definition of a graph (V,E) entails that |V | ≥ 1 and |E| ≥ 0.

Definition 2.2. (a) A graph G is (2, 3)-sparse if f(H) ≥ 3 for all subgraphs H containing
at least one edge and is (2, 3)-tight if it is (2, 3)-sparse and f(G) = 3.
(b) A graph G is (2, 2)-sparse if f(H) ≥ 2 for all subgraphs H and is (2, 2)-tight if it is

(2, 2)-sparse and f(G) = 2.

Recall that k-connectedness means that if fewer than k vertices are removed from a
graph then it remains connected. One can readily check that while a Laman graph is
2-connected, a (2, 2)-tight graph is in general just 1-connected.
The next elementary lemma is useful in the construction of tight graphs and also plays

a role in the proof of Lemma 2.4

Lemma 2.3. Let r = 2 or 3. Let G be (2, r)-sparse with subgraphs G1 and G2 which are
(2, r)-tight. If f(G1 ∩G2) ≥ r then G1 ∩G2 and G1 ∪G2 are (2, r)-tight.

Proof. As a subgraph of G, f(G1 ∪G2) ≥ r. We have

f(G1 ∪G2) + f(G1 ∩G2) = f(G1) + f(G2) = 2r

and so

f(G1 ∪G2) = f(G1 ∩G2) = r.

�

The next lemma (see for example [7], [13] and [30]) provides the key for proof of Propo-
sition 2.1. Its analogue for degree 2 vertices is elementary.

Lemma 2.4. Let G be a (2, 3)-tight graph with a degree 3 vertex. Then there is a (2, 3)-
tight graph G′ with a Henneberg 2 move G′ → G.

We now discuss a particular class of (2, 2)-tight graphs.

Definition 2.5. A graph G = (V,E) is a Laman-plus-one graph if it is connected and
simple, with no degree 1 vertices and is such that for some edge e the graph G\e = (V,E\e)
is a Laman graph.

Note that if G is constructed as two copies of K4 joined at a common vertex, or joined
by two connecting edges, then G is (2, 2)-tight but is not a Laman-plus-one graph.
The next proposition is due to Haas et al [8]. It may be proven by first noting that for

a Laman graph one has the vertex degree counting equation 6 =
∑

i(4 − ni), where ni is
the degree of the ith vertex. Accordingly if there are no vertices of degree 2 then there
are a number of vertices of degree 3. By examining the various cases it can be shown that
the addition of an edge cannot inhibit all the potential inverse Henneberg moves on the
remaining vertices of degree 3, except in the case that G is K4.
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Proposition 2.6. Every Laman-plus-one graph is obtained from K4 by a sequence of
Henneberg 1 and 2 moves.

Remark 2.7. We remark that the subclass of 3-connected Laman graphs is relevant to
the Galois nonsolvability of frameworks in the plane and here one needs alternative moves
for an inductive analysis. See Owen and Power [19]. (The general problem in this area
remains open.) Such alternative moves include vertex splitting, a move which also features
in the derivability of (2, 1)-tight graphs [17] but which is not needed in the (2, 2)-tight case.

Remark 2.8. A simple connected graph is said to be a generically rigid graph for the
plane if it is rigid as a framework in R2 in some vertex-generic realisation. In view of
Laman’s theorem this means that G is a Laman graph plus some number of extra edges.
More strongly, a graph G is redundantly rigid if it is rigid and remains so on removal of any
edge. Redundant rigidity is plainly stronger than being Laman-plus-one and is intimately
tied up with the topic of global (unique realisation) rigidity. We remark that the globally
rigid graphs in the plane are K2, K3 and those that are derivable from K4 by Henneberg
2 moves plus edge additions. This rather deeper result is discussed in Jackson and Jordan
[11], [10].

The following lemma is the key for bridging the gap between Laman-plus-one graphs
and (2, 2)-tight graphs.

Lemma 2.9. Let G be a (2, 2)-tight graph with at least one edge. Then either

(i) there exists a proper (2, 2)-tight subgraph H ⊂ G such that no vertex v ∈ V (G \H)
is adjacent to more than one vertex in H, or

(ii) G is a Laman-plus-one graph.

Proof. Suppose that G is not Laman-plus-one. Then there is a proper subgraph J ⊂ G
such that f(J) = 2 and we may choose J minimal (with respect to this property) with
|E(J)| ≥ 1. Since G is not Laman-plus-one, for any edge e ∈ E(G) there is a subgraph
H ⊆ G \ e such that f(H) = 2. In particular we may choose e ∈ E(J) and we may choose
H maximal in G \ e such that f(H) = 2. We have |V (H)| < |V (G)| because otherwise
f(G) = f(H)− 1 = 1.
Suppose H does not satisfy property (i). Then there are vertices a, b ∈ V (H) and

v ∈ V (G \ H) such that edges av, bv ∈ E(G). If av, bv 6= e then f(H ∪ av, bv) = 2 and
H ∪ av, bv ⊂ G \ e which contradicts the maximality of H. We may assume therefore that
av = e. This implies a ∈ V (H∩J) because e ∈ E(J). By Lemma 2.3 (with r = 2, G1 = H
and G2 = J) we have f(H∪J) = f(H∩J) = 2. The minimality of J implies V (H∩J) = a
and then f(H ∪ J ∪ bv) = 1 which contradicts the (2, 2)-sparsity of G. �

Note that, as with the K4 examples above, two (2, 2)-tight graphs may be joined at a
common vertex, or may be joined by two disjoint edges to create a new (2, 2)-tight graph.
Thus the class of (2, 2)-tight graphs is closed under these two joining operations. Using
these two moves with K4 one obtains large graphs which are (2, 2)-tight which have no
inverse Henneberg move to a (2, 2)-tight graph. However these join moves, together with
the Henneberg moves, are not sufficient to generate all (2, 2)-tight graphs. The graph in
Figure 1, or indeed any 3-connected (2, 2)-tight graphs with no inverse Henneberg move,
can not be reduced using the inverse of either of these two joining operations.
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Figure 1. A 3-connected (2, 2)-tight graph with no inverse Henneberg move.

The following contraction move, which is a companion to the last lemma, will be used
in the proof of Theorem 2.11.
Let G be (2, 2)-sparse and let H be a proper subgraph with f(H) = 2. Write G/H for

the multigraph in which H is contracted to a single vertex. This is the graph for which
the vertex set is (V (G) \ V (H)) ∪ {v∗} and the edge set is (E(G) \ E(H)) ∪ E∗ where E∗

consists of the edges (v, v∗) associated with edges (v, w) with v outside H and w in H. If
G is (2, 2)-sparse then so is G/H if it happens to be a simple graph.

To see that G/H is (2, 2)-sparse let K ⊆ G/H and let K̂ ⊂ G be the subgraph for which

V (K̂) = (V (K) \ {v∗}) ∪ V (H), E(K̂) = π−1
e (E(K)) ∪ E(H)

where πe : E(G) \ E(H) → E(G/H) is the natural map. Since π−1
e : E(K) → E(G) is

one-to-one it follows that

2 ≤ f(K̂) = 2(|V (K)| − 1) + 2|V (H)| − (|E(K)|+ |E(H)|)

= f(K)− 2 + f(H) = f(K)

as desired.
Note that the simplicity of G/H is guaranteed by the simple condition that no vertex

v ∈ V (G \H) is adjacent to more than one vertex in V (H).
We now identify a natural set of moves through which we may derive from K4 all the

(2, 2)-tight graphs with at least one edge.

Definition 2.10. An extension move H → G in the class of simple graphs is an inclusion
map H → G such that G/H is a simple graph. A (2, 2)-tight extension move (or simply
an extension move if the context is clear) is an extension move H → G for which H,G
and G/H are (2, 2) tight.

Theorem 2.11. Every (2, 2)-tight simple graph with more than one vertex can be obtained
from K4 through a finite sequence of Henneberg moves and (2, 2)-tight extension moves.

Proof. Suppose that there is a nonsingleton graph G∗ which is (2, 2)-tight and which is not
derivable using the three moves. Suppose also that G∗ has a minimal number of vertices
amongst such graphs. By Proposition 2.6 G∗ is not Laman-plus-one. Thus (ii) in Lemma
2.9 holds for some subgraph H. But in this case the quotient G/H is simple and by
previous remarks it is (2, 2) tight. Thus G∗ has an inverse extension move, contrary to its
definition. �
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We now use the inductive characterisations to obtain a straightforward deduction of the
spanning tree characterisations mentioned in the introduction, namely the equivalences
between (i) and (ii) in the next two theorems. The first characterisation is due to Recski
[21] where the proof is based on determinental expansions. See also Whiteley [30] for a ma-
troidal proof. The second characterisation was obtained by Nash-Williams in [16], through
analysis of critical set partitions, where additionally k-fold spanning tree decompositions
are also characterised.
A graph H = (V,E) is said to be an edge-disjoint union of k spanning trees if there is

a partition E1, . . . , Er of E such that the subgraphs (V,E1), . . . , (V,Er) are (connected)
trees.

Theorem 2.12. The following assertions are equivalent for a (simple) connected graph
G.

(i) G is (2, 3)-tight.
(ii) If G+ is the graph (or multi-graph) obtained from G by adding an edge (including

doubling an edge) then G+ is an edge-disjoint union of two spanning trees.
(iii) G is derivable from K2 by Henneberg moves.

Proof. That (ii) implies (i) is elementary (as given explicitly in the proof below) while (i)
implying (iii) follows from Proposition 2.1. We show by elementary induction that (iii)
implies (ii).
Let G → G

′

be a Henneberg 1 move, adding a degree 2 vertex v, and let (G
′

)+ be
obtained from G

′

by addition of an edge e (including doubling).
If e is added to G then we may assume G + e is the union of 2 edge-disjoint spanning

trees. To each of the trees we may add one of the new edges.
The other case is when e = uv for some u ∈ V (G), indicated in Figure 2.

G

v

u

Figure 2. (G′)+, obtained from G by Henneberg 1 move plus added edge uv.

Suppose G+ = G ∪ f, f = gh, decomposes into two edge-disjoint spanning trees T1, T2.
We now have a decomposition of G into a spanning tree T1 and T2 \ f which is either
(a) an edge-disjoint spanning (disconnected) forest or (b) an edge-disjoint (non-spanning)
tree. In case (a) if v is adjacent to vertices in both connected components of T2 \ f then
add both new edges (in the Henneberg move) to T2 \ f to form T

′

2 and add the “addition”
edge to T1 to get T

′

1. If v is adjacent to vertices in the same connected component then
add one of the new edges (in the Henneberg move) to T1 and one to T2 \ f , then add the
“addition” edge to the other component of T2 \ f to get T

′

1 and T
′

2.
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In case (b) suppose the vertex not in T2 \ f is w. If w is adjacent to v then add vw and
some vx to T2 \ f and add the “addition” edge to T1 to form T

′

1 and T
′

2.
Finally if w is not adjacent to v then add the new edges one to each of T1 and T2 \ f

and add the “addition” edge vw to T2 \ f to get T
′

1 and T
′

2.
By construction in each case T

′

1 and T
′

2 are edge-disjoint spanning trees for (G
′

)+ and a
very similar elementary argument holds for the Henneberg 2 move which we leave to the
reader.
Since K+

2 is an edge-disjoint union of two spanning trees the proof is complete.
�

Theorem 2.13. The following assertions are equivalent for a (simple) connected graph G
with at least one edge.

(i) G is (2, 2)-tight,
(ii) G is an edge-disjoint union of two spanning trees,
(iii) G is derivable from K4 by Henneberg moves and subgraph extensions.

See [17] for an extension of Theorem 2.13.

Proof. That (ii) implies (i) is elementary as follows. Let the two edge-disjoint spanning
trees be T1 = (V,E1) and T2 = (V,E2). It is a simple property of trees that |Ei| = |V | − 1
and |E ′

i| ≤ |V ′| − 1 for all subgraphs T ′
i = (V ′, E ′

i) of T , for i = 1, 2. Clearly E is the
disjoint union of E1 and E2 and so |E| = 2|V | − 2 and |E ′| ≤ 2|V ′| − 2 for all subgraphs
G′ = (V ′, E ′) of G.
Theorem 2.11 shows that (i) implies (iii) and we now show that (iii) implies (ii) by

induction.
As in the last proof (with simplification due to the absence of edge addition) the Hen-

neberg 1 and 2 moves preserve the spanning trees property of (ii). Suppose then that
G/H and H decompose into edge-disjoint spanning trees and let G be formed by the
graph extension move, where v∗ ∈ G/H is replaced by H. We show that G decomposes
into edge-disjoint spanning trees.
Note that v∗ has degree d ≥ 2. Suppose the two spanning trees for G/H are T1 and T2

and the two for H are H1 and H2. Suppose there are m edges incident to v∗ in T1 and n
edges incident to v∗ in T2. Call these subsets of edges E1 and E2 respectively. That is,
Ei = {av∗ : a ∈ Si} where Si ⊆ V (Ti), i = 1, 2.
In the extension move these edges are replaced with edges incident to vertices in H.

Call these new subsets of edges E
′

1 and E
′

2 respectively, so that

E
′

1 = {awa : a ∈ S1}, E
′

2 = {aua : a ∈ S2}.

Then we claim that G decomposes into two edge-disjoint spanning trees G1 and G2 where,
abusing notation slightly,

Gi = ((Ti \ Ei) ∪Hi ∪ E
′

i).

It is clear that every edge of G is in G1 or G2, that no edge is in both, that every vertex
is in G1 and in G2, and that G1 and G2 are connected. It remains to show that G1 and
G2 are trees and we need only consider G1. Suppose that there is a cycle in G1. Then
there exists some pair of vertices a, b ∈ V (G) \ V (H) incident to some edges in E

′

1 such
that a and b are connected in G \H. However this connectedness is necessarily present in
(G/H) \ v∗ and so there is a cycle in G/H, a contradiction. �
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Remark 2.14. In a similar spirit, Crapo [5] showed that the class of (2, 3)-tight graphs are
exactly the graphs which have a 3T2 decomposition. This is a decomposition into 3 edge-
disjoint trees such that each vertex is in exactly 2 of them and no subgraph with at least
one edge is spanned by subgraphs of two of the three trees. Spanning tree decompositions
are of interest because they produce efficient polynomial time algorithms for checking
generic minimal rigidity, whereas algorithms based on checking that all subgraphs satisfy
the independence type are exponential in the number of vertices. See Graver, Servatius
and Servatius [7] for more details. An alternative polynomial time algorithm, applicable
to minimally rigid graphs in the plane and to (2, 2)-tight graphs, is the elegant pebble
game algorithm due to Hendrickson and Jacobs [9], see also [14].

Remark 2.15. The class of (2, 2)-tight multigraphs has been considered by Ross [22] in
the setting of periodic frameworks and has been shown to be the relevant class of graphs
for a Laman type theorem for periodic isostaticity. Here the flat torus plays the role of the
ambient space and finite frameworks on it, with possibly wrap-around (locally geodesic
edges) model the relevant periodic frameworks. Interestingly, see [26], all such graphs
derive from the singleton graph by Henneberg 1 and 2 moves together with the move of
a single-vertex double-edge addition move (being a variant of the Henneberg 1 move for
multigraphs) and a double-edge variant of the Henneberg 2 move (arising when, in our
earlier notation, vk = vi or vj).

3. Frameworks on Surfaces

We now consider infinitesimal and continuous rigidity for bar-joint frameworks on gen-
eral surfaces. In particular we focus on completely regular frameworks as the appropriate
topologically generic notion, noting that for algebraic surfaces this includes the case of
(algebraically) generic frameworks. It is shown that continuous rigidity and infinitesimal
rigidity coincide for completely regular frameworks, a fact which will be a convenience
later particularly in the consideration of frameworks on the cylinder.
We remark that the basic theory of the rigidity and flexibility of frameworks on surfaces

considered here is a local one in the sense that the concepts and properties depend on the
nature of M near the framework points p1, . . . , pn.

3.1. Continuous Rigidity. Let M ⊆ R3 be a surface. Formally this is a subset with the
relative topology which is a two-dimensional differentiable manifold. However, of partic-
ular interest are the elementary surfaces which happen to be disjoint unions of algebraic
surfaces.
Let G = (V,E) and let |V | = n. A framework on M is a framework (G, p) in R3 with G

a simple connected graph such that the framework vector p = (p1, . . . , pn) has framework
points pi in M. The framework is separated if its framework points are distinct.
The edge-function fG of a framework (G, p) on M is the function

fG : Mn → R|E|, fG(q) = (|qi − qj|
2)e=vivj .

This is the usual edge function of the free framework in R3 restricted to the product
manifold Mn = M×· · ·×M consisting of all possible framework vectors for G. It depends
only on M and the abstract graph G and for the moment, without undue confusion, we
omit the dependence on M in the notation.
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In the next definition we write (Kn, p) for the complete framework on the same set of
framework vertices as (G, p).

Definition 3.1. Let p = (p1, . . . , pn) and let (G, p) be a framework on the surface M.

(i) The solution space of (G, p) is the set

VM(G, p) = f−1
G (fG(p)) ⊆ M

n

consisting of all vectors q that satisfy the distance constraint equations

|qi − qj|
2 = |pi − pj|

2, for all edges e = vivj.

(ii) A framework (G, p) on M is rigid, or, more precisely, continuously rigid, if for
every continuous path p : [0, 1] → VM(G, p) with p(0) = p there exists δ > 0 such
that p([0, δ)) ⊆ VM(Kn, p).

It is easy to see that this is equivalent to the following definition, which is simply the
standard definition of continuous rigidity with R3 replaced by M. A framework (G, p) on
M is continuously rigid if it does not have a continuous flex p(t) (a continuous function
p : [0, 1] → Mn with p(0) = p, |pi(t)− pj(t)| = |pi − pj| for each edge) such that p(t) is not
congruent to p for some t.
The solution space is topologised naturally with the relative topology and, as with free

frameworks, may be referred to as the realisation space of the constrained framework.
We now take into account the smoothness of M and the smooth parametrisations of M

near framework points.
Let h(x, y, z) be a rational polynomial with real algebraic variety V (h) in R3. Assume

that M is a subset of V (h) which is a two-dimensional manifold, not necessarily connected,
and let (G, p) be a framework on M with n vertices as before. We associate with the
framework the following augmented equation system for the 3n coordinate variables of
points q = (q1, . . . , qn):

|qi − qj|
2 = |pi − pj|

2, for vivj ∈ E,

h(qi) = 0, for vi ∈ V.

The solution set for these equations is the solution set VM(G, p) which we also view as the
set

f̃−1
G (f̃G(p))

where f̃G is the augmented edge function from R3n → R|E|+n given by

f̃G(q) = (fG(q), h(q1), . . . , h(qn)),

where now fG is the usual edge function for G defined on all of R3n, rather than just on
Mn.
More generally let M be a surface in R3 for which there are smooth functions h1, . . . , hn

which determine M near p1, . . . , pn, respectively. Then we define the augmented edge
function by

f̃G(q) := (fG(q), h1(q1), . . . , hn(qn)), q ∈ R3n.

Suppose for the moment that (G, p) is a free framework in Rd. Write B(p, δ) for the
product B(p1, δ) × · · · × B(p|V |, δ) of the open balls B(pi, δ) of radius δ centred at the
framework points. Then (G, p) in Rd is regular if the point p in the domain of the edge
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function fG : Rdn → R|E| is one where the derivative function DfG(·) achieves its maximal
rank. This is to say that p is a regular point for this function on R3n. The regular points
form a dense open set in R3n, since the nonregular (singular) points are determined by a
finite number of polynomial equations. By standard multivariable analysis a regular point
p in V (G, p) has a neighbourhood

V (G, p)δ = B(p, δ) ∩ V (G, p),

which is diffeomorphic to a Euclidean ball in Rk ⊆ R3n for some k. We take the dimension
k as the definition of the (“free”) dimension dim(G, p) of the framework. It follows that
all points q close enough to p are regular and dim(G, q) = dim(G, p).
These facts extend naturally to frameworks on surfaces.

Definition 3.2. Let (G, p) be a framework on a smooth surface M with local coordinate
functions h1, . . . , hn.
(i) Then (G, p) is regular if p is a regular point for the augmented edge function f̃G in

the sense that the rank of the derivative matrix is maximal in a neighbourhood of p in R3n.
(ii) If (G, p) on M is regular then its dimension is the dimension of the kernel of the

derivative of the augmented edge function evaluated at p;

dimM(G, p) := dimkerDf̃G(p).

For a simple example of an irregular framework on the sphere one may take a triangular
framework whose vertices lie on a great circle.
The local nature of M near a regular point p = (p1, . . . , pn) for the complete graph Kn

determines what we refer to as the number of ambient degrees of freedom at p. We define
this formally as d(M, p) = dimM(Kn, p). Thus d(M, p) = 3, 2, 1 or 0.
The path-wise definition of continuous rigidity of (G, p) on M given above is in fact

equivalent to the following set-wise formula: for some δ > 0 the inclusion

VM(Kn, p)
δ ⊆ VM(G, p)δ

is an equality. This equivalence for an arbitrary framework (G, p) is a little subtle in that
it follows from the local path-wise connectedness of real algebraic varieties. (That is, each
point has a neighbourhood which is path-wise connected.) However for a regular framework
VM(G, p)δ is an elementary manifold, diffeomorphic to a Euclidean ball, with submanifold
VM(Kn, p)

δ and the equivalence is evident. It follows, somewhat tautologically, that if
(G, p) is a regular framework, then (G, p) is rigid onM if and only if dimM(G, p) = d(M, p).
As in the case of free frameworks the regular framework vectors for a graph form a dense

open set in Mn. However, the most amenable constrained frameworks are those that are
completely regular in the sense of the next definition.

Definition 3.3. A framework (G, p) on a smooth surface M is completely regular if (H, p)
is regular on M for each subgraph H.

For an example of a regular framework which is not completely regular consider the
following. Let M consist of two parallel planes distance 1 apart and for the complete
graph K6 let (K6, p) be a separated framework with three non-colinear framework points
in each plane. Such continuously rigid frameworks are regular. However if there are points
pi, pj on separate planes at a minimal distance of 1 apart then (K6, p) is not completely
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regular simply because a triangle subframework with this edge has an extra independent
flex.
One might view the completely regular frameworks as those that are “topologically

generic” and in examples one can readily identify a dense open set of completely regular
frameworks.
The next proposition establishes a necessary “Maxwell count” condition. Here p′ is the

restriction of p to V (G′).

Proposition 3.4. Let (G, p) be a completely regular minimally rigid framework on a
smooth two-dimensional manifold M. Then

2n− |E| = dim(M, p)

and for each subgraph G′ with |E(G′)| > 0,

2|V (G′)| − |E(G′)| ≥ dim(M, p′).

Proof. Let G1 be a spanning tree of G with edges e1, . . . , em and let Gk ⊆ Gk+1 be
subgraphs of G with |E(Gk+1)| = |E(Gk)| + 1, for 1 ≤ k ≤ r where m + r = |E(G)|.
Since (G1, p) is regular we have dimM(G1, p) = 2n − |E(G1)| = n + 1. By complete
regularity the dimensions dimM(Gk, p) are defined and for each k

dimM(Gk, p) ≥ dimM(Gk+1, p).

Suppose that (G, p) is minimally rigid onM. From continuous rigidity we have dimM(G, p) =
d(M, p) and by minimal rigidity the inequalities are strict. To see this note that the el-
ementary manifolds VM(Gk, p)

δ are determined by multiple intersections. For example if
ek+1 = (vi, vj) then, for all small enough δ > 0,

VM(Gk+1, p)
δ = VM(Gk, p)

δ ∩ {q : |qi − qj| = |pi − pj|}.

Thus if there is an equality at the kth step then removal of ek+1 does not affect the
subsequent inequalities and we arrive at the rigidity of (G \ ek+1, p), contrary to minimal
rigidity.
By the strict inequalities and noting that r = |E|− |E(G1)| = |E|− (n−1)) we see that

d(M, p) = dimM(G, p) = n+ 1− r = 2n− |E|

as desired. �

Remark 3.5. Recall that a generic point p1 for a connected surface M defined by an
irreducible rational polynomial equation h(x, y, z) = 0 is one such that every rational
polynomial g vanishing at p1 necessarily vanishes onM. One may similarly define a generic
framework (G, p) on M as one for which every rational polynomial g in 3n variables which
vanishes on the framework vector (p1, . . . , pn) necessarily vanishes on Mn. Since the set of
generic framework vectors is a dense set, generic framework vectors can be found amongst
the open set of completely regular framework vectors.

3.2. Infinitesimal Rigidity. Fix a smooth surface M in R3.

Definition 3.6. Let (G, p) be a framework on M in R3 and let hk(x, y, z) = 0 be the local
equation for the surface M in a neighbourhood of the framework point pk, for 1 ≤ k ≤ |V |.
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The rigidity matrix, or relative rigidity matrix, of (G, p) on M is the |E| + |V | by 3|V |

matrix defined in terms of the derivative of the augmented edge-function f̃G as

RM(G, p) =
1

2
(Df̃G)(p).

The factor of 1
2
is introduced for consistency with existing usage for the rigidity matrices

of free frameworks. For example the usual three-dimensional rigidity matrix R3(G, p) for
(G, p) viewed as a free framework appears as the submatrix of RM(G, p) given by the first
|E| rows. In block operator matrix terms we have

RM(G, p) =

[

R3(G, p)
1
2
Dh(p)

]

where, with |V | = n, the mapping h : R3n → Rn is

h = (h1(x1, y1, z1), . . . , hn(xn, yn, zn)).

Note that the kernel of the matrix (Dh)(p) is determined by the remaining n rows and
is the subspace of vectors u = (u1, . . . , un) where uk is tangent to M at pk. Thus the
kernel of the relative rigidity matrix is the subspace of kerR3(G, p) (the space of free
infinitesimal flexes) corresponding to tangency to M. Vectors in this kernel are referred
to as infinitesimal flexes for (G, p) on M. The subspace of rigid motion flexes is defined
to be kerRM(Kn, p). When (Kn, p) is regular this space has dimension d(M, p).

Definition 3.7. Let (G, p) be a regular framework with n framework vertices on the smooth
surface M and suppose that (Kn, p) is regular. Then (G, p) is infinitesimally rigid if

dimkerRM(G, p) = dimkerRM(Kn, p) = d(M, p).

The following theorem is useful when contemplating Henneberg moves on frameworks
and the preservation of rigidity which we turn to in the next section.

Theorem 3.8. Let M be a smooth surface in R3. A regular framework (G, p) on M is
infinitesimally rigid if and only if it is continuously rigid.

Proof. Let p : [0, 1] → VM(G, p), as in Definition 3.1, be a (one-sided) continuous flex of
(G, p) on M. Since p is a regular point, if (G, p) is not rigid on M then the inclusion

VM(Kn, p)
δ ⊆ VM(G, p)δ

is proper for all small enough δ > 0. Since this is an inclusion of elementary smooth
manifolds there exists a differentiable two-sided flex p(t), t ∈ (−1, 1) taking values in the
difference set (for t ∈ (0, δ)). Moreover p(t) may be chosen so that p′(0) is not in the
tangent space of VM(Kn, p)

δ at p. Note that the derivative vector p′(0) = (Dp)(0) in R3n

lies in the kernel of RM(G, p). Indeed, if dk denotes the squared length of the kth edge of
(G, p) then we have

f̃G ◦ p(t) = f̃G(p(t)) = (d1, . . . , d|E|, 0, . . . , 0),

a constant function, and so the derivative (column matrix) D(f̃G ◦ p)(0) is zero. By the

chain rule and noting that p(0) = p this is equal to the matrix product (Df̃G)(p).(Dp)(0).
Thus the flex v = (Dp)(0) is an infinitesimal flex of (G, p) onM which is not in kerRM(Kn, p).
Thus infinitesimal rigidity implies continuous rigidity.
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On the other hand continuous rigidity implies equality, for sufficiently small δ, for the
elementary manifold inclusion above, and hence equality of the tangent spaces at p. This
equality corresponds to infinitesimal rigidity. �

In the next section we consider minimally continuously rigid completely regular frame-
works. In view of the theorem above these coincide with the class of minimally infinitesi-
mally rigid completely regular frameworks. As in the case of free frameworks, we also say
that (G, p) is isostatic on M if it is minimally infinitesimally rigid.

Theorem 3.9. Let (K|V |, p) be regular and let (G, p) be a completely regular framework
on the smooth surface M. Then (G, p) is isostatic if and only
(i)

rankRM(G, p) = 3|V | − d(M, p),

and (ii)

2|V | − |E| = d(M, p).

Proof. From the definition a framework is infinitesimally rigid if and only if

rankRM(G, p) = 3|V | − dimkerRM(G, p) = 3|V | − d(M, p).

If (G, p) is minimally infinitesimally rigid then by the last theorem and the hypotheses
it is also minimally continuously rigid. Thus (ii) holds by Proposition 3.4. It remains to
show that if (i) and (ii) hold then the framework, which is infinitesimally rigid (by (i)) is
minimally infinitesimally rigid. This follows since if E ′  E and ((V,E ′), p) is rigid then
|E ′|+ |V | is greater than or equal to the row rank and so |E|+ |V | > 3|V | − d(M, p) and
2|V | − |E| < d(M, p). �

Remark 3.10. Note that for the circular cylinder M we have

dimM(K2, q) = dimM(K3, r) = 3 and dimM(K4, p) = 2,

when these frameworks are completely regular. Although each of these frameworks is
continuously rigid according to our definition, the graphs K2, K3 are too small to reveal
the flexibility constraints that the cylinder imposes on larger frameworks. These become
evident only for K4 and it is from K4 that we can build rigid frameworks with Henneberg
moves. Indeed if G is the double triangle graph obtained from K3 by a Henneberg move,
then a generic framework (G, p) is not continuously or infinitesimally rigid. In fact G =
K4 \ e and we see that a full “rotation” (flex) of (G, p) on the cylinder passes through
noncongruent realisations of the “unrotatable” framework (K4, p).

Remark 3.11. Let (K4, p) be a separated regular realisation of K4 in R
3. Then a special-

isation of six vertex coordinates is sufficient to remove all continuous nonconstant flexes
of (K4, p). If the framework vertices are all constrained to a smooth surface M then a
specialisation of at most three equations is needed to remove all continuous flexes. That
three may be necessary can be seen when M is a plane, or a union of parallel planes, or
when M is a sphere, or a union of concentric spheres. Let us define the degrees of free-
dom d(M) of the surface M as the minimum number of vertex coordinate specifications
necessary to remove the rigid motions of all proper completely regular realisations of K4

on M. Thus, for the sphere and the plane there are 3 degrees of freedom, for the infinite
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circular cylinder there are 2, and for many familiar surfaces with only rotational symme-
try, such as cones and tori, there is one degree of freedom. The degrees of freedom of M
coincides with the minimum value of dimM(K4, p) as p ranges over separated completely
regular quadruples in M. In light of this, and our Laman style theorem for the cylinder, a
plausible conjecture is the following: for reasonable manifolds the graphs for which every
completely regular framework on M is continuously rigid are those that are (2, d(M))-tight,
together with a number of small exceptions.

4. Henneberg Moves on Constrained

Frameworks

We now work towards combinatorial (Laman type) characterisations of rigid frameworks
on some elementary surfaces. The proofs follow a common scheme in which we are required
to
(i) establish an inductive scheme for the generation of the graphs in the appropriate class

C for the surface, where the scheme employs moves of Henneberg type or other moves such
as graph extensions,
(ii) show that the moves for C have their counterparts for frameworks on M in which

minimal rigidity is preserved.

Remark 4.1. We remark that in the case of algebraic manifolds one may define for each
graph G the rigidity matroid RM(G, p), determined by a generic framework vector, as the
vector matroid induced by the rows of RM(G, p). Thus realising the proof scheme amounts
to the determination of a matroid isomorphism between RM(G, p) and the matroid defined
by maximal independence counting in G. Further in the case of the plane, combining
this with Laman’s theorem shows that the vector matroids RM(G, p) and R2(G, p′) (the
standard 2-dimensional rigidity matroid) are isomorphic. See [7], [10]. This is perhaps
surprising since these matroids are induced by matrices of different sizes. However the
isomorphism can be seen by considering the |V | rows in RM(G, p) as fixed (independent)
and identifying the |E| rows in RM(G, p) with the |E| rows in R2(G, p′). Of course it is
only in the case of planes and spheres that such an identification can be made.

Let G → G′ be the Henneberg 2 move at the graph level in which the edge e = v1v2
is broken at a new vertex vn+1 and in which the new edge v3vn+1 is added. Let p =
(p1, . . . , pn). A Henneberg 2 framework move (G, p) → (G′, q), with (G′, q) also on M, is
one for which the edges that are common to both G and G′ have the same length.
In constructions of such moves the framework points q1, . . . , qn may usually be taken

close to p1, . . . , pn. Indeed a Henneberg 2 framework move will arise from a sequence

(G, p) → (G \ e, p) → (G \ e, p(t)) → (G′, (p(t), pn+1(t))) = (G′, q)

where the middle step takes place by a small flex on M and the final step is determined
by a location of qn+1 = pn+1(t) on M, with t small, for the vertex vn+1. We consider (G, p)
also to be minimally rigid so that (G \ e, p) has one degree of freedom, in the sense that
the local solution space V (G, p)δ is a manifold of dimension d(M, p) + 1.
To clarify the consideration of such Henneberg framework moves which preserve minimal

(continuous) rigidity we first consider frameworks in the plane under the requirement of a
simple geometric noncolinearity condition.
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Proposition 4.2. Let δ > 0, let (G, p) with p = (p1, . . . , pn), n ≥ 2 be a completely regular
minimally rigid framework in the plane with no three of the framework points colinear,
and let G → G′ be a Henneberg 2 move. Then there is a completely regular minimally
rigid framework (G′, p′), with p′ = (p′1, . . . , p

′
n, p

′
n+1), with no three of the framework points

colinear, and |p1 − p′i| < δ, for 1 ≤ i ≤ n.

Proof. Consider the depleted framework (G \ e, p) with e = v1v2. By minimal rigidity and
complete regularity this framework has one degree of freedom modulo ambient isometries
or, more precisely, dim(G \ e, p) = 4. Consider the 1-dimensional subset N of V (G \ e, p)δ

consisting of points q for which q1 = p1 and q2 lies on the line though p1 and p2. Thus there
is a continuous flex p(t) = (p1(t), . . . , pn(t)) in N for which |p1(t)− p2(t)| is decreasing on
some small interval [0, δ) and we may also assume that this flex is differentiable. Now note
that this “normalised” flex p(t) extends to a flex of the enlarged framework ((G \ e)+, p+)
formed by introducing pn+1 on the line segment [p1, p2], with the two new edges, [p1, pn+1]
and [p2, pn+1]. See Figure 3 and Figure 4.

p

p

p
1

2

3

Figure 3. Splitting the edge [p1, p2].

p

p

p
1

2

3

Figure 4. The two flexes of ((G \ e)+, p+).
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There are precisely two such extensions, according to the sense of motion of the hinge
point pn+1. It follows from the noncolinearity of p1, p2 and p3 that for at least one of these
flexes the separation s(t) = |p3(t) − pn+1(t)| is a non-constant function on every interval
[0, δ] for all δ < δ1, for some δ1. (See Lemma 4.4 for a formal proof.) Since the flex is
differentiable s(t) is strictly decreasing or increasing on a small interval (0, δ2). Choose t in
this interval and add the edge [p3(t), pn+1(t)] to create the framework (G′, (p(t), pn+1(t))).
By construction this is continuously rigid since there is no nonconstant normalised flex
(with p1 fixed and pn+1 moving on the line through p1 and p2). It also follows readily from
the openness of the set of completely regular framework vectors that, for sufficiently small
t, (G′, (p(t), pn+1(t))) is completely regular. �

In the ensuing discussion we focus on continuous flexes and the intuitive device of
hinge separation which we expect to be useful for general manifolds. However, there are
alternative approaches for algebraic surfaces based on flex specialisation at generic points.
(See [18] for example.) We illustrate this with the following alternative proof to the
generic framework variant of the proposition above. Note that Proposition 4.3 together
with Proposition 2.1 provide a short proof of the interesting (sufficiency) direction of
Laman’s theorem.

Proposition 4.3. Let G → G′ be a Henneberg 2 move and let (G, p) and (G′, p′) be
generic frameworks on the plane with G a Laman graph. If (G, p) is isostatic on the plane
(minimally infinitesimally rigid) then so too is (G′, p′).

Proof. As before we let v1, v2, v3 and vh be the vertices involved in the Henneberg move
for the edge v1v2. Suppose that (G′, p′) is not isostatic. Since G′ is a Laman graph it
follows that the rank of the rigidity matrix R2(G

′, p′) is less than 2|V | − 3. Since p′ is
generic this is the case for any specialisation of p′ and in particular for p′ = (p1, . . . , pn, ph)
where (p1, . . . , pn) = p and ph is any point on the open line segment from p1 to p2;
ph = ap1+(1−a)p2, with 0 < a < 1. Thus there is an infinitesimal flex u′ = (u1, . . . , un, uh)
for (G′, p′) which is not a rigid motion flex. We have

〈u1 − uh, p1 − ph〉 = 0, 〈u2 − uh, p2 − ph〉 = 0,

and so by the colinearity of p1, p2, ph,

〈u1 − uh, p1 − p2〉 = 0, 〈u2 − uh, p1 − p2〉 = 0.

Thus
〈u1 − u2, p1 − p2〉 = 0,

and so the restriction to (G, p), namely u = (u1, . . . , un), is an infinitesimal flex of (G, p).
By the hypotheses u is an infinitesimal rigid motion of (G, p). In particular the restric-

tion ur = (u1, u2, u3) of u to the triangle p1, p2, p3 is a rigid motion infinitesimal flex for
some isometry T : R2 → R2. But note that ur is also a restriction of u′, and the triangle
is noncolinear, so it follows that uh must be equal to au1 + (1 − a)u2. Thus u

′ itself is a
rigid motion flex, also associated with T , contrary to assumption. �

4.1. Hinge Frameworks. In the proof of Proposition 4.2 the key point is that the edge
[p1, p2] is replaced by two edges [p1, pn+1] and [pn+1, p2] which can “hinge” in two directions
when p1, p2 flex towards each other. Similarly, for frameworks on surfaces we examine the
placement of pn+1 at such special points. With two flex directions (and with a version of
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the non-colinearity condition for p3 relative to p1 and p2) we obtain a “proper separation”
of |p3(t)− pn+1(t)| on all small enough intervals for at least one of these directions. This
last idea is formalised rigourously, in a three-dimensional setting, in assertion (ii) of the
hinge framework lemma below. While it seems evident that, roughly speaking, generically
one can make a rigidifying Henneberg 2 move, it should be borne in mind that the motion
p3(t) is undetermined (and can be an arbitrary algebraic curve [12]). Thus one needs some
systematic method for avoiding exceptional placements of pn+1 in which there is no proper
separation.
Let H be the cycle graph with four edges and four vertices v1, . . . , v4 in cyclic order.

Let (H, q) be a framework in R3 with q = (a, b, c, d) where a, . . . , d are points in R3 with
|a− b| = |a− d| 6= 0 and |c− b| = |c− d| 6= 0. We refer to this as a hinge framework and
when b = d as a closed hinge framework.

Lemma 4.4. Let q(t) = (a(t), b(t), c(t), d(t)) be a continuous flex of the closed hinge
framework (H, q) in R3, with q(0) = q, such that

t → |b(t)− d(t)|

is nonconstant on every interval [0, δ), δ < 1, and let v(t) be a path in R3. Then one of
the following holds:
(i) for some δ > 0 and all t ∈ [0, δ)

〈b(t)− d(t), a(t)− v(t)〉 = 0,

(ii) at least one of the functions t → |v(t) − b(t)|, t → |v(t) − d(t)| is nonconstant on
all intervals [0, δ) for δ less than some δ1.

Proof. Suppose that (ii) fails and the functions are constant in some interval [0, δ). Since
b(0) = b = d = d(0) the functions are equal in this interval. Then, on this interval,

〈v(t)− d(t), v(t)− d(t)〉 = 〈v(t)− b(t), v(t)− b(t)〉

and so 〈v(t), b(t)−d(t)〉 = (|b(t)|2−|d(t)|2)/2. The same is true with v(t) replaced by a(t)
and so (i) follows. �

Consider a fixed value of t > 0 and note that apart from the exceptional case when b(t)
and d(t) coincide and a(t), b(t), c(t) are colinear there is a unique plane P (a(t), b(t), c(t))
which passes through the midpoint of the line segment [b(t), d(t)] and is normal to the
vector b(t)− d(t). With r = (x, y, z) this is the plane with equation

〈b(t)− d(t), a(t)− r〉 = 0.

Because of distance preservation in the flex q(t) note that the plane P (a(t), b(t), c(t))
passes through a(t) and c(t). For t = 0 and a, b, c not colinear we define P (a(0), b(0), c(0))
simply as the plane through a, b, c. In particular, if a, b and c are not colinear and v(0)
does not lie on P (a, b, c) then (i) fails (at t = 0) and (ii) holds.
This lemma may be applied, with the useful conclusion (ii), whenever one is able to place

pn+1 on a surface M in such a way that the added hinge framework (H, (p1, pn+1, p2, pn+1))
is “opened” (on M) by decreasing separation motion p1(t) and p2(t).
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4.2. Spheres and Planes. The case of Henneberg 2 moves on frameworks on concentric
spheres and parallel planes is straightforward in that it follows the format of the proof of
Proposition 4.2 for the plane, making use of the hinge lemma at an appropriate point.

Lemma 4.5. Let M1,M2,Mn+1 be concentric spheres. Let p1(t), p2(t) be paths on the
spheres M1 and M2 respectively with p1 = p1(0), p2 = p2(0) such that the separation
|p1 − p2| is not a local maximum or minimum and such that |p1(t) − p2(t)| is decreasing.
Let pn+1 ∈ Mn+1 be such that p1, p2, pn+1 are not colinear and the plane P (p1, p2, pn+1)
is orthogonal to the tangent plane to Mn+1 at pn+1. Then for some δ1 > 0 the closed
hinge framework H(q1, q2, q3, q4) = H(p1, pn+1, p2, pn+1) has a flex q(t) for t ∈ [0, δ1) with
q1(t) = p1(t), q3(t) = p2(t) and |q2(t)− q4(t)| nonconstant on all intervals [0, δ), δ ≤ δ1.

The idea is illustrated in Figure 5.

Proof. Note that as for a single sphere the union M of the spheres Mi has three ambient
degrees of freedom. That is d(M, p) = 3 whenever p is a separated framework vector
(p1, . . . , pn) with n > 1. Without loss of generality the flex may be assumed to be nor-
malised so that p1(t) is fixed on M1 and p2(t) moves towards p1 along the shorter arc of
a great circle on M2 (whose plane meets p1). The hypothesis on pn+1 ensures that it lies
on a corresponding great circle, and also that pn+1 is not on the radial line through either
of these points, or coincident to them in the case that M1 = Mn+1 or M2 = Mn+1. The
conclusion follows readily from the simple geometry of concentric spheres. �

p
1

2
p

p

p
3

O

n+1

Figure 5. With p1 fixed on the inner sphere and p3 moving smoothly on
a concentric sphere, the polar directed smooth motion of p2 on the outer
sphere implies infinite initial velocity at the hinge point pn+1 and so strict
monotonicity of the separation distance |pn+1 − p3| over a finite time.

The case of parallel planes has a verbatim statement, with concentric spheres replaced
by parallel planes, and a completely similar proof.
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For the Henneberg move construction we require a mild geometric requirement, being
the counterpart to noncolinearity in the case of a single plane. More precisely we require
that for each pair pi, pj (on separate planes) the separation |pi−pj| is not a local maximum
or minimum and that the unique plane P (p1, p2) through the pair, which is orthogonal to
the planes (or spheres) ofM, meets no other framework point. We refer to such frameworks
as geometrically generic. (In fact one can relax the no extremals condition and treat this
class of semigeneric frameworks separately, although we do not do so here.)
The next Henneberg 2 framework move lemma has an analogue for the Henneberg 1

move which is entirely elementary. These framework moves together with standard Laman
graph theory are all that are needed for the proof of the sufficiency direction for Theorem
5.1.

Lemma 4.6. Let M = M1 ∪ · · · ∪ MN be a union of parallel planes, or a union of
concentric spheres, and let (G, p) be a minimally continuously rigid geometrically generic
completely regular framework on M. Let δ > 0, let s ∈ {1, . . . , N} and let G → G′ be
a Henneberg 2 move. Then there is a minimally continuously rigid geometrically generic
completely regular framework (G′, p′) on M, with p′ = (p′1, . . . , p

′
n, p

′
n+1) and |pi − p′i| < δ,

for 1 ≤ i ≤ n, and pn+1 ∈ Ms.

Proof. The proof has exactly the same form as that of Proposition 4.2; with the notation
above Lemmas 4.4 and 4.5 allow for the placement of pn+1 so that the flex of (G \ e, p)
extends to ((G \ e)+, p+) with the separation function |pn+1(t)− p3(t)| nonconstant on all
small intervals. �

4.3. Cylinders and Surfaces. We now examine more generally how to place pn+1 to
create an opening hinge in the manner of Lemma 4.5. This involves the consideration of
extremal points in the sense of the next definition.

Definition 4.7. Let M ⊆ R3 be a smooth manifold and p1, p2 distinct points of M. A point
q ∈ M is extremal for the pair p1, p2 if there exists a point w on the straight line through
p1, p2, not equal to p1 or p2, such that |q −w| < |q′ −w| for all points q′ ∈ M, q 6= q′, with
|q − q′| < δ, for some δ > 0.

If q is extremal for a pair, as above, then the tangent plane Tq to M at q is normal to
q − w. Moreover, for small δ the curve of intersection

M ∩ S(p1, |p1 − q|) ∩ B(q, δ)

for the surface S(p1, |p1−q|) of the closed ball B(p1, |p1−q|) is tangential at q to S(p2, |p2−
q|) and, apart from the contact point q, lies outside the closed ball B(p2, |p2−q|). Indeed, if
this were not the case, for all small δ, then the local closest point property of the extremal
point would be violated.
Figure 6 is indicative of an extremal point q, where the plane of the diagram is the plane

P (p1, p2, q) through the triple, the curve is in the intersection of this plane with M, and
the tangent plane Tq to M at q is orthogonal to the plane. Figure 7 is indicative of the
perspective view of such a point and the tangency of the curves S(p1, |q − p1|) ∩ M and
S(p2, |q − p2|) ∩M at q.
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Figure 6. An extremal point q for p1, p2, elevation view.
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q

Figure 7. An extremal point q for p1, p2 with intersection arcs in M for
the spheres S(p1, |p1 − q|) and S(p2, |p2 − q|).

Suppose now that M is a (circular) cylinder. If p1(t) and p2(t) are continuous paths
emanating from p1 and p2 respectively then by rigid motion normalisation we may assume
p1(t) = p1 for all t. Since the cylinder has only two ambient degrees of freedom there is
now no further normalisation available for the adjustment of the motion of p2(t) or the
specification of p′2(0). This makes the location of pn+1 more problematical in the case that
the derivative of the separation |p1 − p2(t)| vanishes at t = 0. However this complexity
only arises (in our edge-deleted framework context) when (G, p) on M is infinitesimally
flexible (before the edge deletion). Thus, in view of the equivalence between continuous
rigidity and infinitesimal rigidity this difficulty does not occur for our consideration here.
Explicitly, we have the following condition which expresses that the separation motion of
the pair p1(t) and p2(t) is a nontangential separation:

〈p′2(0)− p′1(0), p2 − p1〉 < 0.

The following simple lemma is needed. In paraphrase it asserts the geometrical fact
that the tangential departure q(t) of the point q from the surface of the ball B(0, |q|),
together with an acute-to-q departure p(s) from the origin allows for the solution of the
distance equation |q(t)− p(s(t))| = |q| for all t in some small interval, where t → s(t) is a
continuous parameter change.

Lemma 4.8. Let q(s), s ∈ [0, 1], be a path in R3 starting at q = q(0) 6= 0 such that
〈q′(0), q〉 = 0 and such that for s > 0 the path points q(s) lie outside the closed ball
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B(0, |q|). Also, let p(t), t ∈ [0, 1], be a path starting at p = p(0) = 0 with

〈p′(0), q〉 > 0.

Then there is a continuous parameter change t = t(s), for some range s ∈ [0, δ], such that
in this range

|p(t(s))− q(s)| = |p− q|.

Proof. Let f(s, t) = |p(t)− q(s)|2 − |q|2. Consider first the function

t → f(t, t) = |p(t)− q(t)|2 − |q|2,

which is zero at t = 0. In view of the hypotheses, for some positive number c we have
〈p(t), q(t)〉 ≥ ct in some small interval [0, δ1]. It follows readily that the function t → f(t, t)
is strictly decreasing, and in particular f(t, t) < 0, for all t in some small interval [0, δ2].
We now see that for fixed s in [0, δ2] the function t → f(s, t) has a strictly positive value

at t = 0 and is negative at t = s. By the intermediate value theorem there is a first point
t(s) with f(s, t(s)) = 0 and moreover, the function s → t(s) is continuous. �

Lemma 4.9. Let p1, p2 be distinct points on a cylinder M such that the line segment from
p1 to p2 does not lie in M. Let p2(t) be a path on M with p2(0) = p2 such that

〈p′2(0), p2 − p1〉 < 0.

Then there is an extremal point pn+1 for the pair p1, p2 such that the closed hinge framework
H(q1, q2, q3, q4) = H(p1, pn+1, p2, pn+1) has a flex q(t), t ∈ [0, δ1), on M, with q1(t) = p1,
q3(t) = p2(t) and |q2(t) − q4(t)| a nonconstant function on all intervals [0, δ), δ ≤ δ1, for
some δ1 > 0.

Proof. In view of the discussion above we may choose an extremal point q for the point
pair p1, p2 such that

〈p′2(0), p2 − q〉 < 0.

For example, q may be chosen close to p1, as a local closest point to a point w close to p1.
Let q(t), t ∈ [−1, 1] be a parametrisation of the curve

M ∩ S(p1, |p1 − q|) ∩ B(q, δ)

for appropriate δ > 0, as above. Apply Lemma 4.8 to the path pair p2(t), q(t), t ∈ [0, 1],
to create q2(t). Similarly, use the path pair p2(t),
q(−t), t ∈ [0, 1] to create q4(t) and the proof is complete. �

A similar hinge construction lemma holds for frameworks supported on a union M of
concentric cylinders Mi. The only new aspect is that the extremal point q must be chosen
on a preassigned cylinder Mk of M and we must maintain the inequality

〈p′2(0), p2 − p1〉 > 0.

when p1 is replaced by q. Maintaining this inequality corresponds to choosing q in the
halfspace of points z with 〈p′2(0), p2 − z〉 > 0. To see that this is possible note that the
line of points wt = p2 + t(p1 − p2), t ∈ R, is not parallel to the common cylinder axis (by
assumption) and also that the line is not orthogonal to p′2(0). Thus for all t large wt lies
in the half space. Since the cylinder Mk passes through the half space it follows (from
simple geometry) that for large enough t the closest point qt on Mk to wt will also lie in
the half space, as required.
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5. Combinatorial Characterisations of Rigid

Frameworks

We now obtain variants of Laman’s theorem for bar-joint frameworks constrained to
parallel planes, to concentric spheres and to concentric cylinders. In each case the proof
scheme is the same.

Theorem 5.1. Let M1,M2, . . . ,MN be parallel planes or concentric spheres in R3 with
union M, let G be a simple connected graph and let π : V → {1, . . . , N}. Then G admits
a minimally rigid completely regular framework (G, p) on M, with pk ∈ Mπ(vk) for each k,
if and only if G is a Laman graph.

Proof. Section 3 shows that the Laman counting conditions are necessary. For sufficiency
note that there are minimally rigid completely regular frameworks (K2, p) with p1, p2
placed on any pair Mi,Mj. It is entirely elementary, as made explicit for the case of a
cylinder below, that the Henneberg 1 move preserves minimal rigidity. Thus the construc-
tions of the last section together with the graph theory of Section 2 lead to the stated
framework realisations if G is a Laman graph. �

We now turn to the proof of a Laman theorem for the cylinder for which we require
the following matricial companion to the rigid graph extension move and an elementary
argument for the Henneberg 1 move.

Lemma 5.2. Let M be a union of concentric cylinders in R3. Let H be a subgraph of
the simple connected graph G such that K = G/H is simple and suppose that G,H,K are
(2, 2)-tight. Suppose that for H and K all completely regular framework realisations on M

are isostatic. Then the same is true of G.

Proof. Let (G, p) be completely regular for M and let n = |V (G)|. Let v∗ be a fixed
vertex of H. Consider the rigidity matrix RM(G, p) with column triples in the order of
v1, . . . , vr−1, v∗, vr+1, . . . , vn where v1, . . . , vr−1, vr = v∗ are the vertices of H. Order the
rows of RM(G, p) in the order of the edges e1, . . . , e|E(H)| for H followed by the n rows of
the block diagonal matrix whose diagonal entries are the vectors h1(p1), . . . , hn(pn) in R

3,
followed by the remaining rows for the edges of E(G) \ E(H). Note that the submatrix
formed by the first |E(H)|+ r rows is the 1 by 2 block matrix [RM(H, p) 0].
Suppose, by way of contradiction that G is not isostatic. Since 2n − |E| = 2 there is

a vector u in the kernel of RM(G, p) which is not a rigid motion (infinitesimal) flex. By
adding to u some rigid motion flex we may assume that ur = 0. Write u = (uH , uG\H)
where uH = (u1, . . . , ur). The matrix RM(G, p) has the block form

RM(G, p) =

[

RM(H, p) 0
X1 X2

]

where X = [X1 X2] is the matrix formed by the last |E(G)| − |E(H)| + n − r rows.
Since (H, p) is isostatic on M and RM(H, p)uH = 0 it follows that uH is a rigid motion
infinitesimal flex. But the coordinate ur = 0 and so uH = 0.
Consider now the framework vector

p′ = (pr, . . . , pr, pr+1, . . . , pn)
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in which the first r framework vertices are specialised to pr and let

p∗ = (pr, pr+1, . . . , pn)

be the reduced length framework vector with associated generic framework (G/H, p∗). By
the hypotheses this framework is infinitesimally rigid.
The matrix X2 = X2(p) is square with nonzero vector uG\H in the kernel and so the

determinant as a polynomial in the coordinates of the pi vanishes identically. It follows
that detX2(p

′) vanishes identically and that there is a nonzero vector, vG\H say, in the
kernel. But now we obtain the contradiction

RM(G/H, p∗)((0, 0, 0), vG\H) = ((0, 0, 0), X2(p
′))((0, 0, 0), vG\H) = 0.

�

An alternative proof of Lemma 5.2 can be given which is based on a continuity argu-
ment and the fact that the infinitesimal flexibility of a single generic framework (G, q) on
M ensures the infinitesimal flexibility of all generic frameworks (G, q′) on M. Consider a
sequence pN of generic framework vectors converging to the specialised framework vector
p′. Arguing by contradiction one obtains a sequence of unit norm flexes (0, uN) for the
generic frameworks (G, pN) which, by the compactness of the set of unit norm displace-
ments, provides a unit norm flex u∗ = (0, u) for the degenerate framework (G, p′). This
infinitesimal flex gives an infinitesimal flex of (G/H, p∗), contrary to the hypotheses.
For notational convenience in the following lemma we take M to be the cylinder defined

by x2 + y2 = 1 in R3.

Lemma 5.3. Let G be (2, 2)-tight and let (G, p) be a minimally rigid regular framework on
the cylinder M with p = (p1, . . . , pn) and vertices v1, . . . , vn. Let G → G′ be a Henneberg
1 move which adds the vertex vn+1 and edges v1vn+1, v2vn+1. Then there is a regular
minimally rigid realisation (G′, p′) on M where p′ = (p, pn+1).

Proof. Let pi = (xi, yi, zi) and for a = x, y, z let ai,j denote the difference ai−aj. RM(G
′, p′)

has the following form (where the unfilled block matrix in the top left corner is the rigidity
matrix RM(G, p)):

















0 0 0
...

...
...

0 0 0
x1,n+1 y1,n+1 z1,n+1 0 0 0 . . . xn+1,1 yn+1,1 zn+1,1

0 0 0 x2,n+1 y2,n+1 z2,n+1 . . . xn+1,2 yn+1,2 zn+1,2

0 0 0 0 0 0 . . . 1 1 0

















By the structure of RM(G
′, p′), the minimal rigidity of (G, p) and the regularity of p′

the proof is completed by noting that the 3 by 3 matrix in the bottom right hand corner
has rank 3. �

Theorem 5.4. Let M be a circular cylinder in R3 and let G be a simple connected graph.
Then G admits a minimally rigid completely regular framework (G, p) on M if and only if
G is (2, 2)-tight.
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Proof. Note that the necessity of the condition on the graph follows from Proposition 3.4.
For the sufficiency, first observe that the singleton graph and K4 both have minimally

rigid completeley regular realisations on M. Theorem 2.11 implies that to complete the
proof we need only show that the Henneberg 1, Henneberg 2 and extension operations
preserve minimal rigidity. This is the content of Lemma 5.3, the results of the last section
and Lemma 5.2 respectively.

�

From the discussion in the last section we also obtain a similar combinatorial charac-
terisation for frameworks on concentric cylinders, with statement and proof in the style of
Theorem 5.1. The final ingredient of the proof is to show that Lemma 5.2 also holds for
the reducible manifold formed by a finite number of concentric cylinders. The proof is as
before with the following appropriate form of generic point for M.
Recall first that for the irreducible case, with p = (p1, . . . , pn) ∈ Mn ⊂ R3n, the generic-

ness of p for M amounts to consideration of the quotient ring Q[x1, y1, z1, . . . , xn, yn, zn]/I
where I is the maximal ideal generated by the polynomials h(xi, yi, zi) = 0 defining M.
Thus p is generic if the associated field of fractions is isomorphic to Q(p). Equivalently, p
(and thus (G, p)) is generic if the transcendence degree of the field extension Q(p) : Q is
2n.
The reducible case is similar. Take a surface M = M1 ∪ M2 defined by a product

of irreducible rational polynomials hi so the varieties V (h1) ∼= M1 and V (h2) ∼= M2

are irreducible. Let p = (p1, p2) for p1 = (p1,1, . . . , p1,n) ∈ Mn
1 ⊂ R3(m+n) and p2 =

(p2,1, . . . , p2,m) ∈ Mm
2 ⊂ R3(m+n) (for n,m 6= 0) and let pi,j = (xi,j , yi,j , zi,j). For the

corresponding indeterminates we have the tensor product decomposition of the quotient
ring

Q[x1,1, y1,1, z1,1, . . . , x1,n, y1,n, z1,n, x2,1, y2,1, z2,1, . . . , x2,m, y2,m, z2,m]

〈h1,1, . . . , h1,n, h2,1, . . . , h2,m〉
∼=

Q[x1,1, y1,1, z1,1, . . . , x1,n, y1,n, z1,n]

〈h1,1, . . . , h1,n〉
⊗
Q[x2,1, y2,1, z2,1, . . . , x2,n, y2,n, z2,m]

〈h2,1, . . . , h2,m〉

with each factor ideal prime and hence these integral domains have fields of fractions F1,F2

providing the field of fractions F1 ⊗ F2. The (n+m)-tuple p is said to be generic on M if
Q(p) ∼= F1⊗F2

∼= Q(p1)⊗Q(p2) or equivalently if Q(p) has transcendence degree 2(n+m)
over Q. Generalising this definition to reducible surfaces with k irreducible components is
purely notational.
We note that this definition of genericness is necessarily stronger than taking pi to be

generic on Mi. There are frameworks on reducible surfaces in which each one-manifold
sub-framework is generic yet the complete framework is not even regular. For an example,
take concentric cylinders and a framework with radial points.
The theorems, of course, extend to the case of rigid frameworks for graphs which contain

spanning subgraphs that are (2, 2)-tight.

Remark 5.5. We note that Whiteley [29] discusses analogous results for frameworks on
the flat (geodesic) cylinder and other flat spaces. The cylinder context considered concerns
infinitesimal rigidity on the cyclic plane and the infinitesimal motion equations derive from
equations in the plane. While this keeps some aspects of the rigidity matrix analogous to
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the plane there is the added feature of geodesic edges which wrap around the cylinder (for
which k-frame matroids are introduced to play a role).

5.1. Cone Graphs. We say that a graph G = (V,E) is a cone graph if there is at least
one distinguished vertex v which is adjacent to every other vertex. The following corollary
and its plane variant indicated below is due to Whiteley [28]. It is well-known that the
equivalence of (i) and (ii) does not hold in general (as the so called double banana graph
reveals).

Corollary 5.6. Let G = (V,E) be a cone graph. Then the following statements are
equivalent.

(i) G is (3, 6)-tight, that is 3|V | − |E| = 6 and 3|V ′| − |E ′| ≥ 6 for every subgraph
G′ = (V ′, E ′) with |V ′| > 2.

(ii) There is a minimally rigid completely regular framework realisation (G, p) in R3.

Proof. One can readily see that, with cone vertex v1 = v and G0 = G\v, the set of points q
in VR3(G, p) ⊆ R3n with fixed “centre” q1 = p1 is in bijective isometric correspondence with
the variety VM(G0, (p2, . . . , pn)) where M is the union of the p1-centred spheres S(p1, |pk−
p1|), for k = 2, . . . , n. The stated equivalence follows from this correspondence. �

There is a companion result for free bar-joint frameworks in R3 subject to the family of
constraints that all points are a specified distance from a single plane. This follows from
the parallel planes Laman theorem above. With the plane playing the role of a vertex, for
the purposes of counting, the counting requirement is as above.
In a similar way we obtain from the concentric cylinders theorem the following corollary.
Let G = (V,E) be a cone graph with |V | = n + 1 and with distinguished cone vertex

vn+1. Let p = (p1, . . . , pn) be a framework vector, as usual and let p∗ be a straight line.
Then the triple (G, p, p∗) is a point-line-distance framework for the cone graph G.
In general a point-line graph is a graph G = (V,E) in which we distinguish a bipartition

of the vertices V = Vp ∪ Vl and a bipartition of the edges E = Epp ∪ Epl. The notation
arises from the point line frameworks context where v ∈ Vp becomes a point and v ∈ Vl a
line, e ∈ Epp represents a standard edge (or bar) and e ∈ Epl represents an edge joining
a point to a line. Note that we allow no edges joining two lines and that in the following
corollary |Vl| = 1.
A line has 4 degrees of freedom and so the natural class of simple graphs for “typical”

general point-line distance frameworks are those for which

3|Vp|+ 4|Vl| − |E| = 6

and
3|Vp(X)|+ 4|Vl(X)| − |E(X)| ≥ 6

for any subgraph X ⊂ G with at least one edge. We refer to such graphs as maximally
independent point-line graphs. One can define the infinitesimal rigidity of general point-
line-distance frameworks and also generic frameworks in a natural way.

Corollary 5.7. Let G = (V,E) be a cone graph, viewed as a point-line graph G =
(Vp ∪ Vl, E) with a single line corresponding to the cone vertex. Suppose also that the
subgraph induced by Vp is connected with at least 4 points. Then the following statements
are equivalent:
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(i) G is a maximally independent point-line graph.
(ii) There is a minimally infinitesimally rigid point-line framework realisation (G, p)

in R3.

Proof. Infinitesimal rigidity of the point-line distance framework is equivalent to the infin-
itesimal rigidity of the subframework of points constrained to the concentric cylinders (one
for each point) determined by the point line distances. This, by the concentric cylinders
theorem above, is equivalent to

2|Vp| − |Epp| = 2

with a similar inequality for subgraphs. For each point there is a point-line edge, and so
|Vp| = |Epl|. Thus,

3|Vp|+ 4|Vl| − |E| = (2|Vp|+ |Vp|) + 4− |Epl| − |Epp| = 2|Vp|+ 4− |Epp| = 6,

with an associated inequality for subgraphs, as desired. �

References

[1] L. Asimow and B. Roth, The rigidity of graphs, Trans. Amer. Math. Soc., 245 (1978), 279-289.
[2] L. Asimow and B. Roth, Rigidity of graphs II, J. Math. Anal. Appl. 68 (1979) 171-190.
[3] A. Berg and T. Jordan, A Proof of Connelly’s Conjecture on 3-connected Circuits of the Rigidity

Matroid, Journal of Combinatorial Theory, Series B 88 (2003) 77-97.
[4] B. Connelly and W. Whiteley, Global Rigidity: The effect of coning, Disc. & Comp. Geom. 43(4):

717-735 (2010)
[5] H. H. Crapo. On the generic rigidity of plane frameworks. Technical Report 1278, Institut de recherche

dinformatique et dautomatique, 1988.
[6] H. Gluck, Almost all simply connected closed surfaces are rigid, in Geometric Topology, Lecture

Notes in Math., no. 438, Springer-Verlag, Berlin, 1975, pp. 225-239.
[7] J. Graver, B. Servatius and H. Servatius, Combinatorial rigidity, Graduate Texts in Mathematics,

vol 2, Amer. Math. Soc., 1993.
[8] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius, H. Servatius, D. Souvaine, I. Streinu, W.

Whiteley, Planar Minimally Rigid Graphs and Pseudo-Triangulations, Computational Geometry, 31
(2005) 3161.

[9] B. Hendrickson and D. Jacobs, An Algorithm for two-dimensional Rigidity Percolation: the Pebble
Game, J. Computational Physics, 137, (1997), 346-365.

[10] B. Jackson, Notes on the Rigidity of Graphs, Levico Conference Notes, 2007.
[11] B. Jackson and T. Jordan, Connected rigidity matroids and unique realisations of graphs, J. Combi-

natorial Theory(B), 94, (2005),1-29.
[12] A. B. Kempe, On a general method of describing plane curves of the nth degree by linkwork, Proc.

London Math. Soc., 7 (1876), 213-216.
[13] G. Laman, On graphs and the rigidity of plane skeletal structures, J. Engineering Mathematics, 4

(1970), 331-340.
[14] A. Lee and I. Streinu, Pebble Game Algorithms and Sparse Graphs, Discrete Mathematics, 308, 8,

(2008), 1425-1437.
[15] L. Lovasz and Y. Yemini, On generic rigidity in the plane, SIAM J. Algebraic Discrete Methods, 3

(1982), 91-98.
[16] C. St. J. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36

(1961), 445-450.
[17] A. Nixon and J.C. Owen, An Inductive Construction of (2, 1)-tight Graphs,

http://arxiv.org/abs/1103.2967v1, (2011).
[18] A. Nixon, J.C. Owen and S.C. Power, A Laman theorem for frameworks on surfaces of revolution,

ArXiv, September 2012.



28 A. NIXON, J.C. OWEN, AND S.C. POWER

[19] J.C. Owen and S.C. Power, The non-solvability by radicals of generic 3-connected planar Laman
graphs, Trans. Amer. Math. Soc., 359 (2007), 2269-2303.

[20] J.C. Owen and S.C. Power, Frameworks, symmetry and rigidity, Int. J. of Comp. Geom. and Apps.,
20, 6, (2010), 723-750.

[21] A. Recski, A Network Theory Approach to the Rigidity of Skeletal Structures Part II. Laman’s
Theorem and Topological Formulae, Discrete Applied Mathematics, 8, (1984), 63-68.

[22] E. Ross, Inductive constructions for frameworks on a two-dimensional fixed torus,
http://arxiv.org/abs/1203.6561v1 (2012).

[23] B. Roth, Rigid and flexible frameworks, American Math. Monthly, Vol. 88 (1981),6-21.
[24] B. Schulze and W. Whiteley, Coning, Symmetry and Spherical Frameworks,

http://arxiv.org/abs/1108.2174, (2011).
[25] F. Saliola andW.Whiteley, Averaging and equivalent frameworks: transfer among various geometries,

Draft, Department of Mathematics, York University, 2005.
[26] T-S. Tay: Henneberg’s Method for Bar and Body Frameworks. Structural Topology 17, (1991), 53-58.
[27] W. Tutte, On the Problem of Decomposing a Graph into n Connected Factors, Journal of the London

Mathematical Society, 142, (1961), 221-230.
[28] W. Whiteley, Cones, infinity and one-story buildings, Structural Topology 8 (1983), 5370.
[29] W. Whiteley, The union of matroids and the rigidity of frameworks, Siam J. Discrete Math. Vol. 1

(1988), 237-255.
[30] W. Whiteley, Matroids and rigid structures, in ”Matroid Applications” ed. N. White, Encyclodedia

of Mathematics and its applications 40 (1992), 1-51.

Dept. Math. Stats., Lancaster University, Lancaster LA1 4YF, U.K.

E-mail address : a.nixon1@lancaster.ac.uk

D-Cubed, Siemens PLM Software, Park House,, Castle Park, Cambridge UK

E-mail address : owen.john.ext@siemens.com

Dept. Math. Stats., Lancaster University, Lancaster LA1 4YF, U.K.

E-mail address : s.power@lancaster.ac.uk


