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Empirical pricing kernels for the UK equity market are derived as the ratio

between risk-neutral densities, inferred from FTSE 100 index options, and

historical real-world densities, estimated from time series of the index.

The kernels thus obtained are almost compatible with a risk averse

representative agent, unlike similar estimates for the US market.

I. Introduction

The pricing kernel assumes a central role in asset

pricing literature, as it succinctly summarizes inves-

tors’ risk and time preferences. With a correctly

identified pricing kernel, asset pricing becomes a

straightforward discounting of future payoffs by the

kernel.
In this article, we estimate empirical pricing kernels

from the options market, as option prices have been

shown to contain incremental information in fore-

casting future volatilities and price distributions com-

pared to the time series of asset prices.1 We express the

empirical pricing kernels as the ratio between risk-

neutral densities (RND), inferred from FTSE 100

index options, and historical densities obtained from

time series of the index, averaged across time to

minimize the impact of measurement errors.
In particular, we assume that RND follow certain

distributions. They can be either a mixture of two

lognormal densities (MLN), a generalized beta

distribution of the second kind (GB2), or a flexible

spline function, all of which are easy to estimate and

able to capture the stylized facts of negative skewness

and excess kurtosis that are associated with index

distributions.
Using a sample of 126 months from July 1993 to

December 2003, we find that the average empirical

pricing kernel for the UK equity market is generally

downward sloping and does not exhibit the puzzling

hump shape documented by Jackwerth (2000),

Brown and Jackwerth (2002), and Rosenberg and

Engle (2002). This work is also related to Brennan

et al. (2006), which adopts the traditional asset pricing

approach by identifying state variables that fully

describe the investment opportunities and specifying

flexible functional forms for the pricing kernels.
The rest of the article is organized as follows.

Section II introduces the risk-neutral and historical

densities and the estimation procedures. Section III

*Corresponding author. E-mail: Liux@Essex.ac.uk
1A vast literature has documented that option-implied volatility provides better forecasts of future volatilities than
realized volatility. Poon and Granger (2003) and Taylor (2005) provide recent survey evidence. In terms of density forecasts,
Liu et al. (2007) demonstrates that distributions from option prices are better forecasts than those obtained from asset price
histories.
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discusses data. Section IV presents empirical results
and describes the empirical pricing kernels for the
UK. Finally, Section V concludes.

II. Risk-Neutral and Historical Densities

Mixture of lognormal densities (MLN)

Following Ritchey (1990) and Melick and Thomas
(1997), the RND of the asset price when options
expire can be defined as a MLN. The MLN densities
are flexible and easy to estimate, with the possibility
of attaching an economic interpretation to the
parameters when the component densities are deter-
mined by specific states of the world when the options
expire. The MLN density function in this study is
the following weighted average of two lognormal
densities gLN,

gMLNðxj�Þ ¼ wgLNðxjF1,�1,T Þ
þ ð1� wÞgLNðxjF2,�2,T Þ ð1Þ

with

gLNðxjF,�,TÞ ¼
1

x�
ffiffiffiffiffiffiffiffiffi
2�T
p exp � 1

2

logF� �2T=2
�
ffiffiffiffi
T
p

� �� �

ð2Þ

The parameter vector is �¼ (F1,F2,�1,�2,w), with
0�w� 1 and F1, F2, �1, �240. The parameters F1, �1
and w denote the mean, volatility, and weight of the
first lognormal density, while F2, �2 and 1�w are the
mean, volatility, and weight of the second lognormal
density.

The density is risk-neutral when its expectation
equals the current futures price F, i.e. when
wF1þ (1�w) F2¼F. The theoretical Euruopean
option pricing formula is then simply the weighted
average of two option prices given by the Black
(1976) formula, denoted by cB(�),

c X �, r,Tjð Þ ¼ wcBðF1,T,X, r,�1Þ
þ ð1� wÞcBðF2,T,X, r,�2Þ ð3Þ

Generalized beta distribution (GB2)

The generalized beta distribution of the second kind
(GB2) was first proposed by Bookstaber and
McDonald (1987) and utilized by Anagnou-
Basioudis et al. (2005). The GB2 density incorporates
four positive parameters �¼ (a, b, p, q) that permits
general combinations of the mean, variance, skewness
and kurtosis of a positive random variables. The
GB2 density function is defined as,

gGB2 x a, b, p, qjð Þ ¼ axap�1

bapBðp, qÞ½1þ ðx=bÞa�pþq
ð4Þ

with B( j, k)¼�( j)�(k)/�( jþ k). The density is risk-
neutral when

F ¼ bBðpþ ð1=aÞ, q� ð1=aÞÞ
Bðp, qÞ ð5Þ

The parameter b is seen to be a scale parameter, while
the product of a and q determines the maximum
number of moments and hence the asymptotic shape
of the right tail.

The theoretical option pricing formula depends on
the cumulative distribution function (c.d.f.) of the
GB2 density, denoted GGB2, which is a function of
the c.d.f. of the beta distribution, denoted G�,

GGB2 x a, b, p, qjð Þ ¼ GGB2 ðx=bÞa 1, 1, p, qjð Þ
¼ G� yðx, a, bÞ p, qjð Þ

ð6Þ

with y(x, a, b)¼ (x/b)a/(1þ (x/b)a). If the density is
risk-neutral, so that (5) applies, the European call
option prices are given by

c X �jð Þ ¼ e�rT
Z 1
X

ðx� XÞgGB2 x a, b, p, qjð Þdx

¼ Fe�rT 1� G�ðyðX, a, bÞ pj þ
1

a
, q� 1

a

� �

� Xe�rT 1� G�ðyðX, a, bÞ p, qj Þ
� �

ð7Þ

Flexible densities

To make sure that the parametric densities discussed
above are not inferior to more flexible density curves,
we also infer RND defined by spline functions,
as estimated by Bliss and Panigirtzoglou (2004).
We apply their methodology to obtain implied
volatilities, denoted by �(�j�), which are a function
of option delta, �, and a parameter vector �.
Numerical methods then give call prices c as
functions of strikes X and hence define the RND
as g(X)¼ erT@2c/@X2. For options on futures, �
is defined as a function of the Black-Scholes at-
the-money volatility �A

�ðXÞ ¼ e�rTNðd1ðXÞÞ

d1ðXÞ ¼
logðF=XÞ þ �2AT=2

�A
ffiffiffiffi
T
p

ð8Þ

The spline function �(�j�) is defined over
0��� exp(�rT). It is composed of linear pieces
and cubic polynomials, defined on intervals deter-
mined by knot points �15�25� � �5�N. Each cubic
is defined over an interval from �i to �iþ1, while
the function is linear for ���1 and ���N.
The coefficients of the lines and cubics are

990 X. Liu et al.

D
ow

nl
oa

de
d 

by
 [

L
an

ca
st

er
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
3:

42
 2

5 
A

pr
il 

20
13

 



constrained by the requirement that �(�j�) and its

first two derivatives are continuous functions. The

spline function has N free parameters (Lange, 1998,

p. 104) and there is a unique spline with the required

properties that passes through a given set of N points

(�i,�i). Taking the knot points as given,

the parameter vector is the corresponding set of

implied volatilities �¼ (�1, . . . ,�N).

Estimation of the RND parameters

The RND parameter vector � is estimated once a

month with 4-weeks to maturity so that the densities

are nonoverlapping for each of the three density

functions. For the MLN and GB2 densities, � is

obtained by minimizing the following average

squared difference between observed market call

prices and theoretical option prices:

1

N

XN
i¼1

cmarketðXiÞ � c Xi �jð Þð Þ2 ð9Þ

with

c Xi �jð Þ ¼ e�rT
Z 1
Xi

x� Xið Þg x �jð Þdx, 1 � i � N

In these equations, N is the number of European

option prices used for a particular day, g(xj�) is

a parametric density function, and c(Xj�) is the

associated theoretical option pricing formula, given

by either Equation (3) or (7).
The estimates of � for the flexible densities are

obtained by minimizing a function that combines

two criteria, namely the accuracy and the smoothness

of the fitted spline function �(�j�). From N

market prices, we derive implied volatilities and

hence co-ordinates (�i,�market (Xi)). Then for a set

of weights wi, we select �1, . . . ,�n to minimize

�
Xm
i¼1

wi �marketðXiÞ � �ið Þ2

þ ð1� �Þ �
Z �M

�1

�00 �j�1, . . . ,�mð Þ2d�: ð10Þ

There is a straightforward solution to this optimiza-

tion problem (Lange, 1998, p. 111). Implementation

requires making a subjective choice for the parameter

�, that controls the trade-off between accuracy

and smoothness. Following Bliss and Panigirtzoglou

(2002, 2004), appropriate weights are proportional to

option vega, so we use wi ¼ exp �d1ðXiÞ2=2=
ffiffiffiffiffiffiffiffiffi
ð2�Þ

p	 

with d1(Xi) given by Equation (8).

Historical densities

ARCH models for daily index returns are estimated
and simulated to provide historical real-world
densities. The simulated ARCH models must accom-

modate the stylized facts documented in the litera-
ture, including a time-varying conditional mean,
a persistent conditional volatility and an asymmetric

response of volatility to positive and negative
returns. We choose the GJR-GARCH(1,1)-MA(1)-M

specification, following Engle and Ng (1993) and
Glosten et al. (1993). The conditional mean �t and
the conditional variance ht of the daily index return rt
are as follows,

ht ¼ !þ �ht�1 þ ð�1 þ �2Dt�1Þðrt�1 � �t�1Þ2

� ¼ 	 þ 
ðht�1Þ1=2þ�ðrt�1 � �t�1Þ
Dt ¼ 1 if rt � �t
Dt ¼ 0 otherwise

ð11Þ

Ten years of daily index returns prior to each

estimation date ti are used to estimate the ARCH
parameters �¼ (!,�,�1,�2, �,
,�), by maximizing

the quasi-log-likelihood function, which assumes
the conditional distributions are normal. These
estimates are consistent even when the normality

assumption is false (Bollerslev and Wooldridge,
1992).

The parameters obtained from the returns infor-
mation up to selected times ti are used to simulate

the ARCH equations for 4-week periods that end on
option expiry dates. A large number, M, of simula-

tions of the final asset level ST,i are obtained for each
month i. The historical real-world density ~gi is then
the smooth function obtained by using the Gaussian

kernel with bandwidth H ¼ 0:9 =
ffiffiffiffiffi
M5
p

and with  
the standard deviation of the simulated final levels.
We have set M equal to 100 000. Our formula for the

bandwidth H is recommended by Silverman (1992, p.
48) and used by Rosenberg and Engle (2002).

III. Data

The futures and options contracts are written on the
FTSE 100 index and they are traded at the London

International Financial Futures and Options
Exchange (LIFFE). Futures and options have the

same expiry month and share a common expiry time,
10:30 on the third Friday. European options can
then be valued by assuming that they are written on

the futures contract, and hence spot levels of the
index are not needed.

Empirical pricing kernels obtained from the UK index options market 991

D
ow

nl
oa

de
d 

by
 [

L
an

ca
st

er
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
3:

42
 2

5 
A

pr
il 

20
13

 



Daily settlement values for futures and options
prices with 4-week to maturity are obtained from
LIFFE, for 126 consecutive expiry months from July
1993 to December 2003 inclusive. The call and put
implieds for the same contract are almost identical, as
should be expected from put-call parity. We average
the call and put implieds and use them to calculate
European call prices for each contract.

On average, 37 exercise prices are available for
each month. The exercise prices are always separated
by 50 index points. Table 1 provides summary
information about the option prices.

There are 12 expiry dates per annum for the
options but the futures contracts are traded for only
one expiration date each quarter. Synthetic futures
prices must be calculated for the remaining 8 months.
Fair futures prices, F, are the future value of the
current spot prices S minus the present value of
dividends expected during the life of the futures
contract

F ¼ erTðS� PVðdividendsÞÞ ð12Þ

We have obtained actual dividend payments for the
100 component companies of the index from
DataStream, and computed the present value of
dividends by assuming that future expected dividends
can be approximated by realized dividend payments.

Risk-free interest rates are collected from
DataStream. We prefer the London Eurocurrency
rate to the UK treasury bill rate, because the
Eurocurrency rate is a market rate accessible to AA
corporate borrowers.

Figure 1 shows typical estimates of the RND,
which exhibit marked negative skewness that has
already been extensively documented. The MLN and
GB2 densities are almost identical, while the spline
density differs in the left tail. The historical real-world
density is very different from the risk-neutral ones,
with much less skewness and kurtosis.

IV. Empirical Pricing Kernels

Empirical pricing kernels are estimated by using
RNDs obtained from the options market and
historical real-world densities from index returns.
Three empirical pricing kernels
MðxÞ ¼ e�rTgðxÞ=~gðxÞ are constructed for each
option expiry date, with g(x) either the MLN, GB2
or spline RND and ~gðxÞ the historical density from
GARCH simulations. The geometric mean of each
set of kernels is computed, across expiry dates, to
reduce the impact of the noise created first by fitting

the RNDs and second, by using different sources of
information to find g and ~g. We plot the geometric
means of the three sets of ratios gðyFÞ=~gðyFÞ against
the moneyness variable y¼x/F in Fig. 2. All three

Table 1. Summary statistics for the dataset of FTSE 100

index option prices.

The average number of option prices is 37 per month for
the 126 expiry months from July 1993 to December 2003
inclusive. The moneyness of a call option is defined by
X/F - 1, with X the exercise and F the futures price

Moneyness No. of options Percentage (%)

��0.20 19 0.4
(�0.20, �0.10] 392 8.3
(�0.10, �0.03] 849 18.0
(�0.03, 0.03] 702 14.9
(0.03, 0.10] 731 15.5
(0.10, 0.20] 818 17.3
(0.20, 0.30] 572 12.1
(0.30, 0.40] 303 6.4
40.40 335 7.1

Totals 4721 100.0

0.9 0.94 0.98 1.02 1.06 1.1
0

1

2
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4

x/F

G
eo

m
et

ric
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n

GB2/historical
MLN/historical
spline/historical

Fig. 2. Empirical pricing kernels, as geometric averages

across all expiry months
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Fig. 1. Three risk-neutral densities and the historical

density on March 21, 1997
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graphed kernels are generally decreasing functions of
x/F, although they are almost flat between 0.98 and
1.05.

None of our empirical pricing kernels for the UK
equity market resembles those of Ait-Sahalia and Lo
(2000), Jackwerth (2000), Brown and Jackwerth
(2002) and Rosenberg and Engle (2002) for the
US market. These researchers estimate very clear
hump-shaped kernels, using S&P 500 data that ends
in 1995, which challenges economic theory and
indicates that the representative agent has a risk-
seeking utility function in some wealth region.
The risk-seeking range obtained by Jackwerth
(2000) is 0.96�x/F� 1.01, while Rosenberg and
Engle (2002) obtain 0.96�x/F� 1.02. Brennan
et al. (2006) also use FTSE 100 index options data
to estimate the option pricing kernel, approximated
by a three-term Chebyshev polynomial whose state
variables are the real interest rate, the maximum
Sharpe ratio, and volatility. The pricing kernel is
upward sloping in the region 1.03� x/F� 1.05.

V. Conclusion

Using a data set from July 1993 to December 2003,
we derive three series of RND, namely the mixture
of two lognormal densities, the generalized beta
distribution, and a flexible spline distribution from
FTSE 100 index options data. We also fit GARCH
models to the time series of FTSE 100 index returns
and simulate historical real-world densities. The
empirical pricing kernel obtained from the two
sets of densities is broadly downward sloping and
therefore consistent with economic theories.
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