
WoTKit: A Lightweight Toolkit for the Web of Things
Michael Blackstock, Rodger Lea

Media and Graphics Interdisciplinary Centre
University of British Columbia

Vanouver, Canada

{mblackst, rlea}@magic.ubc.ca

ABSTRACT
In this position paper, we discuss our experiences with a
lightweight Web of Things (WoT) toolkit and use those
experiences to explore what an effective WoT toolkit looks like.
We argue that while the WoT community has experimented, like
us, with a variety of toolkits, it hasn’t yet found one that appeals
sufficiently to a broad range of developers. This failure, we
believe, is hindering the adoption of the WoT and the growth of
the community. We conclude the paper with a set of open
questions, which, although not exhaustive, are aimed at opening
up a community discussion on the needs of developers and how
best the community can meet those needs and so further the
adoption of the WoT. In essence, we believe that the time may be
right to begin to agree on some basic functionality and approaches
to WoT toolkits.

Keywords
Internet of Things, Web of Things, Mashup Toolkits, REST

1. INTRODUCTION
Building upon the vision of a connected Internet of Things, the
Web of Things (WoT) [7, 15] aims to leverage web protocols and
technologies to facilitate rapid construction of web applications
exploiting real world objects. By using the representational state
transfer (REST) architectural style of the world wide web [6],
things are identified by URIs and a use a common protocol
(HTTP) for stateless interaction between clients and servers.
Given the simplicity of this approach and the prevalence of web
expertise, it is perhaps surprising that the WoT and associated
applications have not developed as rapidly as imagined.

While we feel there are a number of technical reasons for this, we
believe that a significant barrier is the lack of simple and
lightweight toolkits (or even a single toolkit) that strikes the right
balance between functionality and simplicity. We believe that the
community has been seduced by the open and prevalent nature of
web technologies into focusing less on tools and support for
developers, believing that by simply exploiting Web technologies,
the WoT will naturally evolve.

Obviously, we are not claiming that the WoT community has not
explored platforms and toolkits; there have been many excellent
research projects and industrial efforts. Rather, our position is that

we, as a community, need to do more to understand what will
enable a significant uptake in the WoT and how we, as a
community, can enable that uptake.

To help frame the discussion we present our work on the WoTKit,
a lightweight toolkit and platform (run as a service) that provides
a simple way for end users to find, control, visualize and share
data from a variety of things. Based on our own experiences with
previous systems [3–5] and using the WoTKit we present a set of
high-level requirements that have driven the evolution of our
toolkit with a core goal of making it suitable for the rapid
development of WoT applications. While our work and that of
others in the community has explored many of the issues around
how to enable the WoT, we certainly don't have all the answers; in
fact, our experiences have raised many questions about our
approach. In the spirit of a position paper, and with the goal of
generating discussion, we end by outlining these questions and
some initial thoughts. We look forward to further discussion at the
workshop.

2. BACKGROUND
High end industrial IoT and M2M systems such as ThingWorx
[17], Axeda [2], and AirVantage [1] address many of the
requirements for building IoT applications, however, their focus is
on providing a comprehensive set of tools for building build end-
to-end solutions, often using private data sources. They do not
focus on web enabling things and capabilities that can be shared
for web developers to easily build simple solutions.

Researchers have proposed the use of the REST architectural style
supported by the web to connect things to the Internet [7, 15].
Ideally this would begin to address the lack of interoperable
application layer standards. Others have demonstrated the use of
Web tools and techniques such as the use of browsers, search
engines, caching and scripting languages alike JavaScript to create
mashups that integrate with the real world [8, 9]

Realizing that the use of the web alone doesn’t fully address the
needs of web developers, solutions such as Pachube [12], Open
Sen.se [11], ThingSpeak [16], Paraimpu [13, 14] and others
including our own work presented here have emerged. Pachube
aggregates data feeds for public use and provides a directory of
applications that provide processing, integration and visualization
capabilities. Open Sen.se also aims to provide a set of tools to
collect and display data about themselves and others from sensors.
Users create sense boards containing the output from various
applications installed by the user to visualize and process data.
Paraimpu is used to connect physical and virtual things to Web
and to social networks. Paraimpu connections provide processing
capability such as filtering and mapping between sensors and
actuators. ThingSpeak supports some basic visualization of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WoT 2012, June 2012, Newcastle, UK.
Copyright 2012 ACM 978-1-4503-0624-9/11/06…$10.00.

historical data and data processing when data is pulled from the
system.

These solutions aim to close the gap between the needs of
developers and the emerging Web of Things to increase the
number of users able to take advantage of the connected physical
world. Such toolkits can afford incremental innovation, allowing
advanced end users and developers to build on others’ work, and
find uses for sensors and data that may not be obvious or suitable
for only a small number of end users.

Based on our experience developing a sophisticated web-based
ubiquitous computing integration platforms [3], a light weight
platform for web of things applications [4] and integration with
social networks [5] we believe that a key enabler of the WoT is
the development of low-end or lightweight toolkits toward
increasing the use and popularity of web enabled things.

Like other systems, the WoTKit system presented here meets
several basic requirements. The difference between WoTKit and
others is really on how these facilities are delivered. Rather than
providing them as external applications or plug-ins, they are
provided as core system facilities out of the box. The intent is not
to prevent developers from creating their own applications for use
with WoTKit, but rather to provide easy to use baseline
functionality to get up and running quickly. In the following
section we discuss some of the basic requirements for a WoT
toolkit.

3. WOT TOOLKIT REQUIREMENTS
Toward gaining an understanding of WoT toolkit requirements,
we aimed to support applications in a variety of domains such as
home automation, environmental monitoring, social networks,
transportation, and health. To date we have found the early
implementation of WoTKit flexible and robust enough to begin
using it for development. Initially we have focused on collecting
a wide variety of data to make it available on the system and to
exercise the platform.

Researchers in the health domain have found WoTKit to be a
useful prototyping tool [10]. The system was used to monitor the
output from Bluetooth based pulse oximeters. These sensors were
connected to a Bluetooth PAN host which relayed the data to the
WoTKiT for visualization to facilitate patient monitoring during
movement and transportation. The sensors and dashboard on a
laptop for monitoring are shown in Figure 1a. This project took
advantage of the WoTKit’s ease of integration and visualization
capabilities.

We have also used the WoT kit to prototype a mobile air quality
monitoring application. To gather the needed data we wrote a
simple script to query for updates from city-owned air quality
sensors supplied on a public web site. This was then pushed into
the WoTKit in a format that made it easy to process by a mobile
application as shown in Figure 1b. This project exercised the
RESTful APIs that were needed to retrieve the air quality data for
the native Android application. Using the sharing facilities of
WoTKit, this public data is also available for other applications.

For transportation-related scenarios we have integrated several
sources of location data. We have written several applications for
Android phones that relay the GPS coordinates and inferred
transport modes of the user to the system periodically. We have
also created a Google Latitude gateway to relay the location of
users in the system for monitoring transportation patterns. To
monitor several vehicles in a prototype dispatch application, the
Processing Engine supplied with the WoTKit was used to
aggregate sensors and display them on the Google Maps widget in
the dashboard.

To assess the system for home automation applications we have
written simple integration gateways for Phidget sensors and
actuators such as servomotors. Control gateway scripts leverage
the API to listen for control messages sent from the platform to
the listening actuator. More recently we have integrated Zigbee
based temperature, light and power sensors to monitor activity as
shown in Figure 2.

A variety of small projects have used the WoTKit to monitor
computing resources and other infrastructure. This includes
simple scripts to send the CPU and network use of one of our
sensing computers running several gateway scripts, making it easy
to monitor the health of machines remotely and send alerts when
critical levels are reached. Web scraping tools such as Beautiful
soup1 have made it straightforward to write simple ‘virtual sensor’
gateways that push information from the web into the system for
visualization and reuse by applications. We have used these
techniques to track the number of airport arrivals and departures
by the hour, the electricity use in several buildings on our campus,
the overall electricity demand of the UK and other interesting
web-based data making them available to our dashboards and any
toolkit application that may make use of them.

Lastly, we have explored social networks as sensor feeds writing a
variety of simple scripts that feed tweets, Facebook updates and
other social networking activity into our system for use in mash-
up applications. As we have built these applications and evolved
our platform towards WoTKit, we have tried to identify essential

1 Beautiful Soup: We called him Tortoise because he taught us.

http://www.crummy.com/software/BeautifulSoup/. Accessed
March 15, 2012.

 a. b.

Figure 1a. Laptop connected to Bluetooth Pulse Oximeter with
WoTKit dashboard [10]. b. Android air quality application
shows pollution data for the region overlaid on Google Maps.

Figure 2. Zigbee based current, light and temperature sensor.

features and functionality that we know that WoTKit needs to
support well. These have included:

• Simple integration between a variety of things, both physical
and virtual, and the toolkit.

• Easy to use visualizations of data from a thing, and user
interface to control things remotely, using the web.

• An easy to use information processing capability for simple
data processing and alert generation.

• The capability for users to share their integrated things and
other toolkit components with others.

• The ability to scale up simple prototypes to more advanced
applications by providing a comprehensive and easy to use
API.

In the following section we describe each of these requirements in
more detail.

3.1 Integration
It can be difficult to integrate things with the web. New gateways
need to be implemented to provide a web server interface to the
thing. This means that the integrator needs to decide on the
appropriate web representations for the things, security models,
and other issues. In some cases, it can be difficult to make the
thing available to the outside world because of firewalls.

To simplify this integration task, we suggest the toolkit itself
should serve as the hub for thing interaction. When the state of
things changes, a script can send information to the toolkit where
it is saved for applications. There should be no need for every
developer to set up a web server and decide on a suitable
representation – the toolkit can provide this service.

3.2 Visualization
Creating useful and aesthetically pleasing visualizations on the
web can difficult not only for end users but also web developers.
To address this, companies like Google and open source efforts
have contributed visualization frameworks to make it
straightforward for developers to draw graphs, charts and maps.
Unfortunately these frameworks depend on different data
representations. To make it straightforward to generate visuals, a
toolkit should bridge the gap between the data representations of
data from things to that needed for visualization frameworks.

3.3 Processing
In many scenarios, data from multiple sensors needs to be
combined and processed. In others, alerts need to be sent when an
important event occurs. One challenge in providing processing
capability is the need to balance ease of use, expressivity and
generality in a programming language. Toward addressing this
issue for Web developers, Yahoo Pipes2 introduced an easy to use
visual programming language for the development of mashups.
This approach has been shown to be useful when integrated with
Pachube3. Another approach is to provide simple configurable
processing components that can be dropped into the system as is.

2 Pipes: Rewire the Web http://pipes.yahoo.com/pipes/. Accessed

March 12, 2012.
3 Fetch Pachube Feed on Yahoo Pipes

http://pipes.yahoo.com/pipes/pipe.info?_id=RG78xpPB3RGfyB
wQ6ycw5g. Accessed April 16, 2012

Toolkits should have suitable general purpose processing
capabilities for simple application development.

3.4 Sharing
A key enabler for the web of things is to permit others to access
and use the things that have been published publicly on the web.
It should be possible for users to make use of things that others
have shared and to make use of things in their own applications,
perhaps in ways unanticipated by the owner of the thing. This
requirement means we need a sophisticated set of mechanisms to
publish and share things - and ways to find and access those
things.

3.5 Advanced Application Support
Since a toolkit cannot provide all of the functionality needed by
an application, it is important to support the integration of external
components. Once an application is prototyped, a suitable API
allows developers to create their own visualizations, processing
components, or integrate new sources of data into the system.
Ideally, the programming interface should be RESTful to allow
web developers to take advantage of the extensive tools and
techniques available to web developers today.

4. WOTKIT DETAILS
The WoTKit aims to address these basic requirements. It serves
as a sensor data aggregator, visualization, remote control and
mashup tool. In this section we discuss WoTKit gateways, the
dashboard, the Processor service, sharing features and RESTful
API that the system exposes to applications and things.

4.1 Gateways
Gateways for the WoTKit are typically simple scripts that
optionally register discovered sensors, gather data from the
sensors they serve and push data into the system when data
changes. Because these gateways are web clients, not servers
themselves, they can be located behind firewalls and consist of
only a few lines of code to register themselves, update their state,
and get control messages.

To illustrate, the following simple example shell script posts the
current CPU use of a PC to a sensor to the default data fields
called value. This script assumes the cpu sensor has already been
registered on the system.
#!/bin/sh
while (true)
do
 cpu=$(uptime | sed 's/.*load averages: \([0-
9]\.[0-9]*\).*/\1/')
 echo "average cpu use: "$cpu
 curl --user {user}:{password} –data
 "value="$cpu
 http://{host}/api/sensors/{user}.cpu/data
 sleep 60
done

More advanced gateway scripts can receive data from sensors, and
send additional data to the platform in different named fields.
Note that gateways themselves need not concern themselves about
the representation of things on the web, leaving this to the system.

The simplest way for an application to retrieve data is to issue a
GET request to the appropriate sensor specifying the
representation desired and query parameters. For HTML:
http://{host}/api/sensors/{sensor}/data?tqx=out:ht
ml

Actuators can also be connected to the system. A simple remote
control widget containing a text field, radio button and a slider can
be used to signal connected actuators. To receive signals behind a
firewall, actuators subscribe to control messages sent to the sensor
and using HTTP long polling, listen for data on the subscription.
When an application or dashboard controller widget sends a
signal, the device gateway receives a JSON encoded message, and
performs the appropriate action such as turning on or off an LED,
or moving a servo.

4.2 Dashboard
For quickly visualizing sensor data, the WoTKit provides a
JavaScript-based dashboard for quickly and easily displaying a
variety of sensor data visualizations and control components as
shown in Figure 3. The dashboard supports the generation and
placement of widgets: the combination of a chosen thing and
visualization. To support widgets, the system supports
representations needed by the visualization code hosted on the
browser platform. The system currently leverages the Google
Chart Tools4 and Flot5 a jQuery plug in for generating
visualizations; the WoTKit client side dashboard framework can
incorporate other visualizations as needed.

4.3 Processing Services
An event-based data processing subsystem called the Processor is
provided with the WoTKit. Sensor data is processed as it is
pushed into the system from gateway components. The main
purpose of the system is to allow users to generate new, and in
some cases higher-level sensor information from lower level
sensor data in a straightforward manner. The primary interface is
a visual programming environment that leverages the WireIt

4 Google Chart Tools

http://code.google.com/apis/chart/interactive/docs/index.html
Accessed March 6, 2012.

5 Flot Javascript Plotting Library http://code.google.com/p/flot/
Accessed March 6, 2012.

toolkit6 presenting an interface similar to Yahoo Pipes. The
programming paradigm is a data flow where processing pipes
made up of connected modules are built by end users to generate
new sensor data from other sensor inputs in the system.

A management page provides a list of pipes that the user is
currently executing or working on. Using this page, can start, stop
and edit the pipes. Administrators can manage all pipes for all
users on the system. To develop a new pipe, or edit an existing
pipe, the visual programming interface allows users to drag and
drop modules to the main pane and then connect them with wires
as illustrated in Figure 4.

Once the user saves and executes the pipe, it is first checked for
errors and “compiled” by instantiating pipe modules in the server.
The system subscribes to data sent into any sensor input modules,
and based on the configuration of these modules in the pipes,
executes the pipe on behalf of the user. To date we have
implemented several modules:

Input/output. These modules are the primary integration point
with the rest of the system.
Testing and Debugging. To see data as it flows through a pipe, a
Monitor module can be added. Data that is sent to these modules
appears in a pane on the visual editor when the pipe is executing.
This can be used for testing and debugging pipes under
development.
Processing. The system currently supports two modules for
processing: an aggregator takes data from two sensors, adds a
new field to the data to indicate the origin sensor, and sends this
aggregated data to its output connection. A threshold module
sends a single message to an output connector when the value of
the input data meets a condition. To reset the output, another
input called the trigger is used. We anticipate adding additional
components for averaging, filtering and other useful primitives.
Integration. To send alerts, the system includes an email module
that will send emails to a configured email address containing
sensor data formatted using a template. This can be used in
tandem with the threshold module to send an email when a certain
condition is reached for example. We are working on other
integrations such as RSS feeds, social network feeds, SMS

6 WireIt – The JavaScript Wiring Library

http://neyric.github.com/wireit/ Accessed March 12, 2012.

Figure 3. Example Dashboard with a variety of sensor data.

Figure 4. Processor component pipe editor based on WireIt

messaging and others.
User scripting. Finally, we include the ability for end users to
write their own modules using Python. By convention, the script
takes input from an input dictionary, executes some code, and
then puts any output into an output dictionary for downstream
processing. The user may save copies of scripted modules for use
in other pipes. This capability allows users to extend the built in
processing capabilities with new functionality as needed.

4.4 Sharing
To enable sharing things, the WoTKit provides a searchable
gallery. Users can search things by name, or the contents of their
description. All things have a global location to allow users to
easily find things of interest nearby. Users then subscribe to the
things of interest in the gallery to build visualization widgets and
processing pipes.

4.5 RESTful Service Interface
The WoTKit has a RESTful API for things allowing applications
to control things, get historical data from things, and register new
things with the system. Applications register sensors with the
system by POSTing a JSON representation of the sensor to the
following URL.

http://{host}/api/sensors/{sensor-name}

The representation consists of a sensor name, a long display name
for the user interface, the location of the sensor, whether it is a
public or private sensor, and information about the fields of data
supported by the sensor including type, display name and units.

The primary APIs are used to send and receive sensor data.
Typically sensor gateways POST fields to the data URL

http://{host}/api/sensors/{sensor-name}/data

While applications GET data from the same URL, specifying
query parameters for the time range and the representation. The
system currently supports CSV, KML (specific for location
sensors), HTML and a JSON format for direct use by Google
visualizations.

5. DESIGN AND IMPLEMENTATION
WoTKit is a Java web application that leverages the Spring
Framework7 a popular development framework for enterprise
applications. The data model consists of sensors, and time
stamped sensor data. The Apache Active MQ message broker8 is
used to deliver sensor data between components to support low
latency processing and control applications. A high-level
architecture diagram is shown in Figure 5.

Included in the main web application is a data model for
managing user’s dashboards and visualizations. Visualizations
are linked with sensors to create “widgets” that are added to the
user's dashboard for rapid visualization of sensor data. When a
dashboard is displayed in the browser, it requests the user’s
configuration of containers of widgets and dynamically draws the
various visuals: bar charts, line charts, maps, gauges, and controls.

The Processing Engine processes sensor data as it is sent to the
system by sensor gateways. Our initial implementation of this
system uses a multithreaded execution scheduler. The modules of
all executing pipes, implemented as Java objects, are instantiated
in the Processing Engine. Typically a given pipe will contain at
least one sensor input module to receive data from a sensor by
listening for messages on a corresponding broker topic. Data
received from a sensor is put into the execution queue as shown in
Figure 6. The multithreaded scheduler waits on this queue for
messages, retrieves the next message, and then looks up the next
pipe module instance to process the message. The executing
module may then add additional messages to the execution queue
before it exits. While this simple scheme does not ensure fairness
between pipes and pipe owners, we have found it useful to
establish the basic execution architecture; we aim to enhance this
engine over the coming months using a prioritized queue that
more evenly spreads processing engine CPU resources between
users and their pipes.

6. OPEN QUESTIONS
Based on our experience with WoTKit, and by examining similar
systems, several questions arise toward the continued evolution of
lightweight toolkits for the Web of Things.

7 The Spring Framework http://www.springsource.org/. Accessed

March 12, 2012.
8 The Apache ActiveMQ Message Broker,

http://activemq.apache.org/. Accessed March 12, 2012.

Figure 5. WoTKit architecture

Figure 6. Processing Engine architecture

[1]

Naming Things. The WoTKit uses two namespaces: a globally
unique numeric thing identifier, and a human-readable account-
relative name. Our previous work used a hierarchical namespace
allowing things to be organized and addressed in groups for ease
of organizing and finding things in containment and
administrative relationships [16]. Some systems allow things to
be tagged to find related things. In a system used to manage many
related and unrelated things what is the most appropriate way to
name things?
Thing Representations and Schema. To date, each toolkit
provider has their own abstractions and representations for things
and their data. Pachube calls streams of data “environments” or
“feeds” containing DataStreams and DataPoints. Open sen.se and
ThingSpeak use the concept of “channels” for storing data from
people or things. Our toolkit calls things “sensors” containing
sensor data. What are the best abstractions for things and their
data (current and historical)? Do all things have a location? Does
all sensor data have a scalar numeric value? Given the variety of
things, what are the appropriate field names, types, and order for
their data? How do we make these systems flexible enough to
support any type of data while allowing fast and flexible queries
and filtering?
Integration Points. It is useful to add new visuals and processing
components to a toolkit over time. What are the best integration
points for such capabilities? In some systems visuals and data
processing are both exposed as dashboard components, other
systems expose processing components as “connectors”, while
others integrate both visual and processing components as “apps”.
In the WoTKit, visuals are dashboard “widgets”, while processing
components are “pipe modules”. With different possible
integration approaches, what is the best practice for both usability
and easy of integration by developers?
Push or Pull? It is possible for a WoT platform to poll data from
things periodically, or wait for things to push data into the system.
One disadvantage is that the infrastructure needs to poll for data
even if there is no change to ensure historical data is available.
When things push data in, they can be located behind firewalls,
but may send data to the system that no one is interested in. The
best approach may be a hybrid: things respond to data requests,
only sending data when there is an interested subscriber.
Processing Model. Event based processing allows immediate
alerting real time updates and filtering data, but does not permit
aggregation and processing of historical data. Should a toolkit
support both processing approaches, and if so, how should they be
presented to the toolkit user?
Sharing. Most WoT toolkits support sharing of things and their
data to allow users of the system to take advantage of the
integration work of others. What are the appropriate sharing
mechanisms for the WoT? Should they leverage social networks,
or are the groups and relationships between things different from
the social relationships of their owners?
Toolkit Integration and Standards Given the increasing number
of WoT toolkits available from both the industrial and research
communities, the time seems right to begin work toward
agreement on basic functionality and approaches. Initial work
toward providing gateways between systems is a good step
forward. It allows users to leverage the things available as well as
the strengths and different approaches of each toolkit to create
more compelling applications and components. Additional steps
could be taken to standardize the abstract model and service

interfaces of WoT toolkits that are essential for a well-connected
Web of Things.
Batteries Included. In this paper we outlined some of the basic
requirements for a WoT toolkit. However, it is not clear what
specific visualization, processing, and integration components are
required. For us, this raises the question as to what does it mean
for a WoT toolkit to “include batteries”. What are the key
elements for a basic toolkit comprehensive enough for basic
application development?

7. CONCLUSIONS
The WoTKiT and others provide the basic requirements for
lightweight toolkits: easy integration, visualization and processing
components and a RESTful API. Based on recent experience with
the WoTKit system and past experience with IoT and ubicomp
platforms, we have raised several questions for the WoT
community around the abstractions, technical approaches, and
future directions of toolkits toward greater uptake of the WoT.

8. REFERENCES
[1] AirVantage M2M Cloud Platform:

http://www.sierrawireless.com/productsandservices/AirVantage.
aspx. Accessed: 2012-03-12.

[2] Axeda Application and Data Integration Platform:
http://www.axeda.com/. Accessed: 2012-03-13.

[3] Blackstock, M. et al. 2008. Evaluation and Analysis of a
Common Model for Ubiquitous Systems Interoperability.
Pervasive 2008 (Sidney, Australia, May 2008), 180–196.

[4] Blackstock, M. et al. 2010. MAGIC Broker 2: An open and
extensible platform for the Internet of Things. Internet of Things
(IoT) 2010 (Tokyo, Japan, Dec. 2010)

[5] Blackstock, M. et al. 2011. Uniting online social networks with
places and things. Web of Things Workshop at Pervasive 2011
(San Francisco, USA, June 2011), 5:1–5:6.

[6] Fielding, Roy T. and Taylor, Richard N. 2002. Principled
Design of the Modern Web Architecture. ACM Transactions on
Internet Technology (TOIT). 2, 2 (May. 2002), 115–150.

[7] Guinard, D. et al. 2010. A resource oriented architecture for the
Web of Things. Internet of Things (IoT) 2010 (Tokyo, Japan,
Dec. 2010)

[8] Guinard, D. 2010. Towards opportunistic applications in a Web
of Things. WoT Workshop at PerCom, 2010 (Mar. 2010), 863–
864.

[9] Guinard, D. et al. 2009. Towards physical mashups in the Web
of Things. INSS ‘09, (Jun. 2009), Pittsburgh, USA

[10] Karlen, W. et al. 2011. Location independence in patient
monitoring. Anesthesia & Analgesia (Las Vegas, USA, Aug.
2011), 37.

[11] Open Sen.se Feel, Act, Make sense: http://open.sen.se/.
Accessed: 2012-03-12.

[12] Pachube - The Internet of Things: http://www.pachube.com/.
Accessed: 2012-03-12.

[13] Paraimpu - The Web of Things is more than Things in the Web:
http://paraimpu.crs4.it/. Accessed: 2012-03-12.

[14] Pintus, A. et al. 2011. The anatomy of a large scale social web
for internet enabled objects. WoT Workshop at Pervasive 2011
(June, 2011). San Francisco, USA

[15] Stirbu, V. 2008. Towards a RESTful Plug and Play Experience
in the Web of Things. 2008 IEEE International Conference on
Semantic Computing (Aug. 2008), 512–517.

[16] The Internet of Things - ThingSpeak: https://thingspeak.com/.
Accessed: 2012-03-12.

[17] ThingWorx – The 1st Application Platform for the Connected
World: http://www.thingworx.com/. Accessed: 2012-03-13.

