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Evidence of the Triangular Lattice of Crystallized Electrons
from Time Resolved Luminescence

I. V. Kukushkin, Vladimir I. Fal'ko, R. J. Haug, K. von Klitzing, K. Eberl, and K. Totemayer
Max-Planck Ins-titut fur Festkorperforschung, Heisenbergstrasse I, 7056g Stuttgart, Germany

Institute of Solid State Physics, Russian Academy of Sciences, Chernogolouka, 1424M, Russia
(Received 4 August 1993)

We show that the recombination kinetics of two-dimensional electrons with acceptor bound holes
is a sensitive probe of the local spatial structure of the electronic system. Using the time resolved
magnetoluminescence, we extract the regime of the electron Wigner solid and establish its local
configuration consistent with the triangular lattice model. Up to the melting point, the amplitude
of the thermal vibrations of the electron crystal is derived from the temperature dependence of the
recombination kinetics.

PACS numbers: 73.40.Hm, 73.40.Kp, 78.20.Ls

The ground state of the two-dimensional (2D) electron
system in the ultraquantum limit is formed by the inter-

play between electron-electron interaction and disorder.
In a magnetic field both of them result in a frozen insulat-

ing state of the electronic system with difFerent internal
structures. In ideally pure systems, the formation of the
Wigner solid state is expected [1], whereas the disorder
hinders crystallization and gives rise to a state with no
well-defined (even local) order. In high quality semicon-

ductor structures, the importance of interaction has been
indicated experimentally by the observation of the series
of incompressible fractional states [2] which is terminated
in high magnetic fields by an insulating phase, as it was

observed in different experiments [3—9].
Several manifestations of the magnetically frozen state

competing with the incompressible fractional liquid were

also observed in magnetoluminescence experiments in

which the recombination process involves the 2D elec-

tron and an acceptor bound photoexcited hole hA [8]. It
was established that the entrance of the electron system
into the insulating phase is accompanied by the appear-
ance of an additional luminescence line [8] and a drastic
reduction of the integral intensity [8,10]. The phase dia-

gram built up from these optical studies [10] is similar to
those obtained by other methods [3—5,7,9]. The threshold

increase of the additional line intensity due to the elec-

tric field depinning of the frozen phase [8] indicates that
this line is related to the recombination of localized elec-

trons. In these experiments, the hole h~ is strongly lo-

calized (within the acceptor-related Bohr radius), and its
recombination eKciency is determined by the overlap of
its wave function with that of a 2D electron: if electrons
are localized and their states (in 2D plane) are squeezed
inside the magnetic length, AH, this overlap diminishes

for most of the holes and tends to zero under an increase
of the magnetic field. This means that a quantity, such as
the hole recombination rate, potentially possesses infor-

mation about the short-range configuration of electrons
in the magnetically frozen state [11].

The goal of the present work is to test the local spa-

tial structure of the insulating phase of 2D electrons at
high magnetic fields by means of the time resolved mag-
netoluminescence technique. The time integrated photo-
luminescence spectroscopy itself can hardly distinguish
between different configurations (ordered or disordered)
of frozen electrons in our system [12]. Nevertheless, the
study of recombination kinetics at long time delays allows
us to identify the short-range configuration of neighbor-
ing localized electrons as being consistent only with an
ideal (equilateral) triangular structure with a very small
portion of deformed cells. Moreover, the temperature de-
pendence of the recombination tail is also consistent with
the Debye-Wailer-type factor expected for the magneti-
cally frozen Wigner crystal correlated on a length which
is much longer than the lattice constant.

We studied low-density (n, = 6.1 x 10io cm 2), high-

mobility (3 x 10s cm /V sec) GaAs/A1GaAs single het-
erojunctions with a b-doped monolayer of Be acceptors
(nA = 1.3 x 10s cm 2) located in the wide (1 pm) GaAs
buffer layer at a distance 30 nm from the interface [13].
For comparison, we also investigated a low-mobility (10s
cm /V sec) single heterojunction with the same electron
density and similar architecture (different only by the
spacer width). For photoexcitation, we used pulses from
a tunable Ti-sapphire laser (wavelength 800 nrn) with

a variable duration from 20 ns to 10 ps, peak power of
10 s—10 W/cmz, and frequency of 107—10s Hz. The
luminescence spectra were detected by a gated photon
counting system. The samples were mounted in the mix-

ing chamber of a sHe/4He dilution refrigerator. We con-
trol the temperature of 2D electrons and the time de-

pendence of their density n, by monitoring the optical
analog of the Shubnikov —de Haas oscillations [10]. For
a laser wavelength of = 800 nm at the above mentioned

power level, n, does not change in time with an accu-

racy better than 3' after the pulse (contrary to the case
of laser wavelength 488 nm [10]). The time dependence
of the magnetoluminescence intensity I(t) measured at
different magnetic fields (providing filling factors v & 1)
is shown in Fig. 1. At v = 1, the recombination kinet-
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drastic form if the electronic state is frozen. To imag-
ine this, let us consider a Maki-Zotos type of state [16],
[0) = N i~2 det ~]@,(r )~], prepared of electrons localized
inside the magnetic length AH near its own center R, ,

~@;(r))z = (27rAH) i exp[—(r —R;)2/2A2H]. The modula-
tion p(r) in such a system is exponential, and the tem-
poral evolution of the intensity I(t) follows some kind of
a recombination "firefront" propagation through the dis-
tribution function P(r) of distances r between a hole and
the closest electron localization center R, ,

2A

I(5) = ex jP(r)dr e exp
~

—
e e "~ "" l.

H 2m AzH

FIG. 1. Kinetics of luminescence measured for love-mobility
sample in diferent magnetic fields. Inset shovels high mag-
netic field kinetics measured up to 1000 p,s time delay for
low-mobility (open symbols) and high-mobility (closed sym-
bols) samples. For clarity, the data for high-mobility samples
are shifted.

ics can be clearly described by a single time constant.
As the filling factor decreases below unity, the kinetics
I(t) deviate from the single-rate behavior and the slow
recombination tail starts to dominate at v (& 1, which is
demonstrated in the inset to Fig. 1.

Before analyzing this slow recombination tail in detail,
we discuss first the correspondence between the internal
structure of the localized state and the observed mag-
netoluminescence kinetics. Since the density of holes in
our system is several orders of magnitude less than the
2D electron density, the time dependence of the radia-
tion process is governed by a single-hole recombination
rate r i which has the form [11] r i = osp(rc). In
the latter expression, the value &re includes all the mag-
netic field independent parameters, such as the optical
transition strength in GaAs and the electron-hole over-
lap in the z direction. Below it will be referred to as
a phenomenological constant. On the other hand, the
electron-hole overlap in the plane is controlled by the
value p(rc) = (0~@1(rc)g(ro)~0) of the ground state 2D
electron density matrix [14] related to the planar coor-
dinate ro of a hole position, which provides us with the
relation between the hole recombination rate and the lo-
cal internal structure of the electron system.

Since at v = 1 the electron ground state possesses a
homogeneous density p(r) = n, [15], all hole positions
ro are equivalent and the recombination kinetics abso-
lutely agrees with the single exponent evolution of the
luminescence intensity, I(t) = Icexp( —t/tc), with the
rate to ——oon, . This simple single-rate description of
the recombination process is immediately violated if the
system leaves the homogeneous ground state. The holes
h~, randomly placed in the b-doped monolayer, have a
distinguishably different lifetime because they test the
locally modulated 2D electron density. At low filling fac-
tors (i.e. , high magnetic fields), this modulation takes a

The characteristic evolution of I(t) can be illustrated
by the example of the Poisson distribution of localization
centers R, , P(r) = 2nn, r exp( —,nor )2. In this case, we
find that after the first holes placed just near their clos-
est electrons are gone (t vto), the recombination takes
the power law form I(t) = Io(2vrAzH/oct) = Io(vto/t) +"
which covers the entire interval t ) vto. Although the
distribution function P(r) in realistic systems is affected
by the electron-electron correlations and does not exactly
coincide with a Poissonic one, the above power law is spe-
cific for any (even regular) configuration of localization

centers as an intermediate regime. Indeed, at r ( n,
P(r) —2n.n, r [see inset to Fig. 2(a)]; hence for a wide
time interval vts ( t ( vtc exp(1/v) the dependence

I(t) = Io (vt, /t)'+' (1)

(with b ~ 0 at v -+ 0 and 6 =—0 in a crystal) seems to
be a universal feature of the bound hole recombination
in the electron system localized at high magnetic fields

[11], independently of the details of its specific internal
structure.

The result of Eq. (1) suggests an appropriate represen-
tation of the measured recombination kinetics in terms
of a new dynamical variable: the instant value of the ef-
fective recombination time r,g(t) which is determined as
r g = —I(t)/I(t) = —[din I(t)/dt] . In coordinates r p
vs t, the kinetics described by a single exponent and by a
power law will be represented by constant and linear de-
pendences, respectively. For the power law decay in Eq.
(1), r,ir(t) = t/(1+t)), which agrees with what is found in
the experimental time dependence of I(t). In Fig. 2(a)
the data from Fig. 1 are replotted in the scale r,p. One
sees that, at fillings v & 1, x,p starts to increase linearly
with t (at t & ts) indicating the existence of localized
electrons. Figures 2(a) and 2(b) show r,fr for the low-

(b) and high- (c) mobility samples for longer times and
smaller filling factors. It is visible that r s (t) approaches
t for filling factors v (( 1.

The latter regime is quite pronounced both in the most
disordered (b) and in the purest (c) samples we studied,
though the number of recombination events which form
the long-delay tail are different at high magnetic Gelds.
In our experiments, we found that in spite of extremely
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FIG. 2. Dependences of the instant recombination time 7;p on time delay t measured at diQ'ereni magnetic fields for iow-

(a),(b) and high-mobility (c) samples. Insets show (a) magnetic field dependence of the portion of localized electrons S&„.
measured for Iow- (open symbols) and high-mobility (closed symbols) samples; (b) the distribution function P(r) of distances
between a hole and the closest electron for difFerent configurations of electrons (P, the Poisson distribution; A, triangular
lattice); (c) comparison of the measured magnetic field dependence of r with that calculated for triangular (1) and square (2)
lattices.

slow recombination at high fields, the total luminescence
intensity integrated over time and energy is insensitive to
the magnetic field. This means that the electron-hole re-
combination has 100% radiative efficiency, and thus, the
integral intensity of the slow recombination tail which
refiects the portion of localized electrons Si„ in the 2D
system can be measured in absolute units. In the low-

mobility sample, S~„continuously grows starting from
v = 1 and tends to 100% as v ~ 0 [see inset to Fig.
2(a)]. In high-mobility structures, the portion of local-
ized electrons is much less, but abruptly increases at a
critical filling factor v, . This jump can be assigned to the
phase transition of electrons from a liquid into the frozen
state which is absent in the dirty sample. The phase dia-

gram which can be reconstructed from the jump position
is similar to previous accurate determinations [3—5,7—10],
and the following analysis is supposed to identify the
structure of this frozen phase.

At the critical v, a pronounced part (about 50%) of in-

tensity is redistributed from the fast recombination chan-
nel to the slow recombination tail and this redistributed
intensity shows a different behavior as compared to the
long tail observed in the disordered sample [Figs. 2(c)
and 2(b)]. This difference is most pronounced for delay
times t & to exp(1/v) when the recombination involves

electrons and holes separated by the mean interparticle

distance I n, and tests that part of the distribu-
—1/2

tion function P(r) which is dominantly affected by cor-
relations in the local configuration of the closest frozen
electrons. That is, in systems where the eKect of disor-
der is stronger than that of the Coulomb interaction, the
long tail in P(r) spreads to lengths longer than I, and,
although the effective recombination time ~,g deviates
from the linear intermediate regime, it does not satu-
rate at any fixed value. On the contrary, the ordering
of electrons into the Wigner lattice obviously demands
the existence of a terminating point r in the distribu-
tion function P(r), as shown in the inset to Fig. 2(b).
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This point corresponds to the distance from the lattice
sites to the center of the unit cell, and has its minimal
value (for a fixed density n, ) for the triangular lattice,

r~ = (2/3v3) ~ n, . [For instance, the square lat-
tice gives r' = (2n, ) i~2; a strongly deformed glasslike
structure possesses even longer spacings ].

After the recombination firefront reaches the terminat-
ing point r, the efFective time r,ff saturates at the life-

time value of a hole ti/i placed close to the unit cell center.
Therefore, the saturation of the instant recombination
time observed in the best samples [see Fig. 2(c)] means

a single exponent recombination process and can be used

for determining r~. One can see from Fig. 2(c) and Fig.
3 that the plateau r,fr(t) = r~ appears only when the
filling factor and the temperature are below the critical
values, v ( v, and T & T, (v, and T, coincide with

the values observed in transport [3—5] as well as in the
luminescence measurements [9,10]).

The existence of the plateau in ~,g has to be inter-

preted as the multiple repetition of a specific configura-

tion of closest electrons. This configuration can be iden-

tified from the value of the normalized saturation time,
r /T ff(t ~ 0) = e" ~ "0 = e~1 . The structure fac-

tor p = urn, r~ which enters into the exponent of this
equation fits only to the triangular lattice for our results

[see inset to Fig. 2(c)]. It cannot be assigned to other
structures (for example, a square), since the reliability of
such a procedure is guaranteed by the strong exponen-
tial dependence e~/ and the fact that the ideal trian-
gular lattice provides us with the absolute minimum of
the value of r, as compared to any other frozen elec-

tron configuration with a fixed density. If the system
contained a considerable portion of other ("deformed" )
configurations of frozen electrons which give rise to longer

r, the effective recombination time r, fr would not sat-
urate at the value corresponding to the ideal triangle.
Therefore, the number of defected cells is relatively smaB.
They show up at the end of the single-exponential tail
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FIG. 3. Temperature variations of the dependence r,s(t),
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e t~ as a further increase of retr. The width At of
the plateau gives an estimate for the portion of defected
cells, I(bt)/I(r~) ~ e '~r . It does not exceed 1% in

our case [Fig. 2(c)]. All these facts force us to exclude
a glasslike structure of the system, since in a glass the
latter quantity should be close to unity.

The observed small portion of defected cells is consis-
tent with the number of point defects (vacancies, inter-
stitials, and dislocations [17])expected from the number
of charged acceptors and, most probably, indicates the
softness of a 2D quantum crystal with a respect to share
deformations. Charged acceptors together with a small
amount of residual disorder pin the crystal and slightly
deform it, which produces a finite correlation length L of
its long-range orientational ordering. Prom the portion
of defected cells we can roughly estimate the correlation
length to L ) nA ~ 300 nm which is 1 order of mag-
nitude longer than the lattice constant. So the estimated
correlation length of the crystal is also consistent with
the temperature dependence of the saturation time, as
discussed below.

Thermal vibrations (in high fields, magnetophonons
with ks~z dispersion [18]) smear the electron density dis-
tribution and stimulate recombination in the long tail
(Fig. 3). The temperature effect can be calculated [11]
for holes placed in the center of a unit cell by renor-
malizing the density matrix value p(r~) at this point.
In the harmonic approximation, p(r~) is proportional to
exp( —r~/[2AH+ (u )T ]), where (u )z is the mean square
displacement of electron's magnetic oscillator center with
respect to the regular site position. This produces the
Debye-Wailer-type factor in the recombination time r

rm(T) = exp —
~ n, (u )T ], (2)

where p = mn, r~ is determined by the unit cell struc-

ture (p~ = 2z/3~3 and p&&
——z'/2 ). Therefore, the

amplitude of lattice vibrations is a measurable quantity
in our experiment and can be compared with its theo-
retically predicted values [19] for the triangular lattice

[20], em, (u )T = (1.6T/e y n, ) ln(L/AT), where y
is the dielectric constant of the medium. The shorter
length under the logarithm, Az, is the thermal magneto-

phonon wavelength, T 0.3u(e y n, )(1/AT n, ) ~ .
The longer length L is the correlation length of the crys-
tal (related to the crystal pinning by charged acceptors,
L & n&

~ ). At low temperatures, Eq. (2) can be ex-
panded into the linear variation, r~(T)/r~(0) —1

pu —nn, (u )7 oc TH —. Theobserved behavior shown
in the inset to Fig. 3 is in a good agreement with such a
linear temperature and square magnetic field dependence
which is specific to the gapless magnetophonon excitation
spectrum of a crystal. Finally, using Eq. (2) at T = T,
we are able to find the value of the Lindemann parameter
(u )7 n, = (0.45+0.02) x 10 for our system of electrons
crystallized into a triangular lattice.
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