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We present exact solution of an electrostatic problem in terms of the potential distribution
and density profile of an incompletely depleted two-dimensional electron gas in a heterostructure
covered by a half-infinite gate. Using this solution, we calculate configurations of compressible and
incompressible (insulating) strips that are formed in the presence of a quantizing magnetic field. We
discuss the application of our results to transport experiments on the inter-Landau-level and spin
diodes, as well as edge-magnetoplasmon propagation.

I. INTRODUCTION II. ELECTROSTATICS OF THE INCOMPLETELY'
DEPLETED 2DEG

A real two-dimensional (2D) electron system always
contains macroscopic inhomogeneities created either by
an external metallic gate, by etching, or by an exter-
nal donor potential. The role of such macroscopic in-
homogeneities increases significantly in the presence of
a quantizing magnetic field. This is due to the fact that
the chemical potential of a homogeneou8 two-dimensional
electron gas (2DEG) in a magnetic field is not a contin-
uous function of electron density n, but experiences a
jump each time the density reaches the value at which
an integer number of Landau levels is fI.lied. As a result,
the details of the screening are highly dependent on the
filling factor v = n/nL, (nL, = 1/27rA, A being the mag-
netic length) and the inhomogeneous electronic system
is split into compressible (metallic) and incompressible
(insulating) regions. i

In experiments, the inhomogeneity is frequently cre-
ated by applying a negative potential to a gate, the elec-
tron gas under the gate being partially depleted. In this
case, far from the gate edge (on the right z = oo, and left
z = —oo), we deal with half-infinite compressible (incom-
pressible) regions separated by a transition region (strip).
This transition region near the gate edge is the subject
of the present study. Its structure plays a crucial role
in the formation of electron transport across the inho-
mogeneity region (for instance, in the inter-Landau-level
and spin diodes designed in the Corbino geometrys'7) and
may be important for the quantitative description of the
edge magnetoplasmons which can propagate along the
border of two 2DEG's with diferent densities.

dv' dv'

dz +0 dz dx +o dX 0

For the sake of simplicity and due to the fact that
e )) 1, we replace Eq. (1) by the simplified condition
dp/dz~, o

——0 (for z & 0). This makes it easier to
apply methods of complex analysis and to obtain an ex-
act analytical solution of the electrostatic problem. (In
GaAs, e 13, so that the accuracy of the above approx-
imation is on the level of 10%; below we will discuss the
character of the solution obtained beyond this approxi-
mation. )

The structure we consider below is shown in Fig. 1(a).
The inhomogeneity in the 2DEG is created by applying
a negative voltage —Vs to the metal half plane serving as
a gate and lying on top of the heterostructure. The half
space z & 0 is occupied by a semiconductor with dielec-
tric constant e )& 1. The system is translationally invari-
ant in the y direction. The 2DEG plane is buried at a
distance d below the semiconductor surface. We assume
that, at Vg = 0, the electron concentration is uniform
and equal to no, and that at Vs g 0 the traditional
concept of a capacitance is applicable, i.e., when solv-
ing the electrostatic problem, we assume the following
boundary conditions: the electrostatic potential of the
gate is y = —V~, and the electrostatic potential in the
2DEG plane is equal to zero. The boundary conditions
at z = 0, z & 0 (uncovered surface of a, heterostructure)
are
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for typical applied voltage and magnetic field we get for
the correction bn/n (ez/eA)/eV& ( 0.1. However, near
the spatial point where the filling factor is equal to an in-
teger (and where an incompressible region is formed), the
internal energy plays an important role, because it is the
internal energy that determines the jump in the chemical
potential. In these cases (for example, when calculating
the width of an incompressible strip), the value of the in-
ternal energy should be taken into account explicitly (see
Sec. III). Proceeding from the foregoing explanations, we
first solve the purely electrostatic problem, when every-
where in the 2DEG plane p(n)—:0, and find the electron
density n(z) for this case.

The change of the electron density no —n(z) under the
action of the voltage applied to the gate is found Rom

d(p 4xE I.= d+o =—— ——e[no —n(*)]
dz z=-d+o

&p=o

FIG. 1. (a) Geometry of the device considered. Half plane
z = 0, x ) 0 is occupied by a metallic gate. (b) Plane of the
complex variable ( = z +iz. Curves with arrows show the
direction of the electric field lines.

The potential distribution p(z, z) is obtained from the
solution of the Laplace equation ~zp = 0 (there are no
external charges outside the 2DEG plane) in the strip
—d & z & 0 with the following boundary conditions:

(p(z, —d) = 0, p(z ) 0, 0) = —Vg,

Consideration of the electrostatic potential alone is not
sufficient for solving the problem of splitting of the elec-
tronic system into compressible and incompressible re-
gions. Incompressibility follows from the fact that, at
high magnetic fields, the spectrum of the 2DEG has gaps,
and, at some filling factors v, the chemical potential p(n)
has discontinuities (jumps),

hen, for v = 2, 4, 6, ...,
g* f

(x&0) =0.
dz

This problem is equivalent to searching for the symmetric
solution of the Laplace equation in a strip of width 2d [see
Fig. 1(b)] with the boundary conditions y(z, +d) = 0
and p(z ) 0, z = 0) = —Vg (on the cut passing through
the semi-infinite axis z ) 0). It is natural to make the
conformal mapping

where H is the magnetic field, p~ the Bohr magneton,
g* the effective g factor, and u, = eH/mc. The pres-
ence of each discontinuity in p leads, in the case of a
weakly inhomogeneous 2DEG, to the formation of in-
compressible strips of macroscopic width (much larger
than the magnetic. length). In these insulating regions
the electron density is constant, n = knL„and the chem-
ical potential (+ ep lies in the energy gapis (( is the
electrochemical potential which is constant throughout
the 2DEG). On the other hand, in the compressible re-
gions (when the. chemical potential IJ. is outside the gap)
we have ( = —e&p(z) + p(n(z)), where n(x) is the local
electron density.

This problem is appreciably simplified by the fact that
eV~ )) Ap. For this reason we can find a zero-order
electron density distribution neglecting the internal en-
ergy p of the 2DEG and then improve the solution using
perturbation theory with respect to the small parameter
p/eVs. We stress that this procedure can give only small
corrections for the value of the equilibrium electron den-
sity. For example, if v ( 1 the characteristic value of the
internal energy is the exchange energy ez/eA. Therefore,

U(() = exp(x(/d), ( = z yiz,

which transforms the strip in Fig. 1(b) into the complex
plane U with cuts ImU = 0, ReU & 0 (y = 0) and ImU =
0, ReU ) 1(y = —Vg). In the complex plane U the
solution of the Laplace equation with the above boundary
conditions is

y(U) = —V~ (1 ——1mln 2U —1 —2 (11 11U1)
1

7r

(4)

nx =no—CVg
e gl + exp( —2rz/d)

where C = 4'& is the capacitance per unit area and no
is the electron concentration at Vg = 0 which coincides

Now it is easy to obtain the solution &p(z, z) of the
initial electrostatic problem [see Eq. (3)], and using Eq.
(2) to find the main approximation for the density profile
in the system:



50 ELECTROSTATICS OF INTER-LANDAU-LEVEL DIODES

with the electron density far &om the gate (z -+ —oo ).
It should be noted that, due to the assumed incomplete
depletion of the 2DEG under the gate, Eq. (5) differs
from the corresponding result by Chklovskii et a/. :4 the
variation of the 2D density is localized within the width

d, whereas far from the gate edge the density varia-
tion is exponentially small. [The last statement, strictly
speaking, is true only for the right side of the structure
(under the gate); see the discussion below. ]

As mentioned above, solution (5) was obtained in the
lowest order in the small parameter 1/e. To understand
the character of the corrected solution, we can take a
look at the electrostatic problem similar to that we have
already solved, but taking the dielectric constant to be
the same in the whole space (at z ) 0 and z & 0).
Then we immediately come to the problem of a semi-
infinite capacitor [to this end, Fig. 1(a) is symmetrically
re8ected with respect to plane z = —d, taking the semi-
plane z = —2d (z & 0) at potential &p = +V~]. This prob-
lem can be solved exactly using the Schwarz-Christoffel
transformation (see, e.g. , the solution in Ref. 15). Then,
calculating the normal derivative (with respect to z) of
the potential at z = —d, we see that this quantity de-
cays as 1/z for large negative z (to the left of the gate
edge). Under the gate this solution coincides with the
exponential function (5). Thus, at large negative z the
electron density has an asymptotic behaviour oc 1/z .
The coefBcient of proportionality in this dependence for
a real experimental configuration [see Fig. 1(a)] can be
found in the following way. At large (compared to d)
negative z the electrostatic potential of the boundary
z = 0 approximately equals zero with small corrections
of the order of Vs(d/z) (as follows &om the consider-
ation of equipotential lines). Thus, in order to calcu-
late the z component of the electric field at z = +0
(and large negative z) we should solve the Laplace equa-
tion in the half space z & 0 with boundary conditions
&p(z & 0, 0) = —Vp, y(z & 0, 0) = 0. The solution of
this problein is just &p = —Vs(1 —8/m), where 8 is a polar
angle in the plane of the complex variable (. Calculating
then the z component of the electric field at z = +0 and
using the first equality of Eq. (1) in order to calculate
the corresponding quantity at z = —d+ 0, we finally get
with the help of Eq. (2)

the 2DEG under the gate [the electric field can penetrate
into the 2DEG plane only &om above; see Fig. 1(a)].

III. INCOMPRESSIBLE STRIP FORMATION IN
HIGH MAGNETIC FIELD

A. Formation of an incompressible strip between
two compressible regions

n(zp) d t'np —n(+oo) )
nl, 7I i np —2nl, j

Within this strip, the electron concentration is constant
and equal to 2nL, and the width W;„, of the strip can be
found following Chklovskii et al. as

4654),
vr'e2 (dn/dz)

~

(8)

The derivative dn(z)/dz of function (5) is taken at point
zp [see Eq. (7)], and Eq. (8) was derived for the limit
of W/d « 1. This is indeed the case if the values of the
filling factor at z ~ koo are not anomalously close to
integer ones, since, according to Eqs. (5)—(8), the width
of the incompressible strip is of the order of

hu),
~1nC

eVg

Now we take into account the infiuence of the internal
energy by perturbation theory. 4 As mentioned above, the
chemical potential of the 2DEG in the quantizing mag-
netic field experiences jumps Ap at integer values of the
filling factor. This is equivalent to incompressibility of
those regions where v = 1, 2, 3, ... . Since eV~ is much
larger than the energy gap Lp, , the magnetic field does
not change the electrostatic density profile significantly.
In the case of compressible regions on both sides of the
gate edge [for instance, v( —oo) = 5/2, v(+oo) = 3/2],
the only effect of the internal energy is the formation
of a narrow strip of incompressible phase near point xo,
where the electron density corresponds to the filling fac-
tor v=2:

n(z) = np+ Vg

4m2ex (6) On the other hand, W can be varied easily with gate
voltage from the value Eq. (9) up to W d.

Comparing Eqs. (5) and (6), we obtain that the
asymptotic dependence given by Eq. (6) holds at ~z~ &&

dine, z & 0. It should be noted that Eq. (6) is similar
to the corresponding asymptotic formula in Ref. 4 where
the case of a completely depleted 2DEG under the gate
was considered. The only difference is that the second
term in Eq. (6) contains an additional small factor 1/e
compared to the corresponding term in Ref. 4. Thus, at
large distances to the left of the gate edge, the character-
istic scale of the potential experienced by the electrons
is Vp/c rather than V~. As follows &om the foregoing
considerations, this is due to the incomplete depletion of

B. Formation of a compressible strip between two
incompressible regions

The experimental situation where regions of incom-
pressible liquid exist on both sides of the gate edge (at
z m +oo) is also &equently encountered, for instance,
v = 2 under the gate and v = 4 far &om the gate (here
we neglect spin splittings). Let us consider the region
under the gate. It should be noted that the integer value
of the filling factor under the gate corresponds to an elec-
tron concentration at which the chemical potential of the
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2DEG p(n) experiences a jump. However, owing to the
infinite dimensions of the system, a certain value of the
chemical potential at x ~ +oo has some meaning. Finite
temperature or weak disorder cause a large (but finite)
screening radius r, . Hence, at the scale x )) r, the liquid
is (weakly) compressible and the chemical potential is de-
fined and pinned in the middle of the gap (see Fig. 2).
Yet, at the scale z « r, (near the gate edge) the local
value of the chemical potential in the incompressible liq-
uid is not defined. The adequate criterion for the deter-
mination of the boundary xR between the compressible
and incompressible regions is

~V = V(+~) —
V (zR) = —

I

t'APR I
2e )

(10)

n(zR) —n(+oo) ApR
2nL, 2eVg

where ApR is the magnitude of the jump of the chem-
ical potential at an integer value of the filling factor v
under the gate (see Fig. 2) (in the example considered,
b,pR = Aced, ). To find the boundary of the compressible
region [zR from Eq. (10)], we should determine the dis-
tribution of the electrostatic potential in our system by
taking into account the real charge distribution. n(z) in
this case difFers from that in Eq. (5) by the fact that the
electron concentration is constant at x ) xR due to the
incompressibility of the electron liquid. Moreover, the
presence of a jump in the chemical potential gives rise
to a jump in the capacitance of the semi-infinite capaci-
tor at this value of v. Therefore, the value of Vg related
to the classical capacitance should be slightly corrected
by b,yR/2e. Now we can use the solution (5), but with
a corrected value of Vg The value of the concentration
n(z) so calculated will be lower at z ~ oo as compared
to 2nL, . Proceeding from the relationship 6n/n hy/Vs,
we can find the edge of the incompressible region xR from
the condition

result, we get

d (eVs )zR=+ — In~ ' ~+a . (12)

These arguments are valid only in the logarithmic ap-
proximation when in(eVs/b. pR) )) 1 and, hence, the
specific value of a 1 in Eq. (12) is not important
(the answer obtained is true when zR & r, ). [Using
the Schwarz-Christoffel transformation, it is possible to
prove Eq. (12) rigorously and find the value of the quan-
tity a = ln2 (Ref. 16). The corresponding solution is
cumbersome and we do not present it here. ]

Concerning the left side of the structure, the incom-
pressible region cannot occupy the whole semiplane to
the left from some point zL, . This is clear from the fol-
lowing simple consideration. Since at x = —oo the elec-
tron liquid is neutral and the electron concentration is
constant in the incompressible region, there exists local
neutrality up to point zl, (electron concentration equals
the background positive charge density). To the right
from this point the electrostatic potential is constant (a
compressible, metallike, strip). But near the edge of the
metal plane the electric field has a square root singu-
larity, which means that the electron concentration is
not a continuous function of the coordinates and the
solution we tried to construct cannot actually be real-
ized. This difBculty exists even in the lowest order in
parameter 1/e [when solution (5) holds] and is related
to the absence of the gate on the left side of the struc-
ture. The details of incompressible strip formation in
this region depend strongly on the value of the quantity
Av( —oo) = v( —oo) —4 (for the case considered). We
discuss only the case when this quantity, being positive,
tends to zero and Av( —oo) « (elne) i. It means that
the point x0 where the filling factor equals 4 lies to the
left of the crossover point z dine and the variation of
electron concentration is described by formula (6). Thus
we have for x0

Since ApR/eVs « 1, in Eq. (11) we can use the expres-
sion for n(z) which is valid for large z (z )) d). As a

p.(n)

fi gp
R

2 I(

2rl „

FIG. 2. Dependence of the chemical potential of a 2DEG
in a magnetic field on electron concentration near the value
corresponding to an integer filling factor. Ap, R is the value of
the jump of the chemical potential at an integer filling factor
under the gate. Analogously, Apl. is the value for the left
edge of the device. At the far right edge of the device, the
chemical potential is pinned and has a value corresponding to
n = 2nl. . The screening radius is r, = (e/e )dV, /dn, where
the derivative is calculated at n = 2nI. .

Vgx0-
4x'enl, av( —~)

As has already been mentioned, the characteristic scale
of the electrostatic potential experienced by electrons in
this region is Vs/e. Therefore, if Apl, « Vs/e, the incom-
pressible strip is formed with a width much smaller than
the distance zo between the strip and the gate edge (to
describe this situation we may use the formulas of Ref. 4).
But if Ayl, —Vs/e (the case which could have been re-
alized in experiments ' ), then the width of the incom-
pressible strip formed is of the order of zo (i.e. , relatively
wide). Hence, this case cannot be considered using a
perturbative approach. We were not able to obtain the
exact solution of the corresponding electrostatic prob-
lem. But it is clear that this solution exists, and for this
parameter range the width of the incompressible strip
formed is of the order of x0, and the distance between the
gate edge and the nearest edge of the strip xL, is slightly
smaller, but of the same order. Of course, the physical
pattern described is realized only if ]zo] « r, (for the
definition of r, see the caption of Fig. 2, and the corre-
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sponding derivative dp/dn is calculated at n = 4nL, )
Everywhere above, when referring to the incompress-

ible state on the left side of the structure [with v( —oo) =
4], we meant real incompressibility (in particular, the
electron concentration is strictly constant). But we

should bear in mind that because of the abrupt varia-
tion of the electron concentration near the gate edge [see
Eq. (5)] the electron concentration becomes very close
to 4nL, at a finite distance from the gate edge. For ex-
ample, at z dine [where the crossover between the
dependences described by Eqs. (5) and (6) occurs] the
deviation of concentration &om 4riL, np is of the order
of np/(zine). Therefore, &om a practical point of view,
the electron liquid in the region to the left of some spatial
point (e.g. , z & z) will behave as an incompressible one

(with very poor screening properties).

IV. DISCUSSION

The above calculated value of W;, [see Eq. (8)] can
be measured experimentally, since the incompressible re-
gion is insulating and at low temperatures the current in
the transverse direction is caused by electron tunneling.
At a high magnetic field the tunneling is mainly deter-
mined by the effective magnetic barrier. When W;„, )) A,

the tunneling probability is exponentially small. Hence,
the value of W;, can be derived &om experiments with
logarithmic accuracy when a formula for the conductance
is available. When deriving such a formula, one should
bear in mind that tunneling in a transverse magnetic field
has to be accompanied by transfer of momentum in the
direction perpendicular to the current. We assume that
such a process may be stimulated by a defect located in
the incompressible region. Most efBcient are the impuri-
ties located near the center of the incompressible strip.
For the conductance we obtain

W,2, 1
G oc exp /—

2A' y
(14)

The foregoing reasons can be applied to the case when
the jump of the chemical potential occurs at v = 1. The
incompressible state corresponding to v = 1 is assumed
to be spin polarized and the elementary charged excita-
tion is an electron with the opposite orientation of spin.
In the independent particle picture the jump Ap is de-
termined by the bare Zeeman splitting in the 2DEG:
Lp = gop~H. On the other hand, the theory of ex-
change eKects in a homogeneous 2D electron system in a
magnetic fieldis yields a much greater value, Ay, e /eA,
which is the characteristic Coulomb energy in the system.
The latter result, which, strictly speaking, is valid for the
homogeneous system, seems to be applicable to the case
in question when d &) TV )& A. This can be experimen-
tally verified with the use of Eqs. (5) and (8), where in Eq.
(8) b,p should be substituted for fuu, . We tentatively in-
terpret the experimental data ' as evidence against the
equality Ap = gap~H: the experiment revealed a pure
activation behavior of the zero-bias conductance at low
temperatures, whereas the substitution of bare Zeeman
splitting into Eq. (8) brings about an appreciable value of

the tunneling conductance. The anomalously small value
of the zero-bias tunneling conductance in experiment7 is
caused by the large value of d = 6000 A. On the other
hand, as seen from Eq. (8), W;, oc ~d. Therefore, for
structures with a much smaller value of d, it should be
possible to reach a regime where the tunneling conduc-
tance is significantly high such that Ap can be deter-
mined with the aid of Eqs. (5), (8), and (14).

The propagation of edge magnetoplasmons along the
border of a 2DEG (Refs. 8—11) is another physical ef-

fect which is sensitive to the structure of the transitional
region. The experimental conditions for observation of
edge magnetoplasma excitations are mainly restricted to
the integer filling factors in both (left and right) semi-
infinite planes, which provide minimal friction and slow-

est relaxations. Therefore, this deals with the second of
the examples considered above (Sec. IIIB ). The width
of the compressible region, in such a case, determines the
width of a strip where the magnetoplasmon charge can
be accumulated, and therefore is an important quantity
determining the dispersion of this mode. Calculation of
this dispersion law is a separate problem to be solved.
However, some qualitative features of this dispersion law

can be understood &om the analogy of this problem with
that of edge-magnetoplasmon (EMP) propagation in the
2D electron system on the surface of liquid helium. 9 In
the latter case the geometry of the system is similar to
that considered here because there are metallic plates
near the 2D electron layer. That is why we can expect
softening of the EMP &equency for qd (( 1 (q is the wave

vector of the EMP along the border) (see Ref. 9). In par-
ticular, since in the case considered here the character-
istic spatial scale of the variation of the electron density
is of the order of the distance to the metallic gate, it is
highly probable that this dispersion law will not contain
the usual logarithmic factor ln(l/qb) in the limit q -+ 0.
Moreover, our solutions of the electrostatic problem can
be applied to the calculation of a multiple-strip structure
of the inter-Landau-level diode. When the distance be-
tween a gate and the 2DEG is large enough, the density
distribution v(z + —oo) = 4 and v(z ~ oo) = 2 can
be associated with the existence of an additional incom-
pressible strip (with v = 3) inside the compressible one,
which produces an additional (as compared to the con-
ventional edge magnetoplasmon) mode in the excitation
spectrum of this system.
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