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The perturbation-theory study of universal conductance fluctuations is generalized to systems
with electron scattering in a static random magnetic field. Our calculation confirms the intuitive ex-
pectation that the amplitude of Quctuations coincides with the universal value typical for the unitary
random-scattering ensemble. An application of this result to micrometer-size wires with the two-
dlmensional electron liquid near 611ing factor v = 1/2q allows us to predict aperiodic Coulomb-type
oscillations in this system beyond the Coulomb-blockade regime, which would manifest a correspon-
dence between the Aharonov-Bohm and Aharonov-Casher efFects specific to composite fermions.

I. INTRODUCTION

The features of electron transport in a nonuniform
or random magnetic field (RMF) have been intensively
studied during the past few years. Theoretical activi-
ties in this direction have been stimulated partly by ex-
perimental eKorts to produce inhomogeneous magnetic
fields in high-mobility two-dimensional (2D) semiconduc-
tors using external means: surface superconducting
or magnetic layers, or an application of a magnetic
6eld parallel to a slightly curved heteroboundary.
But mainly, attention has been drawn to systems with
RMF scattering by recent ' single-particle formalism
to describe strongly correlated 2D electrons at 6lling fac-
tors around v = 1/2q in terms of free quasiparticles mov-
ing in a renormalized built-in magnetic 6eld. According
to the composite-fermion theory of the &actional quan-
tum Hall eKect, ' in the region of real magnetic 6elds
where v —2, the liquid of electrons is equivalent to an
ideal Fermi gas of quasiparticles (each associated with
the charge e and two attached fiux quanta, 24o) moving
in an effective magnetic field H, tt = H —HiL2(n, ). The
latter is determined both by the external 6eld itself and
by the local electron density (Hi~2 = 4mn, hc/e), so that
the real electron scattering on a smooth screened ran-
dom potential and in a high external magnetic field can
be converted into the free quasiparticle scattering on a
weak built-in effective RMF.

Recent theories of electrons in a RMF have concen-
trated on the studies of the localization problem. Al-
though diBerent authors propose diferent scenarios of
the localization itself, conclusions drawn from the results
of all the methods ' agree at the following point: Even
if the particle states are localized at T = 0, the localiza-
tion length L, can be long enough (L, » l » Li/p~) to
expect (at a finite temperature) a wide region of metallic
conductivity where quantum localization corrections are
reduced and the transport shows a dominantly classical
behavior.

Nevertheless, it is known that, despite magnetic field
suppression of the weak localization in macroscopic

systems, is quantum interference effects are still observ-
able in small structures. The sample-specific interfer-
ence pattern of electron waves produces universal con-
ductance fiuctuationsi i at the scale of a quantum e2/h.
One can assume that the same takes place in a confined
system with random-magnetic-field scattering. In what
follows, we study conductance Quctuations in conduc-
tors where all the disorder is due to an irregular mag-
netic field. We consider the metallic regime since this
one has been discussed in the application to the exist-
ing experimental conditions; in particular, the authors
of Refs. 15 and 19 report the mean-free path / of com-
posite fermions consistent with the value of the metallic-
ity paraineter pal/5 10—50. These calculations are de-
scribed in Sec. II. The magneto-conductance Huctuations
obtained look the same as universal Huctuations ' ' in
a disordered metal subjected to a strong magnetic 6eld
and confirm an intuitive expectation that the system with
a RMF scattering is a typical representative of the gen-
eralized unitary random scattering ensemble.

On the other hand, the relation between the flux 240
and the electron charge assigned to a quasiparticle in the
composite-fermion liquid near the 6lling factor v =
has to be taken into account. The arguments as to how
that can be done are presented in Sec. III. The above-
mentioned correspondence forces us to expect Quctua-
tions not only due to a change of real magnetic Aux

through a sample (as has been recently observed by Sim-
mons et a/. in a microstructure with a 2D gas at v = 2),
but also under such gate voltage variation that implants
each additional charge bQ 2e into the sample area.
Roughly speaking, this could look like aperiodic Coulomb
oscillations if one would forget that they take place be-
yond the Coulomb-blockade regime. The conductance
behavior near other higher even-denominator fractions,
v = 1/2q, should be similar, but with an important cor-
rection: The multiple Aux 2q@0 assigned to composite
fermions at v = 1/2q shortens the scale of a charge (i.e. ,

gate voltage) dependence down to the value of bQ
We propose to use this feature as a test of the nontrivial
internal structure of elementary quasiparticles predicted
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by the composite-fermion model of the &actional quan-
tum Hall effect.

rate r which enters into the retarded (advanced) single-
particle Green's function,

II. PERTURBATION- THEORY CALCULATIONS

From the technical side, our analysis is based on the
perturbation theory, a convenient tool to study the trans-
port in the metallic regime. As compared to the diagram-
matic calculations described in Ref. 16, the technique has
to be adopted in order to include the electron scattering
on a random vector potential (instead of usual impu-
rity scattering) and to account for a strong anisotropy
of scattering amplitudes, in particular, the dominance of
a low-angle scattering. The main part of what we do
below consists of the derivation of two-particle Green's
functions.

As the first step, we replace scalar disordered poten-
tial vortices in the perturbation-theory calculations~ by
an interaction bu = v —' with a planar component of a
random vector potential a; v is the velocity operator. In
the plane-wave representation, v = (p + p')/2m. The
Buctuations of the random field a can be described us-
ing the diagonal gauge, (a ap)~ = 8 pf(q);2 it is easy
to show that the transverse part, q qp/q2, of the cor-
relation function (a ap)~ does not affect the transport
properties of electrons. In the case when a random field
in the 2D system is produced by a thin film of a magnetic
material sputtered on the semiconductor surface at the
distance d &om the 2D gas, the Huctuation of a gauge
field is described by the correlation function of the above
form with f(q) = e 2'i"(p2). When a magnetic powder
fills one half of a space, f(q) = q ie 2'i"(p ) The cor-.
relation function f(q) due to a magnetic field frozen into
a superconducting gate as a number of residual fIuxes
corresponds to f(q) = q 2e 2'i (p2). In the above defini-
tions, (p2) is the quantity proportional to the rms value
of distributed magnetic moments and could be referred
to as a phenomenological parameter. Finally, a built-in
magnetic disorder associated with a source of scattering
in the composite-fermion system can be described by the
latter expression with d = 0.

After averaging over a magnetic disorder, the vertex

1&"'"(p) = = 2xvpI',".
s —E(p) 6 zT /2

Depending on the origin of a random magnetic field, this
rate can strongly differ &om the momentum relaxation
rate and, in some cases [when f(q) oc q ], it formally
diverges. Nevertheless, this does not mean that the per-
turbation theory is not applicable to studies of the trans-
port in this system. Even in the case of a divergent 7

the momentum relaxation rate, 7„=27rvy (I'o —I'i ),(o) (o)

is finite and the electron mean-&ee path l = v I;7p can be
long enough to provide a metallicity parameter pFt &) 1.
In what follows, we operate with vertices I'p

y as if they
are finite and find that the quantity 7 cancels &om the
transport coefficients, whereas only the convergent ~
remains, which approves this approach.

As we know &om the theories of an ordinary potential
scattering, there are two main constraints that play the
dominant role in diagrammatic calculations of such quan-
tities as the conductivity, the localization corrections to
it, and the correlation function of mesoscopic conduc-
tances. These are the renormalized disordered vertex I'
and the renormalized current vertex V, both being the
sums of the diagrams shown in Fig. 1.

In calculating the renormalized vortex I'(p, p'; p",p"')
we should distinguish particle-hole and particle-particle
channels. The two-particle Green's function in the
particle-hole channel (diffusion) is related to the diffu-

sion of density and is expectedis to possess a pole in the
region of small transferred momenta. That is why we

calculate the function I'q(p, p', Q) = I'(p + Q/2, p' +
Q/2; p —Q/2, p' —Q/2) assuniing that Q « p, p' p~.
The two-electron Green's function in the particle-particle
channel (Cooperon) is related to the diffusion of a co-
herent particle phaseis and (in systems with the tirne-
reversal syminetry) is formed by the phase space region of
small summed momenta: I', (p, p', Q) = I'(p + Q/2, p'+
Q/2; —p + Q/2, —p'+ Q/2). Since the electron scatter-
ing by a RMF is strongly anisotropic and in the most
interesting cases is a dominantly low angle, we use the
trick often applied to kinetic equations in systems with
an anisotropic scattering. We represent I'~(,) in the form
of a multipolar expansion series,

appears as a construction unit of the perturbation-theory
diagrams [tv = (ev~)2]. In the figures below, this is
shown by dashed lines. Due to the isotropy of the sys-
tem, which is held in average, one should distinguish two
nonrenormalized dashed" vortices,

I'o ' = ' I'"'(p, p', p, p'),p dO

dO I'"'(p, p' p p')
27) pF

The first I'p plays the role in determining the collision(o)

Yx Y~ 'l

+ ~l&

FIG. 1. Diagrammatic representation of vortices V and
I' and the corresponding Dyson's equations on them. The
free-electron current vertex (open triangle) equals v&. Dashed
lines denote the initial magnetic disorder vortex I'
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I'~( )(&) = I'~( )o(&)+ I 2 l I'~(-)i(&)
(p p'i

)
+ l"'," "lH,(.).(~))

P P
d(c)—

and integrate both sides of the Dyson equation on I' over
the orientation of p and p' with the multipolar weights.
After keeping leading terms, we find that in the particle-
hole channel

2I„=I,("+ ~-~~~ —("",~~ I„,+~"",„~ II&, ,

(2)

IId+ ——i 2rdp (, +I'dy, ~+ —
~

~+
(D iIId+,

and

(0),Id, =I +Tv 7I' I'„, II„=O.(0)

From these equations, one can easily conclude that the
diffusion modes I'dp and IId+ are gapless and contain a
pole in the space of variables Q and ur, whereas the mode
I'q does not show any long wavelength contribution, and
I's = 2I'ei IT( / (I'e —T( ). This immediately elimi-

nates I'i from the first two equations in Eq. (2) and leads
us to the diffusion equation on the vertex I'dp,

I'go ——
, (

—i(u —DQ2)P = I, (3)
P()

2' Vy 72

where D = v&~/[4+v~(l'o —I'(i ))] = v&~r„/2 is a diffusion
coeKcient and

At this stage, we can already calculate the transport
coefFicients of the system. In particular, the Einstein
relation between the diffusion coeKcient D due to the
electron scattering on a RMF and the conductivity ~.
IT = e v~D = 'z'& (p~l/h), can be easily reproduced, as
well as the value of the Hall coefficient (s is the spin
degeneracy of the Fermi surface). From the suppres-
sion of the Cooperon channel, one can see that the first
logarithmic quantum corrections to the conductivity

2
[2' & In(Ly/l)] is absent. After some algebra, one can find
that the logarithmic localization correction can appear
only in the next order with respect to the inverse metallic-

ity parameter 1/pr l as ho~, = N;2 &
—

&
. This state-ln(L/t)

ment repeats earlier predictions and manifests that the
system has the localization properties of a unitary ran-
dom scattering ensemble studied in general localization
theories. The exact value of a coeKcient v can be de-
rived much more elegantly after reducing the problem
to the nonlinear supersymmetric o model.

As we mentioned above, the suppression of localiza-
tion corrections to conductivity does not mean that the
electron transport in systems with RMF scattering nec-
essarily loses all its quantum features. Just as in disor-
dered conductors in a strong magnetic field, the sample-
specific interference pattern formed by diffusive electron
waves is still present if the temperature is low enough
to prevent phase-breaking processes. Therefore, the 2D
electron gas subjected to a random magnetic field has
to show the conductance Huctuations, similarly to the
electrons in disordered conductors. Within the frame of
a perturbation theory, mesoscopic conductance Huctua-
tions are described by the mean square of the deviation of
a sample-specific conductance from the averaged value,
(bG2). The set of diagrams that represent this quantity
(see Fig. 2) has been derived in earlier works. Skip-
ping the details, the magnitude of the effect is controlled
by the gapless diffusive mode, and thus. the ladder part

I

F '
I

& —,IF("(P P)2' ( J2~ )
is the momentum relaxation rate.

Naturally, for systems with a broken time-reversal
symmetry, the vortex I' in the particle-particle channel
does not show any singular contribution:

t /

gp
'x' jr) gQ

'x'
Qp

I

l

I

I

I—+
I

I

I

l—+
t

This manifests in the fact that the coherence between two
time-reversed trajectories is destroyed at the time scale
of a scattering time v. and that, in average, the electron
behavior is more close to that of a classical particle, as
has been discussed in Ref. 1.

The renormalization of a current vortex V(p) = U~,
PF

can be derived &om its relation to the already calculated
term I'qi, U = vF (1+Trv~rt'~i). After substituting the
result of Eqs. (2) we arrive at

(o)I 0 V~~P
~I (0) I(0)

0 1

FIG. 2. Standard perturbation theory diagrams that de-
scribe the mean square of conductance Suctuations in a
unitary ensemble. Inset explains the meaning of "dashed
crosses. " Under conditions discussed in the text, the second
diagram gives one-half of the Srst.
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of these graphs is dominated by the renormalized vertex
I'ge(Q) given by Eq. (2). The collision time 7 (which pri-
marily entered into the expressions for I'p0 and the cur-
rent vortex V) cancels, and the rms value of conductance
Buctuations in a RMF expressed in terms of a difFusive
mode P(Q),

2

takes exactly the same form as in a usual disordered
conductor subjected to a strong magnetic field, indepen-
dently of the specific form and origin of the disordered
static vector potential a.

The calculation of (6G~) needs the difFusion equation
in (3) to be completed with the boundary conditions.
To be consistent, the latter should be zero at hard walls

(r = r, ), VP(r, ) = 0, and the loss of a coherent phase
memory in bulk electrodes (r = r~) gives P(rl, ) = 0.24

To be specific, we distinguish a long (quasi-1D) wire and
find

(bG )= —
~

s /ez)
15 (h

which also would describe the amplitudes of aperiodic
conductance oscillations under variations of an additional
external homogeneous magnetic field.

In microstructures prepared from extremely pure 2D
electron gas subjected to a combination of a random (a)
and a homogeneous (H) magnetic field, Eq. (6) confirms
a preliminary expectation that the transport in this sys-
tem should show all the features of a typical representa-
tive of a unitary random scattering ensemble (the spin-
degeneracy factor 8 can be equal to 2 or 4, depending
on the Zeeman splitting efficiency). On the other hand,
the correlation properties of magnetoconductance Buctu-
ations in each of possible candidates for such a system
would be difFerent. In most of them, any variation of
an external magnetic field brings, at the first instance,
a variation of a random magnetic field, too. As applied
to the RMF created by a layer of powdered ferromag-
netic particles on the surface of a semiconductor, this
would come through their polarization. When a RMF
is created by a number of Bux tubes penetrated through
a superconducting screen put over a mesoscopic bridge,
the efFect of a homogeneous external field depends on
the features of the superconducting material. Therefore,
if the RMF is created using external means, the corre-
lations in magnetoconductance Buctuations are strongly
affected by properties of these "external means, " which
makes it difficult to estimate the correlation field in ad-
vance. Only when the source of a magnetic-field random-
ness lies in a roughness or a curvature of the 2D electron
channel imposed on the parallel or strongly inclined mag-
netic Geld, ' can the correlation Geld be estimated &om
the direct change of a mean square of a Bux penetrated
into the sample area: S(H2)i~2 40.

III. CONDUCTANCE PLUCTUATIONS IN
COMPOSITE-FERMION LIQUIDS AT v =—

To apply the results of the above calculations to the
quant»m transport properties of micrometer-size wires
with the composite-fermion liquid (the 2D electron gas
near the even-denominator filling factors) one should take
into account the two following remarks. First, according
to Refs. 14 and 15, the transport due to composite quasi-
particles is described by their (dissipative) conductivity
0 which is directly related to observable resistivity p
as 0 = 1/p, but not by usual inverse-tensor relations.
The presence of a Hall term p „ is skipped, since the lat-
ter is considered as a quantity related to the mean gauge
field. Hence, once we discuss the fiuctuation of a con-
ductance G due to composite quasiparticles, it has to be
imagined as a fiuctuation of the inverse resistance R
measured in the four-terminal geometry. Therefore, an
estimation in Eq. (6) gives only an order of magnitude
of 6G = 6 (R i) and should be corrected by geometrical
factors specific to the multilead devices. ~

Second, an application of Eq. (6) to the quant»m trans-
port in the composite-fermion system interferes with the
unusual correspondence between the Aharonov-Bohm
and Aharonov-Casher efFects in it and brings us to a con-
clusion that can be used to demonstrate the multiple Bux
built up into the composite quasiparticle. Indeed, based
on the ass~~mption ' that the electron system near the
filling factor v =

2 is equivalent to the Fermi gas of
composite quasiparticles that live in an effective mag-
netic field H,s = H —Hiyz, we can conclude that the
magnetoconductance Buctuations in a microbridge can
be equally affected both by the variation of a magnetic-
field Bux through its area or by the change of the electron
sheet density.

Conductance fiuctuations around v = 1/2 under a di-
rect variation of a magnetic field itself have already been
observed by Si~~ons et al. ,

zi though the region of in-
terest for the present paper has not been analyzed in
detail. On the other hand, the effective magnetic Bux
through the sample can be varied indirectly, if it is true
that each composite quasiparticle 3 ' incorporates
two Bux quanta attached to a single charge e. Therefore,
the change of a total effective Bux 4,g ——SH,g encircled
by a pair of characteristic difFusive trajectories that cor-
responds to an additional quant»~ 40 can be converted
into a density variation, that provides an implantation
of an additional charge 6q ~

2 into the contact area S.
The resulting variations of the conductance versus the
gate voltage should look like aperiodic Coulomb oscilla-
tions, but this is expected in the system that is open and
is definitely beyond the Coulomb-blockade regime.

The same should work for the composite-fermion states
near higher even-denominator Khngs, v = 1/2q, where
each quasiparticle is associated with 2q Bux quanta. The
latter relation reduces the value of an implanted charge
which is sufficient to renew the interference pattern in
the sample: down to 6Q 2' . Therefore, a compari-
son of correlation gate voltages extracted from conduc-
tance fiuctuations near different v = 1/2q would help one
to examine the multiBux internal structure of compos-
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ite fermions. The above proposed experiment would be
complementary to the measurements of an efFective Bux
quantum in the &actional quantum Hall efFects discussed
before. 26 Its realization requires the temperature T to be
below the Thouless energy E, mhD/2I, 2 for the com-
posite quasiparticles. The latter would be lower than the
Thouless energy for real electrons in the same structure
at low fields, but the reported valuesis is of composite-
fermion mean-free paths are long enough to expect pro-
nounced features in pm-size samples at T 0.1 K.

tering on a static random magnetic Geld shows that this
system possesses all the typical features of a unitary ran-
dom scattering ensemble. On the other hand, an applica-
tion of the obtained result to the electron liquid around
v = I/2q and the unusual correspondence between the
Aharonov-Bohm and Aharonov-Casher effects specific to
the composite fermions shows a possibility of testing di-
rectly the multiple Aux structure of composite quasipar-
ticles.
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