RAPID COMMUNICATIONS

PHYSICAL REVIEW B 74, 041403(R) (2006)

Selective transmission of Dirac electrons and ballistic magnetoresistance
of n-p junctions in graphene

Vadim V. Cheianov and Vladimir I. Fal’ko
Department of Physics, Lancaster University, Lancaster, LAl 4YB, United Kingdom

(Received 23 March 2006; revised manuscript received 21 May 2006; published 17 July 2006)

We show that an electrostatically created n-p junction separating the electron and hole gas regions in a
graphene monolayer transmits only those quasiparticles that approach it almost perpendicularly to the n-p
interface. Such a selective transmission of carriers by a single n-p junction would manifest itself in nonlocal
magnetoresistance effect in arrays of such junctions and determines the unusual Fano factor in the current noise

universal for the n-p junctions in graphene.
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The chiral nature of quasiparticles in graphene monolay-
ers and bilayers'® has been revealed in several recent
experiments.””!! The Fermi level in a neutral graphene sheet
(a monolayer of carbon atoms with hexagonal lattice struc-
ture) is pinned near the corners of the hexagonal Brillouin
zone which determine two nonequivalent valleys'? in the
quasiparticle spectrum. The quasiparticles in each of the two
valleys (é==) are described by the Hamiltonian,>*

ﬁ1=§l)0"p,

where the isospin Pauli matrices o; operate in the space of
the electron amplitude on two sites (A and B) in the unit cell
of a hexagonal crystal,'” p=(p,,p,)=—-iV is the momentum
operator'? defined with respect to the center of the corre-
sponding valley, and v is a constant formed by the

A-B hopping.* The Dirac-type Hamiltonian H 1 determines
the linear dispersion vp for the electron in the conduction
band and —vp for the valence band (“hole” branch of quasi-
particles). In each valley,'? the electron and “hole” states also
differ by the isospin projection onto the direction of their
momentum; electrons have chirality o-p/p=1, “holes”
o-p/p=-1. Therefore, in structures where the quasiparticle
isospin is conserved (a monolayer with electrostatic potential
scattering) their backscattering is strictly forbidden,> which
gives rise to the peculiar properties of the n-p junction in
graphene reported in this communication.

Since an atomically-thin graphitic film is a gapless semi-
conductor, carrier density in it can be varied using external
gates’ from electrons to holes.”!' A planar n-p junction in
graphene can be made, e.g, using split gates, and in view of
a rapidly improving mobility of the new material®~'° it may
soon be possible to fabricate ballistic circuits of electrically
controlled graphene-based n-p junctions. Below, we model
the n-p junction in graphene using the electrostatic potential
u(x)=vkpm(x/d) characterized by a single length scale d and
the Fermi momentum k determined by the equal densities of
the electron and hole gases on the opposite sides of it. Here
n(ze)==1, '(0)=1, and the line x=0 separates the p and n
regions. Since in a junction produced by electrostatic gates
the length d is about the intergate distance and exceeds the
electron wavelength in a monolayer, we focus this study on
smooth n-p junctions with kzd> 1, and show that their trans-
mission properties are determined by the central region
where u(x) = Fx [F=vkg/d].
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The transport properties of a single n-p junction are de-
termined by the angular dependence of the probability w(6)
of a conduction band electron incident from the left with
an energy equal to the chemical potential u=0 and
p.=kpcos 0 to emerge in the valence band on the right-hand
side of the junction with conserved p,=k sin 6 but p.=—p,.
For a steplike potential, such a probability,

Wyiep(6) = cos® 6 (1)

is determined by matching the isospin states exactly at the
n-p interface. In a smooth junction, an electron approaching
the center of the junction with kinetic energy v\e"pi+p3
has the x component of the electron momentum
p(x)=ur(x)/ v2—p§. Thus, the classically allowed region
for the conduction band electron motion is determined by the
condition |u|> pyv, and its trajectory cannot extend beyond
the turning point at the distance /=vp,/F from the center of
the junction.'* For a particle incident perpendicular to the
junction (p,=0) the classically forbidden region disappears.
Moreover, due to the isospin conservation which prohibits
backscattering of chiral quasiparticles,’ the wave incident at
6=0 is perfectly transmitted, though, for any small 6, the
transmission probability is determined by tunnelling
through the classically forbidden region, w~e™25, where
Szifl_lpx(x)dxzévailF. For a smooth n-p junction shown
in Fig. 1 with F=vkz/d and kyd> 1, this yields (for the
angles 6 not too close to %’ﬂ)

W(e) — e—vT(l(Fd)sin2 0 (2)

The angular dependence of the transmission probability
given in Eq. (2) is, in fact, exact for any smooth junction in

/:i
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FIG. 1. (Color online) Angular dependence of quasiparticle
transmission through the electrostatically generated n-p junction in
graphene.
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the range 0<%7T—5 [similar to Eq. (1), W(%’F)=O for any
profile u(x)] and represents the central result of this paper.
Below, we rigorously derive the results in Egs. (2) and (1)
using the method of transfer matrix. Similar to the formulas'®
describing adiabatic ballistic constrictions in semiconduc-
tors, the applicability of Eq. (2) is not restricted by the con-
straint w<<1. This can be used to describe how a smooth
n-p junction selectively transmits only carriers approaching
it within a small angle 8=< 6,=(mkzd)~""? around the perpen-
dicular direction and to determine the conductance per unit
length of a broad junction,

4e® ( kpd6 2¢% kg
=— 0) ~—~/—, 3
=" 2WW() Wh\/d (3)

and the universal Fano factor!” in the shot noise,

<<I~I>>:<1 - \/%)d. 4)

At the end of this paper we shall discuss several ballistic
magnetoresistance effects which exploit the selectivity of
transmission implicit in Eq. (2).

To formulate the scattering problem, we shall exploit the
separation of x and y variables for the electron motion across
the junction (in the x direction) and the fact that momentum
along the y axis (parallel to the junction) is conserved. This
makes the scattering problem one-dimensional (1D). The
scattering states at the energy equal to the chemical potential,
m=0, are spinors satisfying the Dirac-type equation

—idop+ v_lu(x)$+py(ryt,h=0, (5)

which conserves the 1D current J = o .

To find the transmission probability w(6) for such states,
we calculate the transfer matrix 7(x,y) (Ref. 18) which sat-
isfies the equation

3.T(x,y)=L(0)T(x,y), L=- i%% +pyo,  (6)
and the conditions T(y,y)=I, T(x,y)=T(x,2)T(z,y),
det T(x,y)=1, and T'(x,y)o,T(x,y)=0,. To relate the trans-
mission coefficient w to the transfer matrix T(x,y) one has to
factor out the asymptotic evolution of the reflected and trans-
mitted waves. This can be done by using matrices A, satis-
fying the wave equation in the asymptotic regions,

9,AL(x) = (Fikpo, + p,o)AL(x), (7

such that their columns are made of right- and left-
propagating states normalized to carry the unit current. The
explicit expression for these matrices is

kp pxilp"eiipxx _pxilpk’eiipxx
| ke kr .

A.(x) =
(x) 2p, Fin

etipxx

where p,(x)=u(x)/v:- pi= Vi~ p;. Then, the transmis-
sion probability can be found using the matrix

(; i*)ElimA;I(x)T(x,—x)A_(—x), w=@. )

X—00
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To illustrate the transfer matrix formalism, we calculate
the probability of a Dirac fermion transmission through a
sharp potential step u(x)=vky sign(x). In this case, we factor
the transfer matrix as T(x,y)=T,.(x,0)7_(0,y), where
T,((x,y) is a transfer matrix on the right (left) side of the
junction, each given by T,(x, y)=Ai(x)A;'(y). Using this so-
lution and Eq. (8) we find

a B* ) _1 ipy
( « | =A7 (0)A_(0), a=1--"=——.
B «a k= p;
For the  transmission probability this yields

Wyep=1—(p,/kp)*=cos? 6 in Eq. (1) which manifests the chi-
ral nature of quasiparticles. Indeed, the free electron states of
the Dirac Hamiltonian H 1 have their isospin polarized along
the momentum [for the transmitted electron in the valence
band, with p=(—kg cos 0,k sin 0), it is antiparallel], and the
reflection amplitude of an electron is determined by the
scalar product ¢>-¢\~sin 6 of its initial and final state
spinors.

To calculate the transmission probability for a smooth po-
tential with kzd> 1, we separate the x axis across the junc-
tion into the inner (i) and outer (o) parts. In the outer part,
|x|>cd (where ¢<1), we find the T matrix, T, using the
method of adiabatic expansion. Then, we match it with the
exact solution, 7; obtained in the central part of the junction,
|x| <d, where the potential u(x) can be linearized,
u(x)=~kgx/d, and obtain the complete tranfer matrix as
T(y ,)C) = Tu(xsa)Ti(a s _a)Tu(_a ’y)

For the adiabatic expansion of the transfer matrix 7, we
use a transformation

[
. .ok _ I/t__ 2
y(x):l<l% 1% )’ pi(x) = ") Py 9)

u\u u )
%x=py+ip(x)

which locally diagonalizes the L operator in Eq. (6),
Y 'LY =ip,(x)0.. (10)
The transfer matrix T,, defined in a new basis,
T,(6y) = YO T,(60) Y (), (1)

satisfies the equation

T, (x,y) =ip(¥)o.T,(x.y) + Q)T (x.),
D0 u(x) (—% P )
2p§(x)u(x) x —-x)

In the adiabatic approximation the matrix {)(x) is assumed to
be small as compared to the diagonal term p,(x)o-, and to the
leading order Eq. (12) is solved by

Q=-Y'9v= (12)

T,(x.y) = expliaz f pr(X’)dx’] . (13)
,

Formally, the adiabatic approximation is justified if
|pyu’/ (up)z()| <1, which breaks down near the turning points
p(x)=0 and when u(x)=0. However, for the junctions with
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FIG. 2. Ballistic MR devices with n-p junctions in graphene: (a)
Corbino geometry; (b) series of n-p-n junctions, with the illustra-
tion of trajectories of electrons transmitted by the first junction for
B=0 (left) and B> B+ (right); (c) three-terminal cavity.

kpd>1, the interval between turning points lies within the
region of space where the potential profile can be approxi-
mated using the linear function u(x)=kpx/d. The transfer
matrix in this region, T; can be found from Eq. (6) exactly,
using the transformation

Ti(x,y) — e—ivT/4a'ye—i¢(x)/20'zr'fl_(x’y)ei¢(y)/20'zei77/4a'y’ (14)
where
d(x) = kpd'x%.

This is because the matrix Ti satisfies the equation
e

0 )i-(x,w, (15)

& Ti(x.y) = = Py(e_,»¢<x>

where the upper row of 7} can be expressed in terms of two
linearly independent solutions of the equation

ei¢(9xe_i¢(?x\lf = pi\I’,

while the lower row can be expressed in terms of their com-
plex conjugate. Equation (15) is symmetric with respect to
the parity transformation x — —x, and its even/odd solutions
are

p2d 1
\Peven(-x) = (I)(_ lzt,i’ld)) s

1 pld3
‘Podd(X)=—p)x<I><5—14—]:,5;@),

where @ is the confluent hypergeometric (Kummer)
function'® with the following asymptotic properties:

L) ™ 1
®(a,b; j00) =~ ———— —
(a,b;z — i©) Tb-a) = + F(a)e

z Za—h

Therefore, inside the interval |x|, |y| <cd the transfer matrix

k)

T; can be written as
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T(x.y) = B(x)B™\(y) B=(q’”e" q"’“) (16)
e v ‘P:dd q,:ven |

where the matrix B satisfies Eq. (15) and has the unit
Wronskian, det B=1.

Finally, after a chain of substitutions, the obtained solu-
tions for the matching transfer matrices 7, and 7; can be
combined together into

T(y,x) =T,(x,a)T{(a,~ a)T,(-a.y),
and used to calculate the parameters « and B in Eq. (8),

2
a= e””yd/ZkF’

2 0\ 12+ip2dizk
2
2k ;
24 e'x,
ip;
I‘<1 +——p‘ )
2k

« 2
:8 —_ eﬂ'p),d/4k1:

X:p,\(oo)l - f [px(x’) _px(oo)]dx, 5
1

needed for determining the transmission probability,
2
w=|a|? = e ™dlkr, (17)

A selective transmission of carriers by a smooth n-p junc-
tion described by Egs. (17) and (2), with kzd> 1, only allows
for the passage of quasiparticles approaching thijlmction in
an almost perpendicular direction, with p, < \kp/d<kp and
6< y= (mkyd)~">< 1. This makes the transport characteris-
tics of ballistic graphene-based devices sensitive to the geo-
metrical orientation of n-p junctions in them, and it is ca-
pable of generating a sizable magnetoresistance (MR) effect.

A nominal resistance, R,,=1/ag,, of a single, separately
taken n-p junction with the peripheral length a separating the
electron and hole gases with densities ne,hzk?p/ﬂ' is deter-
mined by Eq. (3). Whether or not the nominal junction resis-
tance contributes to the total resistance of a ballistic device
depends on how free carriers propagate in it. For example,
when an n-p junction, with the perimeter a=27rr, separates
two metallic Corbino contacts to the ballistic 2D electron/
hole gases shown in Fig. 2(a), electrons emitted from the
inner contact with the radius b <r/\kpd reach the junction
at the incidence angle 6< 6, and pass it without scattering.
As a result, the presence of the n-p junction does not affect
the Corbino resistance, unless an external magnetic field
changes the incidence angle to 6'=r/r.,=6, where
r.=kgfic/eB is the cyclotron radius in the ballistic region.?’
This generates the MR,

R(B) =R, + f(BIB-) ’
agnp
where
f0)=0, f(1)~1,
and

B. = (hele)kplmrd. (18)
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A strong MR effect can also be expected in a Hall-bar
sample with several parallel n-p-n junctions, Fig. 2(b). The
energy-averaged?! transmission through the series of two
junctions, w,(8)=[w () +w ' (6+r/r,)—1]" is determined
by the individual junction transmissions w(6) and w(6+ f)
Here, we take into account that, due to the external magnetic
field, an electron transmitted by the first junction at the inci-
dence angle 6 would approach the second at the angle
¢' =6+, where r/r,=B/B. with B: defined in Eq. (18). In
the absénce of a field 6'=6, and the transmitted particle
would also pass the second junction, as shown on the left-
hand side of Fig. 2(b). If, due to a magnetic field, the angle
@' is sufficient for the particle to be reflected,” (6’ > 6,), the
latter would return to the first junction along the path illus-
trated on the right in Fig. 2(b) and escape to the contact
where it came from. This would suppress the conductance of
the n-p-n junction down to the value-determined scattering
by the side edges of the sample. Having substituted w,(6)
[instead of w(#)] into the conductance per unit length of a
broad junction defined in Eq. (3), we find the magnetocon-
ductance of the n-p-n junction,

* dx
~ 8w
Gnpn(B) \,;J_ (r+B/B2)” _ |

(19)

2
= e" +e
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A strongly selective quasiparticle transmission in Egs. (2)
and (17) can also be used for creating ballistic cavity-type
structures in graphene, with nonlocal transport properties. In
a three-terminal “cavity” shown in Fig. 2(c), a p-charging
gate would produce two parallel n-p junctions, so that bal-
listic electrons emitted from the contact 1 and transmitted by
the first junction would easily pass through the second and
reach contact 3. As a result, a bias voltage applied between
contacts 1 and 2 would generate current between contacts 1
and 3, thus giving rise to the frans-conductance G|3 with a
strong magnetic field dependence,

o 26 @k (ﬁ)
Gia(B) wh N d y B.) (20)

In conclusion, we show that a smooth n-p junction in
graphene transmits only carriers approaching it in a perpen-
dicular direction [see Eq. (2)]. On the basis of the predicted
selectivity of the n-p junction transmission, we propose a
mechanism for several moderate-field®® magnetoresistance
effects in ballistic n-p junctions microcircuits in graphene-
based transistors.
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