Electronic properties and the quantum Hall effect in bilayer graphene

Falko, Vladimir (2008) Electronic properties and the quantum Hall effect in bilayer graphene. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 366 (1863). pp. 205-218. ISSN 1364-503X

Full text not available from this repository.

Abstract

In this paper, I review the quantum Hall effect (QHE) and far-infra red ( FIR) absorption properties of bilayer graphene in a strong magnetic field. This includes a derivation of the effective low-energy Hamiltonian for this system and the consequences of this Hamiltonian for the sequencing of the Landau levels in the material: the form of this effective Hamiltonian gives rise to the presence of a level with doubled degeneracy at zero energy. The effect of a potential difference between the layer of a bilayer is also investigated. It is found that there is a density-dependent gap near the K points in the band structure. The consequences of this gap on the QHE are then described. Also, the magneto-absorption spectrum is investigated and an experiment proposed to distinguish between model groundstates of the bilayer QHE system based on the different absorption characteristics of right- and left-handed polarization of FIR light. Finally, the effects of trigonal warping are taken into account in the absorption picture.

Item Type:
Journal Article
Journal or Publication Title:
Philosophical Transactions A: Mathematical, Physical and Engineering Sciences
Uncontrolled Keywords:
/dk/atira/pure/researchoutput/libraryofcongress/qc
Subjects:
ID Code:
57009
Deposited By:
Deposited On:
16 Aug 2012 15:50
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2020 03:33