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We investigate the contribution of the low-energy electronic excitations toward the Raman spectrum of
bilayer graphene for the incoming photon energy ��1 eV. Starting with the four-band tight-binding model,
we derive an effective scattering amplitude that can be incorporated into the commonly used two-band ap-
proximation. Due to the influence of the high-energy bands, this effective scattering amplitude is different from
the contact interaction amplitude obtained within the two-band model alone. We then calculate the spectral
density of the inelastic light scattering accompanied by the excitation of electron-hole pairs in bilayer
graphene. In the absence of a magnetic field, due to the parabolic dispersion of the low-energy bands in a
bilayer crystal, this contribution is constant and in doped structures has a threshold at twice the Fermi energy.
In an external magnetic field, the dominant Raman-active modes are the n−→n+ inter-Landau-level transitions
with crossed polarization of in/out photons. We estimate the quantum efficiency of a single n−→n+ transition
in the magnetic field of 10 T as In−→n+ �10−12.
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I. INTRODUCTION

Bilayer graphene1,2 is a representative of the recently dis-
covered family of new carbon allotropes.2 It attracted atten-
tion by the observation of an unusual sequencing of plateaus
in the quantum Hall effect �Refs. 1 and 2� and the possibility
to modify its spectrum by opening a small gap and induce an
insulating state with an external electric field.2–4 The elec-
tronic properties of bilayer graphene have been characterized
using angle-resolved photoemission spectroscopy �Refs. 5
and 6� and optical absorption in the visible7,8 and infrared9–14

spectral range. Bilayer graphene has also been studied using
inelastic scattering of light, subject to the detection of
Raman-active lattice vibrations in this two-dimensional
crystal.15–23 However, no theoretical or experimental study
has yet been performed, on the contribution of electronic
excitations toward Raman spectra of bilayer graphene. This
paper presents a theory of such a contribution.

The electronic Raman spectroscopy can provide informa-
tion about various single particle and collective electron ex-
citations in the system studied. In semiconductors, it has
been, for example, employed to investigate donor and accep-
tor states, plasmons and spin-density fluctuations involving
electron spin-flip due to the spin-orbit interaction.24,25 The
inelastic scattering of photons on electrons in semiconductor
placed in an external magnetic field was first discussed in
Ref. 26, where it was pointed out that nonparabolicity of the
electronic bands is crucial for the electron-photon interaction
matrix elements not to vanish. The features corresponding to
the electronic contribution to the Raman scattering in an ex-
ternal magnetic field were observed in many semiconductors,
for example, InSb �Ref. 27� and GaAs.28

Recently, the Raman spectroscopy of electronic excita-
tions in monolayer graphene has been investigated
theoretically.29 It has been shown that at high magnetic fields
the inelastic light scattering accompanied by the excitation of
the electronic mode with the highest quantum efficiency in-

volves the generation of interband electron-hole pairs. At
high �quantizing� magnetic fields this leads to the electron
excitations from the Landau level �LL� n− at the energy
−�2n�v /�B in the valence band to the Landau level n+ at the
energy �2n�v /�B in the conduction band with energies �n

=2�2n�v /�B and crossed polarization of in/out photons, in
contrast to the �n= �1 transitions between Landau levels
which are dominant in the absorption of left- and right-
handed circularly polarized infrared photons.30 Raman spec-
troscopy, therefore, provides data supplementary to that ob-
tained in optical absorption. This fact could be of interest in
particular for bilayer graphene placed in an external mag-
netic field. Recent measurement of the infrared absorption in
fields up to 20 T showed31 deviations from the tight-binding
model for an ideal bilayer. Here, we offer a theory for an
alternative experimental probe, with different selection rules
for the inter-Landau-level excitations, which could bring
some new insight into the properties of the bilayer graphene.

We study the Raman spectroscopy of electronic excita-
tions in bilayer graphene both with and without an external
magnetic field using the tight-binding approach. First, we
describe processes in which after the inelastic scattering of
the optical photon, an electron-hole pair is created in the
low-energy bands of the bilayer. Then, we evaluate the scat-
tering amplitude corresponding to such a process within the
framework of the four-band tight-binding model and extract
an effective scattering amplitude that is incorporated into the
two-band low-energy Hamiltonian for bilayer graphene.1

This effective scattering amplitude contains the influence of
the high-energy bands and is different from the scattering
amplitude found using only the approximate low-energy
Hamiltonian. Next, we find the low-energy electronic contri-
bution to the Raman spectra and obtain an analytic descrip-
tion for the selection rules and intensity of such Raman scat-
tering in a bilayer placed in a strong �quantizing� magnetic
field.
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II. THEORY OF THE INELASTIC LIGHT SCATTERING
IN BILAYER GRAPHENE

Bilayer graphene consists of two coupled sheets of
graphene with AB �Bernal� stacking characteristic of bulk
graphite,32 Fig. 1�a�. The unit cell contains four inequivalent
atoms A1, B1, A2, and B2 where letters A and B denote two
sublattices in the same layer and 1/2 stands for the bottom/
top layer. The Fermi level in graphene lies in the vicinities of
the corners of the hexagonal Brillouin zone �also called val-
leys� known as K+ and K− �Fig. 1�b��. The conventional
tight-binding Hamiltonian based on � orbitals of carbon at-
oms �one per atom, four in the unit cell� and expanded in
momentum around the valleys reads

Ĥ0 = �	v3�
xpx − 
ypy� 	v� · p

	v� · p �1
x
� . �1�

Here, �= �
x ,
y� and 
x, 
y, and 
z are the Pauli matrices,
electron momentum p is measured from the center of the
valley, v�106 m /s �Refs. 11, 12, 18, and 23� is a parameter
related to the nearest-neighbor intralayer coupling �0
�3 eV,11,18,23 �1�0.4 eV �Refs. 5, 9–12, 18, 19, 21, and
23� is the direct interlayer coupling, v3 is related to the weak
direct A1↔B2 interlayer hops �v3 /v�0.1 �Refs. 1, 18, and
23�� and 	=� is the valley index. The basis is constructed
using components corresponding to atomic sites
A1,B2,A2,B1 in the valley K+ and B2,A1,B1,A2 in K−.
One can also take into account terms quadratic in the elec-
tron momentum p

�Ĥ = 	v3

v
�
x�px

2 − py
2� + 2
ypxpy� 
x�px

2 − py
2� − 2
ypxpy


x�px
2 − py

2� − 2
ypxpy 0

 ,

where =− v2

6�0
. However, the influence of the �Ĥ term on the

results of the Raman spectra analysis is negligibly small, as
shown in the Appendix.

The part of the resulting electronic dispersion relevant for
the Raman scattering of photons with energies ��2.5 eV,
is illustrated in Fig. 1�c� for the valley K+. Two bands, later
referred to as low-energy ones, touch each other at the neu-
trality point—the position of the Fermi energy in the neutral
structure. Two other, referred to as high-energy bands, are
split by the interlayer coupling, �1, from the neutrality point.
The v3 parameter leads to the trigonal warping of the elec-
tronic dispersion. Its influence is most important for very low
energies, ��5 meV.

To describe the process of inelastic scattering of light on
electrons, we consider an experimental setup in which in-
coming laser light of energy ���1, in-plane momentum q
�out-of-plane component of momentum equal to qz

=��2 /c2−q2� and polarization l is shined onto to the

sample. Scattered photon has polarization l̃, in-plane momen-

tum q̃ and energy �̃=�−�, where � is the Raman shift. We
also assume the temperature T to be smaller than the Raman
shift, kBT�� �kB is the Boltzmann’s constant�. In our case,
the inelastic light scattering may occur via a one-step process
�so called contact interaction� or a two-step process involv-
ing an intermediate state. The two-step process, such as
shown in Fig. 1�c�, involves: the absorption �or emission� of

a photon with energy � ��̃� transferring an electron with
momentum p from an occupied state in the valence band into
a virtual intermediate state �energy is not conserved at this
stage�, followed by another electron emission �or absorption�
of the second photon with energy �̃ ���. The one-step pro-
cess is the usual inelastic scattering of an incoming photon
on an electron with transfer of energy to the latter. As a result
of both one- and two-step processes, an electron-hole pair in
the low-energy bands is created with the electron and the
hole having almost the same momentum �p+q− q̃ and p,
respectively� since q , q̃�p and the momentum transfer from
light is negligible �v /c�3�10−3�. Therefore, p+q− q̃�p
and due to the approximately electron-hole symmetric band
structure in the vicinity of Brillouin zone corners, the elec-
tron initial and final energies �i and � f are related, � f �−�i.

To include the interaction of the electrons with photons,
we construct the canonical momentum �p−e�A�r , t��
+ Ã�r , t���, where A�r , t�� and Ã�r , t�� are the vector poten-
tials of the incoming and outgoing light, respectively,

A�r,t�� =
1

�2�0�
�lei�q·r−�t��/�bq,qz,l

+ H.c.� ,

Ã�r,t�� =
1

�2�0�̃
�l̃�e−i�q̃·r−�̃t��/�b

q̃,q̃z,l̃

†
+ H.c.� �2�

and bq,qz,l
is an annihilation operator for a photon with in-

plane momentum q, out-of-plane momentum component qz
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FIG. 1. �a� Schematic of the bilayer graphene crystal lattice. �b�
The Brillouin zone of bilayer graphene with two inequivalent val-
leys denoted as K+ and K−. �c� The band structure of bilayer
graphene in the vicinity of the K+ point along the px axis. Also
shown are some of the two-step processes leading to the creation of
an electron-hole pair in the low-energy bands accompanied by the
absorption of a photon followed by emission. Gray solid �dashed�
lines indicate the first �second� step of the process. The black
�white� circle denotes the hole �electron� in the final electron-hole
pair while the hatched circle represents the intermediate virtual
state. Note that for any intermediate state ��� with energy ��,

� ,�̃���. �d� Diagrammatic representation of the scattering ampli-
tudes R, discussed in Sec. II, and �R �discussed in Appendix�.
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and polarization l. We expand the resulting Hamiltonian up
to the second order in the vector potential and write down the
interaction part

Ĥint = j · �A�r,t�� + Ã�r,t��� +
e2

2 �
i,j

�2Ĥ0

�pi � pj
AiÃj , �3�

where j=−e
�Ĥ0

�p is the current vertex.
We aim to calculate the spectral density g��� and the

quantum efficiency �intensity� of the Raman scattering, I.
The quantum efficiency describes the ratio of the flux of
outgoing, inelastically scattered photons to the flux of the
incoming photons, and is an integral, I=�d�g���, of the
spectral density g��� representing the probability for the in-

coming photon to scatter inelastically with energy �̃=�
−�, where � is the Raman shift.

The quantum efficiency expresses the total probability for
single incoming photon to scatter inelastically in a process
under consideration—that is, to scatter on an electron and
excite an electron-hole pair in the low-energy bands. The
probability for the incoming photon to scatter with the Ra-
man shift � in a particular direction �defined by the momen-
tum q̃ of the scattered photon�, is, in turn, characterized by
the angle-resolved probability of scattering w�q̃�. Finally, the
scattering probability w�q̃� that one photon is scattered with
the excitation of an electron-hole pair in the final state is
related, as w� �R�2, to the scattering amplitude R of the
Raman process.

The amplitude R is the sum of the amplitudes corre-
sponding to the one-step and two-step processes. Only terms
quadratic in electron momentum p which appear in the ad-

dition �Ĥ to the Hamiltonian �1�, contribute to the contact
interaction. We show in Appendix that this contribution is
much smaller than the leading contribution from the two-step
processes, thus, we neglect it in further considerations. To
find R, illustrated using Feynman diagrams shown in Fig.
1�d�, we describe a two-step transition which involves an
intermediate virtual state ��� with energy ��, as

R = −
1

2�0
���̃

�
�
�

−�

� �
−�

t�
ei/���f−���t��j · l̃��e−i/��q̃·r−�̃t�����

����ei/��q·r−�t���j · l�ei/����−�i�t�dt�dt�

−
1

2�0
���̃

�
�
�

−�

� �
−�

t�
ei/���f−���t��j · l�ei/��q·r−�t�����

����e−i/��q̃·r−�̃t���j · l̃��ei/����−�i�t�dt�dt�. �4�

The virtual state ��� may belong to any of the four bands
since an electron is excited from a state with momentum p to
a state with momentum p+q or p− q̃ depending on the ac-
companying photon process. At this step of the calculation
we still work with the four-band Hamiltonian �1�, to include
the influence of the high-energy “split” bands. In Eq. �4�, the
first �second� term corresponds to processes in which the
photon is absorbed �emitted� in the first step and emitted
�absorbed� in the second step of the process and is given by
the first �second� diagram in the expression for R in Fig.

1�d�. Integration in the time-dependent perturbation theory in
Eq. �4� can be performed by changing variables to �= t�− t�,

which varies at the scale of �−1, �=�−�̃, and t̄= �t�
+ t�� /2, which varies at the scale of �̄−1, �̄= ��+��� /2

��. For incoming and outgoing photons, � ,�̃��1, and we
also study the low-energy excitations in the final states with
���1. This allows us to expand factors 1

��̄−��

resulting from

the integration over � in powers of ��� /��, keeping terms on
the order of 1 and ��1 /�� �the latter appear when the virtual
state is taken to be in the high-energy bands� and to perform
summation over the intermediate virtual states of the process.
Consequently, the amplitude R takes the form of a matrix

R �
e2�2v2

�0�2 �− i�
z 0

0 
z
��l � l̃��z +

M · d

�
���� f − �i − �� ,

d = �lxl̃y
� + lyl̃x

�,lxl̃x
� − lyl̃y

�� M = �Mx,My� ,

Mx = � �1
y 	v�
ypx + 
xpy�
	v�
ypx + 
xpy� 0

�
My = � �1
x 	v�
xpx − 
ypy�

	v�
xpx − 
ypy� 0
� .

Below, we analyze the contribution of electronic modes
toward the low-energy part of Raman spectrum with the pho-
ton energy shift ���1 /2, which is determined by the exci-
tation of the electron-hole pairs in the low-energy �degener-
ate� bands with vp��1. At such low energies, the band
structure as well as Landau-level structure can be described
by the effective two-band Hamiltonian written in the basis of
orbitals on the sites A1 and B2 �Ref. 1�

Ĥeff = −
v2

�1
��px

2 − py
2�
x + 2pxpy
y� . �5�

To describe the excitation of the low-energy modes corre-
sponding to the transitions between low-energy band states

described by Ĥeff, we take only the part of R which acts in
that two-dimensional Hilbert space, keep terms in the lowest
relevant order in vp /�1�1 and �1 /��1, and write down an
effective amplitude Reff

Reff �
e2�2v2

�0�2 �− i
z�l � l̃��z +
�1

�
�
xdy + 
ydx�� . �6�

We point out that the above matrix cannot be obtained
within a theory constrained by the two-band approximation,
Eq. �5�, from the very beginning. Seemingly, one may try to
define a contact-interactionlike term due to the terms qua-
dratic in the electron momentum p in Eq. �5�, which carries
a prefactor e2�2v2

�0�1� , which may suggest a greater magnitude of

scattering than prefactor e2�2v2

�0�2 above. However, the scatter-
ing amplitude obtained within this model can only be applied
to photons with ���1, which is hardly relevant for Raman
spectroscopy since the latter is usually performed with laser
beams using ��1.3–2.8 eV.15–23
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The angle-resolved probability of the Raman scattering,
w�q̃�0�, determined using Fermi’s golden rule and with the
help of Eq. �6�, is

w =
2

c��3� dp��f �Reff�i��2 � f i�1 − f f����i + � − � f� ,

where f i and f f are filling factors of the initial and final
electronic state, respectively, and the spin and valley degen-
eracies have already been taken into account. This gives33

w �
�1e4�v2

c�0
2�4 ��s +

�1
2

2�2�o���� − 2� ,

�s = �l � l̃��2, �o = 1 + �l � l�� · �l̃ � l̃�� . �7�

Above, the first term with polarization factor �s describes
the contribution of photons scattered with the same circular
polarization as the incoming beam. The second term, with
polarization factor �o, represents the scattered photons with
circular polarization opposite to the incoming beam.

In turn, the angle-integrated spectral density of Raman
scattering g��� is

g��� =� � dq̃dq̃z

�2���3w���̃ − c�q̃2 + q̃z
2�

= 2� e2

4��0�c

v
c
�2 �1

�2�2�s +
�1

2

�2�o���� − 2� . �8�

Here, the constant spectral density g as a function of � re-
flects the parabolicity of the low-energy bands and thus,
energy-independent density of states in the bilayer. This is
different in monolayer graphene, where g�����, reflecting
the energy-dependent density of states of electron-hole
pairs.29 The characteristic of monolayer graphene crossed
polarization of in/out photons is retained in the case of the
bilayer system. Experimentally, constant spectral density g in
undoped bilayer graphene is impossible to distinguish from a
homogeneous background. However, if the chemical poten-
tial  is not at the neutrality point, then transitions with �
�2 are essentially blocked. Although new processes, re-
sulting in the creation of the intraband electron-hole pair
excitations and very small �, are possible for �0, their
contribution carries additional prefactor v /c� 1

300 .26 Explicit
calculation performed for the monolayer graphene showed
that the quantum efficiency of the intraband transitions was
of the order of 10−15.29 In contrast, for chemical potential
�50 meV �corresponding to additional carrier density n0
�1.5�1012 cm−2�, the lost quantum efficiency due to the
blocked interband transitions is, according to Eq. �8�, �I
�10−12.

III. INTER-LANDAU-LEVEL TRANSITIONS IN BILAYER
GRAPHENE RAMAN

The quantization of electron states into Landau levels
gives the Raman spectrum due to the electronic excitations a
pronounced structure which can be used to detect their con-
tribution experimentally. We only consider here low-energy

Landau levels, as at high energies the Landau-level broaden-
ing due to, for example, electron-phonon interaction, will
smear out the LL spectrum. In strong magnetic fields, low-
energy Landau levels are sufficiently described34 by

�n� = �
2�2v2

�1�B
2

�n�n − 1� ,

�n� = ��n

0
�,n = 0,1;�n� =

1
�2

� �n

��n−2
�,n � 2, �9�

where �B=�� /eB is the magnetic length, n is the Landau-
level index and �=+ denotes the conduction and �=− the
valence band. Also, �n is the normalized nth Landau-level
wave function. In a neutral bilayer, all LLs have additional
fourfold degeneracy �two due to the electron spin and two
due to the valley�. Moreover, levels n=0 and n=1 are degen-
erate at �=0 giving rise to an eightfold degenerate LL. We
can project our effective transition amplitude Reff onto the
eigenstates �n� to find the electronic Raman spectrum in the
presence of a strong external magnetic field. This leads to the
following selection rules for allowed electronic transitions
from the initial level n−:

�i�n− → n+; �ii��n � 1�− → �n � 1�+. �10�

Among those, �i� is the dominant transition. These selection
rules, represented schematically in Fig. 2�a�, show that using
Raman spectroscopy, one can probe different electronic ex-
citations than in optical spectroscopy, where the selection
rules are �n= �1.30,35 For a neutral bilayer, the angle-
integrated spectral density g��� of Raman scattering in the
magnetic field is equal to

g��� � 16�s� e2

4��0�c

v
c
�2� �v

�B�
�2

�
n�2

��� − 2�n+� + �g���

�  �

� �

� �

� �

� �
�� � � � 	 �

�

�
�

��
��
�
��
��

��
�	
��

�
��
��

� � � � � � � �  �
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FIG. 2. �a� Schematic of allowed inter-LL transitions accompa-
nying the Raman scattering. The solid �dashed� line represents the
first dominant �weaker� transition 2−←2+ �pair 2−←0 and 0←2+�.
�b� The low-energy electronic contribution to the Raman spectrum
in bilayer graphene. The solid �dashed� line represents the spectrum
in the presence �absence� of an external magnetic field and chemical
potential =0 ��0�. For the spectrum in a magnetic field, corre-
sponding inter-LL transitions have been attributed to each peak.
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�g��� = 8�o��1

�
�2� e2

4��0�c

v
c
�2� �v

�B�
�2� �

n=1,2
2���

− ��n + 1�+� + �
n�3

��� − ��n + 1�+ − ��n − 1�+�� . �11�

Here, we use Lorentzian ��x�=�−1� / �x2+�2� with a width
specified by � to model the broadening of Landau levels.
The term �g��� describes the spectral density of the
�n�1�−→ �n�1�+ transitions, which is a correction to the
dominant contribution due to the n−→n+ transitions given by
the first term on the right-hand side of Eq. �11�.

An example of the low-energy electronic contribution to
the Raman spectrum in the neutral bilayer in strong magnetic
field is shown with a solid line in Fig. 2�b�. The dominant
features are peaks due to the n−→n+ transitions with the first
being the 2−→2+ transition. Note that within the LL index-
ing scheme applied here, indices 0 and 1 are only used to
denote one valley-degenerate level each �no � index is
needed�. Lifting the valley degeneracy by introducing charge
asymmetry between layers will not allow any additional n−

→n+ transition because valley-split levels for n=0,1 belong
to different valleys and excitation between them would re-
quire a huge momentum transfer. The quantum efficiency of
a single n−→n+ peak in Fig. 2�b� is approximately

In−→n+ � �v2

c2

e2/�B

�0��
�2

=
v4e5B

�2c4�0
2��2 �12�

per incoming photon, which at the field B�10 T gives
In−→n+ �10−12 for ��1 eV photons, comparable to similar
transitions in monolayer graphene.29

A weaker feature in Fig. 2�b� is the first and the only
visible �n�1�−→ �n�1�+ peak due to both 2−→0 and 0
→2+ transitions, positioned to the left of the 2−→2+ peak.
The quantum efficiencies of the �n�1�−→ �n�1�+ transi-
tions are smaller by the factor �

�1

� �2 in comparison to the
n−→n+ transitions. This is different from the monolayer
graphene case, where the corresponding ratio between quan-
tum efficiencies of �n�1�−→ �n�1�+ and n−→n+ transi-
tions is � �

� �2, much smaller than for the bilayer. The term
�g��� can be further emphasized by changing the energy of
incoming photons �. Shown in Figs. 3�a� and 3�b�, is a com-
parison of the total spectral density g��� and contributions
due to each mode separately, for two different energies of
incoming photons, �=2 eV and �=1 eV. The intensity
scale is the same on both figures and in each case, the total
spectral density g���, the contributions due to the n−→n+

and �n�1�−→ �n�1�+ modes are shown in the solid, dot-
dashed, and dashed line, respectively. The dominant contri-
bution, resulting from the Raman scattering accompanied by
the n−→n+ electronic transitions, is proportional to the in-
verse square of the incoming photon energy �. Therefore,
two peaks drawn with dot-dashed lines are roughly four
times smaller on the right figure. The spectral density of the
�n�1�−→ �n�1�+ transitions is smaller by a further factor
�

�1

� �2 in comparison to the n−→n+ transitions. Hence, this
contribution, shown with dashed lines, is close to zero on the
right figure, while on the left, the first of the two smaller

peaks corresponding to symmetric transitions 2−→0, 0
→2+ and 3−→1, 1→3+ is still visible in the total spectral
density. Because of the contrasting polarization factors in Eq.
�11�, contributions of different modes, n−→n+ or �n�1�−

→ �n�1�+, to the total spectral density could be separated
using polarizers. If the polarizers were set as to collect only
photons with circular polarization identical to that of the in-
coming photons, then the n−→n+ contribution would be
measured. However, if only the photons with polarization
opposite to the polarization of the incoming beam were de-
tected, the �n�1�−→ �n�1�+ contribution would be deter-
mined.

Increasing the filling factor leads first to the 2−→0 and
3−→1 transitions being blocked when LLs with n=0 and
n=1 are completely filled. Therefore, the height of the two
corresponding �n�1�−→ �n�1�+ peaks is halved �transi-
tions 0→2+ and 1→3+ are still allowed�. Next to disappear
are the first n−→n+ peak, that is 2−→2+, and the remains of
the first �n�1�−→ �n�1�+ peak, �due to the 0→2+ transi-
tion� because of the filled LL 2+. Complete filling of each
following Landau level results in the disappearance of the
next n−→n+ and �n�1�−→ �n�1�+ peaks.

IV. SUMMARY

We presented a theory of inelastic scattering of photons in
bilayer graphene accompanied by the excitation of electron-
hole pairs. Similar to monolayer graphene, the dominant
scattering processes lead to the crossed polarization of in/out
photons. Also, the selection rules in the presence of a mag-
netic field are found to be the same with the n−→n+ mode
being the strongest. We estimate the intensity of one of the
n−→n+ scattering processes to be In−→n+ �10−12 for �
�1 eV photons in magnetic field B�10 T. The most recent
theoretical prediction for monolayer graphene of the inten-
sity of the phonon-induced G peak,36 a well-known Raman
feature in carbon materials,37 estimates IG�10−11. This re-
sult is only one order of magnitude greater than the intensity
of a single n−→n+ peak. Therefore, spectral features of inter-
Landau-level transitions in bilayer graphene predicted in this
paper may be observable experimentally.
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FIG. 3. Comparison of electronic contributions to the Raman
spectra in neutral bilayer graphene for two different energies of
incoming photons: �a� �=1 eV and �b� �=2 eV. For each case,
total spectral density g��� and contributions due to the n−→n+ and
�n�1�−→ �n�1�+ modes are shown in the solid, dot-dashed, and
dashed line, respectively. Intensity scale is the same on �a� and �b�;
values of the parameters used: v=106 m /s, �1=0.4 eV, B=10 T,
and �=0.012 eV.
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The electron Raman scattering in an external magnetic
field would complement infrared spectroscopy as it can give
information about electronic excitations between different
pairs of Landau levels. The purpose of this paper was to
identify and describe the dominant inter-Landau-level
modes. However, additional corrections, e.g., to the Raman-
active magnetoexciton energies due to the many-body effects
neglected in the above considerations will be present in the
spectra. Many-body corrections were, for example, observed
in the infrared spectroscopy experiment performed in exter-
nal magnetic fields.31 Electronic Raman measurements could
provide a test ground for some of the theoretical models
proposed to account for these many-body effects.
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APPENDIX: THE CONTACT INTERACTION

The contact interaction scattering amplitude �R, illus-
trated using Feynman diagram in Fig. 1�d�, results from the
second term in the interaction Hamiltonian �3� and corre-
sponds to the one-step Raman processes. It is characterized

by operators �2Ĥ /�pi�pj and hence, the bilayer graphene

Hamiltonian in �1� does not allow any contact interaction
processes, as it includes only terms linear in the electron
momentum p. The only contribution to the contact interac-

tion comes from the addition �Ĥ, which contains terms qua-
dratic in p. However, such contribution involves prefactor

v2

�0� and therefore leads only to small corrections in the in-
tensity of Raman scattering of photons with energy less than
the bandwidth of graphene, �6�0. In fact, the contribution to
the scattering amplitude due to the contact interaction ob-
tained within the four-band model is

�R =
e2�2v2

6�0��0
L · d; L = �Lx,Ly� ,

Lx = 	−
v3

v

y 
y


y 0

 ; Ly = 	−

v3

v

x − 
x

− 
x 0

 . �A1�

However, as we are interested only in the low-energy physics
�small Raman shifts�, only the top-left block of the above
matrix is relevant. This block contains an additional prefac-
tor

v3

v . We see that the contact interaction can be neglected in
comparison to the leading terms in the effective scattering
amplitude Reff, as

v3/v
6�0

�
�1

�2 �
1
� .
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