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We analyze the phase diagram of bilayer graphene (BLG) at zero temperature and zero doping. Assuming
that at high energies the electronic system of BLG can be described within a weak-coupling theory (consistent
with the experimental evidence), we systematically study the evolution of the couplings with going from high to
low energies. The divergences of the couplings at some energies indicate the tendency towards certain symmetry
breakings. Carrying out this program, we found that the phase diagram is determined by microscopic couplings
defined on the short distances (initial conditions). We explored all plausible space of these initial conditions and
found that the three states have the largest phase volume of the initial couplings: nematic, antiferromagnetic,
and spin flux (a.k.a. quantum spin Hall). In addition, ferroelectric and two superconducting phases appear only
near the very limits of the applicability of the weak-coupling approach. The paper also contains the derivation
and analysis of the renormalization group equations and the group theory classification of all the possible phases
which might arise from the symmetry breakings of the lattice, spin rotation, and gauge symmetries of graphene.
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I. INTRODUCTION

Bilayer graphene!-? (BLG) is a crystal which consists of two
monolayers of honeycomb carbon lattice arranged according
the Bernal stacking known from bulk graphite.” In a Bernal-
stacked lattice, one out of the two sites on the upper monolayer
resides directly over a site on the lower lattice, and the other
carbon atoms are on/under the centers of the hexagons (see
Fig. 1). Such acrystal has a very high symmetry with symmetry
group Ds,.

This high symmetry may be lifted by the formation of
correlated states of electrons. There is a plethora of ways the
symmetry can be lifted, some of which have been discussed in
the recent literature: the ferroelectric-layer asymmetric state,>*
the layer polarized antiferromagnetic state,”® the quantum
anomalous Hall state,*’ the “spin flux”/quantum spin Hall
state,*’ the charge density wave state,”'*!! the loop current
state,'> and an anisotropic nematic liquid.'>!'* Some of the
proposed phases above have a gap in the electronic spectrum
(ferroelectric, antiferromagnetic, spin flux, CDW), whereas in
the other phases (nematic, ferromagnetic) no gap is formed.
This large variety of possibilities makes the theory of electronic
properties of BLG a very interesting and challenging subject.
The complexity of the theoretical problem is compounded by
two factors. One is a lack of precise information about the
relevant interaction constants which determine the electronic
phase in undoped pristine BLG. The other issue is the
competition between exchange energy contributions for a large
number of candidate phases which makes the determination
of the ground state nontrivial, even with precise knowledge of
the interaction constants.

On the experimental side, several contradicting observa-
tions have been reported based on interpretations of the
measured transport properties of suspended samples in terms
of a gapful or gapless spectrum of electronic excitations.'32!
At the moment the preponderance of experiments point to
a gapped state, but a lack of consistency between samples
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and between experiments means there is not a yet a clear
understanding of the situation. However, all of these works
as well as optical studies of BLG**%’ indicate that the high-
energy properties (but below 0.2 eV) of BLG are well described
by the two-band model' without interactions. All this makes a
comprehensive theoretical treatment of the problem starting
from the weak coupling well-defined and timely. In this
paper, we employ the previously developed RG approach'?
to identify the possible scenarios of the symmetry breaking
phase transition in BLG at low temperature and zero carrier
density.

The tendency to form a state with spontaneously broken
symmetry is encoded in the system response to local symmetry
breaking fluctuations, in particular in their mutual interaction,

Hin ~ / Pr Y gubpalr)-8par). (L)

AelrReps

Here §p 4 are operators creating local density fluctuations
breaking lattice symmetry, with 894 = ¥T My expressed in
terms of electron annihilation and creation operators ¥ and /1,
and g4 are coupling constants. Each of the fluctuations 04
belong to one of the irreducible representations .4 (IrReps) of
the symmetry group of the lattice. (A precise definition of the
densities can be found in Sec. I1.)

If Hamiltonian (1.1) is dominated by one term with negative
constant g4, we would expect it to be energetically favorable
for a state with a nonzero expectation value of §0 4 to form,
with the symmetry of the ground state determined by the
corresponding IrRep, A. However if the coupling constant
in the dominant term is positive, then the ground state is
determined by the exchange energy, which can be negative not
only for magnetic (ferro/antiferro) but also for nonmagnetic
orderings, because of the sublattice/valley matrix structure.
Because of the large number of IrReps, this can result in a
competition between many phases. Therefore, to determine
the ground state of BLG we must know all the interaction
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FIG. 1. (Color online) Left panel: 3D view of bilayer graphene.
The sites that sit on top of each other, connected by dotted lines,
hybridize strongly and form bands with a gap of y; = 0.4 eV. The
low-energy electrons live on the half of the carbon atoms that sit
over/under the centers of the hexagons. Right panel: Top-down view
of the lattice.

constants g4 sufficiently well, especially when the dominant
ones are positive. The situation is actually even more intriguing
since attraction may result in a superconducting phase with
nontrivial Cooper pair structure.

To add to the complexity of the problem, the values of
the “constants” g4 are not fixed. They change as a function
of the energy scale £ within which the electrons establish the
symmetry breaking correlations. The energy scale dependence,
g4(€), may be calculated using the renormalization group
(RG) approach. In the RG approach the highest energy
electron states are eliminated and their effects incorporated
into a redefinition of the parameters of the theory. The
renormalization of BLG parameters starts at the energy scale
y1/2 =~ 0.2 eV which limits the applicability of the two-band
model with parabolic spectrum and initial conditions g 4(y; /2).
Then it is iterated until the lowest energy scale £ is reached.
This energy scale £ is determined when the interaction energy
in at least one of the the channels becomes of the order
of kinetic energy. After this scale is reached the mean-field
theory can be used to establish the electronic ground state.
The necessary RG equations for the constants g4 and their
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interplay with Coulomb interaction,
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, (1.2)

have been derived for the full set of eight constants in Ref. 13.
[Similar in spirit the treatment of Ref. 8 replaced Eq. (1.2)
with the short-range weak interaction.]

Calculating g 4(y1/2) requires detailed knowledge of the
microscopic orbitals which is not available at present. There-
fore, in this paper we explore a wide variety of initial conditions
gA(y1/2) for the RG to find possible electronic ground states
for BLG. We can make some arguments to constrain the
values of the g 4(y1/2). The coupling gp, which describes the
interaction of dipoles oriented perpendicular to the bilayer
(see Fig. 2) must be positive at high energy scales. The
four “current-current” interactions ga,, &g, 8k, and gg; are
only generated by virtual processes because of time reversal
symmetry. Therefore we will set them to be zero at y; /2.

Also, it is interesting to note that in the value of g4(y;/2)
one has to take account of the interactions between electrons
via polarization of the lattice. Particularly, the in-plane TO-LO
phonons at the I' point and TO phonons at the Brillouin zone
corner have energies comparable to y; /2, so that they mediate
an attractive interaction via their virtual creation/absorption.
These would give negative contributions to the bare values
of gg, and gg;. Analogously, virtual LO-LA phonons from
K—the Brillouin zone corners—give negative contribution to
the value of g¢. Therefore, we make no assumption about the
sign of gg,, gey, and gg. A set of typical outcomes of the RG
flow and the resulting electronic phases is shown in Fig. 3.

In Fig. 3 we reproduce the earlier reported result'*!* that
for the initial choice of g4 = 0 the RG flow leads to a nematic
phase. The nematic phase is a state with broken rotational (but
intact translational) symmetry corresponding to representation
E; in Fig. 2, mimicking the effect of anisotropic hopping along
bonds with different directions on the honeycomb lattice. This

FIG. 2. (Color online) Sketches of the density and currents transforming according representations of the group Dj,. In the case of a
spin singlet symmetry breaking, the plus and minus signs represent charges, the blue lines represent persistent currents, and the black bars
represent bonds. The G, E,, and EJ order parameters triple the unit cell; the new Bravais lattice vectors are given by the dashed arrows. The
representations are given in terms of Pauli matrices in Egs. (2.11) and (2.10).
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FIG. 3. (Color online) Four cuts through the possible parameter
space of BLG. The predicted gap (or saddle point energy for only gap-
less nematic phase) is indicated by the color scale and the predicted
phase is indicated. N is a nematic, AF is an antiferromagnetic phase,
SF is a spin flux phase, and FE is a ferroelectric. A fifth predicted
superconducting phase is in a range parameters not shown; see Fig. 9
for more details. The g are coupling constants of BLG, with the
subscript labeling the irreducible representations in accordance with
Fig. 2 and defined in Sec. II. All boundaries are the first-order phase
transitions.

breaks the sixfold rotational symmetry by selecting one of axes
of the lattice. In this state the electronic spectrum remains
gapless but is significantly reconstructed from the unbroken
symmetry state with two fourfold degenerate Dirac cones at
low energy. The state has the same symmetry and spectrum as
uniaxial strain,”® and we expect that strain will, all else equal,
favor the nematic phase. Figure 3 shows that the nematic phase
is the preferred ground state not only when g 4(y;/2) = 0, but
in a significant section of the g4(y;/2) parameter space. In
particular, the nematic phase always emerges from the part of
the parameter space where bare electron-electron couplings
causing intervalley scattering are zero (g6 = gry = gr; = 0).

In other parts of the parameter space explored in this
work and illustrated in Fig. 3, the ground state appears to
be antiferromagnetic (AF), with the A; and B, sublattices of
two layers, see Fig. 1, spin polarized in opposite directions.
In the AF state the electronic excitations are gapped (though
neutral spin wave excitations are gapless). Although the AF
state prevails over a significant section of the parameter
space, the combinations of bare couplings which produce the
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AF state are not intuitive. For example, increasing the bare
coupling gp, does not necessarily introduce the AF phase.
However increasing the bare coupling g; makes the ground
state AF. The reason for this counterintuitive behavior is in the
complexity of the RG flows. Since there are eight nonlinearly
coupled variables in the RG equations,®!? the RG flow is quite
complicated, and the connection between the couplings at low
energy and the bare couplings at high energy is not obvious.

Exploring a broader parameter space further we find more
phases. A spin-flux phase is found in a significant sector of the
parameter space g4(y1/2), as seen in Fig. 3. This spin-flux
phase is a state with a persistent spin current circling the
honeycomb lattice rings, corresponding to the spin triplet
form of representation B; in Fig. 2. It may be viewed as
the spontaneous formation of a strong spin-orbit coupling.
It therefore leads to a gapped electronic spectrum and possibly
a quantum spin Hall effect.

There are two more phases which appear to some degree in
the phase space explored. One is a ferroelectric phase (FE). The
FE phase a trivial band gap insulator where the bilayer becomes
spontaneously charged like a capacitor. It is a completely
gapped phase. It corresponds to representation B,, precisely
the same representation as AF but spin singlet, rather than
spin triplet. Therefore, positive gp, suppresses the ferroelectric
phase, which appears in Fig. 3 only in the fine-tuned corners
corresponding to the applicability of the weak-coupling theory.

We also found a new superconducting phase (not shown
in the figure; see Fig. 9 for more details) which has energy
tantalizingly close to the nematic and ferroelectric states. It
is a triplet superconductor with a nontrivial Cooper pairing.
Cooper pairs are formed between pairs of electrons with
opposite valleys and opposite layer. The pairing is symmetric
in exchange of valleys, but antisymmetric in exchange of
layers.

As usual, the singlet superconductivity appears only for
the attractive interaction. From the first panel on Fig. 3, we
see that it requires quite significant attraction in two channels
gry.86 < 0.

Below we describe how the conclusions listed above have
been reached. In Sec. II we review the structure of BLG, its
symmetry group, and the low-energy Hamiltonian. Section III
describes the resummation of the Coulomb interactions in the
1/N expansion,'>?*=! where N = 4 is the degeneracy of the
single-particle spectrum. We then derive the RG equations
that connect the couplings at low and high energy scales. In
Sec. IV the results of the RG flow equations are analyzed
and augmented by a self-consistent mean-field theory which
produces a possible phase. Section V discusses the properties
of the emerging phases. In the Appendix we describe the
group-theoretic analysis of the phases of the BLG diagram.

II. MODEL

The top view of the BLG lattice with Bernal stacking is
shown in the right panel of Fig. 1. Here we label the two layers
1 and 2 and the four inequivalent lattice sites A;, By, Az, By,
with A, directly over Bj.

Calculation based on the minimal tight-binding model has
established the following BLG band structure.! The A, and B;
sites hybridize strongly and host states from the high-energy
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bands with excitation energies >y, & 0.4 eV. The low-energy
fermionic excitations in BLG belong to a four-component
representation of the group Ds,, exactly as in monolayer
graphene. The four fermionic fields v are conveniently joined
into a 4-vector as follows:

V= ) v =) e
where the /s are true spinors including real electron spin. This
four-dimensional space can be written as the direct product of
the (AB) and (K K’) spaces. We will use this to write all
operators as the sum of direct products T2z XX'o, of Pauli
matrices in each space. We define {75,

2.1

KK 5:) as the Pauli
matrices acting on layer, valley, and spin, respectively, and
define i = 1, 14 = (7 L iTy)/2.

The symmetries of the BLG lattice consist of the two
independent lattice translations 7} and 7, a 6‘3, rotation by 2 /3
around one of the lattice sites; and two independent reflections:
Ii’h, reflection across the y axis, and Iév, reflection across the
x axis, together with reflection through the plane midway
between the graphene sheets; see the right panel of Fig. 1. The
reflections and rotations form the point group Ds;. The groups
D54 and Cg, are isomorphic and have precisely the same action
on the plane. We also ignore the spin-orbit interaction which
gives an additional SU(2) symmetry from the independent
rotation of the spin. We will be concerned with the physics
about K and K’ points which are inequivalent in the Brillouin
zone but are connected by Rj,. Rather than dealing with two
degenerate but inequivalent points we can triple the unit cell,
which maps K and K’ onto the T" point. In this view, the point
group D3, is expanded to D;d = Dsy + f1Dsg + t2 D3y with
the translation operator f; with 72 = 7, and 7} = 1 (see, e.g.,
Ref. 32).

Ignoring the spin structure, the vector ¥ transforms as
follows under the action of the symmetry operators:

i1y (r) = exp (%r“) v (),

A 5
C3y(r) = exp (TTZ ) ¥ (C3r),

Ry (r) = oS5y (Ryr)
Roy(r) = 128 XKy (Ryr).

(2.2)

There is also the time reversal symmetry operation given by

v — YTy T=it}Ptf s, (2.3)
A. Single-particle spectrum
We write the Hamiltonian for this model as
H = Hy + Hc + Hjy. 2.4)

The single-particle part of the Hamiltonian in the two-band
model! reads (we will put 2 =1 in all the subsequent
formulas)

1 /
Hom 0! [t e e v e

Here we ignore the “warping term”! caused by the small skew
hopping (y3) since it would have a negligible effect on the RG.
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We have defined ks = k, £ ik, and m = 2y, /gr% zy¢ where
¥ 1s the the interlayer integral and r4p is the interatomic
distance. (The effect of the electron-electron interaction on the
warping was studied in Ref. 13.) The Hamiltonian in Eq. (2.5)
has the eigenvalue spectrum,

k2

(k) =£—, (2.6)
2m

where each branch is fourfold (spin and valley) degenerate. The
system described by Hamiltonian (2.5) has a higher symmetry
than the underlying lattice. This larger symmetry is described
by the SU(4) ® U(1) group whose sixteen generators M;; are
given by

~KK’

M;; = 0i%; (i,j =0,x,y,2), 2.7
FKK' _ _L,KK; KK _ KK ’
0 0 z z (2 8)
~KK' _ _AB_KK'. ~=KK __ _AB_KK’ '
T, =TT T =177, " .

An additional rotational U (1) symmetry extends the discrete
rotation C3 to a continuous transformation given by ¥/ (r) —
exp(—2i0c 8 )W (R(0)r), where R(6) is the real-space rotation
by an angle 6.

The preceding discussion actually undercounts the symme-
try algebra of the single-particle Hamiltonian greatly, since
they do not include the continuous particle-hole symmetry
rotations.* Including these rotations, the total symmetry group
is Sp(8). However these extra rotations are not necessary for
the following analysis.

B. Electron-electron interactions
The Coulomb interaction,
e [ d*rd*r

He = —
¢ 2 r —r'|

(CARANCAL S R 2.9)

is the largest interaction energy in the system. The strength
of Coulomb interaction on the length scale L is e*/L. The
electron kinetic energy related to the same energy scale is
1/(mL?) so the Coulomb interaction will dominate at the scale
L = 1/(me®), which is comparable to the Bohr radius. How-
ever due to the generation of electron-hole pairs, the Coulomb
interaction is screened, leading to the reduction of interaction
energy e?/L — 1/(mN L?). This screened interaction respects
all the symmetries of the system and does not scale; therefore
by itself it does not induce any spontaneous symmetry breaking
of the lattice symmetry group. We will return to the quantitative
description of the screened Coulomb interaction in Sec. III.

Any lattice symmetry breaking is captured by the scaling of
the marginal short-range interactions. These interactions also
reduce the symmetries of the low-energy model almost down
to the crystal group,!330:31:34

2 2 12
= [ TsABKK
Hiy = - /d r E gi[vie ey, (210
ij

where have included a factor of 27 /m to make the couplings
dimensionless. The D}, symmetry of the two-band BLG model
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FIG. 4. Definition of the elements of the diagrammatic expansion.
The thick line is the fermion propagator; the circle is the self-energy
from the single particle of the spectrum. The wavy line is the Coulomb
propagator and the dotted line is the contact interaction. We separate
the scalar contact interaction gy from the other interactions.

forces various relations among the g;;:

8xx = &xy = &yx = &yy = &G»

8xz = 8yz = 8E»»  8ux = 8zy = 8EY, @.11)
8x0 = 8y0 = 8E;5  80x = 8oy = 8EY>

820 = 8By 80z = 84Ays 82z = 8B,

Here we have labeled the couplings by the appropriate
representation of D; , schematically represented in Fig. 2.
We note for future reference that the interaction terms
gEz(wTréfrzKK,w)z and gp, (Y tABy)* are invariant under
the entire U(4) [and which can be extended to Sp(8) by
including the particle-hole rotations*3] symmetry of Hy. All
other short-range interactions, such as those of the form
N(w;(_f'wwvf or ~|Wl¢j|2 can be always rearranged into
the form of Hj, by using standard Pauli matrix identity
28,08, = 88w + G Ouy.

III. PERTURBATION THEORY AND RG EQUATION

A. 1/N resummation

For the Coulomb interaction we will use 1/N as a small
parameter, where N = 4 is the number of degenerate fermion
flavors.'32%-3! The elements of the diagrammatic expansion are
defined on Fig. 4. We achieve 1/N expansion by performing
the usual RPA resummation of diagrams (Fig. 5). Note that the
coupling goo has the same matrix structure as the long-range
Coulomb interaction. We therefore resum the two together;
i.e., we take the bare interaction in the RPA resummation to be

2mer  Arm
V(O) (@) = + 800
g1 m

3.1
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(a) OUJ,(J =1l(q,w) = 7%
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FIG. 5. Resummation of the strong Coulomb interaction in the
1/N approximation. (a) Evaluation of the polarization loop. (b) Def-
inition of the resummed propagator, represented by the double wavy
line. The scalar contact interaction is included in the resummation
as it has the same matrix structure as the Coulomb interaction.
(c) The non-renormalization of the Coulomb vertex as a result of
gauge invariance. [6Z is defined in Fig. 6(a).]

Summing up the geometric series of terms in Fig. 5(b) we
arrive at the resummed propagator,

V(q)

D@-®) = T oo e o) (3.2)
where
Mg.w) = —p
()
Fa) = [ln <x)2cz+—|—1}4> . 2 arctan x ; arctan 2x:|
3.3)

We further take the long-wavelength limit, ¢ — 0, where
VO (g)IT > 1. This gives us the approximate expression for
the interaction propagator,

1 7 2mw
o = ! ()

Since D o 1/N we can use a perturbative expansion in
1/N. Note that we have neglected the higher energy bands
in considering the resummation of the Coulomb potential.
However, the higher energy bands would only change the
dielectric constant which cancels out of the final formula.

Now we write the partition function as a path integral in
imaginary time ¢ over Grassman fields ¥ and ¥,

Z= waDwTe—S,

/ Prds (vﬁ ¥ — HIy, m)

D(q,w) ~

(3.4)

(3.5)
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FIG. 6. Diagrams included in RG equations. (a) Single-particle
particle weight renormalization. (b) Renormalization of the mass m.
(c) Renormalization of the contact interactions.

where H is defined in Eq. (2.4). Then, we perform the RG
by integrating out all fermionic states with momenta g such
that K > |q| > K e ¢, where K is some ultraviolet cutoff

PHYSICAL REVIEW B 85, 245451 (2012)

procedure has the benefit of not renormalizing the Coulomb
vertex because of gauge invariance [see Fig. 5(c)]. If we assign
t an RG dimension 2 then at tree level the operator ¥ has RG
dimension +1, and m, g;;, and the Coulomb interaction are
marginal.

There is a subtlety in the 1/N treatment of the Coulomb
interaction. Because of the behavior of the interaction in the
limitg — 0, w — o0, some of the diagrams taken individually
diverge faster than logarithmically. For example, the self-
energy diagram [see Fig. 6(a)] gives the correction to the
quasiparticle weight,

57 — Bl dwd*k (i) (2m_w>
B QO/(zn)S mN f k2

i9Q
[—z(w+sz)+f’”<< #1824 AABkD}
X
2
(w+Q)2 (Zm)
1 —x

1 dx 2
=gk [

where the variable x is defined by the substitution w =
xk?/(2m). This integral is formally infinite since f(x) — x
as x — oo. To understand this divergence, note that it comes
from the region where the momentum k through the Coulomb
line goes to zero. This corresponds to a spatially constant
but time-varying potential V(¢). Such a potential is merely
a constant shift in energy so that the Green’s function is
changed as G (#,1) — G (t1,1r) explie f,’lz V (¢)dt]. It is the
summation over the fluctuations of this phase that produces
the divergence. However, in all observable gauge-invariant
quantities the fermion lines must come in closed loops which
cancels out this phase, and so it cannot appear in any physical
quantities. Reassuringly in all our calculations this is the case.
Indeed such a divergence cancels out from the correction to
the electron mass,

(3.6)

regardless of w. We will set K so that K3/(2m) = y,/2, 5 B 18_22 _ L(SZ 3.7)
approximately the upper limit of the applicability of the om) 2 ap3 2m '
two-band model with the parabolic dispersion. We then rescale
¥ — (14 8Z/2)y tokeeptheterm [ /<y unchanged. This ~ where
|
9° 1 , 0 dwd’k 2
R et L YT (2| 6.k + p)
i 2 P3| p=o 2r)® mN k2
tr 1 kkoa 9 dod’k 7 2mew\ —io+ 5 KK [EAB kg 4+ p)? + 228 + p o))
= —tr{=t. " ¢ _—
2° T 3p+ p=0 27)} mN w? + [<k+p> ]
B d’k 1 fdxmf(x) 9 ki +2kipy +p7 1 an/ x —3x 3.8)
Qm)2k* ) 2 mN 3p+ =i 0x2+(1+ +Z_22)2 Q2r ) +1)3°
[
Although the latter expression is divergent in the limit the RG equations for the electron mass m,
X — 00, the sum
’ ’ dinm(¢
o dinm® _ 4y niko/K), (3.10)
1 1 1 —3x? de N
S\ )= n K —f (x ) ) (3.9)
2m 2mN —00 + x2)3 where
is convergent. Therefore the mass has a logarlthmlc depen- 1 ) 23
dence on cutoff, as expected. This enables us to write down o= 2 dx fC)(1 =3x7)/(1 +x%)" ~ —0.078. (3.11)
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Since a;/(2N) < 1072 is very small we shall neglect this mass
renormalization for the rest of this analysis.

B. Renormalization of the contact interactions

We now consider the renormalization of the short-range
interactions. Based on our assumption that the bare values

PHYSICAL REVIEW B 85, 245451 (2012)

g are small we will work to order g> and to lowest order
inl/N.

The leading logarithmic corrections to the coupling
constants of the contact interaction (2.10) are shown in
Fig. 6(c). Straightforward calculation of those diagrams
yield® the set of RG equations for the 8 coupling
constants g.4:

dgij as a1 20045 8kl
—h = 8By — =i — Z Bl — 2N Ayjgf; + ZZC g8 (3.12)
2 J ij ij8ij kimn 8kl 8mn>
dar N N m N —
where
1 y 2 i 1 y / , 2
- AKK'~AB 2KK'2AB ij _ AKK'sAB[sKK' 2AB ~KK'»AB
Aj = TS Z tr([%; FER AR 4 1. By= o Z (252173, L S D
y=x.y y=x.y
1 , / / / , /
ij_ AKK'~AB~KK' sABsKK sAB[2KK' 2AB KK sAB12KK' 2AB
Ctmn = 3 Z tr(fk oy T, [Tk ot Ty ]Ti Tj )
y=x.y
(3.13)
—i—i Z {tr( ~KK’ IAB[_L,KK $AB KK 2 ABSKK' AB | fKK AAB_L,KK $AB KK fAB])}Z
64 Jj k ! z Y T z Y m n
y=x.y
1 / / 2
AKK'2AB[2KK'3AB ~KK'~AB
+32{tr( 7l PR 7R S Sl | O
[
Here iij is a sum over i,j = {0,x,y,z} excluding the be calculated

combinationi = 0, j = 0 and the summation convention is not
used. The symbol 8(E5);; is 1 wheni =z and j = x,y and 0
otherwise. By appearance there are 16 equations contained in
Eq. (3.12). However several of these are identical due to the
D}, symmetry so there are only eight independent equations
for the flow of the eight independent coupling constants. The
numerical coefficient ¢ is defined in Eq. (3.11) and

_fdx 2f(x) _
azzfgm ~ 0.469, (3.14)
_ [dx )P

The term 2N A;; gizj in Eq. (3.12) corresponding to leading
loop diagram (v) in Fig. 6(c) is naively the most significant
quadratic term in Eq. (3.12), because it is leading in N.
This term represents screening of repulsive interactions in the
charge channel as expected in a fermionic system (since A;; >
0). Note that this term is actually zero for the representation
EJ and A,, because these interactions commute with the
single-particle Hamiltonian. Therefore, to lowestorderin 1/ N,
the interactions E) and A, are unscreened and free to grow
strongly attractive. We hasten to add that the higher order terms
in Eq. (3.12) are very important and one cannot understand the
behavior of the RG flows based only on the leading terms.

The single-particle Hamiltonian is off-diagonal so there is
a contribution of order g N2 to the coupling gz, from the
two Coulomb line diagrams in Fig. 6(c) (iii), (iv). These may

d*kdw
(2m)?

Nm

[nf(z"““)

} Gk,w) ® (Gk,w) + Gk, — w))

2
dedw nf(me) k2 2
(2m)3 Nm 2m
(rZKK'rfB @ tXK'TAB_ + H.c.)
k2\272
[* +(2,)]
dk [dx f(x)? KK _AB o _KK'_AB
N2 / /2n(l+x2) (TZ v enty)
4 / ,
= oK KK AP @ XK 1), (3.16)

Y=x.y

From this, it follows the that the free field point g4 = 0 is
not a fixed point. Even if the the system starts with all bare
couplings g.4(y1/2) = 0 it will flow under RG to have finite
gk, and gp, with the other couplings fixed to zero by the SU(4)
symmetry of the single-particle Hamiltonian. To demonstrate
the behavior in this regime we ignore momentarily g, which
gives us a single equation for gg,,

(0 — 1)2>
8N

2
) . @317

dgr,(®© _ 1
dt N(N +2)

Ol3(N + 2) _
N
o) —

—2(N +2) (gEz TINN 12
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FIG. 7. (a) Schematic representation of the “bubble” diagrams
where the shaded blob represents all possible connected diagrams,
and arbitrary Coulomb propagators may be added. (b) Similar
representation of the “ladder” diagrams. The leading diagrams
from both of these groups are included, even though this is not
strictly parametrically correct. (c) A second loop contribution to the
anomalous dimension of the coupling gz, which is disregarded.

Since the first term on the right-hand side is negative, there
can be no fixed point, and gz, flows to —oo regardless of the
initial conditions. [This holds whether we treat Eq. (3.17) to
lowest order in N or simply plug in N = 4.] According to
the mean-field theory (see Sec. IV), this suggests a nematic
ground state®> with transition at 2100 mK.

C. Applicability of our approximations

Letus turn to the justification of only including the diagrams
in Fig. 6(c) in our treatment. Notice that it is different from
the conventional 1/N approximation; see, e.g., Ref. 36. There
are two issues: (1) There are two loop diagrams which are
leading order in 1/N but are not included, Fig. 7(c); and
(2) there are diagrams that are subleading in N which are
taken into account [compare the bubble and ladder diagrams in
Fig. 6(c)].

To address the first issue, let us discuss the diagrams of
Fig. 7(c) in more detail. They are nonvanishing only for gg,
and have the form §gg, ~ %[C In?(K) + D In(k)]. The term

In? is produced by two iterations of the RG equations [by

PHYSICAL REVIEW B 85, 245451 (2012)

substituting diagrams (iii) and (iv) in Fig. 6(c) into diagram
(v)] but the second term does contribute to the linear term
in the RG equation 20y Ag, — 2a2AEg, + D. The constant D,
however, depends on the cutoff scheme so that the term linear
in gg, in the RG equation for gg, is not known (for the other
constants it is well defined). Fortunately, is does not matter
for the divergent behavior at large N. Consider the situation
with all other constants except g, fixed to zero, keeping only
coefficients leading in 1/N, compare Eq. (3.17),

d 8 E> _ a3 [04] + 2052

de —  N? N

The quadratic term dominates the constant term when gg, >
N~3/2 at this point, but then the linear term is smaller by a
factor of 1/4/N <« 1. Thus, contrary to initial appearance, the
linear term is of higher order in 1/N for gg,—so that we leave
it in Eq. (3.12) only for simplicity. It makes essentially no
difference to the evolution of the RG equations.

To address the second question we notice that the bubble
diagram Fig. 6(c) (v) contains an extra factor of N in
comparison with diagrams (vi), (vii), (viii). The latter diagrams
are not diagonal in terms of the coupling constant, as given by
the tensor C,j,,,, whereas the bubble diagram is oNg;; by
construction. The large amounts of constants involved in the
nondiagonal term may overcome the factor of N in the diagonal
terms; therefore keeping both is legitimate. The higher order
terms may be considered as 1/N corrections to the tensors A;;

ge, —2Ngp,.  (3.18)

and C,me respectively. For example, Fig. 7(a) is a leading
1/N correction to A;;, whereas Fig. 7(b) is a leading 1/N

correction to C,7,,., even though the two diagrams do not have
the same order in N.

Finally, we compare our treatment to the existing theoretical
contributions. The first attempt at an RG treatment of BLG can
be found in Ref. 11; however it does not appear consistent with
our results.’” The work of Vafek and Yang'# is similar in spirit
but contains only the G; and B, out of the eight possible
representations and treats the Coulomb interaction as short
range. The later work of Vafek®contains the RG equations for
the full eight constants but again treats the Coulomb interaction
as short ranged. The treatment of Ref. 3 is completely at
the mean-field level and corresponds to counting only the
diagrams from Fig. 6(c) marked (i) and (ii), which is not a
parametrically justified approximation as well as considering
only the B, representation. Reference 12 considered a mean-
field theory of BLG; however their results appear to depend
on an unrealistically strong next nearest neighbor interaction.
Reference 38 attempted to calculate numerically the functional
RG equation keeping the full momentum dependence of the
four-fermion interaction and calculating the beta function
perturbatively—this is not a parametrically justified treatment.

IV. RG FLOWS, THEIR TERMINATION, AND
RENORMALIZED MEAN-FIELD TREATMENT
OF SYMMETRY BREAKING

In this section we describe the numerical analysis of the
coupling constant RG flows described by Eq. (3.12) and show
that there are no weak-coupling fixed points. The divergence
of coupling constants in 2D at zero temperature indicates
spontaneous symmetry breaking. (Unlike in 1D the quantum
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fluctuations in 2D are not infrared divergent and do not
destroy zero-temperature phases.) We analyze the resulting
phases within mean-field theory, using the coupling constants
renormalized by the RG. This treatment is superior to simply
doing mean field starting from the high energy scale since in
that case the large logarithms are not summed in a controlled
fashion.

A. General structure

If the initial RG conditions are such that g 4(y;/2) # 0, then
the SU(4) symmetry is absent and we must consider the flow
of all the coupling under the RG. Determining whether there
exist any fixed points cannot be done analytically as it requires
solving a polynomial of the 64th order. However, a numerical
solution shows that there exist no fixed points. Therefore at
least some of the couplings must grow infinitely. At the same
time, the leading term quadratic in the couplings in Eq. (3.12)
~Ng?, always with a nonpositive coefficient, so we expect
generically that large positive coupling will be driven back
to zero. For all positive initial coupling constants, this means
that the system will be driven to the free field point until gg,
becomes large and negative. This behavior is confirmed by the
numerical evolution of the RG equations (see Fig. 8 where
gE, always becomes negative and increases until the other
couplings diverge).

Note that although we have set the current-current couplings
gB,» 84,> 8E,, and gE) to zero initially, they are generated
through renormalization. The examples of the RG equation
shown in Fig. 8 indicate the current-current couplings become
of the same order as the density-density couplings at low
energies. Therefore we cannot ignore the current-current
interactions when analyzing the ground state, and ignoring
them would lead to misleading results.

The coupling gp, has been given special emphasis in some
of the earlier studies.’ We find that in the RG equations it
does not seem to play an exclusive role, as can be seen in
Fig. 9, where it is screened efficiently—the leading term in
the RG flow is 2N glzgz. Note that large positive initial gz, does
not provoke a phase transition to the AF state on its own (see
Fig. 8). Once gg, becomes relatively large the presence of
a finite gp, will change the structure of the flow, especially
since it breaks the SU(4), however not in a marked way. For
example, starting with all other couplings set to zero except for
8B,> 8k, still becomes the most significant negative coupling,
and the nematic phase is the preferred phase. As a result,
g, 1s perhaps the least important of the four couplings. This
is not a conclusion that can be reached on general grounds,
but only by solving the detailed RG equations over a broad
range of parameters. Moreover, at least some of the couplings
behave nonmonotonically. Initially negligible coefficients may
end up diverging quickly [e.g., ga, in Fig. 8(a)]. At the
same time a coupling that is not large at the end of the
RG flow may change the character of the flow in the initial
stages.

The RG equations contain terms up to second order in
g. Therefore, it may be easily seen that since there is no
fixed point, the couplings always go to infinity as g4 ~
Aa(Lo — £)~! where £y gives the value of the singularity in
the RG flow and the A 4 determine how quickly each constant
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FIG. 8. (Color online) Plots of the coupling constant as a
function the running RG scale ¢ =In(Ky/K). There are eight
running couplings labeled by the corresponding representation. The
density-density couplings are given by solid lines, the current-current
couplings by dashed. The graphs end when the couplings become of
order 1/N = 1/4. They reach a singularity a finite £ soon after the
graph ends.

100 40
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diverges. Mathematically, there are six sets of {A 4} that satisfy
the RG equations and are stable to perturbation. One might be
tempted to determine the ground state, using this mathematical
feature, via the coefficients A 4. However these coefficients are
meaningful only for the RG at g4 >> 1 which is outside the
range of validity of the proposed theory and the RG equation
(3.12). Moreover, g — 00, indicates an instability towards a
broken symmetry states, so that we shall use a mean-field
theory starting from the energy scale where some of the
couplings become sufficiently large.

B. Ground-state energies within renormalized
mean-field approach

The unbounded growth of coupling constants in the RG
flow generally indicates the development of a spontaneous
symmetry breaking and the opening of a gap. To describe
the corresponding phase transition we use a self-consistent
mean-field theory. The self-consistent mean-field theory is
implemented by replacing all possible pairs of fermions in
the quartic interaction terms with their mean values. For this
we introduce the Gorkov-Nambu vectors which adjoin the two

245451-9



Y. LEMONIK, I. ALEINER, AND V. I. FAL'’KO

95,=0 Jg=-2/32 gEE 2/32 ge=-2/32

1

8
(¢4

0

95,=1/32 Qe=0

ge =0

0 96 8

9a

=0 gk, =4/32 gE =1/32 gg,=4/32

952:2 32 gEz":*z 32

PHYSICAL REVIEW B 85, 245451 (2012)

9g,=3/3296,=-2/32
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FIG. 9. (Color online) Plot of the broken symmetry phase and energy scale for BLG as a function of bare coupling constants. When the
energy scale is less than Ep & 1 meV the broken symmetry state is in competition with the Lifshitz transition and the BLG may remain
metallic (with eight Dirac points). Dashed line indicates the region where the triplet superconducting phase (SC) is very close in energy (but

slightly above) to normal (nematic or ferroelectric) states.

8-component vectors ¥ and ' as follows,

v (k)
W(k) = ( A t)
Wik) = Yk, — [W(—k)' Ty,

A ,
where 7 = it} ¥ ¢\
introduce Pauli matrices révx y,; acting on the Nambu space.

The vectors W' and W satisfy the condition
Wik =iv' (-l T.

o, is the time reversal matrix. We also

4.2)

We rewrite the interaction terms with the help of the Nambu
vectors

2 (W)

ij

— % ng(qﬂ-Ms-qJ)z. 4.3)

Here M, = t¥ K 'l:JABrlgv o7 acts on the 16-dimensional space
spanned by the Nambu vectors and we write s as a shorthand
for the list (i jkI). The couplings g, are defined as g,»,0 = gup»

800:0 = 800> 8a000 = 8a0> and gopoo = gop, Where a,b = x,y,z
and all other constants are zero. The factors of 7V are necessary
since we must have

(i) T)M(it)'T) = — M, (4.4)
to satisfy both Eq. (4.2) and fermion anticommutivity.
The mean-field approximation consists of replacing pairs of

fermionic operators in Eq. (4.3) with their expectation values
as follows:

1 .
7 2 &I )2
1 . .
~ 3 § :gs{\yf.Mf.wqﬁ.Mf.qf)
. . 1 .
+ 2wl (M- (W W'y M)W — E(<\1/T-M3-x1/))2

HmW®WWMﬁ} (4.5)
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Here we have used the fact that, according to Eqgs. (4.2) and
4.4),

VMW =W (ir, M (i1, T)- (1) = —w' . M- (WY

to combine the Cooper and Fock terms.

Now we assume that the there is some nonzero expectation
value of the fields which corresponds to a nonzero order in one
of the phases classified in the Appendix.

1 m -
— MYAY,
2NCA<47T>; ATA

where matrices M¢ % are specified for each phase A in the
Appendix and A 4 = {A%]} is the order parameter, which is
singlet or multlcomponent depending on the phase. Below
we will use the notation |A4* =Y, [A%|*. The effective
interaction constant c 4 is defined for each phase as,

1 PN
ca=) g {am - —tr[(MxMAf]} :

(wewh =

(4.6)

e 4.7

The assumption of a finite expectation value is consistent only
if ¢4 < 0. The interaction mean-field energy is therefore

(4.8)

1 - m
Hsr = 5 ;AQA(WTM:X\IJ) - %'AAF

Including the effect of the single-particle Hamiltonian Hy,
defined in Eq. (2.5), the total mean-field Hamiltonian is

1 A o« rye m|Aq|?
Hyp = 5; wi(k) |:H0‘L'ZN + Xa:AAMAj|\IJ(k) —

8mcy
4.9)

s

for fixed values of the order parameters A%.
In the spirit of the Hartree-Fock or BCS theory, we diago-
nalize Eq. (4.9) to obtain the ground-state energy per unit area,

m|A 4|2
87TCA(50)'
(4.10)

Ewe () = —N f —s(k A -

2 = &

Here e(k,{A A}) are the positive eigenvalues of the matrix
Hor +> A% M¢ % and the factor of N comes from the
degeneracy The energy scale &, is the energy scale at which
we stop the RG. The integral in Eq. (4.10) evaluates to

m|A 4? &2
.= t 1
/k2<5 const + 7 +/3An|A E

4.11)

where o4 and B4 are coefficients that depend on the phase
A. The coefficients a4 may be explicitly calculated from
Eq. (4.10) (the value of S 4 is irrelevant as we will see). We
list here a4 for the states Where A - M may be written as
szkz” vjwkx,rABr]KK okr . Because of the symmetry of
H)j there are only three 1ndependent coefficients. Labeling the
coefficient o by the representation and using the superscript

PHYSICAL REVIEW B 85, 245451 (2012)

n or s to denote normal or superconducting we have

n _.n _..n __ 8§ __ S __ 5 __
aAI—otA2—otEé/—otBl—aB2—otEi/—l,
n _.n _.n __ s __ s __ s _ 1
otBl—oth—(xE;/—aAl—ozAz—aEé,_2+ln2%1.19,
n _.n _.n _ s _ S5 _ .5 __ 1
aEZ—aE]—aG—ozEz—aEl—aG—4+ln2%O.94.

4.12)

The coefficients for the spin singlet and spin triplet normal
states are the same because of symmetry. These coefficients
are sufficiently close to 1 that we have simply taken o4 ~ 1.

the term B4 In Azz in Eq. (4.11) should be interpreted as the
continuation of the RG flow from the scale £ down to the
energy |A|. Although obtained by using mean-field theory,
since the flow of ¢ 4 is governed by the RG equation (3.12), we
have to replace the logarithmic correction to Eq. (4.11) with
the evaluation of c4 at the energy A. The mean-field energy
density is therefore written as

E(dy=2" [—2N - %] A,
8w ca(lA4D

(4.13)

The ground state may now be determined by minimizing
Eq. (4.13) with respect to A 4 with the ¢ 4(A) obtained by nu-
merical integration of the RG equations. The ground-state en-
ergy gap will then be equal to the value of | A| at the minimum.

It is important to note that we expect to find this minimum
when the coefficient c(]A|) ~ ﬁ which is inside the range
of validity for our RG equation, g ~ 1/N. The remaining
subtlety is the inclusion of the long-range Coulomb interaction
into the mean-field description. Usually, it enters in the
statically screened limit gpp,0 =~ 1/N and does not diverge
at the transition. Furthermore, according to Eq. (4.7), this
constant can produce only finite 1/N? correction (positive to
all superconducting states and negative for all normal states).

Therefore, we will neglect ggo.o in the further manipulations.

V. THE PHASE DIAGRAM

The result of minimizing Eq. (4.13) is presented in Fig. 9.
We find by extensive numerical investigation only five out of
the possible sixty-four phases enumerated in the Appendix
(10 in the charge channel, 22 in the spin channel, and 32
in the Cooper channel). They are the nematic phase, the
antiferromagnetic phase, the spin-flux phase, and in the corners
of the parameter space of bare interaction, ferroelectric phase,
and singlet and triplet superconductor phases.

Note that it is also possible that the resulting gaps are
smaller than the energy of the Lifshitz transition,'? & ~
1 meV. In this case the renormalization of coupling constants
is stopped at Eitr, Spontaneous symmetry breaking does not
occur, and the system remains in the symmetric state with the
four Dirac cone spectrum.

Figure 9 shows the results of the RG analysis in terms
of the resulting symmetry broken phases. We find that there
is significant variation in the scale &, In(&/E) ~ 1 + 20, as
expected from the wide range of couplings analyzed. If we
consider small initial couplings the g4 < 1/N then the RG is
driven by the constant term and In(&y /&) ~ 10 irrespective of
the initial conditions, resulting in a symmetry breaking only at
extremely small energy scale £ ~ 1072 meV.
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FIG. 10. (Color online) Interaction energy as a function of energy
scale for selected phase with initial conditions g = —0.0, g, =
0.06, gy =0, g, = —0.03, and all others zero. For these initial
conditions the nematic phase is the ground state.

There is a variety of phases that have been proposed as
the ground state of BLG that we do not find. A quantum
anomalous Hall state (QAH) state was suggested in Ref. 9,
corresponding to the representation g4, with order parameter
(1tABy). This is not found as a ground state in our
analysis. In the same paper, and in Refs. 6 and 11, a large
manifold of quantum Hall ferromagnetic states were suggested
containing the representations EJ, A,, and B, in both spin
singlet and spin triplet representation. All of these states were
considered as degenerate appealing to the SU(4) symmetry of
the single-particle Hamiltonian, Eq. (2.5). In both cases the
artificial SU(4) symmetry was assumed to be exact, which is
contradicted by the importance of the short-range interactions
we find here in solving the complete set of RG equations. The
loop current state of Ref. 12 corresponding to representation
A, in the singlet channel also does not appear. In Ref. 38
they suggest a “CDW3; state,” which is in the singlet G
representation. We do not find it here.

In the subsections below, we discuss the details of each
phase. We will present comparative flows of the couplings
defined in Eq. (4.7) to illustrate the competition between
phases; see Figs. 10-15.

A. Nematic phase (N)

In the nematic phase, there is a finite expectation value for
the order parameter ('tXX'z48y), breaking the rotational
symmetry of the system from sixfold to twofold while

0 —— : ~— E (meV
e— L 15\\2 (meV)
—— L ‘~~\\~
_.'\4 \\\
s AN
sc AN
_1 \

5 -

FIG. 11. (Color online) The interaction energy as a function
of energy scale for some choice of initial parameters with initial
conditions g = —0.075, gp, = 0.06, ggr =0, gg, = 0.015, and all
others zero. In this case the ground state is the AF phase.
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FIG. 12. (Color online) Interaction energy for selected phases a
function of energy scale with initial conditions g = 0, gz, = 0.06,
gey = 0.06, gg, = 0.03, and all others zero. In this case the ground
state is the spin flux state shown in orange.

maintaining translational symmetry. The order parameter is
characterized by enhanced electron hopping in one direc-
tion. The interaction energy for this phase depends on the
combination of parameters obtained from Eq. (4.7):

CN = 388, — 38E; + 8, + §85 — 38E) — §84,- (5.1

It is the preferred ground state in the absence of intervalley
scattering, and it is also generally the ground state when the
bare gz, coupling is negative. Note that a negative contri-
bution towards bare gg, comes from the electron-electron
interaction via the polarization of the lattice, i.e., via virtual
excitation/absorption of in-plane phonons near the I" point.
The nematic phase is also the ground state over other large
parts of the parameter space as can be seen in Fig. 9. This
reflects the fact that the coupling gz, almost always becomes
negative rapidly (see Fig. 8).

We previously proposed the nematic phase as a possible
ground state based on a more limited analysis of the RG
equations.'® Using a similar renormalization group analysis
Vafek and Yang®!# also find the nematic phase as a possible
ground state, supporting the analysis in this paper.

The most notable characteristic of the nematic phase is that
it remains gapless, but with the parabolic bands reconstructed
into two Dirac minicones at energies less than |A|. The
nematic phase would show metallic behavior in conductance

1 L
8

FIG. 13. (Color online) The evolution of the interaction energy
of the selected phases as a function of the energy scale with initial
conditions g = 0.06, gz, =0, 8ey = 0.06, gz, = 0.075, and all
others zero. In this case the ground state is a ferroelectric phase.
The difference in energy between the F phase and nearby phases is
quite small.
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FIG. 14. (Color online) Interaction energy for selected phases as
a function of the energy scale with initial conditions g = —0.045,
gp, = 0.06, gpy = —0.06, gg, = 0.09, and all others zero. In this
case the singlet superconducting phase is the ground phase.

measurements, but decreasing density of states at low densities.
The nematic state preserves time reversal symmetry and so it
should not show asymmetry between positive and negative
magnetic fields in magneto-transport. The nematic order
parameter transforms in the same representation of Dsy» as
uniaxial strain so that strain will couple directly to this state. It
is possible that strain could induce a transition into the nematic
phase,* even if unperturbed BLG chooses another phase as
the ground state.

B. Antiferromagnetic phase (AF)

The antiferromagnetic phase is defined by a nonzero
expectation value of (Y TtA#7XX G ). This state corresponds
to opposing magnetic moments on the A and B sublattices.
The orbital part breaks the reflection symmetry between the
two sublattices but otherwise preserves the D}, symmetry of
the BLG in its entirety.

The exchange energy depends on the following combina-
tion of coupling constants obtained from Eq. (4.7):

caF = —38c — 588, + 1(8&y + 28k, + 8k, + 8&))

—lgp — Lo, (5.2)

The AF is promoted strongly by the coupling gg, with the
factor of 4 coming from the dimension of the representation G.

1 L

8

FIG. 15. (Color online) Interaction energy for selected phases
as a function of the energy scale for initial repulsive short-range
interaction. In this case the triplet superconducting phase is very
close to the ground phase with initial conditions g = 0.06, g5, =
0.06, 8ey = —0.12, gg, = 0.06, and all others zero. Even though csc
appears to be the most negative, minimization of Eq. (4.13) gives the
nematic state as a preferred ground state.
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This effect is amplified by the sensitivity of the RG equations
to the coupling g¢. As a result even small values of gs near
the free field point make the AF state the ground state. The
AF state is also promoted by negative ggy and is generally
the ground state when we start with negative gg;. Again we
emphasize that these conclusions come from the combination
of RG equations and interaction energy, not just from the
interaction energy alone. Other authors have proposed this AF
state as a possible ground state. Kharitonov suggested the AF
state based on experimental evidence and simple mean-field
theory arguments applied at the high-energy scale directly.
The structure of our RG equations indicates that such a simple
mean-field theory is not applicable to BLG, although it does
suggest the same state.

The AF phase is expected to be an insulating state with
activated gap behavior in transport measurements. Although
the magnetic field does not couple directly to the AF state
since it is antiferromagnetic, the Zeeman energy splitting does
break the SU(2) spin symmetry of the system (spin-orbit is
negligible). The LAF state is adiabatically connected to a
quantum Hall ferromagnetic state at higher magnetic field.
A lack of features between the zero and high magnetic field
state might be the evidence that the zero magnetic field state
is AR’

C. Spin-flux (spin-Hall) phase (SF)

The spin-flux (SF) phase (elsewhere called a quantum
spin Hall state) is defined by the finite expectation value of
(wfrzAB o). The effect of this on the electrons is equivalent
to the development of a finite spin-orbit coupling, and gaps
the electronic spectrum. It may be viewed as a state where
spin currents circle the honeycomb rings, or as a quantum
anomalous Hall effect state, but with opposite signs for
opposite spins, producing no net charge current, so that this
state preserves time reversal invariance.

The interaction energy of the SF depends on the combina-
tion of coupling constants obtained from Eq. (4.7):

csF = 1(8Ey — 8k, + 8, — 8E1) — 1(88, + 88, + 84,)-
(5.3)

The SF state has a similar matrix structure as the AF
state and therefore a similar interaction energy. However it
is not promoted by large g¢, unlike the AF phase. Therefore,
generically, large g generally suppresses the SF in favor of
other states as can be seen in Fig. 9.

Analogously to the case of spin-orbit coupling in monolayer
graphene,*’ the finite value of the spin-flux order parameter
may create a “spin Hall effect” with quantized spin-Hall
conducivity. The edge states and insulating bulk imply a
quantized conductance of 4¢?/h, unless they are localized
by magnetic and intervalley-scattering disorder. The state is
time reversal invariant, so no transverse conductance at zero
magnetic field is possible.

D. At the limits of applicability: Ferroelectric phase

The ferroelectric (FE) phase is characterized by a nonzero
expectation value of (y'tA8tXK'y). Tt is a spontaneous
charging of the BLG with opposite charge on the two layers.
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The interaction energy for this phase depends on the
combination of couplings obtained from Eq. (4.7):

CFr = %ng + éll(gEg — 8E, + 8E, — gEi,) - %gB' - égAz'
5.4

We find that the ferroelectric phase is strongly suppressed
by positive bare gp, and the development of the FE phase
requires the gp, coupling to diverge to negative infinity, which
can only happen in a small sliver of the phase space where the
combination of the higher order diagrams conspire to drive gp,
negative. Even in this section the energy difference between
the ferroelectric and competing phases is never large, and it
may be that in a more accurate calculation it never appears as
the ground state.

The FE state was also proposed in Ref. 3. However this
analysis was based on a flawed mean-field theory treatment
counting only the diagrams from Fig. 6(c) marked (i) and (ii)
as well as considering only the single-parameter scaling theory
with one interaction constant in the B, channel. These are not
parametrically justified approximations.

The ferroelectric phase is a completely gapped state, with
neither neutral nor charged excitations. It is also a trivial
insulator in that it does not possess protected edge modes.
Therefore, it should display insulating transport behavior. An
external field perpendicular to the BLG flake would promote
the FE phase, increasing the gap due to the interlayer symmetry
breaking at the single-particle level.! This does not seem to take
place in any of the recent experiments'®!'® on BLG, where
the external transverse field destroyed the zero-field state,
and introduced a distinct state determined by the interlayer
asymmetry.

E. At the limits of applicability: Superconducting phases

The singlet superconducting (SS) phase is characterized
by the usual order parameter (7). The coupling for this
phase is found from Eq. (4.7) to be

Css = %gG + %832
+3(8E, + 85y — 88, — 8E)) — 584, — §88,-  (5.5)

The stability of this phase requires very significant negative
couplings from the very beginning and the phase cannot arise
from the purely repulsive interaction.

The triplet superconducting (SC) phase has the order
parameter ('tXX'cTy1), with the pairing function of the
opposite signs in the K and K’ valleys. Its interaction depends
on the combination of couplings obtained from Eq. (4.7):

csc = —%gG + %ggz
388, (5.6)

For the repulsive interaction, the triplet SC phase only
appears as a stable phase at large couplings.

To conclude, both superconducting phases appear only on
the limits of the applicability of the theory. Moreover, finite
values of the underscreened Coulomb interaction push the
energies of those stated farther up. It is therefore possible that
the appearance of the SC phases is merely an artifact of our
inability to deal properly with strong couplings, and that the
superconductivity does not belong to the actual phase diagram.

+3(8E, — 8y — 8, + 8E)) — 384, —
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VI. CONCLUSION

Several results have been established in this paper. The
ground state of BLG cannot be understood without consid-
ering the high-energy couplings in detail, because different
couplings lead to different ground states. Moreover naive
expectations about the importance of certain couplings are not
borne out and all plausible combinations must be considered.
In particular excluding intervalley scattering leads to mislead-
ing results. The previously reported nematic state is the ground
state for a significant fraction of these couplings. Of the large
number of ground states that are possible we find that only
five appear. They are nematic, antiferromagnetic, ferroelectric,
and triplet superconductor, as well as a “spin-flux” phase
not previously proposed. The nematic, antiferromagnetic, and
spin-flux phases seem the most likely candidates.

The present work may be extended in a variety of ways.
The accuracy of the renormalization group equations may be
improved and validated by considering higher order diagrams
and a more detailed mean-field theory constructed. One may
also try to connect the value of the couplings at the scale y; /2 ~
0.2 eV with their value at the bandwidth of the 7 orbitals. The
possible phase transitions between the proposed states and the
behavior of domain walls between regions of different phases
may be needed to properly account for the transport data.

Such improvements aside, the unique challenge of theoreti-
cally determining the electronic ground state of BLG has been
laid out. The problem naturally involves the competition of an
uncommonly large set of phases and interactions. Truncating
the theory to a more tractable subset does not appear to give
accurate results. Instead the problem must be attacked in its
full complexity.
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APPENDIX: GROUP THEORY FOR PHASES IN BLG

In this Appendix we classify the possible phases of BLG.
We will use the matrix notation defined in Sec. II.

Phases are defined by all possible expectations A = (V ®
W) that belong to an irreducible representations (irrep) of the
symmetry group G of BLG. Every phase defines a subgroup
‘H of G consisting of all operations that leave A invariant.
Two phases within an irrep are distinct if their invariant
subgroups are not conjugate. (Recall that two subgroups H
and H’ of a group G are conjugate if they are an element of
g € G such that gHg~! = H'.) This definition is correct in
the sense that it gives all physically distinct states that may
be reached via a second-order phase transition at the highest
critical temperature, per the usual Landau theory.

Let us notice, however, that the anomalous averages belong-
ing to the same irrep of the original group G may correspond

to the different phases. For example, A; = 875X and

A =tPefR 4 0% are both charge density waves
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FIG. 16. (Color online) Sketch of the symmetric magnetic and
normal phases transforming according the G representation. (I) G,
normal state; (II) G, normal state; (III) G spin state; (IV) G4 spin
state; (V) G5 spin state. Because of the absence of spin-orbit coupling
the overall direction of the spins is arbitrary.

with a tripled unit cell transforming in the G representation.
However, these two phases are distinct since A;; is invariant
under rotations by 27 /3 around a lattice site, whereas A; is
not invariant under any conjugate operation; see Fig. 16. As
a further example, a canted antiferromagnetic phase would be
given by A = t248¢XX'5, 4 o, This is not considered in the
present classification since it does not belong to an irrep of G
(it is a linear combination element of the B, and A; represen-
tations). Of course all such mixed states may be constructed
from linear combinations of phases in our classification.
We classify the phases according to the symmetry group G
of BLG which is effective at intermediate energies; see Sec. II.
In this regime the effect of RG irrelevant perturbations such
as umklapp scattering may be ignored, and RG relevant but
weak perturbations, such as trigonal warping and spin-orbit
coupling, may be neglected. This approximation should be ef-
fective at energies between y; /2 = 0.2 eV and & ;i = 1 meV,
which contains any energy scale associated with spontaneous
symmetry breaking. In this regime the symmetry group is
G = DI x DU SU2)PM x (1) &) x T, (Al)

inf inf
The first subgroup, Di(;(;-t), is generated by infinitesimal spatial
rotations C and inversion R¢ of the BLG plane. The second
subgroup, D", is generated by an infinitesimal translation
t and reflection R,. The action of these operators on the

low-energy electrons is given in terms of the Pauli matrices:

C = itZAB, t= itZKK, Rc = g ABL KK

R :.[AB KK/. (A2)

R,EIABIKK, R, - v Ty

Z X

Note that these two groups commute with each other,
unlike true translation and reflection. In the presence of the
appropriate symmetry breaking these are reduced down to the
D34 group discussed in the text. In this case the continuous
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translations and rotations exp(6;t + 6.C) become discrete
with 6, . = 0,£27/3 and the inversions R, and R become
R, - R, and R, of Sec. II, respectively.

The SU(2)®P™ is the group of spin rotations, which is
decoupled from the physical rotations because there _are
no spin-orbit interactions. It is generated by rotations S =
(S8x,Sy,S;). The high-symmetry axis of any phase will always
chosen to be z. Infinitesimal rotations around the z axis are
represented by S,. There are also reflections and inversion of
the spin space, but these do not distinguish any phases, so we
will suppress them.

The gauge groups act by multiplication. We label the
infinitesimal generator g, which acts on the wave functions
¥, simply by gy = iy

The time reversal operator 7 commutes with all of the above
except the gauge generator TgT = —g. It is given in terms of
Pauli matrices by

T =io,tkK A8k, (A3)
where K is complex conjugation.

This defines the symmetry group G fully. A further enlarged
symmetry group isomorphic to U(1) x U(4) is considered
at points in the body of the text [see Eq. (2.7)] and other
works, but there is no reason to expect that this will ever be
an accurate approximation. We will proceed to categorize the
phases according to the symmetry group G. One may always
collapse classification to obtain the distinct phases under the
artificially enlarged symmetry groups.

In the following subsections we present the tables
enumerating the possible symmetry breaking for the singlet,
triplet, and superconducting phases each. Each table is split
into subsections corresponding to the IrReps of Ds;-. These
are listed in the first column. At the beginning of each
subsection the second column gives the order parameter (OP)
for the IrRep in terms of the notation A = A, tA87f K o,
and arranges these into a vector. Next to this are the generators
of symmetries under which the order parameter is invariant
(generators and A commute). This completely characterizes
one dimensional representations.

In the case of the multicomponent representations, particu-
lar values of the order parameter may have higher symmetries
than the generic values—these are the distinct phases. The
values of the order parameter that produce the phase are given
according to the vector representation in the second column.
Next to these in the third column are the additional residual
symmetries under which the phase is invariant, and the phase
is labeled with the additional subscript.

For example, let us take section G in the first table.
The second column of first line defines a vector for the
representation. The third column states that all vectors in
that representation are invariant under the time 7 time
reversal operation. The next line says that when the vector
is proportional to (1,0,0,1), i.e., A oc TABTKK 4 r}‘,wrf’(/,
the symmetry is higher. The higher symmetries are in the
third column; in particular, this vector is invariant under the
combined C + ¢ rotation and the R¢ - R, reflection in addition
to the T rotation. The next line of the table says that when the
vector takes the value (0,0,0,1) the state is invariant under the
reflections R;, R¢. Note that each phase is generally defined by
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a coset of values of the order parameter, which are all invariant
under conjugate groups. We only list one representative from
each coset. For example, in the case of G, the (1,0,0,1) vector
is part of the coset of vectors (cos@, sinf, —sin6, =cos 6),
0 € [0,27]. These are all invariant under subgroups conjugate
to the one listed in the third column.

We use «, B as arbitrary real parameters when there is a
continuous manifold of cosets. When listed under symmetries
the symbols ¢, C, g, and S, mean the phase is in\iariant under
the entire U(1) group generated. The symbol S means the
phase is invariant under all spin rotations. There are several
symmetry operations involving rotations by 7 or 77 /2 in one the
U (1) groups. Like the spin reflections, these do not distinguish
any of the phases so we do not list them. Five of the phases
belonging to the G representation are illustrated in Fig. 16.
Notice that, according to the Landau theory, the transition to
the G-type phase cannot occur directly but rather through the
pattern with incommensurate periodicity.

1. Normal phases

The normal phases are by definition invariant under spin
and gauge transformation so we will suppress them. A

PHYSICAL REVIEW B 85, 245451 (2012)

product of Pauli matrices acting in different subspaces should
be understood as a direct product. The normal phases are
summarized in Table 1.

TABLE . Classification of the order parameters corresponding to
distinct normal phases of BLG according to the underlying symmetry
group. The structure of the table is described in the text of the
Appendix.

Irr. OP M« Symmetry
Az Aoz TZAB]IKK/HNH“ C.t,Rc
B, Ao [AB KK N s C.t.R,

B, Ao TABLKK NS Cit,Rc - R,,T
E, (Axz0,Ayz0) tf‘fr’(’( N t,Rc, R, T
EY (A0, Azxo) TABL KK N C.Rc,R,,T
E, (Axoos Ayoo) XAf]lfK/ﬂNﬂs t,Rc,R, - T
EY (Aox0,A0y0) 1487 KK/HN]P C,Rc,R, - T
G (A0, Axyo, Ayxo, Ayyo) Tffth{{/ (AN T

G (1,0,0,1) C+1t,Rc-R,
G, (0,0,0,1) R, Rc

2. Magnetic phases

We restore the spin symmetries but continue to suppress the gauge symmetry. The high-symmetry axis is arbitrarily chosen to be

the z direction. The magnetic phases are summarized in Table II.

TABLE II. Classification of the order parameters corresponding to distinct magnetic phases of BLG according to the underlying symmetry

group. The structure of the table is described in the text of the Appendix.

Irr. op M« Symmetry
Al (Booxs Aooys Aoo) 12 1K1Y o, ., C.t.8:.Ri.Re
Ay (Aon,AOZy,AOZZ) 1ABKK N "0 C.t,S.,Rc,T
Bl (Az()x,A OV! 20z ) AB]lKK vaz Cvt,SzvRth
B, (A, Ay, Azzy) ‘L'AB KK’ ﬂNUx,y,z C,t,S;,Rc-T,R,- T
E, (szvaxzy’Ast Ay@x’Ayz,vsAyzz) TA? KK ﬂNUx,y,z t,Rc, R,
E>, (0,0,1;0,0,0) S,

E,» (1,0,0;0,1,0) S.+C
EJ Axs Aryy, Ay Ay, Ay, Ary) rZAB XKvK Vo, v,z C,Rc,R
Ej, (0,0,1;0,0,0) S,

Ej, (1,0,0;0,1,0) S.+1t

El (AxO)mAxOyvAsz; Ay()xyAyOyvAy()z) fﬁfﬂKK/tzNax,y,z t, Rt,T
E, (0,0,1;0,0,0) S,

E, (1,0,0;0,1,0) S, +C
Ei/ (AOXX7AO)C)'7A0XZ; AnyvAOyyvA()yz) ]IAB KK/T Ox,y,z CvRC7T
EY, (0,0,1;0,0,0) S,

EY, (1,0,0;0,1,0) S, +1t

G (Axxxanxy’Axxz; Axyvaxyyanyz; AyxvayxyvAyxz; Ayyx’AyyyvAyyZ) T)(Af xK}{( ]INUx,y,z None

G (0,0,1;0,0,0;0,0,0;0,0,1) S.,C+1t,Rc- R,
G, (0,0,0;0,0,0;0,0,0;0,0,1) S.,Rc,R

G; (0,0,0;1,0,0;0,0,0;0,1,0) S, + t’RC
G, (0,0,0;0,0,0;1,0,0;0,1,0) S, + C,R,
Gs (1,0,0;0,1,0;0,—1,0; 1,0,0) S, +C,S; +1¢
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3. Superconducting phases

The order parameter M is defined by the nonzero expectation values (' M T t). This M is listed under OP. M must contain
an even number of Pauli matrices because of fermion anticommutivity but may take complex values. The superconducting
phases are summarized in Table III.

TABLE III. Classification of the order parameters corresponding to distinct superconducting phases of BLG according to the underlying

symmetry group. The structure of the table is described in the text of the Appendix.

Irr. OP M« Symmetry
A Aooo ]IABJIKK/TX]Y_VJF S,C.t,Rc,R,,T
AZ (AOZXyAOZ)',AOZZ) ]IABTZKK ‘L’ffyax,y,z C’thC
Ay (0,0,1) S, T

Aszp (1,i,0) S.+g

B (Az()vazOyvAzOz) TZAB]IKK T;\_]yo—x,y,z C7t7R1

By, 0,0,1) S, T

B> (1,i,0) . S te

B, Ao TAB KK LN 1 S.C.t,Rc - R.T
E, (Axz0,Ayz0) Tffrzkx/rj\_’y]l" S.t,Rc, R,
Eyy (1,0) T

Ex. (Li) C+g

Eé/ (AZ"O’AZ-"O) TZABTXI?){WZ’?.J)IS S,C,Rc, R,
EY, (1,0) T

Ey, (1.0) , t+g¢

El (AXOX1AX0_}'7AXOZ; A_\*OstyO)m A)'Oz) TﬁfﬂKK T;\Vlyo—x.y,z t

Ey (0,0,1;0,0,0) S.,Re, T
E\, (1,4,0;0,0,0) S+ g,Re
Eis (0,0,1;0,0,i) S..C+g.Re-T
Ei4 (aio,ipsia,—a,B) C+S+2g
Eis (1,i,0:1,~1,0) C+gS+g
E;/ (AOX)C’AOX_}'vAOXZ; AnyvAOyy’AOyz) ﬂABTXIf;( rﬁlyax,y,z C

EY, 0,0,1;0,0,0) S.,R.,, T
EY, (1,1,0;0,0,0) S+g,R
Ey; 0,0,1;0,0,i) S.t+gRc-T
EY, (cict,ifsic,—a,p) S+ 2
EYs (1,i,0;i,—1,0) r+g.5+g
G (AXXOvAXyOsAny, AyyO) Tﬁgf,f;( T;Yy]lx None

G (1,0,0,1) C+1t,Rc- R, T
G, 0,0,0,1) Rc, R, T

G; 0,0,—i,1) C+g,Rc,R,- T
Gy 0,—1,0,1) t+g,R,Rc-T
Gs (1,i,i,—1) C+gt+gRcR T
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