Relating the baryon asymmetry to the thermal relic dark matter density

McDonald, John (2011) Relating the baryon asymmetry to the thermal relic dark matter density. Physical Review D, 83 (8). ISSN 1550-7998

Full text not available from this repository.


We present a generic framework, "baryomorphosis", which modifies the baryon asymmetry to be naturally of the order of a typical thermal relic WIMP density. We consider a simple scalar-based model to show how this is possible. This model introduces a sector in which a large initial baryon asymmetry is injected into particles ("annihilons") phi_B, \bar{phi}_B of mass ~ 100 GeV - 1 TeV. phi_B-\bar{phi}_B annihilations convert the initial phi_B, \bar{phi}_B asymmetry to a final asymmetry with a thermal relic WIMP-like density. This subsequently decays to a conventional baryon asymmetry whose magnitude is naturally related to the density of thermal relic WIMP dark matter. In this way the two coincidences of baryons and dark matter i.e. why their densities are similar to each other and why they are both similar to a WIMP thermal relic density (the "WIMP miracle"), may be understood. The model may be tested by the production of annihilons at colliders.

Item Type:
Journal Article
Journal or Publication Title:
Physical Review D
Additional Information:
© 2011 American Physical Society 7 pages, 2 figures; Modified to address B washout issue. Higgs replaced by inert doublet, no mixing of annihilons. Version to be published in PRD, typos corrected
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
08 Aug 2012 13:36
Last Modified:
19 Sep 2023 00:54