N incorporation and photoluminescence in In-rich InGaAsN grown on InAs by liquid phase epitaxy

de la Mare, M. and Das, S. C. and Das, T. D. and Dhar, S. and Krier, A. (2011) N incorporation and photoluminescence in In-rich InGaAsN grown on InAs by liquid phase epitaxy. Journal of Physics D: Applied Physics, 44 (31). -. ISSN 0022-3727

Full text not available from this repository.

Abstract

Dilute nitride InGaAsN layers with high In content have been grown on InAs substrates by liquid phase epitaxy using GaN as a precursor for N in the growth solution. Photoluminescence (PL) was obtained in the mid-infrared spectral range at temperatures between 4 and 300 K. Although Ga increases the InAs bandgap, the strong band anti-crossing effect from the N incorporation resulted in an overall bandgap reduction of 11 meV compared with InAs. The temperature-dependent PL exhibited a complicated behaviour and showed an anomalous increase in intensity from 190K to room temperature. This was due to the formation in a complex defect which behaves as a non-radiative recombination centre and prevents radiative band-band recombination at temperatures <190 K. Above this temperature the PL increases as band-band transitions become allowed. The formation of this defect requires the presence of both Ga and N and becomes de-activated after a high-temperature anneal. Raman spectroscopy confirmed the presence of phonon modes associated with In-N and Ga-N bonds confirming the incorporation of N using liquid phase growth.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Physics D: Applied Physics
Uncontrolled Keywords:
/dk/atira/pure/researchoutput/libraryofcongress/qc
Subjects:
ID Code:
56514
Deposited By:
Deposited On:
07 Aug 2012 09:28
Refereed?:
Yes
Published?:
Published
Last Modified:
25 Feb 2020 07:04