Recovery of platinum group metals from secondary materials. I. Palladium dissolution in iodide solutions

Dawson, Richard and Kelsall, Geoff (2007) Recovery of platinum group metals from secondary materials. I. Palladium dissolution in iodide solutions. Journal of Applied Electrochemistry, 37 (1). pp. 3-14. ISSN 1572-8838

Full text not available from this repository.

Abstract

Thermodynamic predictions are reported for platinum and palladium in aqueous ammonia and iodide solutions, to define less aggressive conditions than used hitherto for leaching palladium and platinum from secondary materials. Cyclic voltammetry and amperometry of thin films of palladium, electrodeposited onto rotating vitreous carbon disc electrodes, indicated that partially oxidised adsorbed species passivated dissolution in aqueous ammonium sulfate. By contrast, dissolution rates in aqueous potassium iodide solutions were a significant fraction of that corresponding to the mass transport controlled rate of reduction of tri-iodide, which was demonstrated to be a suitable oxidant for the envisaged metal recovery process. However, iodide concentrations > 1 m were required to achieve adequate solubility of the oxidation products, assumed to be PdI42− ions, thereby avoiding inhibition by PdI2. The reduction of tri-iodide on palladium was very facile, with large exchange current densities and Tafel coefficients; two alternative mechanisms are proposed that fitted experimental results well. In addition, a kinetic model to predict dissolution rates of Pd in tri-iodide solutions gave good agreement with experimental data, provided an equilibrium constant of 10−4.5 was used for the PdI2/PdI42− reaction, rather than the value of 10−2.8 derived from thermodynamic data.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Applied Electrochemistry
Uncontrolled Keywords:
/dk/atira/pure/core/keywords/engineering
Subjects:
?? dissolution iodide palladium tri-iodidesecondary materialsengineeringmaterials chemistrygeneral chemical engineeringelectrochemistrychemical engineering(all)ta engineering (general). civil engineering (general) ??
ID Code:
56488
Deposited By:
Deposited On:
06 Aug 2012 14:33
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Jul 2024 09:07