
Group sequential tests for delayed responses

Lisa V. Hampson

Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and
Statistics, Lancaster University, Lancaster, UK.

Christopher Jennison

Department of Mathematical Sciences, University of Bath, Bath, UK.

Summary . Group sequential methods are used routinely to monitor clinical trials and to
provide early stopping when there is evidence of a treatment effect, lack of an effect, or
concerns about patient safety. In many studies, the response of clinical interest is measured
some time after the start of treatment and there are subjects at each interim analysis who
have been treated but are yet to respond. We formulate a new form of group sequential
test which gives a proper treatment of these “pipeline” subjects; these tests can be applied
even when the continued accrual of data after the decision to stop the trial is unexpected.
We illustrate our methods through a series of examples. We define error spending versions
of these new designs which handle unpredictable group sizes and provide an information
monitoring framework that can accommodate nuisance parameters, such as an unknown
response variance. By studying optimal versions of our new designs, we show how the benefits
of lower expected sample size normally achieved by a group sequential test are reduced when
there is a delay in response. The loss of efficiency for larger delays can be ameliorated
by incorporating data on a correlated short-term endpoint, fitting a joint model for the two
endpoints but still making inferences on the original, longer term endpoint. We derive p-values
and confidence intervals on termination of our new tests.

Keywords: Adaptive designs; Bayes decision problem; clinical trials; delayed observations;
error spending tests; group sequential tests; inference on termination; information monitoring;
optimal tests; short-term endpoints

1. Introduction

Randomised controlled trials (RCTs) are the gold standard for evaluating a new treatment.
Monitoring of trials to assess recruitment, compliance and safety is standard practice;
stopping rules based on accumulating data allow early termination, leading to quicker
decisions and lower average sample size. The books of Armitage (1975), Whitehead (1997),
Jennison & Turnbull (2000) and Proschan et al. (2006) survey the developing methodology
which adapted sequential sampling methods from industrial to medical applications. A
major impetus to the use of sequential analysis in RCTs was the concept of group sequential
tests (GSTs) introduced by Pocock (1977) and O’Brien & Fleming (1979), which are now
widely used and strongly advocated by regulators. Wassmer & Vandemeulebroecke (2006)
review software packages that facilitate the implementation of GSTs.

GSTs are typically formulated assuming response is immediate, or at least rapidly
observed relative to the length of the trial. However, in many studies, the primary endpoint
is defined as a measurement taken some time after treatment has commenced. Even with
a rapid response, data cleaning can introduce a delay so at interim analyses there are
“responses in the pipeline”, i.e., subjects who have commenced treatment but for whom
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data on the primary endpoint are not yet available. Investigators are likely to be obliged
to follow-up and report these data, even though standard GSTs do not provide a formal
framework for doing so. Such a requirement is not usually imposed on survival studies,
where it would be unrealistic to wait for complete follow-up of all patients before making
a final decision. We shall consider the case where the primary endpoint is determined at a
fixed time after treatment but we comment further on survival trials in Section 7.

Methods have been proposed for incorporating data accrued after termination of a GST.
In Whitehead’s (1992) deletion method, a boundary is calculated ignoring the analysis at
which the trial stopped and assuming the final analysis occurred with the pipeline data
observed; this boundary is used for hypothesis testing and to determine the final p-value.
Hall & Ding (2008) divide the final data into two parts comprising responses observed before
and after the stopping decision and then apply a combination test (Bauer & Köhne, 1994).
Sooriyarachchi et al. (2003) investigate these methods when the number of responses in the
pipeline does not depend on the observed stage of stopping, and find they perform poorly
with respect to power. They note that the deletion method is conservative with respect to
type I error and, with a modest amount of pipeline data, this leads to lower power than the
GST which ignores the additional data; if the number of pipeline subjects is high, the extra
data increase power but only by a small amount for the increase in expected sample size.
Faldum & Hommel (2007) attribute the conservatism of the deletion method to the “double
hurdle” of having to cross the boundary to terminate sampling, then having to remain above
the new boundary when the pipeline data are added. With a moderate number of pipeline
subjects, the two versions of the Hall & Ding (2008) method, with fixed and random weights
in the combination test, show a greater loss of power than the deletion method.

In the above methods, the decision to stop sampling is triggered by a GST appropriate
to immediate response. Where the addition of pipeline data leads to loss of power, this can
be attributed to reversals in the initial decision of the GST and the higher likelihood of
moving from a positive result to a negative one than from negative to positive. We shall
avoid this source of conservatism and low power by constructing a delayed response GST
which anticipates pipeline data from the outset. Optimising within the class of such designs
ensures that as much additional value as possible is gained from the data contributed by
pipeline subjects. Anderson (1964) noted the need to accommodate delayed responses in the
final analysis of a sequential procedure and showed that the final decision in a test between
two hypotheses should be based on a likelihood ratio test using all the final data. He used
a sequential probability ratio test to decide when to stop sampling but commented that
in the delayed response problem “Determination of optimal stopping rules is an interesting
problem. It is difficult, however, and shall not be studied here”. We shall determine optimal
stopping and decision rules for our delayed response GSTs.

Hall & Liu (2002) analyse data accrued after termination by applying a maximum
likelihood estimate ordering to the sample space of final data sets including pipeline subjects.
Our methods share the property that final decisions are based on the sufficient statistic and
not on the sample path towards this final statistic. Sooriyarachchi et al. (2003) note that
Hall & Liu’s method does not adapt to situations where group sizes (or, more generally,
information levels) are unpredictable. While we initially derive our optimal delayed response
GSTs for the case of pre-specified group sizes, we shall go on to derive error spending versions
of these designs to handle unpredictable group sizes.

Faldum & Hommel (2007) propose an adaptive group sequential procedure which
anticipates pipeline data and builds these into the design. They consider a two stage trial
with a conditional type I error function (Proschan & Hunsberger, 1995), constructed to give
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type I error rate equal to the pre-specified α. They propose several choices of conditional
type I error function along with a rule for choosing the second stage sample size, adapting
this to the first stage responses. Mehta & Pocock (2011) use the method of Chen et al.
(2004) in defining an adaptive procedure for the case of a delayed response.

Adaptive designs offer flexibility by permitting aspects of a study, including sample size,
to be modified at interim analyses while controlling the type I error rate; see, for example,
Bauer & Köhne (1994), Fisher (1998), Cui et al. (1999) and Brannath et al. (2009), and the
survey of clinical trials using adaptive methodology compiled by Bauer & Einfalt (2006).
Jennison & Turnbull (2006) study adaptive GSTs for the case of immediate response and
derive optimal rules for data-dependent choice of group size. They compare fully optimal
adaptive designs with optimal GSTs with fixed group sizes and conclude that the adaptive
approach does not significantly reduce expected sample size below that of a well-chosen
non-adaptive GST. Lokhnygina & Tsiatis (2008) report similar findings for adaptive and
non-adaptive two stage designs and state that, for their measures of expected sample size,
improvements arising from adaptive choice of the second group size are less than 1% of the
fixed sample size. In assessing group sequential designs when there is a delay in response,
it is important to include in the expected sample size all subjects recruited to the trial,
whether or not they contribute significantly to the final decision. Mehta & Pocock (2011)
argue that adaptive designs should have an efficiency advantage over standard GSTs. Our
delayed response GSTs are similar to adaptive GSTs in that the amount of pipeline data at
an interim analysis sets a minimum value for the remaining sample size. We have optimised
our two-stage adaptive GSTs with a delayed response over a class of procedures including
those of Faldum & Hommel (2007). Our conclusions are similar to the case of immediate
response: while adaptive choice of group size can reduce expected sample size slightly, the
benefits over a good non-adaptive delayed response GST are insubstantial.

It is useful to have examples and questions in mind as we introduce our new methodology.

Example A: Normally distributed response, moderate delay

Facey (1992) considers a placebo controlled trial of a treatment for hypercholesterolemia.
The primary endpoint, reduction in total serum cholesterol level after four weeks of
treatment, is assumed to be normally distributed. Under the anticipated recruitment of
16 subjects per month, about 16 pipeline responses are expected at each interim analysis.

Suppose termination occurs at the first interim analysis with a standardised test statistic
of Z = 2.4, which exceeds the boundary value of 2.3. When pipeline responses are added
to the data, the standardised statistic falls to Z = 2.1. There is now some confusion as to
how to interpret the trial outcome: is it legitimate to claim a positive result or not?

Example B: Ordinal response, longer delay

Whitehead (1993) describes the ASCLEPIOS stroke trial, comparing an experimental drug
against placebo. The primary endpoint was the Barthel Index 90 days after randomisation.
At the first interim analysis, with 140 responses, the Data and Safety Monitoring Board
recommended that recruitment close. However, the 90 day lag in response and delays in data
transfer meant a further 89 patients had incomplete records and it was deemed appropriate
to continue to treat and follow-up these cases.

The expected sample size attributed to a group sequential design should include all
subjects recruited. With this in mind, how can we design efficient trials when a long delay
in response will lead to a significant proportion of the total sample size being treated but
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not yet observed at each interim analysis? Furthermore, when both time and sample size
are considered, how should an efficient design be constructed?

Example C: Adaptive sampling rules

Faldum & Hommel (2007) describe a trial investigating the incidence of ischaemic-type
biliary lesions within 6 months of liver transplantation. Patients are randomised to receive
in situ perfusion only (group A) or in situ perfusion plus arterial ex situ flushing (group B).
Let θ denote the lesion probability in group A minus that in group B. In testing H0: θ ≤ 0
against θ > 0, an interim analysis is to be conducted once 50 responses are available, by
which time 130 subjects will have been recruited.

Faldum & Hommel (2007) propose two-stage designs with inferences based on a
combination test. The second stage sample size is allowed to depend on first stage responses,
with a minimum value of 80, the number of “pipeline” subjects. This adaptive choice of
sample size may have benefits for efficiency but how great are these benefits and do they
compensate for logistical complications of modifying the sample size in mid-study or the
fact that inferences are not based on minimal sufficient statistics?

Example D: Measurements on a short-term secondary endpoint

Todd & Stallard (2005) describe a trial of a treatment intended to prevent bone fracture in
postmenopausal women. While the endpoint of clinical interest is occurrence of a fracture
within five years, changes in bone mineral density after one year will also be measured.
An obvious question is how this short-term response might be used in a group sequential
test. More generally, when a short-term response correlated with the primary endpoint is
available, what reductions in expected sample size can this provide?

We shall address the issues raised in these examples in the course of this paper. In
Section 2, we introduce delayed response GSTs, designed to include analysis of pipeline
data in the final decision. In Section 3, we derive optimal versions of these designs that
minimise the expected number of patients and time to a conclusion. When the delay in
response is small we find group sequential monitoring leads to considerable reductions in
expected sample size, just as for an immediate response; however, the savings decrease for
larger delays. The benefits of group sequential monitoring are retained more fully when the
objective is to minimise the expected time to reach a conclusion. In Section 3.3, we extend
our designs to include response-dependent choice of group size, but find there is little to
be gained from doing so. In Section 4, we develop additional features for delayed response
GSTs. We define error spending versions of our tests to control the type I error rate when
group sizes and numbers of pipeline responses are unpredictable. We propose methods for
calculating p-values and confidence intervals on termination, using a stage-wise ordering of
the sample space so that inferences do not depend on unknown future information levels.
We then apply these methods to draw valid inferences after a trial has unexpectedly overrun.

In Section 5, we show how to incorporate data on a correlated short-term endpoint into
delayed response GSTs. Inferences still concern the long-term, primary endpoint but we
see that information provided by a more rapidly observed short-term endpoint at interim
analyses can substantially improve the procedure’s overall efficiency. Finally, in Section 6
we apply our methods with unknown nuisance parameters such as the response variance or
the correlation between short-term and long-term endpoints considered in Section 5. Our
simulations confirm the accuracy of this approach for controlling error rates.
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2. Group sequential tests for delayed responses

2.1. A new form of group sequential test for delayed responses
We introduce our methodology for the case of a two treatment comparison with a single long-
term endpoint. Suppose responses are independent and distributed as XA,i ∼ N(µA, σ

2)
and XB,i ∼ N(µB , σ

2), i = 1, 2, . . . , for subjects randomised to treatments A and B
respectively. For now, we assume σ2 is known. Let θ = µA − µB and consider a test
of H0: θ ≤ 0 against θ > 0 with type I error rate α at θ = 0 and power 1− β at θ = δ.

Suppose responses are available a time ∆t after randomisation. A “delayed response
GST” can terminate recruitment at an interim analysis but waits a time ∆t while pipeline
responses become available before conducting a “decision analysis” to reject or accept H0.
A K-stage design has K − 1 possible interim analyses. For k = 1, . . . ,K − 1, denote the
number of responses at interim analysis k by nk and the number at the subsequent decision
analysis, if recruitment stops, by ñk. If recruitment continues past interim analysisK−1, we
wait for responses from the total sample of ñK subjects before conducting the final decision
analysis. Note that we do not allow recruitment to be re-started once it has stopped.

For k = 1, . . . ,K − 1, let θ̂k denote the maximum likelihood estimate (MLE) of θ based

on nk responses at interim analysis k and define Ik = {Var(θ̂k)}−1, the Fisher information

for θ, and Sk = Ikθ̂k, the score statistic. Similarly, for k = 1, . . . ,K, let θ̃k be the MLE of θ
based on ñk responses at decision analysis k, Ĩk = {Var(θ̃k)}−1 and S̃k = Ĩkθ̃k. A K-stage,
one-sided delayed response GST of H0: θ ≤ 0 against θ > 0 has the following form:

At interim analysis k = 1, . . . ,K − 2,

if Sk ≤ lk or Sk ≥ uk stop recruitment and proceed to
decision analysis k,

otherwise continue recruitment and proceed
to interim analysis k + 1.

At interim analysis K − 1,

if SK−1 ≤ lK−1 or SK−1 ≥ uK−1 stop accrual and proceed to
decision analysis K − 1,

otherwise complete recruitment and proceed
to decision analysis K.

At decision analysis k = 1, . . . ,K,

if S̃k ≥ ck reject H0,

if S̃k < ck accept H0.

(1)

Figure 1 illustrates this definition for a 3-stage delayed response GST. The stopping
boundaries lk and uk are indicated by · and decision boundaries ck by ×.

2.2. Computations for a delayed response GST
For a test of form (1), let Ck = (lk, uk) denote the region in which recruitment continues at
interim analysis k. For k = 1, . . . ,K − 1, the probability of stopping recruitment at interim
analysis k and rejecting H0 at the subsequent decision analysis is

ψk(θ) = P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, Sk /∈ Ck, S̃k ≥ ck; θ)
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Fig. 1. Boundaries of a three-stage delayed response GST.

and the probability of rejecting H0 at the final stage is

ψK(θ) = P(S1 ∈ C1, . . . , SK−1 ∈ CK−1, S̃K ≥ cK ; θ).

The type I error rate at θ = 0 is the sum of the probabilities ψ1(0), . . . , ψK(0) and power at
θ = δ is the sum of ψ1(δ), . . . , ψK(δ). Let N denote the total number of subjects recruited
when the trial terminates. The expected sample size under treatment effect θ is

E(N ; θ) =

K−1
∑

k=1

P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, Sk /∈ Ck; θ) ñk (2)

+ P(S1 ∈ C1, . . . , SK−1 ∈ CK−1; θ) ñK .

Thus, the key requirement in computing properties of a delayed response GST is calculation
of probabilities ψk(θ) and the related probabilities in the right hand side of (2).

Theorem 1. With normally distributed responses as described above, for each k =
1, . . . ,K − 1, (S1, . . . , Sk, S̃k) is multivariate normal with Sj ∼ N(Ijθ, Ij), j = 1, . . . , k,

S̃k ∼ N(Ĩkθ, Ĩk), and independent increments. We refer to this as the “canonical joint
distribution”. The analogous property holds for (S1, . . . , SK−1, S̃K). Furthermore, these
joint distributions hold asymptotically when score statistics are formed from MLEs of a
parameter θ in a general parametric model.

Proof. The statistics S1, . . . , Sk, S̃k are based on nested subsets of the data at decision
analysis k and, similarly, S1, . . . , SK−1, S̃K are functions of nested subsets of the data at
decision analysis K. The distributional results of Jennison & Turnbull (1997) for a sequence
of statistics based on accumulating data apply to this setting. It follows that (S1, . . . , Sk, S̃k)
has the canonical joint distribution, as does (S1, . . . , SK−1, S̃K). The general theory of
Jennison & Turnbull (1997) and Scharfstein et al. (1997) implies the same results hold
asymptotically when score statistics are formed from MLEs in a general parametric model.

Since statistics follow the same form of joint distribution as in a GST with immediate
response, the numerical routines of Jennison (1993) and Jennison & Turnbull (2000,
Chapter 19) for standard GSTs are also applicable to delayed response GSTs.
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Fig. 2. (a) Three-stage test of H0: θ ≤ 0 against θ > 0 minimising expected sample size criterion F
with type I error rate α = 0.025 at θ = 0 and power 1−β = 0.9 at θ = 1. Boundaries are plotted on the
standardised test statistic scale. (b) Expected sample size curves for: the fixed sample test; optimal
delayed response GST with unconstrained choice of ck; optimal GST for an immediate response.

2.3. Revisiting Example A: Normally distributed response, moderate delay

We illustrate our delayed response GSTs in an application based on Example A of Section 1.
Let θ denote the difference in mean response between new treatment and placebo and
suppose we wish to test H0: θ ≤ 0 against θ > 0 with type I error rate α = 0.025 and power
1− β = 0.9 at θ = 1. We assume responses are normally distributed with variance σ2 = 2.
A fixed sample test requires nfix = 86 subjects, allocated equally to the two treatments.
(Unequal allocation would require a larger total sample size in both fixed sample and group
sequential designs.) We consider a group sequential design with a maximum sample size of
96 to compensate for loss of power due to early stopping. Suppose responses are measured
∆t = 4 weeks after randomisation to treatment and there is no additional delay in preparing
data for an analysis (if there were, we would simply increase the value of ∆t by this amount).

We shall design a 3-stage delayed response GST, planning ahead for responses that will
be in the pipeline at each interim analysis. If subjects are recruited at a rate of 4 per
week, the maximum sample size of nmax = 96 subjects will be recruited by tmax = 24
weeks and all observations will be available at 28 weeks. In this scenario, ∆t/tmax = 1/6
and this fraction of the trial’s maximum sample size, amounting to 16 observations, will be
in the pipeline at each interim analysis. In scheduling analyses, note that responses first
become available after calendar time ∆t and the last subject is recruited by time tmax.
Consider a design with three interim analyses equally spaced between ∆t and tmax at times
∆t + (tmax −∆t)/3, ∆t + 2 (tmax −∆t)/3 and tmax. Each interim analysis has a possible
decision analysis 4 weeks later. Since the third interim analysis always leads to a decision
analysis, it can be omitted. Rounding to even numbers so there are equal numbers on
each treatment leads to interim analyses and decision analyses with observed numbers of
responses n1 = 28, ñ1 = 44, n2 = 54, ñ2 = 70 and ñ3 = 96.

Boundaries of a delayed response GST for this problem are depicted in Figure 2(a),
expressed as critical values for Zk = Sk/

√Ik and Z̃k = S̃k/
√Ĩk (the choice of scale is

unimportant since the conversion between statistics Zk and Sk is straightforward). The
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design shown in Figure 2(a) was chosen to optimise the weighted average of E(N ; θ) over a
N(1/2, (1/2)2) density for θ. So, among all procedures with the same interim analysis and
decision times, type I error rate 0.025 and power 0.9 at θ = 1, it has the minimum value of

F =

∫

E(N ; θ)
2

δ
φ

(

θ − δ/2

δ/2

)

dθ (3)

for δ = 1. (Here φ denotes the standard normal probability density function.) We explain
in Section 2.4 how to derive tests meeting this — and other — optimality criteria. The
value of F for this design is 68.6, a significant improvement on the fixed sample size of 86.

The solid line in Figure 2(b) is the function E(N ; θ) for this optimal delayed response
GST; reductions below the fixed sample size are evident at all values of θ. The dashed
line shows E(N ; θ) for the conventional GST minimising F for the same problem when
response is immediate and analyses are conducted after n1 = 32, n2 = 64 and n3 = 96
responses. Comparing the curves for these two cases, we see the effect of a four week delay
in response is to reduce the savings in expected sample size. Both expected sample size
curves are approximately symmetric about θ = 0.64 with E(N ; θ = 0.64) = 69.7 when
response is immediate, compared to 77.6 when ∆t = 4. The fixed sample test, standard
GST and delayed response GST have type I error rate 0.025 and power 0.9 at θ = 1 and,
in consequence, their power curves are closely matched over the whole range of θ values.

When recruitment is terminated with Sk ≥ uk in a test of form (1), one expects the
final decision will be to reject H0. However, it is possible for the pipeline data to cause a
“reversal” so S̃k < ck and the eventual decision is to accept H0. Similarly, termination of
recruitment with Sk ≤ lk may be followed by a final decision to reject H0. In considering
the incorporation of data received after a GST has stopped, Sooriyarachchi et al. (2003)
note it would be particularly regrettable to stop recruitment based on a positive trend, only
to miss out on a significant result at the decision analysis. For our delayed response GST,
the total reversal probability under θ is the sum over k = 1, . . . ,K − 1 of the terms

ϕk(θ) = P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, Sk ≥ uk, S̃k < ck; θ) (4)

and
ηk(θ) = P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, Sk ≤ lk, S̃k ≥ ck; θ). (5)

The total reversal probability for the optimal delayed response GST depicted in Figure 2(a)
takes a maximum value of 0.01 under θ = 0.63. The small value of this probability gives
reassurance that the decision to terminate recruitment is not being made prematurely.
However, the fact that the information provided by pipeline data has little impact on the
final outcome of the hypothesis test means it is inevitable that pipeline subjects increase the
expected sample size over that attainable in the case of immediate response. Inspection of
the boundaries in Figure 2(a) shows that for both k = 1 and 2, ck lies some way below uk.
Thus, if recruitment is stopped with Zk ≥ uk, H0 will still be rejected at the decision
analysis for a range of Z̃k values less extreme than Zk. We have, therefore, avoided the
difficulties associated with a decrease in Z value referred to in Example A of Section 1.

Examination of Figure 2(a) shows that the decision analyses at stages 1 and 2 have values
of ck below 1.96, the critical value for Z̃k in a fixed sample test with one-sided significance
level 0.025. Since rejection of H0 with such a low value of the Z-statistic may not be deemed
acceptable in practice, we have also derived optimal designs with the constraint that each
ck ≥ 1.96. The effects of imposing this constraint are small; the expected sample size
function for this design remains very close to the optimal design without this constraint,
and the power curves for these two tests are almost indistinguishable.
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2.4. Optimal delayed response group sequential tests
We now present the methods used to derive optimal versions of our delayed response GSTs.
We consider tests with specified information levels {I1, Ĩ1, . . . , IK−1, ĨK−1, ĨK} that have
type I error rate α at θ = 0 and power 1 − β at θ = δ. Within this class we seek designs
minimising expected sample size at a single value of θ, averaged over several θ values, or
integrated against a probability density for θ. The literature on optimal sequential tests goes
back to Wald and Wolfowitz’s (1948) proof that Wald’s (1947) sequential probability ratio
test minimises E(N ; θ) under the null hypothesis θ = 0 and alternative θ = δ. Minimisation
of E(N ; θ = δ/2), known as the Kiefer-Weiss problem (Kiefer & Weiss, 1957), has been
considered in the fully sequential case by Weiss (1962), Lai (1973) and Lorden (1976).
Optimal GSTs for this and other criteria have been found by Jennison (1987), Eales &
Jennison (1992, 1995), Barber & Jennison (2002) and Öhrn & Jennison (2010).

For conciseness, we focus on the derivation of delayed response GSTs that minimise the
objective function F defined in (3), but note it is just as easy to find designs minimising the
integral of E(N ; θ) over a general N(ζ, ω2) density for θ or other optimality criteria, such
as those of Barber & Jennison (2002). The type I error rate and power requirements create
a constrained optimisation problem. A key step is to construct a method for solving an
unconstrained Bayes sequential decision problem which penalises type I errors under θ = 0
and type II errors under θ = δ but does not insist on specific error rates; we then find
a combination of prior distribution and costs for which the Bayes procedure satisfies the
error rate requirements. It follows that this procedure minimises F among all tests with
type I error rate α and power 1 − β at θ = δ. This same technique underlies theoretical
and numerical results in many of the papers referred to above. Banerjee & Tsiatis (2006),
who apply this approach to find optimal adaptive designs, note it is equivalent to using
Lagrangian multipliers. The new feature in our application is the delayed response.

In deriving a delayed response GST to minimise F , we first place a prior on θ with point
masses 1/3 at 0 and δ and a continuous component with 1/3 times a N(δ/2, (δ/2)2) density.
Let A0 denote the action of accepting H0 and A1 that of rejecting H0. We define the loss
function L(Ai, θ) for taking decision Ai when the treatment effect is θ as L(A1, 0) = d1,
L(A0, δ) = d0 and all other L(Ai, θ) = 0. We specify a sampling cost of c(θ) per subject
recruited, where c(δ) = c(0) = 0 and c(θ) = c0 otherwise. The total expected cost is then

E(Cost) = E(Cost of making incorrect decisions) + E(Sampling cost)

=
1

3
{d1 P(Reject H0; θ = 0) + d0 P(Accept H0; θ = δ) + c0F} .

Incorrect decisions under other values of θ do not appear in this formula since the Lagrangian
construction only requires penalties for errors under θ = 0 and under θ = δ. A Bayes test
minimising E(Cost) can be found using backwards induction and numerical integration.
Recursive relations for the expected additional cost associated with the actions permitted
at each stage are presented in Appendix 1. It remains to search for values of d0, d1 and c0
such that this Bayes test has P(Reject H0; θ = 0) = α and P(Accept H0; θ = δ) = β. The
following argument establishes that there is such a triple with c0 = 1.

Let D be the set of all non-randomised “decision rules” of the form (1) plus randomised
decisions rules defined as probability distributions over these non-randomised rules. For
each rule d ∈ D, define the risk vector

R(d) = (R1(d), R2(d), R3(d)) = (P(Reject H0; θ = 0), P(Accept H0; θ = δ), F ). (6)
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The proof of Jennison & Turnbull (2006, Theorem 1) can be adapted to the delayed response
problem to show that the risk set S = {R(d); d ∈ D} is closed. Let Ifix denote the
information required by the fixed sample test with error rates α and β. We restrict attention
to problems with information sequences satisfying Ĩ1 < Ifix < ĨK . It is straightforward
to construct examples of tests with error rates α and β, so there are points (α, β, F ) in S
for some values of F . Denote the infimum of values of F such that (α, β, F ) lies in S by
F0. The risk vector (α, β, F0) lies on the boundary of S and, because the risk set is closed,
it also belongs to S. It follows that there exists a delayed response GST with risk vector
(α, β, F0) and this is a solution to our original frequentist problem.

Since the set S is convex, the supporting hyperplane theorem (see Ferguson (1967),
Section 2.7) implies there is a supporting hyperplane to S at the boundary point (α, β, F0).
We can write the equation of this hyperplane as

d1R1 + d0R2 + c0R3 = ξ (7)

and note that d1R1(d) + d0R2(d) + c0R3(d) ≥ ξ for all risk vectors R(d) ∈ S. Consider the
Bayes decision problem with costs (d0, d1, c0). The risk vectors of solutions to this problem
lie in the intersection of S and the hyperplane. In fact, we show in Appendix 8.2 that this
Bayes problem has a unique solution up to the definition of actions on sets of Lebesgue
measure zero. Hence, the hyperplane intersects S at a single point, and this must be
(α, β, F0). It follows that solving the Bayes problem with costs (d0, d1, c0) solves our original
frequentist problem and this solution is unique. The sampling cost c0 must be non-zero,
otherwise the optimal rule would automatically continue to ĨK and error rates would be
lower than α and β. Thus, without loss of generality, we can choose to write (7) with c0 = 1.

The final step in the derivation of the optimal delayed response GST is a search over
pairs of decision costs d0 > 0 and d1 > 0 to find the Bayes problem whose solution has the
desired error rates. The uniqueness result of Appendix 8.2 is helpful here as it implies each
pair (d0, d1) leads to a single pair of error probabilities. It is convenient to work with the
transformed costs log(d0) and log(d1) as this leads to an unconstrained search over R2.

3. Efficiency of optimal designs

3.1. Tests optimal for expected sample size
With optimal delayed response GSTs to refer to, we can quantify the effect of a delay in
response on the sample size savings relative to a fixed sample test. We return to the problem,
introduced in Section 2.1, of comparing treatments A and B with normal responses with
means µA and µB. Defining θ = µA − µB, we wish to test H0: θ ≤ 0 against θ > 0 with
type I error rate α and power 1− β at θ = δ. The fixed sample test requires information

Ifix =
{Φ−1(1− α) + Φ−1(1 − β)}2

δ2
, (8)

where Φ denotes the standard normal cumulative distribution function, and we set the
maximum information for the delayed response GST at Imax = R Ifix. Let nmax be
the number of subjects needed for information Imax, assuming equal allocation between
treatments. Suppose c patients are recruited per unit time and define tmax to be the time
taken to recruit nmax subjects. Suppose responses are observed after a delay ∆t and define
r = ∆t/tmax. The parameter r combines the effect of ∆t, c and nmax in an overall measure
of the effect of response delay on the information observed at each interim analysis.
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Fig. 3. Minima of F for optimal K-stage delayed response GSTs of H0: θ ≤ 0 against θ > 0. All
tests have α = 0.025, β = 0.1, R = 1.1 and analyses scheduled at information levels given by (10).
Results are expressed as percentages of the corresponding fixed sample size test.

Since the first responses are observed at time ∆t and the last subject is recruited by
tmax, we consider designs with interim analyses equally spaced between ∆t and tmax at

tk = ∆t + (k/K)(tmax −∆t), k = 1, . . . ,K. (9)

This gives numbers of observed responses

nk =
k

K
(1− r)nmax and ñk = nk + r nmax, k = 1, . . . ,K

and the information sequence

Ik =
k

K
(1− r)Imax and Ĩk = Ik + r Imax, k = 1, . . . ,K. (10)

Although we have included an interim analysis at IK to make the pattern clear, the only
option at this point is to continue to a decision analysis at ĨK . This interim analysis can,
therefore, be omitted and doing so gives a design of the form introduced in Section 2.1.

We present results for delayed response GSTs for this problem which minimise the
expected sample size criterion F defined in (3). Figure 3 plots the minima of F expressed
as a percentage of nfix for tests with nmax = 1.1nfix. Results for r = 0, the case of an
immediate response, show savings of 23.5%, 29.6% and 33.7% relative to the fixed sample
test for GSTs with K = 2, 3 and 5 analyses, respectively. Minimum values of F/nfix are
invariant to changes in δ and σ2, and to changes in ∆t and c which preserve the value of r
(see Appendix 8.3), so these results apply to a range of problems.

Figure 3 shows that benefits of group sequential monitoring decrease as r increases.
Substantial savings are still present for small values of r, for example, F is 77.7% of nfix

when r = 0.1 and K = 3. However, savings relative to the fixed sample test fall by about
half as r increases from 0 to 0.25. One reason for this is that when ∆t is large, by the time
of the first interim analysis recruitment will have progressed so that a large fraction of nmax

has already been taken, even if accrual stops at this earliest opportunity.
Another reason for reduced efficiency when there is a long delay in response is the

lack of impact of information from pipeline subjects on the final decision. Table 1 lists
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Table 1. Reversal probabilities for two-stage delayed response GSTs.

Switch to correct decision Switch to incorrect decision

θ = 0 θ = δ θ = 0 θ = δ

r S1 ≥ u1; S̃1 < c1 S1 ≤ l1; S̃1 ≥ c1 S1 ≤ l1; S̃1 ≥ c1 S1 ≥ u1; S̃1 < c1

0.01 10−10 3× 10−13 10−13 4× 10−10

0.1 0.000428 0.000707 0.000175 0.000808
0.2 0.00195 0.00460 0.000885 0.00276
0.3 0.00437 0.0116 0.00176 0.00474
0.4 0.00824 0.0228 0.00276 0.00680
0.5 0.0150 0.0416 0.00395 0.00925

reversal probabilities of the two-stage tests minimising F under values of r between 0.01
and 0.5. These are ϕ1(0), η1(δ), η1(0) and ϕ1(δ) where ϕ and η are defined in (4) and (5).
For small r, the reversal probabilities are particularly small and the test’s power would
change very little if the final decision were determined purely by the boundary crossed at
an interim analysis k < K. Thus, pipeline subjects at analyses 1 to K − 1 add to E(N ; θ)
while contributing little towards increased power. Since there is only a decision analysis at
stage K, the pipeline subjects do make a contribution at this point. The loss of efficiency
is evident in Figure 3, with F increasing most rapidly with r when r is small.

Despite the low overall probabilities of reversal in Table 1, pipeline data can, on occasion,
play an important role in providing a final check on the conclusion at a decision analysis.
Table 2 shows the conditional probability that the two-stage delayed response GSTs of
Table 1 reject H0 given that recruitment terminates at analysis 1 with S1 on the boundary
at l1 or u1. Some of these conditional probabilities are well away from 0 and 1. In particular,
a reversal to avoid an incorrect conclusion is quite likely when θ = 0 and S1 = u1 or θ = δ
and S1 = l1. Reversals that would lead to a wrong conclusion are much less likely. To
reconcile these numbers with the much smaller overall probabilities in Table 1, remember
the conditioning events for columns 1 and 4 of Table 2 are quite unlikely: the boundary
crossed is at odds with the value of θ and this boundary is crossed with no overshoot. The
results of this section quantify the impact of a delay in response and have implications for
study design. Since efficiency benefits from a low value of r, it is important to reduce any
delay in the availability of responses due to data cleaning and preparation. Recruitment
strategies also affect the value of r. In one example, Mehta (2009) notes that halving the
recruitment rate and re-defining the primary response to be measured at 12 rather than
26 weeks reduces the number of pipeline subjects from 208 to 48. However, slower enrolment
will imply later analyses and a delay in the final decision. In the next section, we consider
trial designs which balance the twin objectives of low sample size and a rapid decision.

3.2. Tests optimal for a combination of objectives
3.2.1. Optimising designs for a combination of objectives

When a phase III clinical trial reaches a positive conclusion, it is in the interest of future
patients who may benefit from the new treatment that this should occur as rapidly as
possible. Liu et al. (2004) note the importance of the time remaining on patent to the
economic benefit for the company developing a new treatment. In our discussion of the
stroke trial of Example B, we raised the question of balancing the (possibly conflicting)
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Table 2. Conditional probabilities of rejecting H0 for two-stage delayed
response GSTs, given recruitment stops at the first interim analysis with
S1 on the boundary at l1 or u1.

S1 = u1 S1 = l1

r θ = 0 θ = δ θ = 0 θ = δ

0.01 1.000 1.000 1.7× 10−11 1.6× 10−10

0.1 0.876 0.987 0.00338 0.0512
0.2 0.648 0.971 0.00973 0.207
0.3 0.459 0.961 0.0141 0.370
0.4 0.314 0.952 0.0175 0.517
0.5 0.208 0.944 0.0207 0.642

objectives of low sample size and a rapid decision. We now present delayed response GSTs
which optimise a criterion combining sample size and time of the final decision. With
this new objective in mind, we modify our delayed response GSTs by adding the option
to stop at an interim analysis with an immediate decision to reject or accept H0; with
this modification, we also add an interim analysis K to choose between stopping with an
immediate decision or waiting to observe the final set of pipeline responses. When this new
form of test stops with a decision to accept or reject H0 at an interim analysis, we would still
expect the pipeline data to be reported informally, once they become available. However,
in some situations, an early conclusion might lead to changes in treatment for some of the
subjects remaining in the study (for example, patients randomised to the inferior treatment
may switch to the comparator) and there would then be no further pipeline data.

Consider again a comparison of treatments A and B with normally distributed responses
with variance σ2 and difference in means θ. We are to test H0: θ ≤ 0 against θ > 0
with type I error rate α and power 1 − β at θ = δ. A fixed sample size design requires
nfix = 4 σ2 Ifix subjects where Ifix is given by (8). With recruitment at constant rate c,
the fixed sample test reaches a conclusion after time tfix = nfix/c+∆t. Let T denote the
time taken for a delayed response GST to reach a conclusion and, as before, let N denote
the total number of subjects recruited when the trial terminates. We scale N by nfix and
T by tfix in defining the combined measure of sample size and time to a conclusion

H = aN/nfix + b T/tfix ,

where the dimensionless weights a and b are chosen to satisfy a ≥ 0, b ≥ 0 and a+ b = 1.
We consider K-stage tests with Imax = R Ifix and information levels defined by (10),

and seek designs which minimise

G =

∫

E(H ; θ)
2

δ
φ

(

θ − δ/2

δ/2

)

dθ,

a generalisation of the criterion F to the new objective. When response is immediate,
T = N/c and minimising G is equivalent to minimising F . Optimal designs can be found
using the methods described in Section 2.4 with a sampling cost made up of a/nfix per
subject and b/tfix per unit of time to reach a conclusion, and with the extra option of
stopping with a final decision at each interim analysis. In searching over values of Sk to
find the optimal action at interim analysis k, the most complex pattern we have found is
five intervals of increasing values of Sk with optimal actions: Accept H0, Stop recruitment
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Fig. 4. Stopping rule at interim analyses 1 and 2 of the delayed response GST minimising G for
a = b = 0.5 among tests with K = 2, α = 0.025, β = 0.1, R = 1.1 and information sequence (10).

and wait for pipeline data, Continue recruitment, Stop recruitment and wait for pipeline
data, and Reject H0. In other cases, one or both of the intervals where the optimal action
is to stop and wait for pipeline data is absent. Thus, these optimal designs have the form:

At interim analysis k = 1, . . . ,K − 1,

if Sk ≥ u⋆k stop recruitment and reject H0,

if Sk ≤ l⋆k stop recruitment and accept H0,

if l⋆k < Sk ≤ lk or uk ≤ Sk < u⋆k stop recruitment and proceed
to decision analysis k,

otherwise continue recruitment and proceed
to interim analysis k + 1.

At interim analysis K,

if SK ≥ u⋆K stop recruitment and reject H0,

if SK ≤ l⋆K stop recruitment and accept H0,

otherwise stop recruitment and proceed
to decision analysis K.

(11)

It is possible that u⋆k = uk or l⋆k = lk at some interim analyses. Figure 4 illustrates optimal
two-stage designs for r ≤ 0.3. When pipeline data are few, the option to stop at the first
interim analysis and wait for them is not used; for larger r, pipeline data can make a greater
contribution and the interval on which it is optimal to wait widens. We have found similar
features in optimal designs for other examples with (a, b) ranging between (0, 1) and (1, 0).

3.2.2. Efficiency of delayed response GSTs optimised for a combination of objectives

Figure 5 shows the efficiency of delayed response GSTs of form (11) minimising G. Designs
have K = 5, α = 0.025, β = 0.1 and R = 1.1. Information is assumed to be proportional to
the number of observed responses. Results are presented as 100G for comparability with
previous values of 100F/nfix. When (a, b) = (1, 0), G is identical to F and the top-most
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Fig. 5. Minima of 100 ×G for delayed response GSTs with K = 5, α = 0.025, β = 0.1, R = 1.1 and
information sequence (10).

curve in Figure 5 is the same as that for K = 5 in Figure 3. Lower values for G when b > 0
and a < 1 show the benefits of group sequential testing are more substantial, even for quite
large values of r, when both time to a decision and sample size are considered.

For illustration, we consider an example incorporating features of Example B, the
ASCLEPIOS stroke trial. As before, suppose responses on treatments A and B are normally
distributed with difference in means θ and we are to test H0: θ ≤ 0 against θ > 0 with type I
error rate α. We set power 1−β = 0.9 at θ = 0.34 and assume σ2 = 1 so a fixed sample size
test requires nfix = 364 observations, divided equally between the two treatments, to obtain
information Ifix = 90.9. Suppose the primary endpoint is measured at 90 days and it takes
30 days to clean the data before each interim and decision analysis, so ∆t = 90 + 30 = 120
days. If one subject is recruited per day, it will take tfix = 364 + 120 = 484 days for
the fixed sample test to reach a conclusion. In designing a delayed response GST, we set
Imax = 1.1 Ifix = 100, requiring nmax = 400 subjects to be recruited over tmax = 400 days.
Thus, r = ∆t/tmax = 0.3. In a 5-stage design, analyses are scheduled according to (10),
giving Ik = 14k and Ĩk = 14k+30, for k = 1, . . . , 5. In order to achieve I1 = 14 at the first
interim analysis, the data set is “locked” at t = 90+56 = 146 days, with observed responses
from the first 56 patients. Responses observed during the 30 days of data cleaning are not
used in this analysis. By the time of the first interim analysis, 176 subjects will have been
recruited to the trial. If it is decided to halt recruitment at this point and wait for the
pipeline data, it will take 90 days for responses to be observed and 30 days of data cleaning,
giving a decision analysis at 296 days. In a similar way, further interim and decision analyses
are scheduled at times tk = 120 + 56k and t̃k = tk + 120, for k = 1, . . . , 5, with the data
set for interim analysis k locked 30 days prior to tk. Properties of optimal delayed response
GSTs for this problem are those for the case r = 0.3 in Figure 5. Varying a and b alters the
emphases on sample size and time to a conclusion. If we focus solely on time and set a = 0,
the optimal design has a mean duration of 360 days (averaging over the normal distribution
for θ in the definition of G). This is 124 days less than the fixed sample test’s tfix = 484
days. In the case of an immediate response, ∆t = 0, the GST minimising G has an average
length of 241 days, 123 days less than the 364 days for a fixed sample design. Thus, there
are savings in average duration from using a group sequential design for quite large values
of the delay parameter r.
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Table 3. Minima of F expressed as a percentage of nfix for optimal two-
stage delayed response GSTs with and without adaptive choice of the
second group size. Tests are for α = 0.025, β = 0.1, R = 1.1 and r = 0.2
using a selection of values of I1. The choice I1/Ifix = 0.425 is optimal
both for adaptive and non-adaptive designs. The case I1/Ifix = 0.555 is
included for comparison with a Faldum & Hommel (2007) design.

Optimal adaptive Optimal non-adaptive
I1/Ifix delayed response GST delayed response GST

0.1 97.1 98.7
0.2 92.1 92.8
0.3 88.4 88.7
0.4 86.8 87.0
0.425 86.8 86.9
0.5 87.4 87.6
0.555 88.7 88.8
0.6 90.2 90.3
0.7 94.9 95.0

3.3. Adaptive sampling rules
In Example C of Section 1, we discussed Faldum & Hommel’s (2007) adaptive two-stage
designs. Delayed response designs of form (1) with K = 2 can be extended to allow
an adaptive choice of the second group size. With our current definition, after interim
analysis 1, the test proceeds to a final analysis with either ñ1 responses (adding just
the pipeline subjects) or ñ2 responses (recruiting additional subjects). Allowing a data-
dependent choice of final sample size in the range ñ1 to ñ2 gives a “sequentially planned
sequential test”, as proposed by Schmitz (1993) for immediate response. We have optimised
such designs, minimising the function F , for α = 0.025, β = 1, R = 1.1 and r = 0.2. Table 3
lists minima of F , expressed as a percentage of nfix, for optimal adaptive and non-adaptive
delayed response GSTs. Only minor savings are achieved by the adaptive choice of group
size, just as Jennison & Turnbull (2006) found for the case of immediate response.

We have applied the definitions of Faldum & Hommel (2007, Section 4.3) to implement
their two-stage test using a conditional error function with “linear level in [0, α1]”. In their
notation, α0 = 0.3 and β2 = 0.95. In our optimal adaptive and non-adaptive designs, we set
nmax = 1.1nfix and constrain the second group size to lie in the interval [ñ1−n1, nmax−n1].
With r = 0.2, the power of Faldum & Hommel’s test is 0.9 at θ = δ when I1/Ifix = 0.555
and this design has F equal to 90.4% of nfix. It is evident from Table 3 that, for this value
of I1/Ifix, little is gained by introducing adaptivity. We also see that values of I1/Ifix
around 0.4 give the most efficient designs. Our overall conclusion is that efficient designs
can be found by exploring the options offered by simpler, non-adaptive tests.

4. Practical implementation of delayed response GSTs

4.1. Error spending tests for delayed responses
Lan & DeMets (1983) introduced error spending group sequential tests to deal with
unpredictable information sequences arising from random variation in accrual rates or loss
to follow-up. For a one-sided test, Jennison & Turnbull (2000, Section 7.3) describe how to
construct efficacy and futility boundaries by spending type I and type II error probability
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according to two pre-specified functions of observed information. We now define error
spending versions of our delayed response GSTs to provide the same flexibility.

Consider a test of H0: θ ≤ 0 against θ > 0 with type I error rate α at θ = 0 and
power 1 − β at θ = δ. The error spending functions involve a maximum information level,
Imax. It is assumed that, with no early stopping, recruitment will continue until there are
sufficient subjects to generate information level Imax and cease at the first interim analysis
k at which it is anticipated Ĩk ≥ Imax. The value of Imax should be chosen to meet
the power requirement and we shall return to this topic after explaining how the design
with a particular Imax is implemented. In order that the sequence {S1, . . . , Sk, S̃k} has the
usual canonical joint distribution given {I1, . . . , Ik, Ĩk}, as defined in Section 2.2, future
information levels must not be influenced by previously observed outcomes: this precludes,
for example, changing the schedule of analyses when data are close to a testing boundary.

The type I and type II error spending functions f(t) and g(t) are increasing functions
of t = I/Imax, where I is the current observed information, with f(0) = g(0) = 0 and
f(t) = α and g(t) = β for t ≥ 1. At interim analysis k, we know I1, . . . , Ik and also the
number of pipeline subjects who will contribute to Ĩk. We need critical values lk and uk
for Sk and ck for S̃k such that the cumulative probability under θ = 0 of rejecting H0 by
analysis k is f(Ik/Imax) and the probability under θ = δ of accepting H0 by analysis k is
g(Ik/Imax). Here, we use Ik rather than Ĩk in f and g since the low reversal probabilities
discussed in Section 3.1 indicate that the statistic Sk at interim analysis k plays the major
role in reaching a decision at this stage. However, on reaching an analysis with Ĩk ≥ Imax,
the value of Ĩk is used, giving f(Ĩk/Imax) = α and g(Ĩk/Imax) = β since Ĩk/Imax ≥ 1.

We shall describe two ways to obtain values for lk, uk and ck. In the first method, we
calculate lk and uk at interim analysis k and only consider ck on reaching decision analysis k.
In the second method, we assume the number of subjects who have been treated but have
not yet responded is known at interim analysis k and Ĩk can be predicted; then we use this
value for Ĩk in calculating lk, uk and ck together at interim analysis k.

Method 1

At the first analysis, set u1 and l1 to satisfy

P(S1 ≥ u1; θ = 0) = f(I1/Imax) and P(S1 ≤ l1; θ = δ) = g(I1/Imax).

For k > 1, choose uk such that

P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, Sk ≥ uk; θ = 0) = f(Ik/Imax)− f(Ik−1/Imax) (12)

and lk to satisfy

P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, Sk ≤ lk; θ = δ) = g(Ik/Imax)− g(Ik−1/Imax). (13)

If Sk ≤ lk or Sk ≥ uk, recruitment ceases and the study proceeds to decision analysis k.
With lk and uk as defined in (12) and (13), the allocated increments in type I and type II
error probability would be “spent” if the final decision were simply to reject H0 if Sk ≥ uk
and to accept H0 if Sk ≤ lk. Pipeline data increase the observed information to Ĩk at the
decision analysis, where the critical value ck is chosen to satisfy

P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, Sk ≥ uk, S̃k < ck; θ = 0) = (14)

P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, Sk ≤ lk, S̃k ≥ ck; θ = 0).
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This choice balances the probability under θ = 0 of sample paths that cross the lower
boundary at interim analysis k and end above ck against that of paths crossing the upper
boundary uk which fall back below ck. Thus, the null probability of rejecting H0 at the
stage k decision analysis remains the same as the probability of observing Sk ≥ uk, so the
cumulative type I error probability up to stage k remains equal to f(Ik/Imax).

Incorporating information from the pipeline subjects reduces the type II error probability
spent by stage k, so power is higher than originally specified. (The extent to which this
occurs could be reduced by replacing g(Ik−1/Imax) in (13) by the type II error actually
accruing up to analysis k−1.) Method 1 has the advantage that lk and uk can be calculated
at interim analysis k without knowing the value of Ĩk, which may not be completely
predictable due, for example, to slow information flow in a multi-centre trial.

When recruitment is terminated at interim analysis k in anticipation of Ĩk ≥ Imax, we
proceed directly to the decision analysis and spend all the remaining type I error probability
by setting ck as the solution to

P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, S̃k ≥ ck; θ = 0) = α− f(Ik−1/Imax). (15)

Formally, the final error probability α comes from evaluating f(Ĩk/Imax). This procedure
based on S̃k but not Sk has the same form as the final analysis K of a delayed response
GST in our original definition (1). Even if, in fact, Ĩk < Imax, a final decision must be
made and ck is chosen to satisfy (15), bringing the final type I error probability up to α.

Method 2

Suppose it is possible to predict the value of Ĩk at the time of interim analysis k. Then, we
can find values lk, uk and ck to bring the cumulative type I and II error probabilities up to
exactly f(Ik/Imax) and g(Ik/Imax), respectively. To do this, we set uk to be the solution
to (12), then search for the value of lk that satisfies

P(S1 ∈ C1, . . . , Sk−1 ∈ Ck−1, Sk /∈ Ck, S̃k < ck; θ = δ) = g(Ik/Imax)− g(Ik−1/Imax) (16)

where ck denotes the solution to (14) for each candidate value of lk. As in Method 1, the
final analysis, where Ĩk ≥ Imax, is treated differently and ck is obtained as the solution to
(15) to give total type I error probability α.

In both Methods 1 and 2, the attained power depends primarily on Imax and, to a lesser
extent, on the sequence of information levels actually observed. At the design stage, error
spending functions and target information level Imax can be chosen so that power 1− β at
θ = δ is achieved under an assumed pattern of information levels Ik and Ĩk, k = 1, . . . ,K.
Departures from this pattern will perturb the attained power but one can expect power to
be close to the desired value as long as the target Imax is eventually reached.

We illustrate our error spending designs and assess their efficiency in the example
introduced in Section 2.1 and developed in Section 3.1. The values of α, β and δ determine
Ifix and the inflation factor R determines Imax = R Ifix. The sample size needed to
achieve Imax is nmax = 4 σ2 Imax. With accrual rate c, these subjects can be recruited in
time tmax = nmax/c and, with response delay ∆t, the delay parameter is r = ∆t/tmax.

We consider error spending, delayed response GSTs with spending functions

f(t) = αmin{tρ, 1} and g(t) = βmin{tρ, 1} (17)

based on the ρ-family of one-sided error spending functions (Jennison & Turnbull, 2000,
Section 7.3) and we shall find the value of ρ appropriate to the given choice of R and Imax.
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Fig. 6. Performance for objective function F of error spending and optimal delayed response GSTs.
Tests are designed and implemented for information sequences of the form (10) with K = 5 and
R = 1.1. Tests have type I error probability α = 0.025 and power 1− β = 0.9 at θ = δ.

We assume analysis times as in (9) so information levels follow the pattern (10), reaching
ĨK = Imax at analysis K. The stopping boundaries and decision rule for an error spending
design following either Method 1 or Method 2 can be derived as described above. For the
test to conclude properly at stage K attaining power 1 − β at θ = δ, we require the value
of cK obtained from (15) also to satisfy

P(S1 ∈ C1, . . . , SK−1 ∈ CK−1, S̃K ≤ cK ; θ = δ) = β − g(IK−1/Imax). (18)

This will not be the case for a general choice of ρ, but we can search for the value of ρ for
which this occurs. (An alternate strategy would be to fix ρ and search for an appropriate
value of Imax, noting that in this case the value of r varies with Imax.)

We assess the efficiency of error spending designs by comparing them with delayed
response GSTs optimised for the objective function F defined in (3). In Figure 6, for the
case K = 5, error spending tests with boundaries derived using Method 1 require values
of ρ between 1.3 and 2.0 for 0 ≤ r ≤ 0.5, with tests for larger delay parameter r needing
smaller ρ. For tests designed according to Method 2, ρ ranges from 0.9 to 2.0. Calculations
are for the case of observed sample sizes in agreement with planning assumptions but error
spending GSTs will, of course, adapt to other eventualities. The efficiency of the error
spending designs is impressive. Values of F for tests derived using Method 2 exceed the
minimum possible by at most 2% of nfix for all r ≤ 0.5. This performance is matched for
small r by the more flexible Method 1 designs, although their efficiency diverges from the
optimum as r increases beyond 0.2. This divergence is related to the extra power of the
Method 1 designs: as r increases to 0.5, attained power increases from 0.9 to 0.913. As
suggested previously, we can adjust these designs by replacing g(Ik−1/Imax) in (13) and
g(IK−1/Imax) in (18) by the cumulative type II error probability actually spent, to ensure
the error spent approximates that specified by g more closely over the course of the trial
and type II error probability β is fully spent at the final analysis. This adjustment improves
the Method 1 designs and the values of F shown in Figure 6 are within 1% of nfix of the
values achieved by Method 2. We conclude that the proposed error spending methods offer
a very effective parallel to current methodology for the case of immediate response.
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4.2. P-values and confidence intervals on termination of a delayed response GST
A delayed response GST answers the single question whether θ ≤ 0 or θ > 0. It is often
desirable to provide a more complete analysis on termination of a trial; FDA and EMA
guidelines ‘E9: Statistical Principles for Clinical Trials’ recommend presenting confidence
intervals for treatment effects, and it is common to present a p-value for testing H0 : θ ≤ 0.

Setting CK = ∅, define T = min{k : Sk /∈ Ck}. Following Jennison & Turnbull (2000,
Section 8.2), we can write the probability density of the sequence of responses up to
termination of a test of form (1) as a product of a term involving ĨT , S̃T and θ and a
term that does not depend on θ. It follows that the pair (ĨT , S̃T ) is a sufficient statistic
for θ; moreover the conditional distribution of the sample path given its end point (ĨT , S̃T )
does not depend on θ. The sample space for this sufficient statistic is

Ω =

K
⋃

k=1

{(Ĩk, s̃) : s̃ ∈ R}. (19)

We can define tests of H0: θ ≤ 0 against θ > 0 at a continuum of significance levels
by specifying the rejection region of each test as a set of outcomes in Ω. On termination
of a trial, the one-sided upper p-value for testing H0: θ ≤ 0 is the minimum significance
level at which H0 is rejected. An ordering of the points in Ω is needed to define tests
with nested rejection regions so that this definition of a p-value is well-founded. We write
(Ĩk′ , s̃′) � (Ĩk, s̃) to denote that (Ĩk′ , s̃′) is placed higher than (Ĩk, s̃) in such an ordering.
The one-sided p-value for testing H0: θ ≤ 0 against θ > 0 based on outcome (Ĩk⋆ , s⋆) is

p+ = P{ (ĨT , S̃T ) � (Ĩk⋆ , s⋆) ; θ = 0}. (20)

When response is immediate, Rosner & Tsiatis (1988) note there is no uniformly most
powerful test of H0: θ = 0 on the sample space of a standard GST, and hence no single
natural ordering of outcomes. Jennison & Turnbull (2000, Section 8.4) survey proposed
orderings, including: the stage-wise ordering of Armitage (1957) in which outcomes are
ordered first by the boundary crossed, then by the analysis at which stopping occurs, and
lastly by the value of the test statistic; the MLE ordering (Armitage, 1958); the signed
likelihood ratio test ordering (Chang and O’Brien, 1986), which is equivalent to ordering
by ZT ; and the score test ordering (Rosner & Tsiatis, 1988). The stage-wise ordering has
been used by Siegmund (1978), Fairbanks &Madsen (1982), Jennison & Turnbull (1983) and
Tsiatis et al. (1984), and is the method preferred by Proschan et al. (2006). In this ordering,
the position of an observed outcome (Ĩk, s̃) does not depend on the values of unobserved
information levels Ik+1, . . . , IK . This is not the case for other orderings, so only the stage-
wise ordering can be used to make inferences on termination of error spending GSTs when
future information levels beyond the observed stage of stopping are unknown. We shall
base our methods for delayed response GSTs on an adaptation of the stage-wise ordering
so they may be used with the error spending versions of delayed response GSTs.

For consistency between the outcome of a standard GST and the upper p-value p+, the
smallest values of p+ should occur when the test rejects H0. While a standard GST has a
continuation region separating outcomes with a particular Ik into upper and lower sections,
Figure 1 illustrates that S̃k can take values on the whole real line at decision analysis k.
Hence, in ordering the sample space Ω for a delayed response GST, we need to partition
the range of outcomes with ĨT = Ĩk into a “high end” with S̃k ≥ ck and a “low end” with
S̃k < ck. In the spirit of the stage-wise ordering, we create an overall ordering of Ω by
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defining the relation (Ĩk1
, s̃k1

) � (Ĩk2
, s̃k2

) to hold if

(a) Ĩk1
= Ĩk2

and s̃k1
≥ s̃k2

, or

(b) Ĩk1
< Ĩk2

and s̃k1
≥ ck1

, or

(c) Ĩk1
> Ĩk2

and s̃k2
< ck2

.

(21)

Since (Ĩk1
, s̃k1

) � (Ĩk2
, s̃k2

) whenever s̃k1
≥ ck1

and s̃k2
< ck2

, outcomes for which the
delayed response GST rejects H0 are highest in the ordering, so the p-value is consistent
with the test outcome in that p+ ≤ α if and only if H0 is rejected.

Although partitioning outcomes ĨT = Ĩk about ck leads to a discontinuous treatment
of these outcomes, results in Table 1 indicate that, at least when r is small, the density
around S̃k = ck is low. Alternatives, such as ordering by the MLE of θ, would avoid such
discontinuities. However, p+ would then depend on information levels beyond stage T , so
the method would not extend to error spending versions of our designs.

Given an ordering of Ω, it is straightforward to create a (1−α)100% confidence set for θ
by inverting a family of hypothesis tests for each possible θ value. To test H : θ = θ′, we
partition Ω into sets RL,θ′, Aθ′ and RU,θ′ such that (Ĩk1

, s̃k1
) ≺ (Ĩk2

, s̃k2
) ≺ (Ĩk3

, s̃k3
) for

outcomes (Ĩk1
, s̃k1

) ∈ RL,θ′, (Ĩk2
, s̃k2

) ∈ Aθ′ and (Ĩk3
, s̃k3

) ∈ RU,θ′ ,

P(RL,θ′; θ′) = P(RU,θ′ ; θ′) = α/2 and P(Aθ′ ; θ′) = 1− α.

For each θ′ ∈ R, a level α, two-tailed test of H : θ = θ′ accepts its null hypothesis for
outcomes in Aθ′ . Inverting this family of tests yields a (1 − α)100% confidence set for θ.
If the observed outcome is (Ĩk⋆ , s̃⋆), the confidence set is

{ θ : (Ĩk⋆ , s̃⋆) ∈ Aθ }. (22)

If P{ (ĨT , S̃T ) � (Ĩk⋆ , s̃⋆); θ} is monotone increasing in θ for each (Ĩk⋆ , s̃⋆) ∈ Ω, the set (22)
is the interval (θL, θU ) whose endpoints satisfy

P{ (ĨT , S̃T ) � (Ĩ⋆
k , s̃

⋆) ; θL) } = α/2 and P{ (ĨT , S̃T ) � (Ĩ⋆
k , s̃

⋆) ; θU ) } = α/2. (23)

We have checked a wide variety of optimal delayed response GSTs with 0 < r ≤ 0.5 and
2 ≤ K ≤ 10 and found no evidence of non-monotonicity in these examples. However, if the
monotonicity property does not hold, a conservative confidence interval can still be defined
by evaluating ξ(θ) = P{ (ĨT , S̃T ) � (Ĩk⋆ , s̃⋆); θ} on a grid of θ values and taking the lowest
solution for θL and the highest solution for θU in (23).

4.3. Methods of inference to deal with unexpected overrunning
Whitehead (1992) refers to the arrival of additional data after stopping according to a
group sequential rule as “overrunning”. In Section 1 we noted that Whitehead’s (1992)
deletion method for making inferences after a standard GST overruns is conservative and
the methods proposed by Hall & Ding (2008) do not improve on the power achieved by
the deletion method for constant amounts of overrunning. Hall & Liu (2002) order the
sample space by the MLE of θ, so their method requires knowledge of unobserved future
information levels. We shall draw on the methods of Sections 4.1 and 4.2 to create a new
method for making decisions and inferences after a GST overruns.

Consider a standard one-sided GST with information level Ik and boundary values lk
and uk at analyses k = 1, . . . ,K, where lK = uK . The information sequence and boundary
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values are chosen to give type I error rate α under θ = 0 and the design stipulates that the
trial should stop at analysis k to accept H0: θ ≤ 0 if Sk ≤ lk and to reject H0 if Sk ≥ uk.
Suppose the trial stops at analysis k⋆ with Sk⋆ ≤ lk⋆ or Sk⋆ ≥ uk⋆ but additional responses
are then observed. Although this eventuality had not been anticipated, it is required that
these overrun data be included in a final analysis. We define Ĩk⋆ as the information and
S̃k⋆ as the score statistic incorporating the overrun data. If we allow for the possibility of
overrunning at analysis K, or otherwise set ĨK = IK and S̃K = SK , we see the sample
space has the same form as Ω defined in (19) when delayed responses are anticipated.

We are faced with the task of specifying a constant ck⋆ such that H0 is rejected if
S̃k⋆ ≥ ck⋆ and accepted if S̃k⋆ < ck⋆ . Suppose first that k⋆ < K. Since information levels
Ĩ1, . . . , Ĩk⋆−1 involving overrun data that would have been observed after stopping at an
earlier analysis are typically unknown, as are information levels at analyses k > k⋆, we
find ck⋆ by application of Method 1 for constructing error spending tests. Choosing ck⋆ to
satisfy (14) preserves the null probability of rejecting H0 at stage k⋆. This methodology
is valid if the amount of overrun data is unpredictable and Ĩk is regarded as a random
variable, as long as the amount of additional data is not related to the value of Sk⋆ . A
simple adjustment is required if the trial terminates at analysis K with ĨK > IK . In this
case, cK⋆ is chosen so that P(S1 ∈ C1, . . . , SK−1 ∈ CK−1, S̃K ≥ cK⋆ ; θ = 0) is equal to the
probability P(S1 ∈ C1, . . . , SK−1 ∈ CK−1, SK ≥ uK ; θ = 0) under the original trial design.

We can use the same construction to define a p-value after a one-sided GST has overrun.
Suppose first that each information level Ĩk⋆ that would arise after stopping at interim
analysis k⋆ with Sk⋆ /∈ Ck⋆ and observing overrun data is known. We can compute critical
values ck⋆ satisfying (14) and combining these with the stopping boundary values lk and uk
gives a delayed response GST of form (1). We now apply the stage-wise ordering defined
in Section 4.2 to create the one-sided p-value for testing H0 : θ = 0 against θ > 0 when
S̃k⋆ = s⋆ after the GST stops at analysis k⋆. The equality of reversal probabilities stipulated
by definition (14) implies the null probability of stopping at stage k < k⋆ with Sk /∈ Ck and
then observing S̃k ≥ ck is equal to the probability that the original GST stops at stage k
with Sk ≥ uk. Likewise, the null probability of stopping at stage k < k⋆ with Sk /∈ Ck and
then observing S̃k ≤ ck is equal to the probability that the original GST stops at stage k
with Sk ≤ lk. It follows that p+ has no dependence on Ĩ1, . . . , Ĩk⋆−1 and c1, . . . , ck⋆−1, so
our earlier assumption that these information levels are known is unnecessary.

The above method makes assumptions about how inferences would have been made had
the trial stopped at a different stage. It is important for methods of inference on termination
of a GST to be specified in advance to avoid concerns that another method might have been
chosen if this would have given a more impressive p-value. It is not difficult to explain how
unexpected overrunning will be dealt with: protocols can include a standard statement that
the above construction based on the stage-wise ordering will be used if there are overrun
data. In the absence of overrunning this reduces to the usual stage-wise ordering for a
standard GST. If the trial overruns unexpectedly and the scenario discussed in Example A
arises, a p-value can be calculated enabling a clear interpretation of the trial data.

5. Incorporating data on a short-term endpoint

5.1. Formulation of GSTs incorporating data on a short-term endpoint
We have considered the case of a single, long-term endpoint measured after time ∆t.
Suppose that a correlated short-term endpoint is also observed at time ∆1,t. An example is
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Fig. 7. Pattern of variation of numbers of fully and partially observed subjects during a delayed
response GST with short-term and long-term endpoints. During the interval (∆t, tmax + ∆1,t), the
total number of partially observed subjects remains constant at nmaxr(1−∆1,t/∆t).

the study in Example D, where the long-term endpoint is incidence of fracture within five
years but the change in bone mineral density is also measured at one year.

Let YA,i and YB,i, i = 1, 2, . . . , denote the short-term responses and XA,i and XB,i,
i = 1, 2, . . . , the long-term responses for subjects allocated to treatments A and B,
respectively. Suppose responses on different subjects are independent and the pair of
responses for subject i on treatment T ∈ {A,B} follows a bivariate normal distribution

(

YT,i

XT,i

)

∼ N

((

µT,1

µT,2

)

,

(

σ2
1 τσ1σ2

τσ1σ2 σ2
2

))

. (24)

We assume for now that σ2
1 , σ

2
2 and τ are known but we shall show in Section 6 that it

is possible to proceed adaptively, estimating these parameters during the course of a trial.
Suppose we wish to test H0: θ ≤ 0 against θ > 0, where θ = µA,2 − µB,2, using a K-stage
delayed response GST with type I error rate α at θ = 0 and power 1− β at θ = δ.

At each analysis, subjects are unobserved, partially observed (with just the short-
term endpoint available), or fully observed (with both endpoints). Figure 7 shows how
the numbers of partially and fully observed subjects develop as the trial proceeds. Let
β = (µA,1, µB,1, µA,2, µB,2)

T , then at each interim analysis k = 1, . . . ,K − 1, we fit the

model (24) to all available data to obtain the maximum likelihood estimator β̂k, and hence

θ̂k and Ik = {Var(θ̂k)}−1. If recruitment is terminated at interim analysis k, we wait to
observe long-term endpoints for all subjects, then re-fit model (24) to obtain β̃k, θ̃k and Ĩk.
The sets of data used to obtain θ̂1, . . . , θ̂k, θ̃k are nested and it follows from the general theory
of Jennison & Turnbull (1997) that these estimates have the standard joint distribution and
the related score statistics follow the canonical joint distribution of Section 2.2. Thus, with
Sj = θ̂j Ij , j = 1, . . . , k, and S̃k = θ̃k Ĩk, the sequence (S1, . . . , Sk, S̃k) is multivariate

normal with Sj ∼ N(Ijθ, Ij), j = 1, . . . , k, S̃k ∼ N(Ĩkθ, Ĩk) and independent increments.
Since this distribution is exactly that arising for a single delayed response, GSTs of form (1)
can be applied and their properties computed by the methods described previously.

Note that the final decision here concerns only the long-term endpoint. The short-term
endpoint improves efficiency by increasing the information Ik for the long-term endpoint
at interim analyses. While the short-term endpoint may itself be of clinical interest (as in
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Example D), it is actually sufficient for it to be correlated with the long-term endpoint.
The approach extends to repeated measurements where a model can be fitted to all data

on partially observed subjects at each interim analysis. The ASTIN stroke trial described
by Grieve & Krams (2005) made similar use of a longitudinal model for intermediate data
in implementing a response-adaptive dose allocation scheme. Fu & Manner (2010) describe
uses of intermediate data in dose-finding studies with early stopping and adaptive treatment
allocation. Use of repeated measurement data in GSTs has been considered by Galbraith
& Becker (2001) and Galbraith & Marschner (2003). Their aim is to reduce study duration
and, in their formulation, data collection ceases when the GST reaches a conclusion, so
there is no “pipeline data” to wait for. As in our application, the benefit of short-term data
is an increase in the precision of the estimate for the long-term endpoint.

5.2. Implementation of delayed response GSTs using short-term data
Let n1,k and n2,k denote the numbers of partially and fully observed cases out of the ñk

subjects recruited at interim analysis k, for k = 1, . . . ,K − 1. For planning purposes, it is
convenient to assume equal numbers of subjects are randomised to each treatment. Then,
at interim analysis k, there are n2,k/2 subjects on each treatment for whom both short-term
and long-term responses are observed and a further n1,k/2 subjects per treatment with just
a short-term response. For a given recruitment rate c and planned interim analysis time tk,
the values of n1,k, n2,k and ñk can be predicted as

n1,k = (∆t −∆1,t)c, n2,k = (tk −∆t)c, and ñk = tk c. (25)

The full set of data at interim analysis k follows a normal linear model with parameter
vector β and covariances are present between short-term and long-term responses for the
same subject. Fitting this model by maximum likelihood, we find

µ̂A,1 − µ̂B,1 =
2

n2,k + n1,k

(n2,k+n1,k)/2
∑

i=1

(YA,i − YB,i) (26)

and

θ̂k =
2

n2,k

n2,k/2
∑

i=1

(XA,i −XB,i)−
τσ2
σ1





2

n2,k

n2,k/2
∑

i=1

(YA,i − YB,i)− (µ̂A,1 − µ̂B,1)



 . (27)

The information for θ at interim analysis k is

Ik = {Var(θ̂k)}−1 =

[

4σ2
2

n2,k

(

1− τ2
n1,k

(n1,k + n2,k)

)]−1

. (28)

If recruitment ceases at analysis k, short-term and long-term responses are observed for all
pipeline subjects and the full data on the ñk subjects at decision analysis k yield

θ̃k =
2

ñk

ñk/2
∑

i=1

(XA,i −XB,i), (29)

and

Ĩk = {Var(θ̃k)}−1 =
ñk

4 σ2
2

. (30)
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Here, with long-term endpoints recorded for all subjects, short-term endpoints play no role
in estimating θ.

Given a sequence of planned analysis times, we can substitute n1,k, n2,k and ñk from (25)

into (28) and (30) to obtain the anticipated information levels Ik and Ĩk. We could then
use the methods of Section 2.4 to find the delayed response GST with type I error rate α
and power 1− β at θ = δ which minimises an expected sample size criterion.

Alternatively, we can use the error spending approach to implement a flexible design with
given type I error rate and power. We plan such a design assuming a certain accrual rate
and pattern of analysis times, for which (25), (28) and (30) give the sequence of information
levels. For given Imax, f(t) and g(t), we can apply, say, Method 2 of Section 4.1 to find
the stopping and decision boundaries by solving (12), (14) and (16) for k = 1, . . . ,K − 1
and (15) for k = K. We need to tailor this design to achieve the desired power 1 − β at
θ = δ. Keeping the analysis times fixed, we can search for the parameter ρ in the error
spending functions (17) that leads to a final boundary point cK satisfying (18). Or, if we
fix ρ and assume analysis times will follow the pattern (9), we can search for the value of
tmax, and hence nmax and Imax, that will give a boundary satisfying (18).

5.3. Efficiency of delayed response GSTs incorporating data on a short-term endpoint
We illustrate the methods of this section in a testing problem with type I error rate
α = 0.025, power 1 − β = 0.9 at θ = δ, and inflation factor R = 1.1. The delay ∆t in
observing the long-term response leads to a delay parameter r = ∆t/tmax and we define
κ = ∆1,t/∆t, so a small value of κ means the short-term endpoint is seen much more rapidly
than the long-term endpoint. We suppose the K−1 interim analyses are scheduled to follow
the pattern (9) with information levels given by(28) and (30). We have optimised delayed
response GSTs incorporating a short-term endpoint for the objective function F .

Figures 8(a) to 8(d) plot values of F for these optimised designs. Results for κ = 1
correspond to the case of no short-term endpoint, while r = 0 implies an immediate
response. For r up to 0.2 or 0.3 say, using a short-term endpoint helps recover many
of the benefits of early stopping associated with GSTs for an immediate response. Even
for larger r, the benefits of interim monitoring are increased and group sequential testing
becomes worthwhile where the results of Section 3.1 would have indicated the contrary.

In the bone fracture trial of Example D, the short-term endpoint is measured after one
year and the long-term endpoint after five years, so κ = 0.2. If the study duration is
expected to be 10 years in the absence of early stopping, then r = 5/10 = 0.5. Suppose
a GST is planned with K = 5 analyses. If the endpoints are negatively correlated with
correlation τ = −0.7, a delayed response GST using both endpoints will have an average
E(N ; θ), with weights as in F , equal to 90.4% of nfix. This compares with 93.5% of nfix if
no short-term measurement is made. However, if the correlation is stronger, with τ = −0.9,
the average E(N ; θ) decreases further to 85.9% of nfix. It is noteworthy that savings in
sample size are possible with such a long delay in observing the primary endpoint.

The efficiency gained by incorporating data on the short-term endpoint stem from the
effect on the information levels at interim analyses, which can be written as

Ik =
(n1,k + n2,k)

4σ2
2

(

1 +
n1,k

n2,k
(1− τ2)

)

−1

, k = 1, . . . ,K − 1. (31)

For high values of τ2, there can be a significant increase on the information level n2,k/(4σ
2
2)

from long-term responses alone; as τ2 tends to 1, Ik approaches (n1,k + n2,k)/(4σ
2
2), the
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(c) K = 2, τ = 0.9
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(d) K = 5, τ = 0.9

Fig. 8. Values of F , expressed as a percentage of nfix, for delayed response GSTs incorporating
measurements on a short-term endpoint. Tests have type I error rate α = 0.025, power 1− β = 0.9
at θ = δ and R = 1.1, and are designed to minimise F . The parameter κ = ∆1,t/∆t indicates how
rapidly the short-term endpoint becomes available.

information if long-term responses are available for all n1,k + n2,k subjects. As a guide, if
we write Ik = (n2,k + ξ n1,k)/(4σ

2
2), then for τ2 = 0.5 the value of ξ ranges from 0.5 to 0.33

as n1/n2 increases from zero to one, while ξ ranges from 0.8 to 0.67 for τ2 = 0.8.
Intuitively, the short-term response provides a prediction of a patient’s long-term

response which is, somehow, used in θ̂k. The formulae in equations (26) and (27) offer
a different explanation. We see there that the short-term responses provide an estimate of
µA,1−µB,1 which is used in (27) to adjust the contribution of subjects with both short-term
and long-term responses to the estimate of θ. This is most easily appreciated when n1,k is
very large and µ̂A,1 − µ̂B,1 can be regarded as equal to µA,1 − µB,1. Then, (27) becomes

θ̂k =
2

n2,k

n2,k/2
∑

i=1

(XA,i −XB,i)−
τσ2
σ1





2

n2,k

n2,k/2
∑

i=1

(YA,i − YB,i)− (µA,1 − µB,1)



 ,

the formula for an estimate of the mean of XA,i − XB,i when correlated observations
YA,i − YB,i with known mean µA,1 − µB,1 are also observed.

The examples of Figure 8 show the ideal short-term endpoint should be rapidly available
and highly correlated with the primary endpoint. In practice, a balance will need to be
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sought between these properties. Figure 8 shows that the effects of this trade-off on expected
sample size are quite complex. Further gains may be made by measuring the short-term
endpoint on several occasions, or even using more than one type of short-term endpoint.

A natural choice for a short-term endpoint is an early measurement of the endpoint of
clinical interest, which may be made as a matter of course in many clinical trials. In closing,
we re-iterate that the final testing decision concerns the primary, long-term endpoint and
we do not assume the short-term endpoint to be a surrogate for this.

6. Dealing with unknown nuisance parameters

6.1. Information monitoring
So far, we have calculated testing boundaries assuming we know the values of nuisance
parameters such as the response variance, σ2, or correlation between short-term and long-
term endpoints. However, this is unlikely to be the case in practice. For a single endpoint
with unknown σ2, internal pilot studies use a first stage estimate of σ2 to update the sample
size target; for a review of methods see Proschan (2009) and references therein. If early
stopping to reject or accept the null hypothesis is also desired, the group sequential t-tests
proposed by Denne & Jennison (2000) and Timmesfeld et al. (2007) combine sample size
re-estimation with interim monitoring of the primary endpoint.

Mehta & Tsiatis (2001) adapt error spending designs to the case of unknown variance,
monitoring accruing information rather than sample size. At each analysis, Ik is calculated
using the current estimate of σ2 and error spending boundaries for a sequence of Z-statistics
are derived, based on the estimated information levels. These boundaries are expressed in
terms of significance levels for testing the null hypothesis, which are applied to the t-
statistics observed at interim analyses. When sampling continues, future group sizes are
planned to reach the target information level assuming the current estimate of σ2 to be the
true value. This “significance level” approach for converting boundaries for Z-statistics to
other applications, first proposed by Pocock (1977), maintains the marginal error probability
at each analysis and Jennison & Turnbull (2000, Section 3.8) show this is an effective way
to control the overall error rate. Mehta & Tsiatis (2001) show their tests control error
probabilities at close to nominal levels in a range of scenarios.

We shall present “information monitoring” versions of our error spending designs
for delayed responses with short-term and long-term endpoints. We allow the response
variances σ2

1 and σ2
2 as well as the correlation coefficient τ to be unknown and show by

simulation that error probabilities are accurately achieved.

6.2. Designing and implementing a trial with information monitoring
6.2.1. Specifying Imax and error spending functions f(t) and g(t)
Consider a test of H0 : θ ≤ 0 against θ > 0 with type I error rate α at θ = 0 and power
1 − β at θ = δ. Short-term and long-term measurements with distribution (24) are to be
made on each patient, but σ2

1 , σ
2
2 and τ are unknown. In applying error spending designs

for delayed responses, as described in Section 4.1, we specify error spending functions f(t)
and g(t). Here t denotes the ratio I/Imax but an estimate of Ik using current estimates of
σ2
2 and τ in (28) will be used in calculating the testing boundaries at each analysis k.
For design purposes, we follow the procedure for planning an error spending, delayed

response GST described in Section 5.2. There, we assumed constant accrual at a certain
rate c and a sequence of analysis times tk. Now, we also need initial estimates σ2

2,0 of σ2
2
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and τ0 of τ to substitute into (28) and (30). The output from this planning stage is a target
information level Imax and the two error spending functions f(t) and g(t). The information
monitoring approach requires a commitment to reaching Imax unless the test stops with an
early decision. Hence, nmax,0 = 4 σ2

2,0 Imax is the preliminary estimate of the total sample
size that may be required and the time of the first interim analysis is chosen accordingly.

6.2.2. Estimating nuisance parameters and calculating test statistics

In the notation of Section 5, let n1,k and n2,k be the number of partially and fully observed
cases out of the ñk subjects recruited at interim analysis k, for k = 1, . . . ,K − 1. For
simplicity, we shall refer to the equations of Section 5.2 which assume equal numbers of
responses on each treatment but we note the extension to the general case is straightforward.

Let s21,k denote the usual pooled estimator of σ2
1 calculated from the n1,k+n2,k subjects

with short-term responses at interim analysis k. Likewise, let s22,k denote the pooled

estimator of σ2
2 from the n2,k subjects with long-term responses. Define τ̂A,k and τ̂B,k

to be the Pearson product-moment correlation estimators based on the responses of the
n2,k/2 fully observed subjects on treatment arms A and B respectively. We follow Donner
& Rosner (1980) in estimating the common correlation coefficient by the weighted average
of τ̂A,k and τ̂B,k and denote this estimate by τ̂k.

Let Ik(s22,k, τ̂k) be the estimate of the observed information obtained by substituting

s22,k and τ̂k into (28). Define θ̂k(s
2
1,k, s

2
2,k, τ̂k) to be the estimate of θ at interim analysis k

calculated by substituting current estimates of the nuisance parameters into formula (27).
The Wald statistic for testing H0 at interim analysis k is

Tk = θ̂k(s
2
1,k, s

2
2,k, τ̂k)

√

Ik(s22,k, τ̂k).

Since θ̂k(s
2
1,k, s

2
2,k, τ̂k) and Ik(s22,k, τ̂k) depend on s21,k, s

2
2,k and τ̂k in a complex way, Tk does

not follow a standard distribution.
At decision analysis k, the long-term response is observed for all ñk subjects. The

estimated treatment effect θ̃k is given by (29) and the observed information is estimated
by Ĩk(s̃22,k) = ñk/(4s̃

2
2,k) where s̃22,k denotes the pooled estimate of σ2

2 based on the ñk

long-term responses. Marginally, s̃22,k ∼ σ2
2 χ

2
ñk−2/(ñk − 2) and the Wald statistic,

T̃k = θ̃k

√

Ĩk(s̃22,k), (32)

for testing H0 at decision analysis k follows a tñk−2 distribution under H0.

6.2.3. Calculating and applying error spending boundaries

We derive the stopping rule and decision rule for the error spending design following the
methods described in Section 4.1 with pre-specified f(t), g(t) and Imax and using estimates
Ik(s22,k, τ̂k) and Ĩk(s̃22,k) in place of Ik and Ĩk. A parallel result to the canonical joint
distribution of the score statistics Sk stated in Section 2.2 is that the distribution of
standardised statistics (T1, . . . , Tk, T̃k) is approximately that of a sequence of Z-statistics
(Z1, . . . , Zk, Z̃k) based on accumulating data. Specifically, the Z-statistics are multivariate
normal, each Zi ∼ N(θ

√Ii, 1) and Cov(Zi, Zj) =
√
(Ii/Ij) for i < j. These properties

imply that the sequence (Z1, . . . , Zk, Z̃k) is Markov.
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We recommend following the construction in Method 2 of Section 4.1, but working on the
Z-scale. Critical values for Zk are then applied to the Wald statistic Tk. At a general interim
analysis k, the cumulative type I and type II error probabilities are f(t) and g(t) evaluated
at t = Ik(s22,k, τ̂k)/Imax. In calculating critical values for the Z-statistics at analysis k, we

substitute estimates Ik−1(s
2
2,k−1, τ̂k−1) of Ik−1, Ik(s22,k, τ̂k) of Ik and Ĩk(s22,k) of Ĩk into

formulae for the conditional distribution of Zk given Zk−1 and of Z̃k given Zk. It remains
to deal with the case where recruitment terminates at interim analysis k, either because
k = K, the pre-specified maximum number of analyses, or because Ĩk(s22,k) ≥ Imax. Here,

we set the critical value for Z̃k to spend all the remaining type I error probability. In
carrying out this computation under θ = 0, we use the conditional distribution of Z̃k given
Zk−1, which depends on Ĩk/Ik−1. This ratio is obtained from (28) with k−1 for k and (30)
and, since σ2

2 cancels, there is no need to substitute either estimate s22,k−1 or s̃22,k.

Since the estimators used for σ2
1 , σ

2
2 and τ are consistent, the joint distribution stated

above holds asymptotically. For small sample sizes, we can adjust for this approximation
through the “significance level” approach referred to in Section 6.1. As Tk does not follow a
standard distribution, we simply compare Tk to the upper and lower critical values for Zk.
However, T̃k has a tñk−2 distribution under H0 and we maintain the marginal probability
that Z̃k ≥ dk, say, when Z̃k ∼ N(0, 1) by rejecting H0 at decision analysis k if

T̃k ≥ tñk−2,1−Φ(dk),

where tν,p denotes the 100 p percentile of the t-distribution with ν degrees of freedom.

Fluctuations in variance estimates can lead to Ik(s22,k, τ̂k) < Ik−1(s
2
2,k−1, τ̂k−1).

Jennison & Turnbull (2007) note such decreases in estimated information occur surprisingly
often when monitoring a single immediate response. We follow their pragmatic solution and
do not permit early stopping at an interim analysis when estimated information decreases.
As explained above, our treatment of the analysis k at which recruitment terminates does
not require an estimate of σ2

2 , so there is no risk of problems arising from s̃22,k > s22,k−1 and
a decrease in estimated information between interim analysis k− 1 and decision analysis k.

In an information monitoring design, interim analyses can be conducted at a sequence
of calendar times until the target information level Imax is attained or until a time limit or
maximum number of analyses is reached. One may also update the estimate of the sample
size needed to achieve Imax and re-schedule interim analyses so as to reach this sample size
after a certain number of analyses, K. The following example illustrates this approach.

6.3. Properties of information monitoring designs
We have simulated the information monitoring designs defined in Section 6.2 to assess their
type I error rates and power. In our examples, procedures are designed to test H0 : θ ≤ 0
against θ > 0 with nominal type I error probability α = 0.025 and power 0.9 at θ = δ.
We use ρ-family error spending functions f(t) and g(t), as defined in (17), with ρ = 2 and
schedule analyses so that the target information level Imax is reached at the fifth analysis.
We assume a patient accrual rate c and take the ratio of delays to be κ = ∆1,t/∆t = 0.6.

The maximum information level Imax is derived under initial estimates σ2
2,0 and τ0.

Hence, we obtain preliminary values nmax,0 = 4 σ2
2,0 Imax for the maximum sample size

and tmax,0 = nmax,0/c for the time needed to recruit this number of patients. With
r0 = ∆t/tmax,0 and anticipating K − 1 interim analyses, equally spaced between ∆t and
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Table 4. Empirical type I error rates and power of information monitoring designs with
nuisance parameters σ2

1 = 1, σ2

2 = 2 and τ = 0.7. Initial estimates σ2

2,0 = 2.3 and τ0 = 0.6
or 0.8 are used at the design stage. The delay ratio is κ = 0.6. Tests have a maximum of
5 stages and are designed to achieve type I error rate 0.025 and power 0.9 at θ = δ under
delay parameter λ0. Results are based on 500,000 simulations.

τ0 = 0.6 τ0 = 0.8

λ0 Imax Type I Power Imax Type I Power
error rate error rate

δ = 0.5 0.1 45.9 0.0259 0.8957 46.0 0.0260 0.8962
0.2 45.3 0.0257 0.8949 45.5 0.0262 0.8969
0.3 44.6 0.0256 0.8936 44.9 0.0253 0.8955

δ = 1.0 0.1 11.5 0.0299 0.8803 11.5 0.0298 0.8809
0.2 11.3 0.0282 0.8731 11.4 0.0278 0.8744
0.3 11.1 0.0265 0.8640 11.2 0.0266 0.8661

tmax,0, we conduct the first interim analysis when

ñ1 =
nmax,0

K
{1 + (K − 1)r0}

subjects have been recruited. At this point, there are n1,1 = nmax,0r0(1 − κ) partially
observed and n2,1 = nmax,0(1−r0)/K fully observed cases. Before proceeding to the second
interim analysis, the new estimate s22,1 of σ2

2 can be used to update the required maximum
sample size and plan future analyses. In the general step, if recruitment continues beyond
interim analysis k, the target sample size is updated to nmax,k = 4 s22,k Imax and the next
interim analysis is performed after recruiting a total of

ñk+1 = ñk + (nmax,k − ñk)/(K − k)

subjects. Since a maximum of 5 stages is specified, if the trial continues past interim
analysis 4 we proceed directly to a decision analysis with ñ5 = nmax,4 = 4 s22,4 Imax fully
observed subjects and spend all the remaining type I error probability at this point.

Table 4 reports simulations under σ2
1 = 1, σ2

2 = 2 and τ = 0.7, using initial estimates
σ2
2,0 = 2.3 and τ0 = 0.6 or 0.8. The delay in the long-term response is specified through the

parameter λ0 = c∆t/nfix,0 from which we can obtain r0 = λ0 Ifix/Imax. At each interim
analysis, the number of pipeline subjects with no long-term response is λ0 nfix,0. Results
are based on 500, 000 replicates so 95% reference ranges are (0.0246, 0.0254) for estimates
of a type I error rate of 0.025 and (0.8992, 0.9008) for estimates of power equal to 0.9.

Table 4 shows attained type I error rates and power close to their intended values.
There is a small inflation of type I error rate when δ = 0.5, where Imax ≈ 45 and
nmax = 4 σ2

2 Imax ≈ 360, so there are reasonable numbers of observations for estimating σ2
1 ,

σ2
2 and τ , even at the first few analyses. Lower sample sizes when δ = 1, where nmax ≈ 90,

lead to higher increases in the type I error rate. These results agree with findings for sample
size re-estimation procedures when a single response variance is estimated: reducing sample
size when the current variance estimate is low and increasing it when the current estimate
is high leads to a downward bias in the final variance estimate and an increase in the type I
error rate; see, for example, Wittes et al. (1999) and Jennison & Turnbull (2007).

Tests achieve the desired power accurately, particularly for the higher sample sizes when
δ = 0.5. We can also report that expected sample sizes are close to those when the values of
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Table 5. Values of F expressed as a percentage of nfix attained by a standard GST optimised
for the case of immediate response and optimal delayed response GSTs. Tests have type I
error rate α = 0.025, power 1 − β = 0.9 at θ = δ and K = 3 analyses with final information
level Imax = 1.1 Ifix. The standard GST is designed and implemented for information levels
Ik = (k/K) Imax, k = 1, . . . ,K. Delayed response tests are derived for this information sequence
and also for the sequence given by (10).

Optimal standard Optimal delayed response Optimal delayed response
r GST with equally GST with equally GST based on information

spaced Ik spaced Ik sequence (10)

0.01 71.2 71.2 71.2
0.1 78.2 78.0 77.7
0.2 86.0 84.5 83.5
0.3 93.9 89.9 88.0
0.4 99.2 93.6 91.5

σ2
1 , σ

2
2 and τ are known. In some cases, designs for the case of unknown nuisance parameters

have lower expected sample size, attributable to some under-estimation of the sample size
needed for the target information level Imax and slightly higher error rates.

We have conducted further simulations to investigate the separate effects of uncertainty
about variance and correlation parameters. In repeating the simulations of Table 4 when
τ is known, we obtained almost identical results. When we treated σ2

1 and σ2
2 as known

but τ as unknown, differences between the observed type I error rates and the target of
0.025 were consistent with the sampling error for 500,000 replicates. We conclude that this
methodology is robust to uncertainty about τ . Furthermore, in the context of a phase III
trial, when sample sizes will usually be at least as large as those for cases with δ = 0.5 in
Table 4, we believe one can be confident the information monitoring approach will provide
adequate control of the type I error rate and deliver power close to its target value.

7. Discussion and extensions

We have presented a new framework for group sequential testing when there is a delay in
observing the primary response. This framework offers a systematic alternative to existing
methods which Hall & Liu (2002, Section 4.4) speculate may sometimes be used in an
ad hoc, and not necessarily appropriate, manner. Since our designs are optimised, they
represent the most efficient option given the constraints in our formulation. We can re-cast
the optimality property to state that our optimised delayed response GSTs maximise power
at θ = δ among all designs with the same stopping rule and type I error rate α. Thus, these
designs resolve the question raised in Section 1 of how to incorporate data accrued after
terminating a group sequential design. The probabilities that these designs “reverse” the
decision anticipated on stopping recruitment are of the correct magnitude: higher values
would imply some early stopping decisions are premature while lower values would indicate
too conservative an approach with unnecessary delays in terminating recruitment.

One might ask how standard GSTs perform if pipeline data are disregarded. Column 1
in Table 5 shows average expected sample size, F , for GSTs designed for an immediate
response but with responses observed after a delay. The three analyses are conducted after
equal increments in the number of observed responses; pipeline data are ignored in deciding
to reject or accept H0 but counted in F . Column 2 gives results for delayed response GSTs
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with the same information sequence, optimised for F . Results in column 3 are for optimised
delayed response GSTs with analysis schedules of the form (10). The benefit gained from
analysing the pipeline data under higher values of r is evident in lower values of F .

In planning a trial, designs with different numbers of analyses, K, can be compared
to find the most appropriate choice (our numerical routines can handle values as high as
K = 200). As K increases, group sequential testing approaches fully sequential monitoring.
However, the benefit from each additional analysis decreases as K increases and values
K ≤ 5 are likely to be sufficient in practice; see, for example, the discussion in Section 4 of
Eales & Jennison (1992) for the case of an immediate response.

Our proposed methods may be extended to other forms of hypothesis test and early
stopping. A first step is to define a one-sided test of H0: θ ≤ 0 against θ > 0 with the
intention to stop early only for efficacy. Such a test would have the form (1) but with
lk = −∞ for all k. We shall refer to such a test as a one-sided delayed response GST
with no futility boundary although, since the decision to accept H0 if Sk ≥ uk is followed
by S̃k < ck is binding, there is a small probability of early stopping for futility. It is not
difficult to define such a test with the required type I error rate and optimisation should
be possible for a suitably defined objective. An error spending version of such a test might
also be defined, the challenge being to find a definition with robust efficiency.

A level α, two-sided test of H0: θ = 0 vs θ 6= 0 can be formed by combining boundaries
from two level α/2 one-sided GSTs without futility boundaries, one of H0: θ ≤ 0 vs θ > 0,
the other of H0: θ ≥ 0 vs θ < 0. This construction is in the spirit of Cox & Hinkley (1974)
who consider a two-sided test as two one-sided tests. There is current interest in one-sided
tests with non-binding futility boundaries, which protect the type I error rate even if a
study may continue after the lower, futility boundary has been crossed; see, for example,
Liu & Anderson (2008). Such a design can be created for the case of delayed response by
adding a futility boundary {uk; k = 1, . . . ,K−1} to a level α one-sided GST with no futility
boundary, testing H0: θ ≤ 0 vs θ > 0. In order to control type I error, observing Sk ≤ uk
would have to imply termination with acceptance of H0 regardless of the value of S̃k.

Our results quantify the difference between the expected sample size achievable when
response is immediate and that attained when there is a delay in response. Understanding
the origins of this efficiency loss can help design more efficient trials. The impact of delays
due to data processing and cleaning indicates that any investment which speeds up this
process is likely to be worthwhile. An option that we have not considered is for recruitment
to be halted and then re-started: if the logistical difficulties in this approach could be
overcome, there are interesting challenges in specifying such a design. It is important to
remember the twin goals of low sample size and a rapid decision, particularly when the trial
outcome is positive. Although our formulation in Section 3.2 of a problem with a combined
objective may be somewhat idealised, the results in Figure 5 show this would be a useful
option, meeting the combined objective well, even with a significant delay in response. We
hope these results will spur discussion and prompt alternative problem formulations, with
input from drug developers, ethicists and regulators.

We have demonstrated the benefits of using a short-term endpoint to improve efficiency
when there is a delay in observing the primary endpoint. Stallard (2010) employs a short-
term endpoint in a seamless phase II/III design both for treatment selection at the first
analysis and in implementing a GST to test the effect of the selected treatment on the
primary endpoint. Like Galbraith & Marschner (2003), Stallard does not formally include
pipeline data in the GST, but suggests using Whitehead’s (1992) method to adjust for data
on the primary endpoint received after the GST terminates. It is not necessary here for the
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short-term endpoint to be a surrogate for the long-term endpoint, only that responses on
the two endpoints are correlated.

Our delayed response GSTs assume there is a single piece of information on the primary
endpoint obtainable from each subject a certain time after treatment. In contrast, long-
term survival studies continue to generate information as long as some subjects remain alive.
It is common to apply standard GSTs in survival studies, with an informal treatment of
information accruing after a decision is reached. Hampson (2008, Chapter 9) considers the
design of such studies with the aim of minimising expected time to a conclusion; she finds
that in many cases, forms of GST which give low expected sample size for other data types
lead to efficient GSTs for survival data. Even in this setting, it may be desirable to treat a
certain, well-defined set of information as “pipeline data”. Suppose the database is locked
at time tk for cleaning and processing in advance of interim analysis k at time t′k > tk.
If a stopping decision is made, one may wish to incorporate data from newly recruited
subjects and further follow-up of existing subjects between times tk and t′k. Our delayed
response GSTs could be adapted to this situation, making use of the sequential distribution
theory for log-rank tests and Cox (1972) proportional hazards regression models provided
by Jennison & Turnbull (1997) and Scharfstein et al. (1997).

We have treated the outcomes in Examples C and D of Section 1 as binary, but they
could just as well be regarded as time-to-event data. Thus, in Example D, we might
calculate the Kaplan-Meier estimates (Kaplan & Meier, 1958) of the distribution of time to
a fracture and compare values at 5 years for treatment and control groups. The relevant
sequential distribution theory is presented by Jennison & Turnbull (1985). This approach
handles censoring caused by loss to follow-up. It also gives a simple way to use the partial
information at the time of each interim analysis on subjects with less than five years of
follow-up.
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8. Appendix

8.1. Appendix 1: The backwards induction algorithm
In the Bayes decision problem of Section 2.4 let the random variable L indicate which
of the three prior scenarios occurs with θ = 0 when L = 1, θ = δ when L = 2, and
θ ∼ N(δ/2, (δ/2)2) when L = 3. Denote the prior distribution of L by πL and set
πL(1) = πL(2) = πL(3) = 1/3. Since Sk ∼ N(Ik θ, Ik), we have Sk ∼ N(0, Ik) under
L = 1, while Sk ∼ N(Ik δ, Ik) for L = 2 and Sk ∼ N(Ik δ/2, Ik + I2

k δ
2/4) if L = 3. Let

h1,k(sk), h2,k(sk) and h3,k(sk) denote the densities of Sk under L = 1, 2 and 3, respectively.

We denote the posterior distribution of L given Sk = sk by π
(k)
L (l|sk) and note that

π
(k)
L (l|sk) =

hl,k(sk)

h1,k(sk) + h2,k(sk) + h3,k(sk)
for l = 1, 2 and 3.

Conditional on L = 3 and Sk = sk, θ has the posterior distribution

θ ∼ N

(

sk + 2/δ

Ik + 4/δ2
, (Ik + 4/δ2)−1

)

.
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In a similar manner, we denote the posterior distribution of L given S̃k = s̃k at decision

analysis k by π̃
(k)
L (l|s̃k) and note this can be found from the densities h̃1,k(s̃k), h̃2,k(s̃k) and

h̃3,k(s̃k) of S̃k under L = 1, 2 and 3, respectively.
In finding the Bayes procedure minimising F , we consider the expected additional cost

at interim analyses and decision analyses. This cost includes the loss associated with an
incorrect decision and the sampling cost of subjects who have not yet been recruited, but
not the cost of sampling “pipeline” subjects as this relates to a commitment that has already
been made. At decision analysis k, 1 ≤ k ≤ K, with S̃k = s̃k, the optimal test has expected
additional cost

η(k)(s̃k) = min{d1 π̃(k)
L (1|s̃k), d0 π̃(k)

L (2|s̃k)}.
Now,

π̃
(k)
L (2|s̃k)
π̃
(k)
L (1|s̃k)

=
h̃2,k(s̃k)

h̃1,k(s̃k)

and by the monotone likelihood ratio property of the normal distribution there is a value
ck such that

d1 π̃
(k)
L (1|s̃k) < d0 π̃

(k)
L (2|s̃k) for s̃k > ck

and
d1 π̃

(k)
L (1|s̃k) > d0 π̃

(k)
L (2|s̃k) for s̃k < ck.

Hence, the optimal decision is to Reject H0 if s̃k > ck, to Accept H0 if s̃k < ck, and to
make either decision if s̃k = ck.

At interim analysis k, 1 ≤ k ≤ K − 1, we define β(k)(sk) to be the expected additional
cost for continuing recruitment and proceeding optimally thereafter; we define ρ(k)(sk) to be
the expected additional cost if recruitment terminates at interim analysis k and the optimal
decision is made at the ensuing decision analysis with responses from pipeline subjects.
For each k = 1, . . . ,K − 2, let fk+1(sk+1|sk) be the conditional density of Sk+1 given
Sk = sk and recruitment continues past interim analysis k. Also define fK(s̃K |sK−1) to be
the conditional density of S̃K given SK−1 = sK−1 and recruitment continues past interim
analysis K − 1, leading to the final decision analysis K. For k = 1, . . . ,K − 1, let gk(s̃k|sk)
be the conditional density of s̃k at decision analysis k given Sk = sk and recruitment is
terminated at interim analysis k.

From the definitions of ρ(k)(sk) and η
(k)(s̃k), we have

ρ(k)(sk) =

∫

s̃k

η(k)(s̃k) gk(s̃k|sk) ds̃k for k = 1, . . . ,K − 1.

Similarly,

β(K−1)(sK−1) = π
(K−1)
L (3|sK−1) (ñK − ñK−1) c0 +

∫

s̃K

η(K)(s̃K) fK(s̃K |sK−1) ds̃K

and, for k = 1, . . . ,K − 2,

β(k)(sk) = π
(k)
L (3|sk) (ñk+1 − ñk) c0

+

∫

sk+1

min{ β(k+1)(sk+1), ρ
(k+1)(sk+1) } fk+1(sk+1|sk) dsk+1.
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The preceding relationships allow derivation of the optimal Bayes procedure by
backwards induction. The critical values c1, . . . , cK can be calculated first, and hence the
functions η(k)(s̃k) and ρ(k)(sk). The functions β(k)(sk) can be evaluated, starting with
k = K − 1 and proceeding backwards to k = 1. Since the functions β(k)(sk) and ρ(k)(sk)
appear in the integrands of other functions, they need to be evaluated on grids of points
for use in a numerical integration routine. In the backward induction process, the critical
values lk and uk defining the stopping and continuation regions of the optimal test at interim
analysis k are found as the solutions to β(k)(sk) = ρ(k)(sk).

8.2. Appendix 2: Uniqueness of the solution to the Bayes problem
Theorem 2. The Bayes problem defined by decision and sampling costs d0, d1 and c0

has a unique solution up to actions on sets of Lebesgue measure zero.

Proof. We have seen in Appendix 1 that the optimal rule at decision analyses 1 to K
is uniquely defined apart from a choice of action for sk = ck. Arbitrary changes may also
be made on any set of measure zero as these will not alter the expected cost.

Following the reasoning of Brown et al. (1980, Theorem 3.3), we note that, for
k = 1, . . . ,K − 1, β(k)(sk) and ρ(k)(sk) are analytic functions of sk. Therefore, by the
result of Farrell (1968, Lemma 4.2), the set of values sk for which β(k)(sk) = ρ(k)(sk) is

either of measure zero or equal to the whole real line. However, π
(k)
L (3|sk) → 1 as sk → ∞

and so β(k)(sk) > ρ(k)(sk) for sufficiently large sk. It follows that β(k)(sk) = ρ(k)(sk) only
on a set of measure zero and the result is proved. 2

8.3. Appendix 3: Invariance of the minimum of F/nfix to changes in δ and σ2

Theorem 3. For fixed values of K, α, β, R and delay parameter r, minimum values of
F/nfix for delayed response GSTs with information levels following (10) are invariant to
changes in the response variance σ2 and the treatment effect δ at which power is specified.

Proof. Consider applying a delayed response GST of form (1) to the problem defined
in Section 2.1. Denote by Problem 1 the case where the response variance is σ2

1 and
power 1 − β is specified at θ = δ1. The information needed by a fixed sample size test is
I1,fix = {Φ−1(1−α)+Φ−1(1−β)}2/δ21 , which requires a sample size of n1,fix = 4 σ2

1 I1,fix
divided equally between the two treatments. A delayed response GST has I1,max = R I1,fix
and n1,max = 4 σ2

1 I1,max. Suppose the patient recruitment rate is c1 and the delay in
observing each response is ∆1,t, then t1,max = n1,max/c1 and

r1 =
∆1,t

t1,max
=

∆1,t c1 δ
2
1

4 σ2
1 R {Φ−1(1− α) + Φ−1(1− β)}2 .

The values r1 and I1,max define the information levels I1,k at interim analyses and Ĩ1,k
at decision analyses specified by equation (10). Let I1,(1), . . . , I1,(2K−1) denote the values

I1,1, Ĩ1,1, . . . , I1,K−1, Ĩ1,K−1, Ĩ1,K arranged in increasing order and let S1,(k) be the score

statistic, an Sk or S̃k, associated with I1,(k).
The sequence {S1,(1), . . . , S1,(2K−1)}, is generated by an accumulating body of data,

hence the results of Jennison & Turnbull (1997) imply this sequence has the canonical joint



36 Hampson and Jennison

distribution. Setting Z1,(k) = S1,(k)/
√I1,(k), k = 1, . . . , 2K− 1, it follows that the sequence

{Z1,(1), . . . , Z1,(2K−1)} is multivariate normal with

Z1,(k) ∼ N(θ
√I1,(k), 1)

and Cov(Z1,(k1), Z1,(k2)) =
√{I1,(k1)/I1,(k2)} for k1 < k2.

Now consider Problem 2, with response variance σ2
2 , power 1 − β set at θ = δ2,

recruitment rate c2 and response delay ∆2,t. Define I2,fix, n2,fix, I2,max, n2,max, t2,max

and r2 in the analogous manner to Problem 1. If r2 = r1, scheduling analyses according
to (10) generates the information levels of Problem 1 multiplied by δ21/δ

2
2 . Hence, the

information levels I2,k and Ĩ2,k have the same ordering and the ordered sequence satisfies

I2,(k)
I1,(k)

=
δ21
δ22
, k = 1, . . . , 2K − 1.

Let S2,(k) be the score statistic associated with I2,(k) and set Z2,(k) = S2,(k)/
√I2,(k),

k = 1, . . . , 2K − 1. It is easily checked that the joint distribution of {Z2,(1), . . . , Z2,(2K−1)}
under θ = ξ δ2 is the same as that of {Z1,(1), . . . , Z1,(2K−1)} under θ = ξ δ1.

Consider a delayed response GST for Problem 1 specified in terms of critical values for
the standardised statistics Z1,k and Z̃1,k. The same critical values can be applied to the

Z̃2,k in Problem 2. In the cases θ = ξ δ1 in Problem 1 and θ = ξ δ2 in Problem 2, these two
tests have the same distribution of stopping times and decisions to reject or accept H0, but
on termination at decision analysis k information levels are in the ratio δ22/δ

2
1 and sample

sizes in the ratio (σ2
1 δ

2
2)/(σ

2
2 δ

2
1). The criteria F in equation (3) can be written as

F =

∫

E(N ; ξ δ) 2 φ(2ξ − 1) dξ

and substituting δ = δi, i = 1 and 2, gives the criteria to be applied in Problems 1 and 2,
respectively. Denote the values attained by tests for Problems 1 and 2 defined by a common
set of critical values on the Z scale by F1 and F2. Then the above results imply

F1

n1,fix
=

F2

n2,fix
.

If we have a delayed response GST minimising F1 in Problem 1 we can apply this test, on
the Z scale, to Problem 2 to attain the same value of F/nfix, and vice versa. It follows
that the minimum of F1/n1,fix in Problem 1 and the minimum of F2/n2,fix in Problem 2
are equal, and the result is proved. 2
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