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Abstract

Let S be a (discrete) semigroup, and let £!(S) be the Banach algebra
which is the semigroup algebra of S. We shall study the structure of
this Banach algebra and of its second dual.

We shall determine exactly when £!(S) is amenable as a Banach
algebra, and shall discuss its amenability constant, showing that there
are ‘forbidden values’ for this constant.

The second dual of £1(S) is the Banach algebra M (3S) of measures
on the Stone—Cech compactification 55 of S, where M (8S) and S are
taken with the first Arens product O. We shall show that S is finite
whenever M (3S) is amenable, and we shall discuss when M (3S) is
weakly amenable. We shall show that the second dual of L'(G), for G
a locally compact group, is weakly amenable if and only if G is finite.

We shall also discuss left-invariant means on S as elements of the
space M ((3S), and determine their supports.

We shall show that, for each weakly cancellative and nearly right
cancellative semigroup S, the topological centre of M (35S) is just £1(.9),
and so ¢1(9) is strongly Arens irregular; indeed, we shall considerably
strengthen this result by showing that, for such semigroups .S, there are
two-element subsets of 35\ S that are determining for the topological
centre; for more general semigroups S, there are finite subsets of 35\ S
with this property.

We have partial results on the radical of the algebras ¢!(3S) and
M(5S).

We shall also discuss analogous results for related spaces such as
WAP(S) and LUC(G).
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CHAPTER 1

Introduction

Our aim in this memoir is to study the algebraic structure of some
Banach algebras which are defined on semigroups and on their com-
pactifications. In particular we shall study the semigroup algebra £1(.9)
of a semigroup S and its second dual algebra; this includes the impor-
tant special case in which S is a group. Here £1(S) is taken with
the convolution product x and the second dual £1(S)” is taken with
respect to the first and second Arens products, O and < ; these sec-
ond dual algebras are identified with Banach algebras (M (3S5),0) and
(M(BS), <), which are, respectively, the right and left topological semi-
groups of measures defined on 39, the Stone-Cech compactification of
S. We shall also study the closed subalgebras ¢'(35) of M(3S) and
some related Banach algebras.

Much of our work depends on knowledge of the properties of the
semigroup (4S5, O), and, in particular, of (SN, O). We wish to stress
that (SN, O) is a deep, subtle, and significant mathematical object,
with a distinguished history and about which there are challenging
open questions; we hope to introduce the power of this semigroup to
those primarily interested in Banach algebras. Indeed the questions
that we ask about Banach algebras are often resolved by inspecting
the properties of this semigroup, and sometimes require new results
about it. So we also hope that those primarily interested in topolog-
ical semigroups will be stimulated by the somewhat broader questions,
arising from Banach algebra theory, that we raise about (55, O). In
brief, we aspire to interest specialists in both Banach algebra theory
and in topological semigroups in our work. For this reason we have
tried to incorporate general background from each of these theories
in our exposition in an attempt to make the work accessible to both
communities.

This paper is partially a sequel to the earlier memoir [21]. (For a
correction to [21], see p. 198 of the present work.)

Notation We recall some notation that will be used throughout; for
further details of all terms used, see [19] and [21].
We shall use elementary properties of ordinal
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2 1. INTRODUCTION

and cardinal

numbers as given in [19, Chapter 1.1], for example. The minimum
infinite ordinal is w and the minimum uncountable ordinal is w;; these
ordinals are also cardinals, and are denoted by Ny and Ny, respectively,
in this case. The cofinality of an ordinal « is cof a; a cardinal « is
reqular

if cof a = a.

The Continuum Hypothesis (CH)

is the assertion that the continuum ¢ = 2% is equal to ¥;; this hy-
pothesis is independent of the usual axioms ZFC of set theory. Results
that are claimed only in the theory ZFC + CH are denoted by ‘(CH)’.

Let S be a set. The cardinality S is denoted by |.S], the family of all
subsets of S is P(.S), and the family of all finite subsets of S is Py(5).
Let x be a cardinal. Then

SI"={TcCcS:|T|=xr} and [S]~"={TCS:|T|<k}.

The characteristic function of a subset 7" of S'is denoted by x7; we set
0y = X{s} for s € S.

Weset N={1,2,...},Z={0,4+1,+2,...},and ZT = {0,1,2,... }.
The sets {1,...,n}and {0,1,...,n} are denoted by N,, and Z, respect-
ively. The set of rational numbers is Q, I = [0, 1], and the unit circle
and open unit disc in the complex plane C are denoted by T and D,
respectively. The complex conjugate of z € C is denoted by Z.

Algebras Let A be an algebra
(always over the complex field, C). The product map is

ma:(a,b) —ab, AxA— A.

The opposite algebra

to A is denoted by A°P; this algebra has the product (a,b) —
ba, A x A — A. In the case where A does not have an identity,
the algebra formed by adjoining an identity to A is A% (and A* = A
if A has an identity); the identity of A or A% is often denoted by e4.

The centre

of A is

3(A)={acA:ab=ba (be A)}.

An idempotent

in A is an element p such that p?> = p; the family of idempotents
in A is denoted by J(A). For p,q € J(A), set p < q if pg = qp = p, so
that (J(A), <) is a partially ordered set; a minimal idempotent in A is
a minimal element of the set (J(A) \ {0}, <).
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Let I be an ideal in an algebra A, and let B be a subalgebra of
A such that A = B ® I as a linear space. Then A is the semi-direct
product

of B and I, written A = B x I.

Let I be an ideal in an algebra A, and suppose that I has an identity
er. Then we remark that e; € 3(A). Indeed, for each a € A we have
aer,era € I, and so er(aey) = aey and (era)e; = era. Thus e € 3(A).

Let A be an algebra. We denote by R4, N4, and Q4 the (Jacobson)
radical

of A, the set of nilpotent

elements of A, and the set of quasi-nilpotent

elements of A, respectively; the sets R4, N4, and Q)4 are defined in
[19], but R4 is denoted by rad A in [19]. We recall that R, is defined
to be the intersection of the maximal modular left ideals of A, that R4
is an ideal in A, and that A is defined to be semisimple

if R4 = {0}. We always have the trivial inclusions:

Ry CQa, NaCQa.

In general, we have R4 ¢ N4 and Ny ¢ Ry; further, neither ()4 nor
Ny is necessarily closed under either addition or multiplication in A.
For an ideal I in A, we have R; = I N R4; in the case where A/ is
semisimple, we have Ry = R4.

A nilpotent element a € A has index n if n = min{k € N : a* = 0};
a subset S of A is nil

if each element of S is nilpotent; the radical R4 contains each left
or right ideal which is nil.

Let A be an algebra. For subsets S and T" of A, we set

S -T={st:seS, teT},

and ST =lin S - T; we write S for S - S; we define S™ inductively
by setting S"*! = SS™ (n € N). The set S is nilpotent

if S™ = {0} for some n € N. The algebra A factors

if A= AR,

Let A be an algebra, and let a € A. Then a is quasi-invertible

if there exists b € A such that

a+b—ab=a+b—ba=0;

the set of quasi-invertible elements of A is denoted by ¢-InvA. A sub-
algebra B of A is full

if BN g-InvA = ¢-InvB. In the case where A has an identity, the
set of invertible elements of A is denoted by InvA, and the spectrum
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of an element a € A is denoted by g4(a) or o(a), so that
oala) ={2€C:zey —a¢gInv A},

if B is a full subalgebra of A and a € B, then op(a) = o4(a).

A character

on an algebra A is a non-zero homomorphism from A onto C; the
collection of characters on A is the character space of A and is denoted
by ®4. Suppose that &4 # (), and take a € A. Then the Gel’fand
transform

of a is defined to be @ € C*4, where a(p) = ¢(a) (¢ € ®4); we
define the Gel’fand transform of A as

G:a—a, A—C®,

so that G is a homomorphism.

Let m,n € N, and let S be a set. The collection of m x n matrices
with entries from S is denoted by M., ,(S), with M, (S) for M, ,(S5)
and M, ,, for M, ,,(C). In particular, M, is a unital algebra; the matriz
units

in M, are denoted by F;;, so that

EijEkE = 5j,kEi€ (iajv ka le Nn) )

and the identity matrix in M, is I, = (d;;). Let A be an algebra.
Then M, (A) is also an algebra in the obvious way; the matrix (a;;) is
identified with Y {E;; ® a;; : 1,7 € N, }, so that M,,(A) is isomorphic
to M, ® A. If A is unital, we regard M,, as a subset of M, (A) by
identifying E;; with E;; ® e4. In the case where A is commutative, the
determinant, det a,

of an element a € M,,(A) is defined in the usual way; the element
a is invertible in M, (A) if and only if det a is invertible in A.

Let EF be a linear space. The linear span of a subset S of F is
denoted by lin S. Let S and T be subsets of £. Then

S+T={s+t:seS,teT}.
The linear space of all linear operators from E to a linear space F
is denoted by L(E, F'), and we write L(E) for the space L(E, E). In
fact, L(F) is an algebra with respect to composition of operators, with
identity I, the identity operator on E.
Let A be an algebra, and let E be an A-bimodule with respect to

operations (a,z) +— a - x and (a,z) — x - a from A X FE to E. For
subsets S of A and T of E, set

S-T={a-z:a€8, €T},
and ST =1in S - T. Amap D € L(A, FE) is a derivation
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if
D(ab) = D(a) - b+a - D(b) (a,b€ A).
For x € E| set
ad, :av—a-x—x-a, A—FE.

Then ad, is a derivation; these are the inner
derivations from A to E. For ¢ € &4 U {0}, a point derivation at
@ is a linear functional d on A such that

d(ab) = ¢(a)d(b) + p(b)d(a) (a,be A).

Let A be an algebra. Then the space A ® A is an A-bimodule
for maps that satisfy the conditions that a - (b ® ¢) = ab ® ¢ and
(b®c) - a=b&cafora,b,c € A. Thereis alinearmap 74 : AQA — A
such that m4(a ®b) = ab (a,b € A). Suppose that A is unital. Then a
diagonal

for A is an element u € A® A such that a - u=wu - a (a € A) and
wa(u) = es. For example, let n € N. Then

1 n
- Z Ei; @ Ej;

ij=1
is a diagonal for A = M,.

Banach spaces

Let E be a Banach space. Then the closed unit ball of radius r > 0
in E is denoted by Ejp. The dual space of E is denoted by E’, and the
second dual space is E”; we regard F as a closed subspace of E”. The
weak-+ topology on E’ is denoted by o(FE’, E), or simply by ¢ when
the spaces are clear. The values of A € E' at x € E and of & € E”
at A € E are denoted by (z, \) and (P, \), respectively. The closure
of a subset X of E' in the weak-* topology is X ~. Let F be a linear
subspace of E. Then the annihilator

Fe°of F'in F'is

Fe={MeFE :(x,\)=0 (zeF)}.

Let E and F be Banach spaces. Then the space of all bounded
linear operators from E to F' is denoted by B(E,F); B(E,F) is a
Banach space with respect to the operator norm. We write B(E) for
B(E,E); the dual of T'€ B(E,F) is T" € B(F', E").

We use the notations cq, £°°, (P for standard Banach spaces of
sequences on N (where p > 1), and, for example, we write £? for the
space C" with the ¢P-norm.
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The Banach space (!(S) Let S be a non-empty set, and consider the
Banach space £!(S). A generic element of £1(S) has the form

f:Z{asés:sES},
where

£y = {los| 15 € S} < 00,
The dual space of F := (1(S) is E' = £>°(S), with the duality

(L0 = {f(s)\(s):s€ S} (fEE NeE).

We shall later identify ¢°°(S) with C(3S) (see Chapter 5 for more
details). The Banach space £'(S) is identified with the dual space of
co(S), with the above duality.

Let S and T be non-empty sets. The projective tensor

product £1(S) ® ¢(T) is identified with £(S x T') by setting

(f ®g)(s,t) = fs)g(t) (s€ S tes)
for f € £1(S) and g € £'(T). Note that, for an element F' = Y av;;0(s, 1,
in £1(S) ® ¢1(T), where {(s;,t;) : 4,7 € N} is a set of distinct points in
S x T, we have

(1.1) IEN, = 1Fll, = lag] -

i,j=1

Continuous functions and measures Throughout, a locally com-
pact space is assumed to be Hausdorff, unless we say otherwise.

Let €2 be a non-empty, locally compact space. Then we denote by
C(€2) the algebra (for the pointwise product) of all continuous functions
on ). The support

of f € C(Q) is the set

supp f = {z € Q: f(z) # 0}.

We denote by CB(2) the algebra of bounded, continuous functions
on 2, by Cy(2) the subalgebra of C'B(2) consisting of functions of
compact support, and by Cy(€2) the subalgebra of C'B(f2) of functions
that vanish at infinity. The uniform norm

on  is denoted by ||, so that (CB(Q),|-|,) and (Co(2),]|q)
are uniform algebras,

as in [19]. The space of real-valued functions in C(£2) is denoted
by Cr(2), etc.

The space consisting of all complex-valued,

regular Borel measures
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on 2 is denoted by M (f); the space of real-valued measures in
M(2) is Mgr(2), and the cone of positive measures is M(Q)*. For a
Borel subset B of 2 and p € M(2), we denote the restriction measure
by u | B. Let p € M(Q2). Then |u| is the total variation measure
corresponding to u, and so |u| € M(Q)T. By the Jordan decomposition
theorem, each p € M(S2) is a linear combination of four measures in
M(Q)*. The support

of u, denoted by supp p, is the complement of the maximal open
subset U of €2 such that |u| (U) = 0.

The space M () is a Banach space with respect to the total varia-
tion norm || ||, so that

el = el () (e € M(9) .

The Banach space (M(),]|-||) is identified with the dual space of
Co(Q2) via the duality

(. ) = / A(s)du(s) (u€ M(Q), X € Co(Q)

(see [19]).
Let p € M(Q)", and let K be a compact subspace of €. Recall
that

(1.2) p(K) = inf{(u, \) : A € Coo(2), A >0, A | K =1}.

In the case where €2 is a compact space, ||u|| = p(2) = (u, 1), where 1
denotes the function constantly equal to 1 on €2.

Let x € Q. Then we identify z with 6, € M ()", where 4, is the
point mass at z. It is standard that lin {x : x € Q} is weak-* dense in
M(2). A measure € M(S?) is discrete

if there is a countable set E such that |u| (2 \ E) = 0; we identify
the closed subspace of M (£2) consisting of the discrete measures with
(1(Q). A measure u € M(Q) is continuous if p({zr}) = 0 (x € Q);
the closed subspace of M(£2) consisting of the continuous measures is
denoted by M.(£2). The discrete and continuous components of u €
M(Q) are denoted by pg and ., respectively; we have ||u]] = ||pall +
|| el for each p € M(Q), and so M (Q) = £1(Q) & M.(Q2) as an ¢ -direct
sum of Banach spaces.

Let K be a compact subspace of 2. Then

[(K) = {\ € Cy(Q) : A | K =0},
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so that I(K) is a closed ideal in Cy(£2). We shall identify M (K) with
I(K)°, so that

M(K) = {peM@): () =0 (e I(K))
— {neM(Q): |ul 2\ K) = 0}.

The subspace M(K) is a weak-* closed subspace of M(2). For each
pe M(Q), we have p | K € M(K) and p | (2\ K) € M(Q2\ K), and
[l = [l [ K] 4 {lpe | (2\ K| Thus

M(Q) = M(K) & M(Q\ K)

as an ¢!-direct sum of Banach spaces.

Let S be a non-empty set, and let E = ¢1(S), so that the dual of
(2(S) is E" = M(BS). Set S* = S\ S, a closed subspace of (S,
called the growth

of S. We note that the relative weak-* topology on M (S*) from o is

( ag

the same as the topology o (M (S*), C(S*)), and that £1(S*) = M(S*).

Banach algebras

For the theory of Banach algebras, see [19]. For example, B(E) is a
Banach algebra for each Banach space E, and (C(€2),|-|,) is a Banach
algebra for each compact space Q.

We wish to note a specific convention of the present memoir; it is
different from that in [19]. A Banach algebra is an algebra A which is
also a Banach space for a norm || - || and is such that

labll < flal[ ol (a,b € A).

Now suppose that A has an identity e4; in distinction from [19] and
some other sources, we do not require that |e|| = 1.

We make the following presumably well-known remark about the
norms of identities in Banach algebras.

PROPOSITION 1.1. Let I be a closed ideal in a Banach algebra A.
Suppose that A/I and I have identities e/ and er, respectively, with
HeA/IH =« and |lef|| = 5. Then A has an identity e4, and

leall <a+ B+ af.

PrROOF. Write ¢ : A — A/I for the quotient map. We have re-
marked that e; € 3(A). Take € > 0. Then there exists ay € A with
q(ag) = ear and [jaol| < a+e.

Consider the element e = e; + ap — ape; € A. Then g(e) = eay;
because g(e;) = 0. For each a € A, we have ae —a = ea —a € I, and
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SO
ae —a = er(ae — a) = ejae; + ejaag — aape; — eya = 0.

Thus e is the unique identity of A. We have |le|| < a+ [+ (a+¢)3+e.
This is true for each € > 0, and so |le4|| < o+ 8+ af. O

Let (A, ]| -||) be a Banach algebra. Then each maximal modular left
ideal of A is closed, the radical R4 is a closed ideal in A, and A/ R, is
a semisimple Banach algebra, but in general neither Q4 nor N, is || - ||-
closed in A. Again neither () 4 nor N, is necessarily closed under either
addition or multiplication in A. In the case where A is commutative,
we have

NACQAZRA:ﬂ{kergozgoeq)A}.

However we may have the equality R4 = Q4 even when A is not
commutative. For example, let Sy denote the free semigroup on 2
generators,

as in Example 3.42, below, and set A = ¢1(S;) with convolution
product, a non-commutative Banach algebra. Then Ry = Q4 = {0}
[19, Theorem 2.3.14].

Let A be a Banach algebra. A left approximate identity

in Aisanet (e,) in A such that lim, e,a = a (a € A); a bounded left
approzimate identity in A is a left approximate identity (e, ) such that
sup,, |lea|| < oo. Similarly, we define a [bounded| right approzimate
identity in A. A [bounded] approximate identity in A is a net which
is both a [bounded] left approximate identity and a [bounded] right
approximate identity. A Banach algebra which has a bounded left
approximate identity and a bounded right approximate identity has a
bounded approximate identity. By Cohen’s factorization theorem [19,
Corollary 2.9.30(i)], a Banach algebra with a bounded left approximate
identity or a bounded right approximate identity factors.

The Banach algebra A is essential if A2 = A.

Let (A, || -||) be a Banach algebra. For each a € A, the spectrum
oa(a) of a is non-empty and compact. The spectral radius of a is
denoted by v4(a) or v(a); we have

va(a) = lim fla"|["" = sup {|2] : = € o(a)}

Suppose that A is unital, that B is a unital closed subalgebra of A,
and that a € B. Then

—

(1.3) dop(a) C oa(a) C op(a) C oala),
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where X denotes the union of X and the bounded components of C\X
for a compact plane set X, and 90X denotes the topological frontier of
X with respect to C.

Each character on a Banach algebra is continuous, and the character
space ®,4 of a Banach algebra A is a locally compact space for the
relative topology o(A’, A); the Gel'fand transform

G:A— Cy(Dy)

is a continuous homomorphism when ®, # (). We always have the
inclusion R4 C ker G; if, further, A is commutative, then R4 = ker G.
When A is a commutative C*-algebra, the Gel’fand transform is a
surjection, and so A = Cy(P4).

Let I be a closed ideal in a Banach algebra A, and let ¢ : A — A/I
be the quotient map. Then ¢ | Dy/r 0 Pyayr — P4 is a continuous
embedding.

/Let A and B be Banach algebras. The projective tensor product
(ABB, -, i

of A and B is defined on [19, p. 165]; (A®A, || - ||,) is itself a Banach
algebra. The map m4 : A® A — A is a continuous linear map such
that

Tala®@b) =ab (a,be A);
7 is a homomorphism of algebras when A is commutative.

Let E be a Banach space. Then we regard M, ,(E) as a Banach
space by taking the norm to be specified by

(L4) @il =Y _{llwyll -1 € Ny j € NG} () € M (E)) -

In the case where A is a Banach algebra, the algebra M, (A) is a Banach
algebra with respect to this norm; we have ||I,,|| = n. However we note
that this norm is different from that given in [19, Example 2.1.18(ii)];
if we identify M, with B(£F), say, where p > 1, the norm |- ||, on M,
is such that ||,,[|, = 1.

The Banach algebras L'(G) and M(G) Let G be a locally compact
group.

Then we define the group algebra L'(G) (using the left Haar mea-
sure) and the measure algebra M(G) as in [19];

we recall that the product of p, v € M(G) is specified by the formula

i v, ) = /G/G/\(st) du(s)dv(t) (A€ Co(G)),

so that 0, x §; = 0 (s,t € G). It is standard that L'(G) is a closed
ideal in M(G), identified with the space M,.(G) of measures which are
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absolutely continuous with respect to the left Haar measure on GG. The
closed subspace ¢1(G) is a Banach subalgebra of M(G), and M.(G) is
a closed ideal in M (G), and so

M(G) = £1(G) x M.(G)

as a semi-direct product; the quotient map M(G) — ¢(G) is denoted
by qq, so that

(1.5) gc + (M(G), x) — (€1(G), *)

is a continuous epimorphism. See [19, Chapter 3.3] and [72] for details
of these algebras.

Summary In Chapter 2, we shall recall the definitions of some ba-
sic properties of Banach algebras, concentrating on the notions of
amenability and weak amenability; we shall define the amenability
constant of a Banach algebra. As an example, we shall discuss Munn
algebras. We shall define the two Arens products, O and <, on the
second dual A” of a Banach algebra A, and the topological centres of
A”.

In Chapter 3, we shall give some basic properties of semigroups;
as an example, we shall discuss Rees semigroups and the structure of
some semigroups in detail. We shall prove results about almost left
disjoint subsets of a semigroup; these results will be required later. We
shall recall the definitions of various (compact) topological semigroups,
and conclude with a collection of examples of semigroups.

In Chapter 4, we shall move to the definitions of the semigroup
algebra £1(.9) of such a semigroup S, commenting on the semi-character
space of S, and proving some results on the spectra of elements in
¢1(S). In particular, we shall describe the semigroup algebra of a Rees
semigroup, giving some new calculations on the norms of the identity
of £1(9), etc.

In Chapter 5, we shall recall some facts about the Stone-Cech com-
pactification 55 of a set S, and in Chapter 6 we shall note that, for
a semigroup S, 4S5 is also a semigroup with respect to two products,
which we denote by O and <. We shall consider the second dual space,
(1(S)”, of a semigroup algebra £1(S), identifying ¢£1(S)” with M(35),
the Banach space of measures on 3S. Thus there are two products, O
and O, on M(5S). We regard (6.5, 0) and (35, <) as subsemigroups of
the multiplicative semigroups of (M (3S),0) and (M(3S), <), respec-
tively. We have results, some new, about subsemigroups and ideals
in the semigroups (4S5,0). In particular, we shall obtain in Theorem
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6.46, the perhaps surprising result that ka ]
k € N with k& > 2.

In Chapter 7, we shall study the Banach algebras (M(5S),0) and
(M(5S),<) for a semigroup S. In fact, we have a somewhat more
general theory that arises from that of introverted C*-subalgebras of
02°(S). We have many results on the closed ideals in (M(3S),0),
and we have some results on nilpotent elements and radicals in £1(35)
and (M(3S),0), but we are not able to determine when ¢!(35) is
semisimple, or to characterize the radical of (M(5S),0). We shall
make some remarks on the semi-character space ®gg of the semigroup
B3S; we note that ®gg is the character space of the semigroup algebra
¢1(BS). We shall conclude the chapter with a collection of examples.

In Chapter 8, we shall introduce some spaces related to £°>°(S) and
L' (@), where S is a semigroup and G is a locally compact group. For
example, these spaces involve weakly almost periodic and uniformly
continuous functions.

In Chapter 9, we shall discuss amenability for semigroups, and,
in particular, the supports of left-invariant means. Some results are
special to the case where our semigroup is (N, +).

In Chapter 10, we shall determine exactly when a semigroup algebra
¢1(S) is amenable, so answering an open question; the results involve
Rees semigroups with a zero. This will lead us to a discussion of the
amenability constant C's of such a semigroup algebra; for example, we
shall prove in Theorem 10.27 that S is a group whenever C's < 5.

Chapter 11 addresses the amenability and weak amenability of the
Banach algebras (M (£S),0) and (M(38S),<). In Theorem 11.8, we
shall prove that, for each infinite semigroup S, these Banach algebras
are not amenable, and in Theorem 11.15 that, for each infinite, can-
cellative semigroup S, the algebra M (35) is not even weakly amenable.
This allows us to resolve a further open question by proving in Theo-
rem 11.17 that the second dual algebra (L'(G)”,0) is weakly amenable
if and only if G is finite.

Finally, in Chapter 12, we shall extend known results on the topo-
logical centres of the Banach algebras £1(.S) and the semigroup (35, O)
for various semigroups S. The strongest result is Theorem 12.15, which
asserts that, for a class of semigroups that includes all cancellative
semigroups, there are two elements a and b in the growth S* of S with
the property that each p € M(BS, O) such that poa = p o a and
pob = o b is necessarily in £1(S). We discuss the further properties
that such elements a and b can be required to possess. We shall also

C N* DN_% for each
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obtain a similar result for more general semigroups and for the algebra
LUC(G)".

The memoir concludes with a list of selected open problems that
we have not been able to resolve.

This memoir was submitted in September 2006; some corrections,
extra examples, and updated references were added after acceptance of
the manuscript in August 2008.
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CHAPTER 2

Banach algebras and their second duals

In this chapter, we shall recall some standard properties of Banach
algebras and their second duals, and prove results that we shall use
later. In particular, we shall recall the definitions of amenable, weakly
amenable, and approximately amenable Banach algebras, and shall
be concerned with the amenability constant of an amenable Banach
algebra. For a substantial account of Banach algebra theory, see [19].

Amenability and weak amenability Let A be a Banach algebra,
and let (E, || -||) be a Banach space which is also an A-bimodule. Then
E is a Banach A-bimodule

if

la - zll < lal lzll,  [lz - all < flallz] (e € A, = € E).

For example, £ = A is a Banach A-bimodule with module operations
the product m 4. The dual of a Banach A-bimodule
E is the Banach space E’ with the operations defined by

(x,a-N)=(x-a,\), {(r, -a)={a-z,)\) (a€ A, xeE, NeF).

For example, A" and A” are Banach A-bimodules. The Banach space
(A® A, ||-]|.) is a Banach A-bimodule for continuous maps satisfying
the conditions that a - (b®¢) =ab®cand (b®c¢) - a = b® ca for
a,b,c € A.

DEFINITION 2.1. Let A be a Banach algebra. Then A is amenable if
each continuous derivation from A into each dual Banach A-bimodule
1s inner, and weakly amenable if each continuous derivation from A
into the specific dual Banach A-bimodule A’ is inner.

We shall later require the following well-known facts about amen-
ability and weak amenability. For the proofs of clauses (i)—(viii), see
[19]; in particular, clause (viii) is [19, Theorem 2.9.58(ii)] with ‘left’
and ‘right’ exchanged. For the proof of (x), see [96, Lemma 2.3].

PROPOSITION 2.2. (i) A Banach algebra A is amenable if and only
if A% is amenable.

15
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(ii) Fach amenable Banach algebra has a bounded approximate iden-
tity, and hence factors.

(iii) Let A be a weakly amenable Banach algebra. Then A is es-
sential and there are no non-zero, continuous point derivations on A.

(iv) Let A be a commutative, weakly amenable Banach algebra.
Then every continuous derivation from A into a commutative Banach
A-bimodule is zero.

(v) Each commutative Banach algebra that is spanned by its idem-
potents is weakly amenable.

(vi) Let A be a Banach algebra with a closed ideal I. Suppose that
I and A/I are both amenable (respectively, weakly amenable). Then A
is amenable (respectively, weakly amenable).

(vii) Let A be an amenable Banach algebra with a closed ideal I.
Then A/I is amenable. Suppose, further, that I is complemented in A
as a Banach space. Then I is amenable, I has a bounded approximate
identity, and I factors.

(viii) Let A be an amenable Banach algebra with a closed left ideal
I. Suppose that I is complemented in A as a Banach space. Then I
has a bounded right approximate identity.

(ix) Let A be a Banach algebra, and let I be a closed ideal, with
quotient map ©: A — A/I. Suppose that d is a non-zero, continuous
point derivation at ¢ € ®4/r. Then d o m is a non-zero, continuous
point derivation at ¢ o ™€ Py.

(x) Let A = B x I be a Banach algebra, where B is a closed sub-

algebra and I is a closed ideal in A. Suppose that A is weakly amenable.
Then B is weakly amenable. 0

The next definition is the Banach-algebra analogue of the notion of
a diagonal.

DEFINITION 2.3. Let A be a Banach algebra. A bounded approx-
imate diagonal

for A is a bounded net (uy) in (AR A, ||-|.) such that

(2.1) lim|la - uy —uq - all, =0 (a€ A
and
(2.2) lim [|[74(ug)a —al| =0 (a € A).

Now take C > 1. Then A is C-amenable
if A has a bounded approzimate diagonal (u,) such thatsup , ||ual, <
C. The amenability constant,
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AM(A), of A (in the case where A is amenable) is the infimum of
the numbers C' such that A is C'-amenable.

A virtual diagonal

for A is an element M of (A® A)" such that, for each a € A, we
have a - M =M - a and 7'y(M) - a = a.

Let A be a Banach algebra with an identity. We may suppose that
llea]] = 1 and that each bounded approximate diagonal (u,) is such
that ma(u,) = ea for each a.

It is a well-known theorem of Johnson ([84]; see [19, Theorem
2.9.65]) that a Banach algebra A is amenable if and only if A has a
bounded approximate diagonal if and only if A has a virtual diagonal,
and hence A is amenable if and only if A is C-amenable for some C' > 1.
Indeed, A is C-amenable if and only if there is a virtual diagonal M in
(A® Ay

The notion of C-amenability comes from [84] (see also [125, §2.3]),
and the amenability constant AM(A) was specifically introduced in
[86]. Clearly AM(A) is actually the minimum of the appropriate con-
stants C, and AM(A) > 1. Although we shall not use the fact, we
remark that each amenable C*-algebra A has AM(A) =1 [70, Theo-
rem 3.1J.

PROPOSITION 2.4. Let A be an amenable Banach algebra with an
wdentity ey .

(i) AM(A) > [leal-

(i) Let I be a closed ideal with an identity e;. Then I is amenable,
with AM(I) < ||er|| AM(A).

PRrOOF. (i) This is immediate.

(ii) Let (us) be a bounded approximate diagonal for A in A® A
with sup , ||uall, < AM(A). For each «, set

Vg =€ Uy -7 ETRI.

Then 77(vy) = ereaer = ey and

lim|ja - va —va - all, < |lef|[*lim]ja - uq —ug - all, =0 (a€1).
(634 (64

Also,

lim [lvg, — ey - wall, <limlef]| fJua - er —er - ual . =0,

and so limsup,, ||va|| < |les]] AM(A). This shows that I is amenable
and that AM(I) < ||e;]| AM(A). O
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For n € N, let A, be the Banach algebra (¢!, -). Then the identity
of A, is 61 + -+ + 6,, with norm n; the unique diagonal for A is
u=>",0;®0;, and |lul|. =n, so that AM(A,) = n.

Again let A = Ap be the space £ with product specified by

(21, w1) (22, w2) = (2122, 21Wa + 22wy + wWiws) (21, 22, w1, we € C),

so that A is a Banach algebra and Ap is isomorphic to A,, specified
above. The identity of A is e4 = (1,0), and ||e4|, = 1. Suppose that

A=a1,0)®(1,0)+5(1,0)®(0,1) ++(0,1) @ (1,0) +6(0,1) ® (0, 1)
is a diagonal for A. Since m4(A) = (1,0), we see that o = 1 and

B+~v+d=0. Since (0,1) - A=A -(0,1), we have f =y = —a = —1,
and then 9 = 2. Thus the unique diagonal of A is

A=(1,00® (1,0) = (1,0)® (0,1) — (0,1) ® (1,0) +2(0,1) ® (0, 1) ,

and so AM(Ap) =5.

Note that the amenability constant AM(A) for a Banach algebra
A depends on the actual norm on A, as the above calculation shows.
For a further example, set A = M,,. Then a diagonal for A is

1
=D (B @ Bjivij € No}

with our specified norm (of equation (1.4)) on A, we have [|A]_ =n
and AM(A) > ||I,,|| = n, and so AM(A) = n. However, when A has
the norm that arises from identifying M,, with B(¢2), where p > 1,
then AM(A) = ||A]|, =1 [125, Example 2.3.16].

For further examples concerning amenability constants, see Chapter
10.

PROPOSITION 2.5. Let A be a C'-amenable Banach algebra, and let
B be a Banach algebra such that 8 : A — B is a continuous homomor-
phism with dense range. Then B is ||0||* C-amenable.

PROOF. There is a continuous linear A-module homorphism
0©60: A®A— B®B.

Suppose that (u,) is a bounded approximate diagonal for A such that
sup, |[uall, < C. Set Uy, = (0 ® 6)(uy). Then (U,) is a bounded
approximate diagonal for B with sup , |Us|. < ||0]° C. O

COROLLARY 2.6. Let A be a C-amenable Banach algebra, and let
I be a closed ideal in A. Then A/I is C-amenable. O
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Amenability and weak amenability of M,,(A) Let A be a Banach
algebra, let n € N, and set 2 = M, (A); further, let £ be a Banach
A-bimodule, and set & = M, (E). We shall regard € as a Banach
2l-bimodule in the obvious way, so that
(CL . l’)z'j = Zaik © Tk, ((l = (CLZ']') S Q[, xr = (l’z]) S Qf) .
k=1
We identify ¢ with M,,(E"), using the duality
(a, Ay = lai; Aij) (a=(a;) €A A= (\y) € €).

ij=1

We note that

(23) (CL . A)Z] = Za]‘k . )\zk and (A . a)ij = Z)\kj © Ak
k=1 k=1
for a = (a;;) € A and A = (\;;) € €.

Let D : A — E’ be a continuous derivation, and define ® : % — &
by setting ®(a);; = (D(a;;)), where we note the transposition of ¢ and
7. Then ® is a continuous linear operator, and we claim that ® is a
derivation. For this, we must verify that

(2.4) (¢, D(ab)) = (ca, Db) + (be, Da) (a,b,c e A).
The left-hand side of (2.4) is
> e, D((ab)yi)) = > {eij, D(ajubi))
ij=1 iji k=1
= > {eij aj - D(bis) + D(age) - bis)
i k=1
= > (e, D(bgi)) + (bricij, D(ar)))
ijk=1
The term (ca, ©b) on the right-hand side of (2.4) is equal to
> {eaarg, D(bji)) = > {eijae, D(bii))
g k=1 i g k=1

and similarly for the term (be, ®a). Thus (2.4) is verified.

THEOREM 2.7. Let A be a Banach algebra, let n € N, and set
2A =M, (A).

(i) The Banach algebra A is amenable if and only if A is amenable.
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(ii) Suppose that A is C-amenable. Then A is Cn-amenable.
Now suppose further that A has an identity.

(iii) The Banach algebra A is weakly amenable if and only if A is
weakly amenable.

(iv) We have n < AM () < nAM(A).

PROOF. (i) Suppose that A is amenable. Then 2 is amenable by
[19, Corollary 2.9.62], a theorem of Johnson [83, Proposition 5.4]; this
also follows from clause (ii), below.

Now suppose that 2 is amenable. Let D : A — E’ be a continuous
derivation, and define ® : A — & as above. Then ® is a continuous
derivation, and so there exists A = (\;;) € & such that

Da)=a-A—A-a (aeA).
Take a € A, and identify a with the matrix that has a in the (1,1)-
position and 0 elsewhere. Then \;; € E’, and
D(a)=D(a)ip=(a-A=X-a)j1=a - 1—M1-a (a€A,
and so D : A — FE’ is an inner derivation. Hence A is amenable.

(ii) We shall identify 2 with M, ® A, so that we can identify 2 & 2
with M,» ® (A® A). For a € A and 4,5 € N, denote by (a);; the
element of 2 with a in the (4,7)™ place and 0 elsewhere, so that
|(a)i;]ll = |la||. For a,b € A and 1, j, k, ¢ € N,,, we have

(@)ij @ (b)ke = (@ @ b)ijne -

Let (uq) be a bounded approximate diagonal for A with ||u.||, < C
for each a. For each «a, we define

1 .
n; iQE;Qu ®
For c € A and r, s € N,,, we have
(Ers®c) - Uy —U, - (Eps®c)

1 n

ij=1
1 n

:EZEM®EJ-S®(C CUq — Ug * ),
=1

and so [|(Ers ®¢) - Uy = Us - (Ers @0, < e - ta — uq - ||, Tt fol-
lows that

11(]).;11 H(Crs) : Ua - Ua ' (CTS)H =0 ((Crs) S Ql) :
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Similarly, lim, ||7(Ua)(crs) — (crs)l,, = limg ||(ma(ta)crs — crs)||, = 0
for each (¢,s) € . Finally, sup, ||U.]|, < Cn, and so A is Cn-
amenable.

(iii) The same argument as the above shows that A is weakly
amenable whenever 2 is weakly amenable.

Now suppose that A is weakly amenable, and let © : A — A
be a continuous derivation. We recall that we are regarding M, as a
subalgebra of 2. Since M, is an amenable Banach algebra, there exists
an element A = (\;;) € M,,(A") with ©® | M,, = ad, | M,,. By replacing
D by ® — ady,, we may suppose that © | M, = 0.

Next take a € A. For r, s € N,;, consider the elements

(a)rs: 7“8®a€9’l7
say D((a)ys) = (d7(a) : i, € N,) € M (A'): set d = d\}V : A — A’

ij

Since D(E,1) = D(Ey5) = 0, we have
5‘3((a)r5) = @(Eﬂ(a)uEls) =k - @((G)n) - By,

and so, by (2.3), dg’s)(a) =0 (i,j € N,) except when (i,7) = (s,7)
and in this case dov”(a) = d(a). Clearly d : A — A’ is a continuous
derivation. Since A is weakly amenable, there exists A € A’ such that
dla)=a - A= X-a (a € A). Take A € M, (A") to be the matrix that
has A in each diagonal position and 0 elsewhere. Then we see, again
using (2.3), that

D((ay)) = (ay) - A=A - (ay) ((ayy) €A).
This shows that 2 is weakly amenable.

(iv) The identity eg of 2 is the matrix with e4 in each diagonal
position and 0 elsewhere, and so |ley|| > n. By Proposition 2.4, we
have n < AM (). By (ii), AM () < nAM(A). O

Approximate amenability A variation of the notion of amenability
for Banach algebras was introduced by Ghahramani and Loy in [51].

DEFINITION 2.8. Let A be a Banach algebra, and let E be a Banach
A-bimodule. A derivation D : A — E is approximately inner
if there is a net (z,) in E such that

Da =lim(a - x4 — x4 - a) (a € A),

the limit being taken in (E,||-|). The Banach algebra A is approx-
imately amenable

if, for each Banach A-bimodule E, every continuous derivation D :
A — E' is approximately inner.
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The basic properties of approximately amenable Banach algebras
were established in [51]; further results are given in [55]. Certainly
every amenable Banach algebra is approximately amenable; a commu-
tative, approximately amenable Banach algebra is weakly amenable;
examples of commutative, approximately amenable Banach algebras
which are not amenable are given in [51, Example 6.1]. It is shown in
[26] that the Banach function algebras (7 (for p > 1), which are weakly
amenable, are not approximately amenable.

Characterizations of approximately amenable Banach algebras are
known; they are analogous to the characterization of amenable Banach
algebras as those with a bounded approximate diagonal. Proposition
2.9, below, is a modification of [51, Corollary 2.2], and Proposition
2.10 is taken from [26, Proposition 2.3].

PROPOSITION 2.9. Let A be a Banach algebra. Then A is approz-
imately amenable if and only if, for each € > 0 and each finite subset
S of A, there exist F € A® A and u,v € A such that 7(F) = u+v
and, for each a € S:

(i) fla- F-F -a+u®a—a®u| <e¢;
(ii) |la — aul| < e and ||a —val <e. O

PROPOSITION 2.10. Let A be a commutative Banach algebra. Then
A is approximately amenable if and only if, for each € > 0 and each
finite subset S of A, there exvists F € A® A and uw € A such that
w(F) = 2u, and, for each a € S

i) fla- F-=F -a+u®a—a®ul_ <e;
(i) |la — aul| < e. O

For examples of commutative semigroup algebras which are approx-
imately amenable, but not amenable, see Example 10.10.

One-dimensional extensions The construction discussed in this sub-

section is a general form of an important later example.

EXAMPLE 2.11. Let (A4, ] -]/,) be a Banach algebra. Suppose that
p € J(A) is such that Cp is an ideal in A, and set B = A/Cp, with
quotient norm || - ||z on B. Then we have ap = pa = p(a)p (a € A)
for some ¢ € ®4, so that ¢(p) = 1. We identify A with B @ Cp as a
Banach space, requiring that
la+zpll4 = llallg + 12| (a+2p € A),
and, in particular, that ||p|]| = 1. We have

(@ + zp)(b +wp) = ab+ (Aa, b) + p(a)w + ¢(b)z + zw)p
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for a,b € B and z,w € C, where A is a continuous bilinear functional
on B x B such that

e(b)A(c,a) — A(be, a) + A(b, ca) — A(b,c)p(a) =0 (a,b,c € B).
(Here ab denotes the product of a and b in B.) Since ¢ € &4, we have

A(a,b) = p(a)p(b) — p(ab) (a,b € B).

Suppose that B has an identity eg. Then the identity of A is
(2.5) ea=ep+ (1—ylep))p.

Set A = B&C. Then A is a Banach algebra for the coordinatewise
product and the ¢'-norm, and the map

0:a (a+Cpp(a), A— A,

is an isomorphism with ||#|| < 1. Suppose that B is C-amenable. Then
Ais (C +1)-amenable, and so, by Proposition 2.5, A is [|§71]|> (C' + 1)-
amenable. Always [|#7!]] < 2, and so A is (4C + 4)-amenable. Since
we can have ||§7!|| = 2, this is the best estimate from this approach.
Clause (ii) of the following result improves this estimate.

The ideas of this example will be developed in Chapter 4 and in
Example 10.11. O

THEOREM 2.12. Let A and B be as in Ezample 2.11.

(1) Suppose that A is weakly amenable. Then B is weakly amenable.

(ii) Suppose that B is C-amenable. Then A is (4C + 1)-amenable.

PRrROOF. (i) Let A € I', where I = Cp. Set 7 = A(p)p. Then
clearly 7 € A', 7(ab) = 7(ba) (a,b € A), and 7 | I = X\. Thus [

has the ‘trace extension property’ of [19, Definition 2.8.65]. By [19,
Proposition 2.8.66(iv)], B is weakly amenable.

(ii) Consider the bilinear map
T:(a,b)—a®b—p(a)p@b—pbla®p+pla)ebd)p@p

from B x B into A® A. Then T is continuous, with ||| < 4. The
corresponding map from B® B into A® A is also denoted by T
Let p =9 ®¢: B® B — C, so that ||u| = 1.
For a,b € B, we have p - T(a,b) = T(a,b) - p=0 and
ma(T(a,)) = ab+ (Aa,b) = p(a)p(b))p = ab — p(ab)p,

so that
(2.6) 7A(T(u)) = m(u) — p(np(u))p (u€ B ® B).
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Now take a,b,c € B. Then
¢ T(a,b) = ca®b+ (Ac,a) —pla)p(c)p@b—p(b)ca®p
—A(e,a)p(b)p @ p+ ¢(a)p(b)p(c)p @ p
= ca®@b—gp(ca)p@b—p(b)ca®@p+p(ca)p(b)p®@p,
with a similar expression for T'(a,b) - ¢. Thus
¢-T(a,b)—T(a,b) - c=ca®b—a®bc—px (p(ca)b— p(a)be)
+(p(be)a — p(b)ca) @ p + (p(ca)p(b) — p(a)p(be))p @ p
= ca®b—a®bc—p - (ca®b—a® bec)
—(ca®b—a®bc) - p+ (p(ca)p(b) — pla)p(be))p @ p
= x—p-x—z p+u)pep,
where z = ca ® b — a ® be.

Since B is C-amenable, there is a bounded approximate diagonal
(uq) € (B® B)j¢) such that lim, mp(ua) = ep. For each o, we define
Uy = T(uy) € A® A. Then we have p - Uy = U, - p = 0. Further, for
each ¢ € B, we have

e Ua—Ua - ell, <4l - o —ua - |

and so lim, |lc - Uy — U, - ¢||. = 0. Finally, set
Vo=U,+p@peARA.

Thenp -V,—V,-p=0andc-V,—-V,-c=c-U,—U, - ¢, so that

limg |lc - Vo =V, - ¢/, = 0. It follows from (2.6) that

lim Ta(Va) = hgl(WB(Ua) —o(mp(ua))p+p) =ep+ (1 —plep)p = ea,

and so the net (V,,) is a bounded approximate diagonal for A such that
|Vall, < 4C +1 for each a. Hence A is (4C 4 1)-amenable. O

We see that always 4C'+1 < 5C'. We shall see in Proposition 10.18
that we can have AM(B) = 1, but that we cannot improve on 5 for
AM (A), and so the above estimate is best-possible in general.

Algebras with a one-dimensional left ideal We consider the amen-
ability and weak amenability of algebras of this form. The following
result is essentially contained in [140, p. 507].

ProOPOSITION 2.13. Let A be a Banach algebra with dim A > 2
such that
ab=p(a)b (a,be A),
where p € ®4. Then A is weakly amenable, but not amenable. Further,
Ri=Ny= Q4 =ker p.
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PROOF. Let D : A — A’ be a continuous derivation. Then
(2.7) ¢(a){c, Db) = ¢(c){a, Db) + ¢(b){(c, Da) (a,b,c € A).
Let A € A’. Then the inner derivation ad, specified by \ satisfies
(2.8) (b,adya) = p(b){a,\) — p(a){b,\) (a,be A).

Choose ag € A with p(ag) = 1, and set A\(a) = (ag, Da) (a € A).
Then A is a linear functional on A, and |A(a)| < [|a|| || D]| [|ao|, so that
A € A" with ||A]] < [|D]] ||ao||. For each a,b € A, it follows from (2.8)
and (2.7) that

(b,adra) = @(b)(ao, Da) — ¢(a){ao, Db)
= 90<a0)<ba Da> = <b> Da) :
Hence D = ad), and so A is weakly amenable.
The algebra A has no right approximate identity (since dim A > 2),
and so A is not amenable.

It is clear that R4 C ker ¢ = N4 = Q4. Since ker ¢ is a nil ideal
in A, we have ker ¢ C R4. Thus R4 = ker ¢. U

PROPOSITION 2.14. Let A be a unital, commutative, weakly amenable
Banach algebra, and let B be a Banach algebra such that

biby = @(b1)ba  (b1,02 € B),
where p € . Then AQB¥# is weakly amenable.

PROOF. Set A = A®B#, and let D : 2 — 2’ be a continuous
derivation.
Fix by in B with ¢(byg) = 1. Then there exists A € 2’ such that

{a®@b, \) = (a®by, D(ea ®b)) (a€ A, be B¥);

let ady : A — A’ be the inner derivation specified by \.
Take a € A and b,c € B. Then

(a®ec, ady(ea®@b)) = (a®c, (ea®@b) - A= X+ (e4®D))

= (a®cb—a®bc, \)

= (a®bo, p(c)D(es @b) = p(b)D(ea @ c))
= (a®by, (ea®c) - D(ea®D))
= (a®c, D(es®D)),

and so D(es ® b) = ady(ea ®@b) (b € B).
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We next claim that D(a®ep) = ady(a®ep) (a € A). For this it is
sufficient to show that D(a ® eg) =0 (a € A). In fact A’ is a Banach
A-bimodule for the products defined by

a-A=(a®ep) A A-a=X-(a®ep) (acA X ed).
Since
(a1 ®b, (a2 ®ep) - A) =(a1 @b, X - (a2®ep)) (a1,a2 € A),

the dual module 2 is a commutative Banach A-bimodule, and the
map a — D(a ® eg) is a continuous derivation into this module. By
Proposition 2.2(iv), D(a ® eg) =0 (a € A), as claimed.

Let a € A and b € B. It follows that

D(a®b) = D((a®ep)lea®b) =(a®ep) - D(ea®Db)
= (a®ep) - Dy(ea®b) =ady(a®Db),
and so D = ady on . Thus 2 is weakly amenable. U

Munn algebras We present a class of Banach algebras that will play
a key role in our later theorems.

EXAMPLE 2.15. Let A be a unital algebra, let m,n € N, and let P
be a matrix in M, ,,,(A). Then M, ,,(A) is an algebra for the product

aob=aPb (a,beM,,,(A))

(in the sense of matrix products). This is the
Munn algebra over A with sandwich matriz P, and it is denoted by

M(A, P,m,n).
We write M(A, P,n) in the special case where m = n.

It seems that these algebras were first defined by Munn in [108].
For example, it is proved in [108, Theorem 4.1] that M(A, P,m,n) is
semisimple if and only if A is semisimple, m = n, and P is invertible
in M,,(A).

Now suppose that A is a unital Banach algebra and that each non-
zero element in P has norm 1. Then M(A, P,m,n) is also a Banach
algebra for the norm of equation (1.4). These Banach algebras are
special cases of those defined by Esslamzadeh in [37, Definition 3.1].

We are interested in determining when M(A, P,m,n) has an iden-
tity. We are grateful to John Duncan for pointing out that this does
not imply that m = n. Indeed, let C' be the Banach algebra which is
the second Cuntz algebra,

so that C has an identity e and generators p,q,p*,¢* such that
p'p = q'q = e, pp* + qq¢* = e, and p*q = ¢*p = 0, and consider
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the Banach algebra M(C, P,2,1), where the sandwich matrix P is
the matrix (p,q). Then it is easy to check that the matrix which is
the transpose of (p*,¢*) is the identity of M(C, P,2,1). (For further
properties of the Cuntz algebra C, see [25].)

Suppose that each non-zero element of P is invertible in A and that
M(A, P,m,n) has an identity. It is stated in the proof of [37, Theorem
4.1(1)] that this implies that m = n and that P is invertible in M, (A).
However, we are not able to follow the proof of this claim; indeed in
the algebraic reduction in the proof of [37, Lemma 3.6] we obtain from
P an element in M, ,,(A) that is the difference of two elements in the
matrix P, and we may suppose that this element is non-zero, but we see
no reason for it to be invertible in A. Our Proposition 2.16, below, is a
small variant of these claimed results; we are grateful to John Duncan
for telling this to us. See also [17, Lemma 5.18]. O

PROPOSITION 2.16. Let A be a unital algebra with a character, and
consider the Munn algebra

A= M(A, P,m,n). Suppose that A has an identity. Then m = n,
P is an invertible matriz in M,,(A), and

0:X+— P 'X, M,(A) — M(A,Pn),
s an isomorphism.

PRrROOF. The specified character on A is ¢; for X = (x;;) € M, (A),

set QD(X) = (QD(%ZJ)) € Mr,s'
Since 2 has an identity, there is an element @) € M, ,,(A) with

(2.9) XPQ=QPX =X (X eM,,(A)).
Thus

Mo(P)p(Q) = o(Q)p(P)M =M (M € M)
It follows that o(P)p(Q) = I, and that ¢(Q)¢(P) = I,,. This is only
possible in the special case where m = n. Further, it now follows from
(2.9) that PQ = QP is the identity of M, (A), and so Q = P~

Clearly, the map 6 is an isomorphism. O

Let A be a unital Banach algebra with a character, and again set
A = M(A, P,m,n). Suppose that m = n and that P is an invertible
matrix in M, (A), with inverse (). Then the above map € is a topological
isomorphism; we shall need the norm of this isomorphism. Set

(2.10) v(P) :max{ZHQm-H:ieNn}.
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Then clearly
10 = max{|Q(Ey)|| : 7,7 € No}

= max {Z 1Quil| 2 i € Nn} = v(P).
r=1

Suppose further that A is C-amenable. Then the Banach algebra 2

is Cnu(P)?-amenable; this follows from Proposition 2.5 and Theorem

2.7(iv).

Second duals of Banach algebras Again let A be a Banach algebra.
As above, A” is a Banach A-bimodule for maps (a, ®) — a - ¢ and
(a, @) — @ - a from A x A” to A” that extend the product map m4.
There are two products on the second dual space A” of A which extend
these module maps; these products are denoted by O and <, and are
called the first and second Arens products on A,

the original definitions of the two products were given in [2], [3]. An
early account of second duals of Banach algebras and Arens products
is given in [31]; a comprehensive recent survey is [46].

We recall briefly the definitions of O and <; a fuller discussion of
these products is given in [21].

First, for A € A’, we have

(2.11) (b, a - Ay = (ba, A), (b, A -a)=(ab, \) (a,be A).
Now, for A € A" and & € A”, define A - ® and ® - X in A’ by

(2.12) (a, A- D) =(P,a-A), (a,P-N)=(P,\-a) (a€A).
Finally, for &, ¥ € A”, define

(2.13) (@OW, \) = (P, U-)\), (DOU N)= (¥, \-®) (Ae A).

Suppose that & = lim, a, and ¥ = limg bs for nets (a,) and (bg) in
A. Then

OV = lim lién agbs, POV = lién lim aybg,

where all limits are taken in the o(A”, A’)-topology on A”.

THEOREM 2.17. Let A be a Banach algebra. Then both (A”,0) and
(A", ) are Banach algebras containing A as a closed subalgebra. [

In the case where A is commutative, A\- & =d- A (A€ A, & € A”),
and POV =0 (P, ¥ e A”), so that (A", O) = (A”,0O)°P.

We note that Rg : ¥ — WO ® is continuous on (A”,0(A”, A)) for
each ® € A” and that L, : ¥ — a OV is continuous on (A", c(A”, A))
for each a € A.
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Let A be a Banach algebra without an identity. Then it is clear
that we can identify (A#”, O) with (4”7, O)#.

The following result is [50, Proposition 1.3].

PROPOSITION 2.18. Let A be a Banach algebra.
(i) Let I be a right ideal in (A", 0). Then I is also a right ideal.
(ii) Let I be a left ideal in (A”,0). Then I is also a left ideal. [

The following result is part of [19, Proposition 2.6.25].

PROPOSITION 2.19. Let A be a Banach algebra. Then A is a full
subalgebra of (A", O) and Rar,0yNA C Ra. In the case where A is
commutative, Rian 0y N A= Ry. ]

Let A and B be Banach algebras, and let § : A — B be a contin-
uous homomorphism. Then 6" : (A”, O) — (B”, O) is a continuous

homomorphism. Let A be a closed subalgebra of B. Then we regard
(A”,0) as a closed subalgebra of (B”,0). Let ¢ € ®4. Then

" U= (T, ), (A",0)—C,

is a character on A” which extends ¢.
Details of the following result are given in [38, Lemma 3.2].

PROPOSITION 2.20. Let A be a Banach algebra, and let n € N.
Then M, (A”,0) = (M, (A)”,0O)). O

PROPOSITION 2.21. Let A be a Banach algebra, and let B be a
closed subalgebra of (A”,0) with A C B. Then:

(i) B is a full subalgebra of (A”,0);
(ii) the restriction map R : ¢ — ¢ | B, ®urp — Pp, is a
continuous surjection.

PROOF. (i) Let b € B, and suppose that b is quasi-invertible in
(A”,0). Then b is quasi-invertible in (B”,0). By Proposition 2.19, b
is quasi-invertible in B. Thus B is a full subalgebra of (A”,0).

(ii) The map R is clearly continuous. Suppose that ) € 5. Then
@ =" | A" € ®arp), and R(p) = 1, so that R is a surjection. O

The continuous bilinear map M : (a,b) — a®b, Ax A — A® A,

has an extension to a continuous bilinear map M : A” x A” — (AQ A)”
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with H]\/ZH = 1; see [19, Definition A.3.51]. Indeed, as in equation
(A.3.8) of [19], we have

M(®,¥) = lim lién M(ay,bs)

when lim, a, = ® and limg bg = ¥, where we take limits in the weak-x*
topology on (A® A)”. Tt follows that

M@ ®,U -b)=a- M® V) -b (a,bc A Ve A"
Thus there is an A-bimodule homomorphism
(2.14) ki A"®A = (AR A)

such that « is the identity map on A® A and ||x|| = 1. This map
apparently first occurs in [64], and the above remark is explicitly given
in [54, Lemma 1.7].

PROPOSITION 2.22. Let A be a Banach algebra, and suppose that
(A", O) is amenable. Then A is amenable, and AM(A) < AM(A").

PROOF. The fact that A is amenable is given in [19, Proposition
2.8.59(ii)]; the result is due to Gourdeau [59].

In fact, set C' = AM(A”), and let (U,) be a bounded approximate
diagonal for A” with sup, [|U.|, = C. Set u, = k(U,) for each a.
Then (u,) is a bounded net in (A® A)i¢); a weak-+ accumulation point

of (ug) in (A® A){ 1s a virtual diagonal for A, and so A is C-amenable.
Thus AM(A) < AM(A"). O

Let A be a Banach algebra. It is not known whether or not the weak
amenability of (A”, O) implies that of A. For some partial results, see
27], [49], and [36].

The following definition is taken from [124, Definition 1.1] and [21,
Definition 1.6].

DEFINITION 2.23. Let A be a Banach algebra. Then A is a dual

Banach algebra
if there is a closed submodule E of A" such that E' = A.

In fact, let £ be a Banach space such that £/ = A. Then A is
a dual Banach algebra with respect to E if and only if the product
in A is separately continuous in the o(A, E) topology. In this case,
E° is a o(A”, A')-closed (and hence || -||-closed) ideal in (A”, O) and
A" = Ax E° as a semidirect product [21, Theorem 2.15]. In particular,
E° is a closed, complemented ideal in A”. We shall show in Example
4.11 that it may be that there are two Banach spaces E and F' with
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E’" = F' = A such that A is a dual Banach algebra with respect to F,
but not with respect to E.

For a recent account of dual Banach algebras, see [28]. It is shown
in [49] that A is weakly amenable whenever A is a dual Banach algebra
and (A”, O) is weakly amenable.

Topological centres

We first recall the standard definition of a much-studied concept,
that of the topological centres of the second dual of a Banach alge-
bra. For details of all the following remarks, and many examples for
which 3§Z) (A”) and 3tr) (A”) of A" are determined, see the memoir [21];
however, we have introduced for convenience a small variation in the
terminology from that source.

DEFINITION 2.24. Let A be a Banach algebra. The left and right
topological centres, SEQ(A”) and 3,@(14”), of A" are

30(4") = (DA OOU=00W (Ve A)} |
By)(AN) = {(I)GA/,:\I/D@:\IJQ@ (\IJEA”)}’

respectively. The algebra A is Arens regular if

304N =374 = A",
and A is left strongly Arens irregular if 3§£)(A” ) = A, right strongly

Arens irregular if 3§7")(A" ) = A, and strongly Arens irregular if it is
both left and right strongly Arens irreqular.

It is clear that 3?) (A”) and 3,@ (A”) are both closed linear subspaces
of A”. In fact, each is a subalgebra of both of (A”, O) and of (A", ).
Indeed, for example, let &1, ®, € 3§£)(A” ). Then, for each ¥ € A", we
have

(©100,) 00 =0, 0(P,00) =0, O (0, 00)
and
(B, 0Bs) O = (B, 0 By) O T = By O (D O V),

and so &, 0 ®, € 317 (4").

Thus A is Arens regular if and only if the two products O and <
coincide on A”. In the case where A is a commutative Banach algebra,
3 (A") = BET)(A”) = 3(A”, 0), and A is Arens regular if and only if
(A”, O) is commutative. For example, each C*-algebra is Arens regular
and each group algebra of the form L'(G) is strongly Arens irregular
[95]. Some history of the calculations of the topological centres of A”
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when A = LY(G) for a locally compact group G and A = (1(S) for a
semigroup S is given in Chapters 8 and 12, respectively.

It is shown in [49, Corollary 1.2] that A is amenable

whenever 3" (A”) is amenable.

Let A be a Banach algebra, and let & € A”. Then the following
are equivalent: (a) ® € By)(A”); (b) Ly : ¥ +— & OV is continuous on
(A" a(A" A"); (c) @ - a, — POV whenever (a,) is a net in A with
lim, a, = V. The map Lg is continuous on (A”,o(A”, A")) for each
® € A” if and only if A is Arens regular. It is easy to see that

3(4”,0) c 3;7(A") N3 (A").

PROPOSITION 2.25. Let A be a Banach algebra with a closed ideal
I. Suppose that A/I and I are strongly Arens irreqular. Then A is
strongly Arens irreqular.

PROOF. Set B = A/I; the quotient map is ¢ : A — B.
Let ® € 3§Z)(A”), so that POV =0 O W (U € A”). We have

¢"(2)Bq"(V) = ¢"(®) O ¢"(¥) (Ve A,

and so ¢"(P) € 356)(B” ). Since B is strongly Arens irregular, we see
that ¢"(®) € B, say ¢"(®) = q(ag), where ag € A. By replacing ® by
® — ay, we may suppose that ¢’(®) = 0, and so ¢ € 39(1”). Since
I is strongly Arens irregular, ® € I. Hence A is left strongly Arens
irregular. Similarly, A is right strongly Arens irregular. O

Let A be a Banach algebra, and let M(A, P,m,n) be a Munn al-
gebra. It is clear [38, Proposition 4.1] that

MDA, Pymyn) C 3P (M(A, Pom,n)");

equality holds in the case where m = n and P is invertible in M, (A),
and so in this case M(A, P,n) is strongly Arens irregular if and only
if A is strongly Arens irregular.

The following result is an abstract version of part of the proof of
[54, Theorem 1.3].

PROPOSITION 2.26. Let A be an infinite-dimensional, dual Banach
algebra for a closed submodule E of A" with E' = A. Suppose that
(A”,0) is amenable. Then (E°,0) has an identity, and A is not left
strongly Arens irreqular.

PROOF. By Proposition 2.2(vii), the ideal (E°, 0) has a bound-
ed approximate identity, say (®,). By passing to a subnet, we may
suppose that &, — &g in (A", 0(A"”, A")), and then &, € E°.
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Let & € E°. Then we have lim, ®,0® = & in (A”,|-||) and
lim, ®,0® = ®qo0® in (A", (A", A")), and so PooP = d. Also,

Sody=lim(Pody)od, =limPod, =,

taking limits in (A", ]| -||). Hence ®; is the identity for E°.
Let a € A. Then a - ®q, Py - a € E°, and so

CDO 'CL:(CI)O '(l) . (I)qu)o . (CL : CI)O):(I' (I)O.
It follows that &, € 3(A”,0) C 3£€)(A”), and so @y # 0. Thus &, & A,

and hence A is not left strongly Arens irregular. O

DEFINITION 2.27. Let A be a Banach algebra. A linear functional
A € A is [weakly| almost periodic if the map

ar—a-N A—A,

is [weakly] compact. The spaces of almost periodic and weakly almost
periodic functionals on A are denoted by AP(A) and W AP(A), respect-
wely.

Both AP(A) and WAP(A) are || - ||-closed A-submodules of A’, and
AP(A) C WAP(A). In fact, as in [119],
(2.15) WAP(A)={A € A :(dOU, \) = (00U, \) (&, Ve A"},
and so A is Arens regular if and only if WAP(A) = A'.

The following well-known characterization of Arens regularity is
taken from [19, Theorem 2.6.17].

THEOREM 2.28. Let A be a Banach algebra. Then the following
conditions on A are equivalent.

(a) A is

Arens reqular;

(b) for each ® € A", the map Lg is continuous on (A", a(A", A"));
(c) for each A € A" and bounded sequences (a,,) and (by,) in A,

lim lim(a,, b, A) = lim lim(a,b,, A)

whenever both repeated limits exist;

(d) WAP(A) = A'. O

COROLLARY 2.29. Let A be an Arens regular Banach algebra. Then
closed subalgebras of A and quotients of A by closed ideals are also
Arens regular. O
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For example, let A = (¢!, -). Then A is Arens regular [19, Example
2.6.22(iii)].

Introverted subspaces We now define introverted subspaces of A’,
where A is a Banach algebra. A form of this definition goes back to
Day [29].

DEFINITION 2.30. Let A be a Banach algebra, and let X be a || - |-
closed, A-submodule of A’. Then X is left-introverted if

P -AeX (NeX, e A",
and X is right-introverted if
APeX (ANeX, deA).

Further, the submodule X 1is introverted if it is both left-introverted and
right-introverted in A’.

For example, A’ and A’A are both left-introverted subspaces of A’.
It is shown in [21, Proposition 5.7] that each || - ||-closed, A-submodule
X of A’ for which X € WAP(A) is introverted. In particular, AP(A)
and WAP(A) are each introverted subspaces of A’. It follows from
(2.15) that the products O and <& on X’ coincide whenever X is a
faithful, introverted subspace of A" with X C WAP(A).

Let A be a Banach algebra, and let X be a faithful, left-introverted
subspace of A’. Then X° is a closed ideal in (A”,0), and so we can
regard (X', 0) = (A”, O)/X° as a quotient Banach algebra, with quo-
tient map denoted by mx. Similarly, (X', <) is a quotient Banach
algebra of (A”, <) in the case where X is right-introverted . We regard
A as a closed subalgebra of (X’ 0) and (X', <), as appropriate. Let
X be an introverted subspace of A’. Then the products O and < in X’
are specified by

(2.16) (PO, A) = (D, U-A), (dOW, \) = (T, A-B) (A€ X

for &, ¥ € A”.
Suppose, further, that A is a dual Banach algebra with respect to
E C A’ and that £ C X. Then we have

(2.17) X' = Ax (E°/X°)

as a semi-direct product. See [21, Chapter 6] for details of the above
and for several further examples of introverted subspaces; we shall re-
turn to this notion in Chapters 8 and 12.



2. BANACH ALGEBRAS AND THEIR SECOND DUALS 35

DEFINITION 2.31. Let A be a Banach algebra, and let X be a left-
introverted subspace of A’. Then the topological centre

of X' is

3(X)={® € X': Ly is continuous on (X', o(X', X))}.

We have A C 3+(X’) € X'. In the case where X = A’ the
set 3;(X’) coincides with the previously defined left topological cen-
tre 3§£)(A”). Suppose that A is Arens regular. Then 3,(X’) = X’
for each left-introverted subspace X of A’. In the case where X is
introverted, we have

3(X)={2eX':200=00V (Ve X')}.

The notion of the topological centre 3;(X’) in the above sense was
introduced in [82]; see [99] for the case where X = A’A.







CHAPTER 3
Semigroups

In this chapter, we shall recall certain basic algebraic properties of
semigroups, and then shall move on to the consideration of some semi-
groups which are also topological spaces, in particular of compact, right
topological semigroups. We shall include for background information
some known facts that are not actually to be used. The chapter will
conclude with a collection of examples.

For an introductory account of semigroup theory, see [81], for ex-
ample. The standard work on this subject is [17].

Basic definitions A semigroup is a non-empty set with an associa-
tive product, usually denoted by juxtaposition; however, the semigroup
product in Z (and also Z* and N) is always addition, denoted by +,
unless otherwise stated. Of course, each group

is a semigroup.

Let S be a semigroup. The product map is

ms: (s,t)—st, SxS—8S.

In the case where S'is unital, the identity of .S is denoted by eg. Suppose
that S is non-unital. Then the semigroup formed by adjoining an
identity to S is denoted by S¥: even in this case we sometimes write
ess for s when s € S. The opposite semigroup to S is the same set S
with the opposite product -, defined by setting s - t =ts (s,t € S);
the opposite semigroup is denoted by S°P. The semigroup S is abelian
if st =ts (s,t € §). A non-empty subset T of S is a subsemigroup if
T is a semigroup for the product in S. For s € S, we set

(s) ={s" :n e N},

the semigroup generated by s; the subsemigroup of S generated by
a subset T is (T'); a semigroup S is finitely generated if there exists
T € Ps(S) with (T') = S, and S is infinitely generated if it is not
finitely generated.

There is a notion related to that of (T') when T is replaced by a
(finite or infinite) sequence (s,) in S. This is the set of finite products
of (s,), defined by

37



38 3. SEMIGROUPS

FP{((s,)) = U{sm---snk:nl,...,nkGN, ny <mng < - <Nt
keN

in the case where S = (N, +) or S = (Z,+) and (s,) is a sequence in
S, we refer to the finite sums of (s,), defined by

FS((sn)>:U{sn1+---+snk:nl,...,nkEN,nl<n2<~--<nk}.
keN

The sequence (s,,) has distinct finite products if the elements s, - - - S,
in F'P((s,)) are uniquely determined by the strictly increasing sequence
(ny,...,ng) in N;

see [78, Definitions 5.1 and 6.26].

Let S and T be two semigroups. A morphism from S to T is a map
0 : S — T such that 0(s1s2) = 0(s1)0(s2) (81,82 € .5); an epimorphism
is a surjective morphism, and an zsomorphism is a bijective morphism.
The semigroups S and T' are isomorphic, written S = T’ if there is an
isomorphism from .S onto 7.

DEFINITION 3.1. Let S be a semigroup, and let o € S be such that

so=o0s=o0 (s€89).

Then o is a zero for the semigroup S.

Let S be a semigroup, and let o be an element not in S. Set
T = SU{o}, and define so = 0s = 0 (s € S) and 0> = 0. Then T
is semigroup containing S as a subsemigroup; we say that 7" is formed
by adjoining a zero to S, and write T = S°. Suppose that S has an
identity eg. Then eg is also the identity of S°.

The following elementary semigroup D will be very useful later.

EXAMPLE 3.2. Let D be the two-element set {e, 0} with products
ee = e and eo = oe = 0> = 0. Then D is a semigroup with identity
e and zero o. Let S be any semigroup, and let S° be the semigroup
formed by adjoining a zero to S. Then the map 6 : S° — D specified
by setting 0(s) = e (s € S) and 0(0) = o is an epimorphism. O

DEFINITION 3.3. Let S be a semigroup. Then S is regular

if, for each s in S, there exists t € S with sts = s. An element
p € S is an idempotent if p> = p; the set of idempotents of S is
denoted by E(S).
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Of course, a group G is a regular semigroup such that E(G) = {eg}.

Let S be a regular semigroup. Then, for each s € S, there exists
u € S with sus = s and usu = u. Indeed, take t € S with sts = s, and
set u = tst; it is immediately checked that sus = s and usu = u. In
this case, us, su € E(S), and so E(S) # 0. It follows that

(3.1) S = JpSq:p.q € E(S)}.

Let < be a transitive and reflexive relation on a set S. Then <
is a quasi-order; it is a partial order if, further, it is anti-symmetric.
Let < be a quasi-order on a set S. An element sq is a mazimum if
s < 59 (s € S) and mazrimal if s < sy whenever s € S and sy < s;
manimum and minimal elements are defined similarly.

There are several orderings on the subset E(S): for example, for
p,q € E(5), set p < qif p = pg, set p <g ¢ if p = qp, and set
p < qif p = pqg = qp. The orderings <; and <p are quasi-orders,
and < is a partial order on E(S). (However <; and <pg need not be
anti-symmetric, and so they are not necessarily partial orders.

Further, (E(S), <) is not usually an ordered semigroup.) An idem-
potent is minimal (respectively, mazimal) if it is minimal (respectively,
maximal) in (E(S), <).

By [78, Theorem 1.36], p € FE(S) is minimal if and only if it is
minimal for either of the quasi-orderings <; or <g. We say that p €
E(S) is right mazimal

if it is maximal in (E(S), <g).

DEFINITION 3.4. Let S be a semigroup with a zero o. Then an
tdempotent p is primitive
if p# 0 and ¢ = p or g = o whenever q € E(S) with ¢ < p.

Let S be a semigroup. For subsets U and V' of S, we set
UV ={w:uelUveV}.

We write Uz for U{z}, etc. Let U be a subset of a semigroup S. Then
we define subsets U, for n € N inductively. Indeed, set Uy = U and
Ut = UUpy (n € N). Further, set U = ({Upy : » € N}. In the
case where U is a subsemigroup of S, the family {U},; : n € N} is a
decreasing nest of subsemigroups of S, and Ul is also a subsemigroup
whenever it is non-empty. We note that £(S) C Sis.-

Ideals A left (respectively, right) ideal

in a semigroup S is a non-empty subset T of S such that ST C T
(respectively, T'S C T); a subset which is both a left and right ideal is
an ideal. An ideal [ in S is prime if [ # S and S\ [ is a subsemigroup
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of S. Let T be a non-empty subsemigroup of S such that s,t € T
whenever s,t € S and st € T. Then S\ T is a prime ideal in S. A
minimal [left] ideal

in S is a [left] ideal which is minimal in the family of [left] ideals of .S
when this family is ordered by inclusion. Similarly, we define minimum
[left] ideals, etc. Let I be an ideal in a semigroup S, and let L be a
minimal left ideal in S. Then L C I.

DEFINITION 3.5. Let S be a semigroup. Then F' is a finite group
left] ideal in S if ' is a finite set which is a [left] ideal in S and F is
a subgroup of S.

The minimum ideal of S (if it exists) is denoted by K(S). The
semaigroup S s simple

if the only ideal in S is S itself. A principal series of ideals for

S is a chain

S=L25L2 21, =K(S)

where Iy, 15, ..., 1, are ideals in S and there is no ideal of S strictly
between I; and 1,41 for each j € N,,_4.

The minimum ideal K (S) is called the kernel of S in [81, §3.1]. A
semigroup S is simple if and only if K(S) = S; in this case, S = Spy
and S = 955 (s € §). Let the semigroup S have a principal series as
above. Then the factors /1,41 are isomorphic in some order to the
‘principal factors’ of S, and so any two principal series have isomorphic
sets of factors; see [17] or [81, Exercise 3.8.4].

Let S be a semigroup, and let I be an ideal in S. For s,t € S,
set s ~ tif s =t orif s,t € I. Clearly ~ is an equivalence relation
on S; the equivalence class containing s is denoted by [s]. We define
[s][t] = [st] (s,t € S), and obtain a well-defined semigroup operation
on the set of equivalence classes. The semigroup S/I so formed is the
quotient semigroup;

the equivalence class which is the set I is a zero of S/I. Certainly
the map s +— [s], S — S/I, is an epimorphism. See [81, §1.7] for
further details.

Let I be an ideal in a regular semigroup S. Then clearly I and S/
are also regular semigroups.

PROPOSITION 3.6. Let S be a reqular semigroup.

(i) Let p € S be a minimal idempotent. Then Sp is a minimal left
ideal.

(ii) Suppose that S has just one idempotent. Then S is a group.
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PROOF. (i) Let L be a left ideal with L C Sp, and take s € L.
Then there exists t € S with sts = s and tst = t. Set ¢ = ts, so that
q € E(S)N Sq. We have ¢ € Ss C L C Sp, so that gp = ¢ and ¢ <[, p.
Since p is minimal in (E(S), <), p is also minimal in (E(S), <), and
so p <r, q. Hence Sp C Sq C L, and so L = Sp. Thus Sp is a minimal
left ideal.

(ii) [17, p. 33, Exercise 4] Let the unique idempotent of S be e. For

each s € S, there exists t € S with sts = s, and so st = ts = e. Thus
e is the identity of S and t = s7! € S, so that S is a group. 0

The following is the major structure theorem about semigroups with
minimal left ideals which contain an idempotent.

THEOREM 3.7. Let S be a semigroup such that S has a minimal
left ideal which contains an idempotent.

(i)

FEach left ideal in S contains a minimal left ideal; for each minimal
left ideal L in S and each s € L, Ss = Ls = L; minimal left ideals are
pairwise isomorphic.

(ii) Each right ideal in S contains a minimal right ideal; for each
minimal right ideal R in S and each s € R, sS = sR = R; minimal
right ideals are pairwise isomorphic.

(i) The minimum ideal K(S) exists; the families of minimal left
ideals and of minimal right ideals of S both partition K(S).

(iv) For each minimal right and left ideals R and L, there ezists
p € E(S)NRNL such that RN L = RL = pSp is a group; these groups
are mazimal in K(S), are pairwise isomorphic, and the family of these
groups partitions K (S); further, LR = K(S) = SsS (s € K(9)).

PRrOOF. This is contained in [78, Corollary 1.47, and Theorems
1.51, 1.53, 1.54, 1.61, and 1.64]. See also [10]. O

PROPOSITION 3.8. Let S be a semigroup.

(i) Suppose that T is a subsemigroup of S, that both S and T contain
a minimal left ideal with an idempotent, and that K(S)NT # 0. Then
K(T)=K(S)NT.

(i) Suppose that K(S) exists, that T is a semigroup, and that there
is an epimorphism 0 : S — T. Then K(T) = 0(K(S)).

PROOF. This is given in [78, Theorem 1.65 and Exercise 1.7.3]. O

Completely o-simple semigroups We define the special class of
completely o-simple semigroups, and some related classes of semigroups.
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DEFINITION 3.9. Let S be a semigroup. Suppose that S has a zero
0. Then S is o-simple

if S # {0} and the only ideals in S are {0} and S, and S is
completely o-simple

if it is o-simple and contains a primitive idempotent.

In fact, a completely o-simple semigroup S is regular [81, Lemma
3.2.6). It follows that, for each p € E(S) \ {0}, the semigroup pSp is
either a group or a group with zero adjoined.

ProproOSITION 3.10. Let S be an o-simple semigroup, and suppose
that p,q € E(S) \ {o}. Then there exists r € E(S) \ {o} withr < p
such that ¢Sq = rSr.

PROOF. [122] Since SpS = S, there exist x1,z5 € S such that
r1pxry = q. Set y; = qr1p and y, = praq, so that

Y1Y2 =4, qy =Y1ip =Y, DY2 = Y20 = Y2.
Set r = yoy1. Then r € E(S) \ {o} with r < p. For z € S, set
0(z) = y12y2. Then 6 : y2.Sy; — ¢S¢ is an isomorphism. But we
have y25Yy1 D 4211 Sysy1 = rSr and 2S5y = y2qSqy; C rSr, and so
rST = y25Y1. O

PROPOSITION 3.11. Let S be a completely o-simple semigroup.

(i) Every non-zero idempotent of S is primitive.

(ii) Let p,q € E(S). Then pq = q if and only if qp = p.

(iii) Let p € E(S)\{o}. Then Sp and pS are minimal non-zero left
and right ideals, respectively, and pSp = G° for a group G.

(iv) Suppose, further, that S is infinite and that E(S) is finite.
Then S contains an infinite group.

PRrROOF. (i) There is a primitive idempotent, say p, in S.

Take g € E(S)\{o}. By Proposition 3.10, pSp = ¢Sq. Since pSp is
either a group or a group with zero adjoined, the same is true of ¢Sq,
and so ¢ is primitive.

(ii) Suppose that pg = q. Then gp # o and gp < p, and so qgp = p
because p is primitive.

(iii) The first statement has essentially the same proof as that of
Proposition 3.6(i), given (i).

Set G = pSp \ {o}. Take s € G, so that psp = s. By (i), Sp is a
minimal left ideal, and so Ss = Sp; in particular, there exists u € S
with us = p, and we may suppose that u € G. Now take t € G, so
that, similarly, there exists v € G with tv = p. We have (us)(tv) = p,
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and so st # o, whence St € GG, and so G is a semigroup. The identity
of G is p. For s € G, there exist u,v € G with us = sv = p, and then
u = usv = v, so that v = u~! € G. Thus G is a group.

(iv) Suppose that E(S) = {p, o} for a primitive idempotent p € S.
Then S = pSp = GU{o} for a group G, and so the result is immediate.

Now assume inductively that the result holds for each infinite, com-
pletely o-simple semigroup 7" with |E(T')| < |E(S)|. Consider the com-
pletely o-simple semigroup Sp. If Sp is infinite and Sp A E(S), the
result follows from the inductive hypothesis. So we may suppose that
either Sp is finite or Sp O E(5), and hence that Sp = S. Similarly,
either pS is finite or pS = 5. Since S = (Sp)(pS), either Sp or pS is
infinite. So we may suppose that Sp = S. Since |E(S)| < oo, there
exist u,v € E(S) with uSv = upSwv infinite, so that pS is infinite, and
hence pS = S. But now again S = pSp = G U {0} for a group G, and
the result holds for S.

The result holds by induction. 0

We shall also use the following structure theorem in Chapter 10; it
is given in [81, Chapter 3].

THEOREM 3.12. Let S be a regular semigroup with finitely many
idempotents. Then K(S) exists and S has a principal series

52112122"'21m—12]m:K(S)

such that each quotient I;/1;11 is a completely o-simple, reqular semi-
group with finitely many idempotents. Further, in the case where S is
infinite, either K(S) is infinite, or at least one of the quotients I;/1; 44
s infinite, and S contains an infinite group.

PROOF. The principal series is constructed inductively. Since each
quotient [;/I;i1 contains a primitive idempotent and E(S) is finite,
the construction terminates after finitely many steps.

There exists j € N, with [;/I;;; infinite (where I,,1; = {0}).
By Proposition 3.11(iv), I;/1;41 contains an infinite group G. Since
G NI =0, we may regard G as a subgroup of I; C S. O

Rees semigroups This section discusses ‘regular Rees matrix semi-
groups with a zero over a group G’, which we first define.

These famous semigroups are described in [17, §3.1] and [81, §3.2];
we shall particularly follow the clear account in [81]. In fact, we shall
define a slight generalization of these semigroups, so that we can in-
troduce notation that will be used in Example 6.18 and Chapter 10.
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Indeed, let T" be a semigroup, and let GG be a group that acts biject-
ively (on the left and right) on 7" such that e is the identity on T'. For
m,n € N, we shall describe a particular semigroup S, denoted by

(3.2) S = M(T, Pe,m,n).

Here Po = (aij) € M, ,,(G). For z € T, i € N,,,, and j € N,,, let
(z)i; be the element of M, ,(7°) with z in the (i, 7)™ place and o
elsewhere. As a set, S consists of the collection of all these matrices
(x);;. Multiplication in S is given by the formula

(x)ij(y)kﬁ = (majky)iﬁ (x,y € Tv i> k € Nrm j,g S Nn) ;

associativity is easily verified, as in [17, §3.1] and [81, Lemma 3.2.2],
and so S is a semigroup.
Similarly, we have the semigroup

MO(Ta PGa m, n) )

where the elements of this semigroup are those of M(T, Pg,m,n), to-
gether with the element o, identified with the matrix that has o in each
place (so that o is the zero of M°(T, P;,m,n)), and the entries of Py
are now allowed to belong to G°. The matrix Py is called the sandwich
matriz in each case.

The semigroup M°(T, Pg,m,n) is a Rees matriz semigroup with a
zero over T" and a subgroup G. If T'= G is a group, we obtain a Rees
matriz semigroup with a zero over G, and write

MC(G, P,m,n)

for our semigroup. (The standard definition in [17] and [81] allows the
index sets to be infinite; such semigroups are the generic completely
o-simple semigroups [81, Theorem 3.2.3].)

Suppose that m = n. Then we write

MO(T7 PG?”) = MO(T7 PG?”?”) ;

etc. Suppose further that Py = (a;;), where a; = e¢ (i € N,,) and
a;; = o0 (i # j), so that P = I5(n) is the n x n identity matrix.

Then we set

M°(T,n) = M°(T, Pg,n).

Suppose that G = {e}. Then we write M°(P,m,n) for the semi-
group M°(G, P, m,n), etc.

The above sandwich matrix Pg is reqular

if every row and column contains at least one entry in G. The
semigroup M°(G, P, m,n) is regular as a semigroup if and only if the
sandwich matrix is regular [17, Lemma 3.1].
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Two semigroups M°(G, (a;;), m,n) and M°(G, (b;j), m,n) are iso-
morphic if there exist s1,...,s, and tq,...,t,, in G with

bij = sial-jtj (2 c Nn, j c Nm) .

In particular, we are allowed to exchange any two distinct columns and
any two distinct rows of P at will [17, Corollary 3.12]. For example,
up to isomorphism, the 2 x 2 regular sandwich matrices over a group
G have one of the three forms

s () (0) (20)

where e = e and s € G.

Let G be a group, let {e} be the group with just one element,
and let 0 : G — {e} be the epimorphism. Then there is an obvious
epimorphism
(3.4) 6: M°(G, Pym,n) — M°(@(P),m,n).

Let S = M°(T, Pg,m,n), as above, with Pg regular. We set

N(Pg) ={(j, k) € N, xN,, : aj, # o}
and

Z(PG> = {(]7k) S Nn X I\Im LAk :O}-
Fori e N, and j € N, let X;; = {(x);; : * € G} and e;; = (eq);;. The
elements e;; are the matriz units

of S. Then the sets X;; are pairwise disjoint, and S is the union
of these sets, together with {o}. If a;; = o, the product of any two
elements in X;; is 0. If a;; € G, X;; is (isomorphic to) the semigroup
T by the map (x);; — xaj;, and T is infinite if S is infinite.

An idempotent other than o of M°(G, P, m,n) has the form (a;kl)kj,
where (j,k) € N(P), and so

(3.5) |E(S)| = |N(P)|+1.

In particular, in the case where m = n, set P = Ig(n) = > e; and
S = M°(G,n). Then |E(S)|=n+ 1.

The result that we shall require is essentially the famous class-
ification theorem of Rees [121], which is contained in [17, Lemma
2.46 and Theorem 3.5] and [81, Theorem 3.2.3]; see Chapter 4 for
the construction of the semigroup algebras of these semigroups and
Chapter 10 for our application of this theorem.

THEOREM 3.13. Let G be a group, let m,n € N, and let P be a
reqular sandwich matriz. Then M°(G, P,m,n) is a completely o-simple
semagroup with finitely many idempotents.
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Let S be an infinite, completely o-simple semigroup with finitely
many tdempotents. Then there is an infinite group G which is a maxi-
mal subgroup of S such that G° = pSp for each p € E(S)\ {0}, and S
15 1somorphic as a semigroup to a reqular Rees matriz semigroup with
a zero M°(G, P,m,n). O

Cancellative semigroups Let S be a semigroup. For s € S, define
(3.6) Ly(t) =st, Rst)=ts (t€S9).
Let U be a non-empty subset of S. Then
sTTU =LY U) = {teS:steU},
{ Us'=R;YU) = {teS:tseU}.

s

We write s~z for the set s7'{z}, etc. Further, let V' be another non-
empty subset of S. Then

VU = | J{s7'U : s €V},
{ Uv—t = H{Us ' :seV}.
Suppose that G is a group and that U C G. Then
U'lt={u':ueU}.

DEFINITION 3.14. Let S be a semigroup. An element s € S is left
(respectively, right) cancellable if Ly (respectively, Rs) is injective on
S, and s is cancellable if it is both left cancellable and right cancellable.

The semigroup S is left (respectively, right) cancellative if each el-
ement is left (respectively, right) cancellable, and cancellative

if each element is cancellable.

The semigroup S is weakly left (respectively, right) cancellative if
s7YF (respectively, Fs™') is finite

for each s € S and each finite subset F' of S, and S is weakly
cancellative if it is both

weakly left cancellative and weakly right cancellative.

Certainly, each subsemigroup of a group is cancellative. Let S be a
cancellative semigroup. In the case where S is abelian, S is a subsemi-
group of a group G with |G| = |S| [19, Proposition 1.2.10]. However,
in general, S is not necessarily a subsemigroup of any group: rather
complicated necessary and sufficient conditions for this, and examples
for which the conditions fail, are given in [17, Chapter 10] and [102,
Chapter IX].
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PROPOSITION 3.15. Let S be an infinite, cancellative semigroup.
Then |E(S)| < 1 and either S contains a countable, infinite subgroup
or S contains a subsemigroup isomorphic to N.

PROOF. First suppose that p € E(S). For each s € S, we have
p?s = ps and sp? = sp, and so ps = sp = s because S is cancellative.
Thus p is the identity of S.

In the case where (s) is finite for each s € S, necessarily each (s) is
a finite subgroup of S; the identity of each group (s) is an idempotent,
and so is equal to the identity eg of S. Thus each s € S has an inverse
in S, and so S is a group. Certainly S contains a countable, infinite

subgroup
In the case where (sq) is infinite for some sq € S, take T = (s¢).
Then T is a subsemigroup isomorphic to N. 0

Let S be a regular semigroup. Then the following are equivalent
(81, Exercise 2.6.11]: (a) |E(S)| = 1; (b) S is cancellative; (c) S is a

group.
Let S be a semigroup, and let p € E(S). Then p is left (respectively,
right) cancellable if and only if p is a left (respectively, right) identity

for S.

PROPOSITION 3.16. Let S be an infinite, cancellative semigroup.
Then there is a sequence in S which has distinct finite products.

ProoOF. This is [78, Lemma 6.31]. O

PROPOSITION 3.17. Let S be a weakly left cancellative semigroup,
and let'T" be an infinite subset of S. Then there exists a subsemigroup U
of SwithU D T, with |U| = |T|, and such that UsnU =0 (s € S\U).

PROOF. For an infinite subset W of S, define

i(W)={seS:WsnW #0}.
Since S is weakly left cancellative, we have |i(1V)| < |W], and so we
have [WUi(W)| = [(WUi(W))| = |[W|. We set Uy = T and also

Upi1 = (U, Ui(U,)) for n € N. Then U := |J{U, : n € N} has the
required properties. O

Let {S; : i € I} be a family of semigroups. Then the semigroup

[Is=]I{si:ier,

where the semigroup operation is specified by setting (s;)(t;) = (s;t;),
is the direct product of the family. In the case where each .S; is unital,
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is the direct sum

of the family: here the elements of € S; are sequences (s; : i € I)
in []S; such that s; is the identity of S; for all save finitely many values
ofiel.

Let {S; : ¢ € I} be a family of weakly cancellative, unital semi-
groups. Then @{S; : i € I} is also weakly cancellative.

We now introduce an apparently new condition on semigroups.

DEFINITION 3.18. A semigroup S is nearly right cancellative if
there is a subset X of S such that | X| = |S| and also, for each s,t € S
with s # t, the set {x € X : sx = tx} is finite; such a set X is a witness
in S. The semigroup S is nearly left cancellative iof S°P is nearly right
cancellative, and nearly cancellative if it is both nearly right cancellative
and nearly left cancellative.

Clearly a [right] cancellative semigroup is nearly [right| cancellative.
We shall later give examples of semigroups that are weakly cancella-
tive and nearly cancellative, but not right cancellative; some later re-
sults apply to exactly the class of weakly cancellative and nearly right
cancellative semigroups. Note that a subsemigroup of a nearly right
cancellative semigroup is not necessarily nearly right cancellative, but,
for each subset T' of a nearly right cancellative semigroup S, there is a
nearly right cancellative subsemigroup U of S with |U| = |T|.

The following result shows that there are many nearly right can-
cellative semigroups.

PROPOSITION 3.19. (i) Let S be an infinite semigroup. Then there
is a nearly cancellative semigroup T containing S as a subsemigroup
and with |T| = |S].

(ii) Let k be an infinite cardinal, and let {S, : 0 < K} be a family
of unital semigroups with 2 < |S,| < Kk (0 < k). Then @{S, : 0 < K}
15 nearly cancellative.

PROOF. (i) Let G be any group with |G| = |S|, and set T' = S#*¥®G.
Take X = {(es,x) : x € G}. Then the elements of X are cancellable
and |X| = |T|, and so X is a witness to the fact that 7' is nearly
cancellative.

(ii) Set S = @{S, : 0 < k}. For each o < &, choose s, € S, with
sy # eg,, and define x, € S for ¢ < k to be the sequence with s, in
the o™ coordinate, and with eg_ in the 7'" coordinate for each 7 < &
with 7 # 0. Set X = {z, : 0 < K}, so that | X| =k = |S|. The set X
is a witness to the fact that S is nearly cancellative. U
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Almost left disjoint subsets We first pause to explain some notation
that will be used at several future points; it involves the enumeration
of a semigroup.

Let S be an infinite semigroup with |S| = k; we may suppose for
convenience that S has an identity eg. We enumerate S as a sequence
(S : @ < K), where 59 = eg. For s = s, and t = s3in S, set s < t
if « < finkandset s <¢if @« < §in k. Thus (5, <) is a totally
ordered set, but in general it is not the case that (S, <) is an ordered
semigroup.

For t € S and a subset F' of S, set

t]={seS:s<t}, [Fl=|Jlt]:teF}.

Further, for o < 8 < K, set [sq,53) = {s, € § : a < v < [}, with
similar notation for other ‘intervals’ in S. For a subset F' of S, the
maximum and supremum of F' are defined with respect to <.

THEOREM 3.20. Let S be an infinite semigroup of cardinality k such
that S 1s weakly cancellative and right cancellative. Then each subset
X of S such that | X| = k contains a subset F' such that |F| =k and

sTTENtT'F| <k, [sFNtF| <k (s,t€S, s#t1).

Proor. We may suppose that S is unital, with identity eg, and
that e € X. Set k = |S|, and enumerate S as {s, : @ < K}, with

so = eg, and set S, = {so, S1, ..., S} for each a < k.
We shall define subsets F, of X inductively for each o < x in such
a way that F, is finite for n < w and |F,| = || for each a € |w, k).

Set o = sp and Fy = {xo}.
Now assume that F,, has been specified, where o < k. Set

Uy = (S,'SaF,) U (SuS T F,) C S

Then U, is finite for & < w and |U,| = |F,| = |o| for w < a < &k
because S is weakly cancellative, and also U, D (S, U F,). Choose
Tar1 € X \ Uy, and set Fyy = F, U {zas1}, so that |F, 1] has the
correct value in each case. In the case where a@ < k and « is a non-zero
limit ordinal, define F,, = |J{F}: B < a}. Again |F,| = |a|.

This completes the inductive construction of the sets F, for a < k.

We define F' = J{Fj : § < k}. Certainly F C X and |F| = k. Fix
distinct elements s,t € S, and choose a < k with s,t € S,,.

First take u € sT'FNt~'F, say su = g, tu = 2., where § < v < k.
Then in fact § < v because u is right cancellable in .S. Assume towards
a contradiction that 5 > «. Then

Ty =tu € tS_ng C Sgsﬂ_ng C Ug,
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a contradiction. Thus 8 < a, and so u € S;'S,F, C U,. We have
shown that s 'FNt~'F C U,, and so [s"'FNt7'F| < a < k.

Second take v € sF'NtF, say u = sxg = tx,, with 3 <. Then in
fact B < v because xp is right cancellable. Assume that 3 > «. Then
z., € t7'sFy C U, a contradiction. Thus 8 < a, and so u € S*F,. We
have shown that sF' NtF C S2F,, and so [sFF NtF| < a < k.

The theorem is proved. O

We introduce a variation of a well-known concept (see [78, p. 237]).

DEFINITION 3.21. Let S be an infinite semigroup. A subset F' of S
is almost left disjoint if F' is countable and infinite and if
sTYE Nt E is finite whenever s,t € S with s # t.

For example, let (ng) be a sequence in N such that ng,; —nyp — oo
as k — 0o. Then the set {n : £ € N} is an almost left disjoint subset of
(N, +). On the other hand, N, contains no almost left disjoint subsets;
see Example 3.36.

THEOREM 3.22. Let G be an infinite group. Then each infinite
subset of G contains an almost left disjoint subset.

PROOF. Let X be an infinite, countable subset of GG, and take H
to be the subgroup of GG generated by X, so that H is also countable.
By Theorem 3.20, there is a countable subset F' of X such that F' is
almost left disjoint in H. Take s,t € G with s # ¢, and suppose that
sFNtF # (. Then sH NtH # (), and so the left cosets sH and tH
are equal. Hence s = th for some h € H. Suppose that u € sF NtF.
Then h= ' 'u € F and t7'u € F, and so t~'u € hF N F, a finite set.
Thus sFNtF C t(hFNF), a finite set. Hence F' is almost left disjoint
in G. 0

THEOREM 3.23. Let S be an infinite, cancellative semigroup. Then
S contains an almost left disjoint subset.

Proor. By Proposition 3.15, S contains a countable, infinite sub-
semigroup 1" such that T is either a group or isomorphic to N. The
set T has the property that, for each r, s € T with r # s, there exists
t € T such that either tr = s or ts = r. Clearly T contains an almost
left disjoint subset, say F', for T such that yF N F' is finite for each
y €T\ fer}.

Assume towards a contradiction that there exist s,t € S with s # ¢
such that s™'F N ¢ 'F is infinite. Choose z € s~ 'F Nt 'F. Then
sz, tr € F, and sz # tx. Thus there exists y € T'\ {er} with ysz = tz,
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say. But now ys =t and ysz =tz € yF'NF for every z € s F Nt LF,
and so yF N F is infinite, a contradiction. Thus F' is an almost left
disjoint set for S. O

The above result is trivially false if S is just abelian and weakly
cancellative. Indeed, set S = {e;,e2} UN as a set, and define

€; Gj = 61'\/]‘ (Z,] = 1,2),
ei-m = m-e=m (meNi=12),
m-n = m+n (m,neN).

Then (S, ) is a countable, abelian, weakly cancellative semigroup, but
e;' - Fney' - F D F for each subset F of N, and so S contains no almost
left disjoint subset. The above result is also trivially false if S is either
just left or right cancellative or if S is just abelian, weakly cancellative,
and nearly cancellative; see Examples 3.30 and 3.40, respectively.

Topological semigroups The following is a standard definition.

DEFINITION 3.24. A semigroup S which is also a topological space
is a left (respectively, right) topological semigroup if L; (respectively,
Ry) is continuous for each t € S, a semi-topological semigroup if the
product map mg is separately continuous, and a topological semigroup
if mg is continuous.

A group G is a topological group if it is a topological semigroup
and, further, the map s — s~%, G — G, is also continuous.

For the theory of topological semigroups, see [10] and, especially,
(78, Chapter 2]; we shall seek to follow the notation of [78] throughout.

We shall see later that the following two theorems apply in partic-
ular in the case where V = (S, O) for a semigroup S; see Theorem
6.1(i). Clause (i) shows that the structure theorem 3.7 applies to com-
pact, right topological semigroups.

THEOREM 3.25. Let V' be a compact, right topological semigroup.

Then V' has a minimal left ideal which contains an idempotent, and
so the structure theorem 3.7 applies.

In particular, the minimum ideal

K(V) exists and E(V) # 0. Further:

(i) minimal left ideals of V' are closed in V' ;
(ii) the closure of each right ideal in 'V is a right ideal;

(iii) V' contains right mazimal idempotents.
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PROOF. The main claim that V' has a minimal left ideal which
contains an idempotent is [78, Corollary 2.6]; (ii) and (iii) are [78,
Theorems 2.15 and 2.12], respectively. U

By [78, Example 2.16], the closure of a left ideal in V' is not neces-
sarily a left ideal.

THEOREM 3.26. Let V' be a compact, right topological semigroup,
and let p € E(V). Then the following conditions on p are equivalent:
(a) Vp is a minimal left ideal; (b) pV is a minimal right ideal; (c) pVp
is a subgroup of V; (d) pVp is the maximal subgroup of V' with p as an
identity; (e)

p is a minimal idempotent; (f) p e K(V); (g) K(V)=VpV.

PROOF. These (and other equivalences) are contained in [78, The-
orem 2.9] and [10]. O

We conclude this subsection by introducing a certain class of semi-
groups.

DEFINITION 3.27. Let S be a semigroup. Then S is maximally
almost periodic if there is a compact topological group G and a mono-
morphism from S into G.

A group H is maximally almost periodic if and only if the finite-
dimensional, irreducible, unitary representations of H on a Hilbert
space separate the points of H; this is the standard definition of such
a group [114, Theorem 12.4.15]. Each cancellative, abelian semigroup
and each subsemigroup of a free group is maximally almost periodic.

Characters and semi-characters

DEFINITION 3.28. Let S be a semigroup. B
A semi-character (respectively, character) on S is a map ¢ : S — D
(respectively, ¢ : S — T) such that

p(st) =p(s)p(t) (s,t€8) and ¢ #0.
The spaces of semi-characters and characters on S are denoted by ®g
and Vg, respectively.

See [10, Definition 1.18], [35, Definition 1.1.9], and [72, Definition
(22.15)], but note that our definition is different from that given in
(9, page 92|, which requires a further condition. Often, the space of
semi-characters on a semigroup S is denoted by H(S).
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There is always one character on S, namely the map
l:s—1, S—T;

this is the augmentation character.

In general, the augmentation characters may be the only semi-
character on S.

Let ¢,1 € &5 U {0}. Then we define ¢ - ¢ € &g U {0} by

(0 - ©)(s) = @(s)ib(s) (s€5).
Clearly &5 U {0} is an abelian semigroup with identity 1 with respect

to this product -. Let ¢ € ®g, and define g : s +— w, S — C. Then
P € bg.

Let p be an idempotent in a semigroup S. Then p(p) = 0 or
o(p) = 1 for each ¢ € dg.

Let ¢ be a semi-character on S, and let I be a prime ideal in S.

Set
P(s)=(s) (s€S\I) and ¢(s)=0 (sel),

so that ¢ = ¢ - xs\;. Then ¢ € ®5. Conversely, for each ¢ € ®g, the
set {s € S :¢(s) =0} is a prime ideal in S.

Let S be a semigroup. The space &g U {0} is compact and ®g is
locally compact with respect to the topology of pointwise convergence
on S. Further, (dsU{0}, -) is a compact topological semigroup, called
the dual semigroup to S;

see [8] and [35]. For example, ®s = D when S = Z*. The space
Vs is a compact subspace and a subgroup of the compact semigroup
O U {0} (and ¥g C Pg). Indeed, (¥g, -) is a compact topological
group.

Let G be a group. Then every semi-character on GG is a character,
and so Vg = Og. Let N be the commutator subgroup

of G (so that N is generated by elements of the form sts~'¢~! for
s,t € G), and let H be the quotient group G/N, so that H is an
abelian group. Then ®¢ is just the dual group H of H. Let (S,+)
be a cancellative, abelian semigroup. Then S is a subsemigroup of
an abelian group (G, +) such that each element of G' has the form
s —t for some s,t € S. Let ¢ € Vg, and define ¢ on G by setting
P(s —t) = p(s)p(t)~t. Then @ is a well-defined character on G and
¢ | S = . In this way we can identify Vg with U = G.

Examples of semigroups We conclude this section with a collection
of examples of semigroups.
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ExXAMPLE 3.29. The standard example of semigroup that we have
in mind is (N, +), just denoted by N; similarly we shall consider the
group Z = (Z,+). A further semigroup is (N, -); this latter semigroup
is not finitely generated. All these semigroups are cancellative. U

ExAMPLE 3.30. Let S be an infinite set with the product given by
st=t (s,t€s),

so that S is a right zero semigroup.

Then S is a semigroup which is right cancellative, but not weakly
left cancellative. Each element of S is a left identity, but there are no
right identities. Let F' € P(S). Then s'F = F (s € S), and so S
contains no almost left disjoint subset.

Similarly, a left zero semigroup

has the product specified by setting

st=s (s,t€S);

now S is left cancellative. Let F' € P(S). Then s'F = S (s € F),
and so S contains no almost left disjoint subset. O

EXAMPLE 3.31. Let S be an infinite set, and let p € S. Set
st=p (s,t€S9).

Then S is a semigroup; it is a trivial semigroup at
p. The element p is a zero of this semigroup. U

EXAMPLE 3.32. Let T = Z?, and define
(m1,n1) - (M2, ng) = (M1 + ma,ng) (My,ny, Mg, ng € Z).

Then (7', -) is a non-abelian semigroup which is left cancellative, but
not weakly right cancellative. Each infinite subset of T contains an
almost left disjoint subset;

the elements of the form (0,n), for n € Z, are idempotent of T'. In
fact, T' = (Z,+) x S, where S is a right zero semigroup on N. For more
(T, - ), see Examples 7.31 and 10.9. O

ExXAMPLE 3.33. Let S =N x {0, 1}, with the operation
(m,i) - (n,j) = (m+n,0) (mneN,ije{01}).

Then S is an abelian, countable, weakly cancellative semigroup. How-
ever S is not nearly cancellative because we have (1,0) # (1,1), but
(1,0) - « = (1,1) - z for each z € S. For more on this example, see
Example 7.34. 0
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EXAMPLE 3.34. Let S = (N x N)U{o}, with the product such that,
for (m, i), (n,j) € NxN, we have (m,i) - (n,j) = (m-+mn,i) when j =i
and (m,i) - (n,j) = o when i # j; alsoset s - 0o=0-s=o0 (s € 9).
Then (S, -) is an abelian semigroup with a zero, o. For j € N, the set
S; = N x {j} is a subsemigroup of S, and so S = (U,ey55) U {0},
where {S; : j € N} is a countable family of pairwise disjoint infinite
subgroups, and S;S; = {o} when ¢ # j. For more on this example, see
Example 12.19. ]

ExAMPLE 3.35. Let S be an infinite semigroup, and set "= 5 x §
as a set. Define

(a,z) - (byy) = (ab,ay) (a,b,z,y €S).

Then (7', -) is a semigroup which is not weakly right cancellative; it is
left cancellative whenever S is left cancellative. O

ExAMPLE 3.36. Let S be the set N, with the product
(m,n) —mVn=max{m,n}, NxN-—-N.

Then S is a semigroup with the identity 1, and S is countable, abelian,
and weakly cancellative. However S is not nearly cancellative, and S
does not contain any almost disjoint subset. Clearly F(S) = S. This
semigroup will be denoted by Ny,. U

ExAMPLE 3.37. Let S be the set N, with the product
(m,n) —» mAn=min{m,n}, NxN-—-N.

Then S is a countable, abelian semigroup, and 1 acts as a zero; S is
nearly cancellative, but S is not weakly cancellative. Clearly E(S) = S,
but S does not have an identity. This semigroup will be denoted by
Njx. O

ExAMPLE 3.38. Let S, =N, for n € N, and set

S:@{Sn:nEN}.

Then S is weakly cancellative by Proposition 3.19(ii), but S is not
cancellative; S is nearly cancellative. The semigroup S is isomorphic
to the set N, with the semigroup operation specifed by taking m - n to
be the lowest common multiple of m and n for m,n € N. O
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EXAMPLE 3.39. Let S = M,,(N), the set of n x n—matrices with
coefficients in N. Then S is a semigroup with respect to the product of
matrices. This semigroup is weakly cancellative and nearly cancellative
(taking the witness X to be the set of matrices in S with non-zero
determinant), but the semigroup S is neither left nor right cancellative
whenever n > 2. O

EXAMPLE 3.40. Let S be a non-empty set, and let V' = Py(S),
with the semigroup operation

Y, 2)—YUZ VxV-oV.

Then V is is abelian, weakly cancellative and nearly cancellative (tak-
ing the witness X to be the set of singletons in V'), but V is not
cancellative. Each element is an idempotent, and so S is a semilattice.
This semigroup does not have any almost left disjoint subset. U

EXAMPLE 3.41. Let S be an infinite set, and set T = S°, with
composition o of functions as the semigroup operation; let T have the
product topology. Then T is a topological semigroup [78, Corollary
2.3].

Let X be the subset of T' consisting of the surjective functions. For
each f,g € T with f # g, the set

{heX:foh=goh}

is empty; further, | X| = 2% = |T'|, where x = |S|. This shows that
T is nearly right cancellative; clearly the semigroup 7' is not weakly
cancellative. O

EXAMPLE 3.42. The free semigroup on 2 symbols is Ss;
S, is cancellative and a subsemigroup of Fs, the free group on 2

symbols.
Each element w in Fy has the reduced form
(3.7) w=a"b" - a"p"
where k € N, mq,nqy,...,mg, ng € Z, and nq, mo, Na, ..., Ng_1, Mg 7 0.
The length

of this element is
[w| = ma| + | + -+ || + [n]

The map w — |w|, Fy — Z7, is an epimorphism such that the set
{w € Fy : |w| = n} is finite for each n € Z. O
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EXAMPLE 3.43. Let GG be a group with identity e, and consider the
Rees matrix semigroups

M°(G, P,,n) and M°(G,Q,,n) in the above notation, where n € N
and

e o0 O 0O O e 0 O o 0

e € 0 0o O e € 0 0o 0

e € e 0o O 0o € ¢ 0o 0
Pn: ) Qn: .

e e e -+ € 0 o o o -+ €

e e e -+ € € o o o -+ € €

We denote these special semigroups by P,,(G) and Q,,(G), respectively.
Then we see that

(3.8) |E(P,.(G))| = %(n2 +n+2) and |E(Q.(G))| = 2n,.

We set p = (€)1 and ¢ = (e)12, so that p,q € E(P,(G)), ¢ # p, and
pq = q and gp = p.
The matrices P, and @,, are regular, so that both P,(G) and Q,,(G)
are regular Rees matrix semigroups with a zero over the group G.
O

ExXAMPLE 3.44. Let A be a Banach algebra, and set B = (A", O).
Fix ¢ € ®p, and let

Vo={P e A" ||®] = p(®) =1}.

Then (V,,, 0) is a compact, right topological semigroup (with respect to
the o(A”, A’)-topology), and so the minimum ideal K(V,,) exists. [






CHAPTER 4

Semigroup algebras

In this chapter we shall give the definitions and some basic properties
of semigroup algebras; we shall conclude with a collection of examples
of these algebras. The Banach space ¢!(S) was defined in the intro-
duction.

Basic definitions A semigroup algebra is the ‘analytic’ version of the
standard algebraic semigroup algebra; it is just the Banach algebra
generated by the semigroup.

DEFINITION 4.1. Let S be a semigroup, and let f = > .0, and
g = Zﬁs5s b610ng to gl(S) Set

frg= (D)« (3 04) =Z{(Zarﬁs> it e S} ,

rs=t

where Y, ., a5 = 0 when there are no elements r and s in S with
rs=t. Then (£1(S), x) is the semigroup algebra
of S.

Semigroup algebras have been discussed in many papers; see, for
example, [6]. Important early papers are [29] and [73]. Of course, a
special case of a semigroup algebra is a group algebra £!(G), where G
is a group; there is a huge literature on these Banach algebras (see [72]
and [19, §3.3], for example).

Let S be a semigroup, and set A = (€1(S), =, - ||;). Clearly A is
a Banach algebra; it is commutative if and only if S is abelian. Also
A# = ((S#). Suppose that S is unital with identity eg. Then Jq
is the identity of ¢1(S), and ||dc,]|, = 1. However ¢!(S) may have an
identity e4 in the case where S is non-unital; as we shall see, it may
be that ||e4l|; > 1 and that ||e4]|; is not a natural number, although
we do not know an example where ||e4]|, is not a rational number. We
shall calculate some values of |le4||; in the case where A is amenable in
Examples 10.13-10.15, and in Example 10.15 we shall see that supp e4
is not necessarily finite.

59
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We shall often regard an element s of S as an element of A by the
obvious identification; for example, we set

UA(S> - O-A((Ss) and pA(S) = pA((Ss) :

Let T be a subset of a semigroup S. Then we regard ¢1(T) as a
closed, complemented subspace of A; if T' is a subsemigroup of S, then
(}(T) is a closed subalgebra of A; if T' is an ideal of S, then ¢1(T) is a
closed ideal in A.

Let S and T be semigroups, and let 6 : S — T be an epimorphism.
Then there is an induced contractive epimorphism 6 : £1(S) — ¢Y(T)
defined by requiring that 6 | S takes its specified value in T C ¢1(T).
Of course, ¢1(S) is isometrically isomorphic to ¢!(T) if and only if S
is isomorphic to T'.

For each ¢ € &g, the map

D b= > agp(s)

is a character on ¢(S), and every character on ¢!(S) arises in this way,
and so we identify the character space of the Banach algebra ¢!(S)
with the semi-character space ®g; the specified topology of pointwise
convergence on S coincides with the Gel’fand topology. See [35, Prop-
osition 4.1.2].

The character on £'(S) that corresponds to the augmentation char-
acter on S is the augmentation character

s, where
Vg - 204555 — Zas.
Suppose that T is a subsemigroup of S. Then ¢g | £1(T) = 7.

DEFINITION 4.2. Let S be a semigroup, and let [ = Y s,
belong to £*(S). Then

Fromo(f)=> awp(s), @s—C,

is the Fourier transform of
f, the map F : f — [ is the Fourier transform, and

A(®s) = {]: [ € £1(5)}

is the algebra of Fourier transforms of £*(S).

Thus F is a homomorphism which can be identified with the Gel’fand
transform of £1(S), and A(®g) is a Banach function algebra on the lo-
cally compact space ®g; it is unital when S has an identity.

In the case where G is a group with commutator subgroup N, there
is an obvious identification of A(®q) with A(Pg/n), and so A(Pg) is
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a self-adjoint, dense subalgebra of C'(®¢), and A(P) is regular in the
sense of [19, Definition 4.1.16]. However A(®g) need not be regular for
a semigroup S. For example, let S = Z7", so that A(®g) is the Banach
function algebra A*(D) of absolutely convergent Fourier series on D
each function in A*(D) is analytic on D.

Let S be an abelian semigroup. Then ¢!(S) is semisimple if and
only if ®4 separates the points of S, in the sense that, for each s,t € S
with s # ¢, there exists ¢ € ®g such that ¢(s) # ¢(t) [35, Proposition
4.1.4].

Approximate identities

PROPOSITION 4.3. Let S be a semigroup for which there is a finite
subset F' C E(S) such that

S=|HpSq:p.qeF}.

Suppose that £1(S) has a left approzimate identity and a right approz-
imate identity. Then €1(S) has an identity.

PROOF. Set A = (1(9).

There exist k£ € N, py1,...,pi, € F, and pairwise disjoint subsets T;
of S for i € Ny such that T; C p;S (i € Ng) and S = |J{T; : i € Ny}
For each f € A and ¢ € Ni, we have f | T; = (6,, * f) | T:.

Since A has a left approximate identity and F is finite, there is a
sequence (f,,) in A such that

1
(4.1) |]fn*(5p—5pH1<g (meN,peF).

We claim that (f,) is a Cauchy sequence. Take X € (A")p) = €°°(S)n,
and, for i € Ny, set \; = A | T3, so that \; € (A")p; clearly, we have
A= Zle ;. For m < n and i € Nj, we have

o = fos M = 1By (= fo) M) < =

and 8o [(f = fn, A)| < 2k*/m. Thus ||, — full, < 2k*/m, giving the
claim.
Set f =1lim, .o fn € A, and take i € Ny and t € T;. Then

f*&t: lim fn*épi *5,5: 5pi~k5t:5t
by (4.1). Since S = |J{T; : i € Ni}, it follows that f is a left identity

of A.
Similarly A has a right identity, and has A has an identity. O
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We shall note in Example 4.9 that a semigroup algebra ¢1(S) for
which S = E(S) can have a bounded approximate identity without
having an identity, and so the requirement that the set F' be finite
cannot be deleted in the above result.

Actions on dual modules Let S be a semigroup. The dual module
action of s € S on the dual space £1(S)" = £>(S) is specified by
(4.2) (s - A)(E) = Alts), (A - s)(t) = Ast) (teS),

sothat s - A =Xo Rsand A - s = A o L, for s € S. Note that
|s - Alg,|A - s|lg < |Alg. For each subset F' of S, we have xp € £°°(5),
and, further,

(4.3) XF © 8= Xs-1Fy S XF = XrFst -

It follows that a continous linear operator D : £1(S) — £>°(S) is a
derivation if and only if
(4.4) (r, D(st)) = (tr, D(s)) + (rs, D(t)) (r,s,t € 95);
such a derivation D is inner if and only if there exists A € £°°(.S) such
that
(4.5) (t, D(s)) = (ts — st, \) (s,t €.9).

Now suppose that V' is a compact, right topological semigroup.
Then the ‘translation maps’

are transfered to the Banach space M (V') as follows. Let v € V
and p € M (V). Then L,u and R,u are defined by

(46)  (LopN) = () - 0), (Ros N) = v - A) (A e C(V)).

In the case where s € V is identified with an element of M(V'), the
definitions of L,ds and R,ds coincide with the values of L,(s) and R,(s)
given in (3.6). Clearly L,u, R,pn € M(V)T for each p € M(V)*.

PROPOSITION 4.4. Let V' be a compact, right topological semigroup.

(i) Let p € M(V)" andv € V. Then ||Rypl| = ||ll-

(ii) Let B be a Borel subset of V', and let p € M(V') be such that
lp| (V\ B) = 0. Let v € V be such that R, | B is injective. Then

[Bupal| = [l
(iii) Let p € M(V), and let v be a right cancellable element of V.
Then ||[Ropll = [l

PROOF. (i) We have [|Rupdl] = (Rupts 1) = (1 - v) = (1, 1) = [l

(ii) Certainly |R,v|| < ||v|| for each v € V and v € M (V).

First suppose that p € Mg(V), and take € > 0. Then there exist
1, po € M(V)T and disjoint compact subsets K and K, of B such that
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o= i — oo, il = s |+ ol and iy(55) > asll—= (G = 1,2). The
sets R,(K;) and R,(K3) are disjoint in V' because R, | B is injective.
Thus

[Ropll = [[Ropir = Ropall = (Ropn) (Ro(K1)) + (Ropiz) (Ro(K2))
> pall 4+ llp2ll = 2e = flpll — 2¢.

This holds for each € > 0, and so || Ryu|| = |||

Now supppose that € M(V). Then we have u = py + iug, where
pi, po € Mg(V). There are four measurable subsets of V' \ B such
that, on each of these subsets, each of p; and pus is either positive
or negative. Since the images of these four sets under the map R, are
pairwise disjoint, it is sufficient to prove the result on each of these four
sets separately; in fact, we suppose that u; and us are both positive.

By a standard theorem [123, Theorem 6.9], there exist h € L'(u1)
and v € M (V) singular to py with

m:/hdulw.
Vv

Set A = supp v and C' = V \ A. It is sufficient to prove the result
separately for u | A and p | C. The result for | A is immediate.

Fix ¢ > 0. By replacing p by ¢/ € M(V) with ||u— /|| < e, we
may suppose that h is a simple function. By again partitioning V', we
may suppose that h is constant, and hence that s € Cuy. The result
in this case follows immediately from the case where p € Mg(V'). We
conclude that ||R,u|| > ||| — . This holds for each € > 0, and so the
result holds.

(iii) This is an (easier) special case of (ii). O

Results related to (iii) are given in [44, Lemma 2] and [103, Corol-
lary p. 469].

The spectrum of an element Let S be a non-unital semigroup, let
s € S, and set A = (1(S). We shall calculate o(s). Note that always
0 € o(s). There are two cases. First suppose that {s" : n € N} is
finite, choose the minimum m € N such that s™ = s for some n > m
(so that m is the index

of S), and then choose the minimum k¥ € N such that s™ = s™**
(so that k is the period

of s). This is the finite case; clearly (s) = {s,s? ..., smTF"1}
Second suppose that the elements s™ are all distinct for n € N; this is
the infinite case
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PROPOSITION 4.5. Let S be a non-unital semigroup, and let s € S.
Set A =(1(S). Then:

(i) in the finite case, o4(s) = {0,1,(,...,CF 1}, where k is the
period of s and ( = exp(2in/k);
(

(ii) in the infinite case, o4(s) = D.

PROOF. Let B = (1((s)#), the closed, commutative, unital subal-
gebra of £1(S#) generated by d,. Then op(s) = {p(s) : p € Pp}.

(i) Take m,k € N as specified in the definition of the finite case.
Then B is isomorphic to the finite-dimensional space C™** for a certain
product on C™**. Set ¢ = p(s). Then (™ = ("™ and so either ( = 0
or (¥ = 1. Conversely, given ( satisfying these conditions, the map
which is defined by s/ — (7 (j € Z;,, ;) is a semi-character on (s)#,
and hence gives a character on B. Thus og(s) = {0,1,(,...,¢* 1} In
the case where (¥ = 1 and ¢ # 1, we may suppose that ¢ = exp(2ir/k).
The result follows from equation (1.3).

(ii) Certainly 0 € o4(s) C D and o4(s) N'T # 0.

Assume towards a contradiction that there exists z € pa(s) such
that 0 < |z| < 1. Then there is a subset J of N, a set {t; : j € J} of
distinct points in S\ (s), and {f; : j € N} and {v; : j € J} in C such
that > . |8 <00, Y ics |l < oo, and

z (Z Bjs’ + Z%’t]) =s+ Z By’ + ij(stj) :
jEN jed jEN jed

Set Jy = {j € J:st; =s}and ¢ = Zjelej. Then 26, = 1+ ¢

(equating coefficients of s). Assume that ¢; # 0, so that J; # 0.

Inductively define sets J, by setting J,41 = {j € J : st; € J,}. Then

(Jn) is a sequence of subsets of J. For n € N, set ¢;, = >, ;. Then

2epy1 = ¢, (n € N); and so ¢, = ¢1/2" for each n € N, and

ol =lel/ ="
JETn

Thus 3 °c; || > el /|2]" for each n € N, a contradiction unless
c1 = 0. Thus ¢; =0 and 206, = 1.
Assume inductively that z"3, =1 forn=1,...,k, and set

le{jEJISt]‘:Sk+1} and d1:Z%’-
JeL1

Then 20k11 = Bk + di. As before, we obtain a contradiction in the
case where d; # 0. Thus d; = 0 and 20,1 = Bk, whence 2", = 1 for
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n = k+ 1. We conclude by induction that 2”3, =1 (n € N). But this
contradicts the fact that ), |8;| < oco. Thus D C o (s).

It follows that o4(s) = D, as required. O

Semigroup algebras as dual Banach algebras We determine when
a semigroup algebra is a dual Banach algebra.

THEOREM 4.6. Let S be an infinite semigroup. Then the following
are equivalent:

(a) £1(S) is a dual Banach algebra
with respect to co(S);

(b) S is

weakly cancellative.

PROOF. Set A = (1(S).

(b)=(a) Let A € ¢o(S) and s € S. We claim that s - X\ € ¢y(.5).
Indeed, take € > 0. There is a finite set F' C S such that

IAt)| <e (teS\F).

!is a finite set, and

By hypothesis, F's™
(s - AN)(r)|<e (reS\Fsh.

Thus the claim holds. Similarly, A - s € ¢(S5), and so ¢(S5) is a
submodule of A’. Since ¢y(S) = £*(S), A is a dual Banach algebra.

(a)=-(b) Assume that S is not weakly cancellative, say S is not
weakly left cancellative. Then there exist t,u € S and distinct points
S1, 82,... € S such that s,t =u (n € N). Let

1
(s1+--+s,) €A (neN).

fnzﬁ

Then (f,) is a sequence in A, and clearly f, — 0 in o(A4, ¢(S)). How-
ever f, xt =u (n € N), and so the sequence (f, * t) does not converge
to 0in o(A, co(S)). This shows that multiplication in ¢y(.S) is not separ-
ately o(A, co(S))-continuous, and so ¢y(.S) is not a submodule of A’, a
contradiction of (a). O

Examples of semigroup algebras

EXAMPLE 4.7. Let D be the two-element semigroup specified in
Example 3.2. Then the semigroup algebra ¢£!(D) is exactly the two-
dimensional algebra Ap of Chapter 2, page 18. The amenability con-
stant of this algebra was shown to be 5. Let S be any semigroup. Then
there is an epimorphism 6 : S° — D and hence there is a contraction

0:(1(S°) — (Y(D). 0
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EXAMPLE 4.8. Let Sy = {a,p}, and define all products on Sy to
be p. Then Sy is a non-unital semigroup, and Ay := £1(Sy) is a 2-
dimensional algebra; the unique character on Ag is the augmentation
character

o :oa+ Pp— o+,

and the radical of Ay is the 1-dimensional subspace Ry := ker ¢, so
that Ay = Cp @ Ry with AgRy = {0} and A2 = Cp. Thus A, is not
semisimple. Here we have Cy, = {0} C ker G. There is no non-zero
point derivation at g, but Ay is not weakly amenable because it is not
essential. (l

EXAMPLE 4.9. Let S be the semigroup N,, so that the Banach
algebra !(S) is commutative. The identity of this algebra is d;. For
ke N, set pp(m) =1if m < k and pg(m) = 0 if m > k. Then ¢y is
a semi-character on S, and these semi-characters separate the points
of S. Thus £*(S) is semisimple. Indeed, every semi-character has the
form ¢y, for some k € N, or is the augmentation character; the Gel’fand
transform of £*(N,) is the map

(aj:i€N)— ((Zal nGN) Zal) '(Ny) = C(NU {oo}).

For more on this example, see Examples 7.32, 10.10, and 11.3. O

ExaAMPLE 4.10. Let S be the semigroup N,, so that the Banach
algebra ¢1(S) is commutative. For k € N, set ¢p(m) = 1 if m > k
and ¢(m) = 0 if m < k. Then 1)y is a semi-character on S, and these
semi-characters separate the points of S. Thus £!(S) is semisimple.
Indeed, every semi-character has the form 1, for some k£ € N, and the
Gel’fand transform of ¢!(N,) is the map

(o 21 €N) (Zal.n€N> (' (NA) — ¢

Notice that the sequence (9, : n € N) is a bounded approximate
identity for the Banach algebra ¢!(N,), but that £}(N,) does not have
an identity.

For more on this example, see Examples 7.33, 10.10, and 11.4. [J

EXAMPLE 4.11. Let S be a set with |S| > 2, and consider the right
Z€ero semigroup

on S. Then f x g=ps(f)g (f,g € L1(S)).
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Of course, A := (1(S) is the dual space of E = ¢(S), but, by
Theorem 4.6, A is not a dual Banach algebra with respect to F, and
so the product in £1(S) is not o(A, E)-continuous. Note however that
A is a dual Banach algebra with respect to F' = ¢(S) = ¢y(S5) @ CI.
Indeed, let f, — f in (A,0(A, F)), and take g € A. For each A\ € F,
we have A - g = (D g(s)A(s))1, and so

(95 for ) = U d e 9) = (D a(9A5) (oo 1)
(Zg ) f, 1)

Thus g * fo — g x fin (A,0(A, F)). Similarly, f, x g — f *x g in
(A,0(A, F)). This shows that A is a dual Banach algebra with respect
to I

The above is related to Question 2 of D. Blecher [12]. O

EXAMPLE 4.12. Let S be a semigroup. We have noted that ¢1(.J)
is a closed ideal in £1(S) for each ideal J in S. However the converse is
certainly not true. For let S = Z*. Then each ideal in S has the form
Jo, ={m € N:m > n} for n € Z", but there are many closed ideals

in 01(S) ~ A(ﬁ+) which are not of this form; for example, a maximal
ideal at z € D with z # 0 is not of this form. U

Rees semigroup algebras The following example will be of major
importance to us.

Let G be a group, let m,n € N, and consider the Rees matrix
semigroup S with a zero over G with a sandwich matrix P = (a;;), as
described in Chapter 3.

Thus

S =M°(G,P,m,n).
We now describe the semigroup algebra £1(S).

For 2 € G, (x);; is identified with the element of M, ,(¢*(G)) which
has J, in the (i, j)" position and 0 elsewhere, and o is identified with
do. Thus an element of £1(S) is easily identified with an element of
M., (¢} (@)) U Cd,.

We set N = N(P) and Z = Z(P) in the previous notation. Let
f=(fij),9 = (9:5) € My, ,(¢*(@)). Then multiplication of f and g in
01(S) is given by the formula

A7) (f*r 9= D fij * Oap * gret+ Y 2c(fis)pa(gne)do
(4,k)eEN (4,k)eZ

Note that M, ,(¢1(G)) is usually not a subalgebra of £1(S).
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We now claim that the quotient Banach algebra ¢1(S)/Cd, is iso-
metrically isomorphic to the Munn algebra

M(YG), P,m,n) of Example 2.15. To see this, we must iden-
tify the specified sandwich matrix P € M,, ,,(G°) with a matrix P €
M., (¢1(@)) as follows: if the first matrix P has a € G in the (i,7)™-
position, then the new matrix P has the point mass d, in the (i, j)™-
position; if the first matrix P has the element o in the (4, )™ -position,
then the new matrix P has the element 0 € ¢*(G) in the (i, 7)™ -
position. Thus we can write

01(8)/Cs, = M(LM(G), P,m,n).

The fact that this identification is an isometry depends on the definition
of the norm in M,, ,(A) that was given in equation (1.4).
The product in £1(S) also satisfies the following equation:

(4.8) fHp bo=10,xp [ = <ZZ<PG(fz’j)> do = pa(f)do,

=1 j=1
say. In particular, take f,g € £}(G) and i,k € N,,,, j,£ € N,,. Then

C (F o buy k)i (GiR) € N(P),
(F)ig e (g)ne = { ol Fclal it (k) e 2(P).

DEFINITION 4.13. The semigroup algebra corresponding to the semi-
group S = M°(G, P,m,n) is

0Y(S) = (M°(LY(G), P,m,n), *p ).

In the case where m = n, we write (M°((Y(G), P,n), xp); in the case
where P is the identity matriz, we write (M°((*(G), m,n), x); in the
case where G = {e}, we write (M°(C, P,m,n), xp); etc.

This is an elaboration of a standard construction; see [33] and [37].
The case in which S is finite was described earlier in [17, §5.2].

We see that we are in the situation of Example 2.11. In that nota-
tion, we have A = (¢1(S), *p, |- ||;). Further, p = 4§, € J(A) is such
that Cp is an ideal in A, and B = M({}(G), P,m,n) with the quotient
norm; the requirement that

la+2plla = llallg + 12| (a+2p €A

is satisfied. Thus Theorem 2.12(ii) shows that ¢!(S) is (4C + 1)-
amenable whenever M (¢1(G), P,m,n) is C-amenable.

The Banach algebra ¢1(G) is unital and has a character, and so
Proposition 2.16 applies (where now we have

A=(YG) and A= M(A,P,m,n)="S)/Cé,.)



4. SEMIGROUP ALGEBRAS 69

Suppose that ¢1(S) has an identity. Then 2 has an identity, and so,
as in Proposition 2.16, m = n, P is invertible in M, (¢!(G)), and 2 is
topologically isomorphic to ML, (¢!(G)). Indeed, the map

(4.9) 0:a— P 'a, M,(('(G)) - MU{YG),Pn),
is a topological isomorphism. Conversely, suppose that m = n and
that P is invertible in M, (¢!(G)), with inverse Q € M, (¢1(G)), say.

Then (1(S)/Cé, has an identity, and so ¢'(.S) has an identity;
it is

(4.10)  ea:=Q+ (1 —pc(@))d, = Q + (1 - %(Q@) 0o ,
ij=1
as we remarked in Example 2.11.
For i,7 € N,, set a;; = ¢a(P;) and §;; = ¢a(Qij), so that
(aij), (Bi;) € M, and (ayj) - (Bi;) = I,. Since each element of P
is either a point mass or 0, it follows that each «;; is either 0 or 1;

each (3;; is clearly a rational number. A necessary condition for P to
be invertible is that det(c;) # 0. Clearly,

1—25@ ZZW@H—

3,7=1 3,j=1

1= Byl -

1,5=1

(411)  fleall, = QI +

In the special case where G = {e}, we identify P with (a;;); P is
invertible in M, (¢'(@)) if and only if det(ay;) # 0, and then we have
Q = (Bij6.), identifed with (5;;). Thus, in this case, we have equality
in equation (4.11), and so, curiously, |leal|; is necessarily a rational
number; we do not know if this is necessarily the case for general groups
G.

For each i € N,;, a subset of the set {(;1,..., i} of numbers sums
to 1; let the sum of all the numbers 3;; that do not belong to these
designated subsets be . Then

> By

ij=1

Z 85| =n+[B] and

ij=1
Thus
(4.12) ||e,4||1 >2n—1.

For example, take n € N, and let P = Ig(n) be the n x n identity
matrix, as in Chapter 3. Then the identity of M°(¢1(G),n) is

ea=Ig(n)—(n—1)5,.
Here |E(S)| =n+1 (by (3.5)) and ||e4|, = 2n — 1.

=[n=pl=n—|5|
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For more on Rees semigroup algebras, see Examples 6.18 and 7.14,
and several examples in Chapter 10.

EXAMPLE 4.14. Let n = 2. Then the three possible forms of regular
2 x 2 sandwich matrices over a group G were specified in (3.3). The
corresponding matrices in My(¢1(G)) are

5 0 d. 0 de 05\ .
0 6, ) de 00 |7 de 0 )

clearly the first two are invertible, with inverses

5, 0 1 5, 0
0 o, an 5, 8, )

respectively, but the third is not invertible in Miy(¢!(G)). The identities
of the Rees semigroup algebras M°(¢*(G), P,2) corresponding to these
latter two matrices are

de 0 e 0
(0 56)—50 and (—5e 56)’
both with norm equal to 3. U
ExAMPLE 4.15. Now consider the semigroups P,(G) and Q,(G)

of Example 3.43. The matrices corresponding to P, and (), of that
example are

e 0 0 0 b 0 0O --- 0 O
de 0. 0 0 O de 0, O -+ 0 O
de 0¢ O0c -+ 0 0 0 6. 0. 0 0
de O0¢ O0¢ +++ 0. O 0 0 0 d. 0
0¢ O0¢ O¢ +++ O Oc 0 0 0 0 O

in M,,(¢}(@)). In this case, P, and @, are invertible in M, (¢*(G)),
with

e 0 0 0 0

~6. 6. 0 0 0

oot 0 —d. & 0 0
0 0 0 - & 0

0 0O 0 -+ —=d O
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and
Oe 0 o --- 0 0
—0., O o --- 0 0
0! 0¢ —0c 0. -~ 0 O
46, 6, 46, -+ &, 0
:che j:(;e :F(Se e _56 56
Thus

||| =2n~1 and ZQOG((P;%):L

ij=1

so that we have Hegl(Pn)”l =2n —1. Also

02| = gn(n+1)

and 3" 0a((Qy1)i) is n/2 for n even and [n/2] + 1 for n odd, so
that ||eg1(p,,)||, ~ n?/2. We sce that

1P 2@2n—1)

|[E(P,.(G))] n2+n+2

—0 as n— oo,

whereas

(4.13) 19, | n(n + )—>oo as m — 00.

[E(Qn(G))] —  4n 0

We consider when two of our Rees semigroup algebras are isomor-
phic.

Let G be a group, and let n € N. As before, all indices belong to
the set N,,, unless we say otherwise. The matrix units in

M, (¢}(G)) are E;; = (0¢)ij. Let W € M, (¢*(G)) be the matrix in
which all terms are equal to d., so that E;;W Ey, = Ey.

Let P € M,,(G°) be a sandwich matrix, and take (a;;) as above, so
that each a;; € {0,1}. Set S = M°(G, P,n). Then we identify

(1(S) = (M°((1(G), P,n), xp)
with the linear space M, (¢}(G)) ® Cdy. By equations (4.7) and (4.8),
the product *p is given by:
{ A xp B=APB + ¢g(A(W — P)B)dy,
A*p 6o =0, xp A=pc(A)dy, 0o *p do =10, .

Now suppose that the sandwich matrix P is invertible, so that
det(aij) 7£ 0.

(4.14)



72 4. SEMIGROUP ALGEBRAS
We set 3; = > (. As in (4.10), the identity of £1(S) is

ea=Q+ (1 —9c(Q))d,.

THEOREM 4.16. Let G be a group, let n € N, and let P be an
invertible sandwich matriz in M, ((*(Q)), with Q@ = P~'. Then the
map
(4.15) { 0:A+20, — QA+ pg(A—QA), + 20,

' (M(LYH(G),n),*x) — (M°(LYQ),P,n),*p),
18 an isomorphism, with inverse
{ 0=': B+wd, — PB+ pg(B— PB)d,+ wd,
(MO(LHG), Pn),*p) — (M(EH(G),n),%).

PRrOOF. Clearly 6 : M°(¢Y(G),n) — M°(L*(G), P,n) is a linear
map, with inverse #~!, and so 6 is a bijection.

We must prove that 6 is multiplicative. For this it is sufficient to

verify that the relevant coefficients of 9, are consistent.
As a preliminary, we note that QE;; = > 3,;E.;, and hence we

have pg(QE;;) = ; and
QE’Lj ZﬁmEr] + 1 - ﬁz) o -

Fix i,7,k, ¢ € N,,. We shall verify that
(416) H(E” * Ekg) = H(EZ]) *p Q(Ekg) .

First, consider the case where j # k. Then E;; x Ey = 0,, and so
Q(E'LJ * Ek@) = (50. Also

QEZ] (W P QEICZ Z 57"zﬁskEr€ ;

and so pa(QE;;(W — P)QEk) = 5;0;. Hence the coefficient of §, in
the expression for 0(E;;) xp 0(Ey) is
BiBe + Be(1 — 3i) + B;(1 = B) + (1 = B;) (1 — Br) =

This verifies equation (4.16) in the present case.
Second, consider the case where j = k. Then E;; x Ejy = Ejy, and

8<Ez] * Ejé) - ZﬁriEM + (]- - 61')50

Also
QEZ](W - P)QEJZ - Z ﬁm‘ﬁsjEsZ - Z ﬁm’Ere’
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and so pa(QE;(W — P)QE,;) = 3:6; — ;. Hence the coeflicient of 6,
in G(EZ) *p H(E]g) is
BiB; — Bi + Bi(1 = 53;) + 8;(L = 6) + (1 = B)(1 = 3;) =1 = ;.

This verifies equation (4.16) in the present case.
For A € M,(¢*(@G)), we have §(A x 6,) = pc(A)d, and

0(A) xp 0o = (c(QA) + (pa(A — QA))do = ¢c(A)do
and so again (4.16) holds in this case.
We have verified (4.16) in all cases. O






CHAPTER 5
Stone—Cech compactifications

We recall in this chapter some mostly standard theory of Stone-Cech
compactifications of locally compact spaces and, in particular, discrete
spaces.

The compactification Let ) be a non-empty, locally compact space.
We denote by 5Q the Stone-Cech compactification

of €2. One characterization of (2 is that it is a compactification
of € such that, for each compact space K and each continuous map
[+ — K, there exists a continuous map f : f — K such that
f(z) = f(z) (z € Q); a second characterization of 52 is that it is
the character space (or maximal ideal space) of the commutative C*-
algebra CB(Q). See [19, §4.2] for details of this correspondence. The
classic text on Stone-Cech compactifications is [57].

The closure in B of a subset U of ) is denoted by U, and we set
Ur=0Un(Be\Q),

the growth

of U, as in [78], so that U* is a compact topological space. The
complements of the sets Z for Z a zero set in € are a basis for the
closed sets of the topology of 5 [19, §4.2], [57, p. 87].

Let S be a non-empty set. As usual, 55 is identified with the
collection of ultrafilters

on S: for each u € 35, the sets of the corresponding ultrafilter are
the subsets U of S such that u € U, and then U € u.

We shall use the following obvious facts about ultrafilters. Each
A C P(S) such that A has the finite intersection property is contained
in an ultrafilter on S. Let U be an ultrafilter on S. Each subset T of
S such that TNU # 0 (U € U) is in U. Suppose that Ty, T, C S with
Ty UTy, eUd. Then Ty € U or Th, € U. Suppose that S has cardinality
|S| = k. Then |3S| = 2%". The standard reference on ultrafilters (for
those with good eyesight) is [18].

Let S be a non-empty set. As before, the space £°°(S) is a Ba-
nach space with respect to the uniform norm |-|g on S, and it is

75
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a commutative C*-algebra for the pointwise product; ¢y(S) is a C*-
subalgebra of £°°(S). The space S is homeomorphic to the character
space of (£°(S5),|-|g), and (£>°(5),] - |g) is isometrically isomorphic to
(C(BS),]-155); we shall identify these two Banach algebras. The space
(S is extremely disconnected, and F NG = F N G whenever F and G
are subsets of S [19, Proposition 4.2.8]. Let T be a subset of S. Then
we identify 8T with T.
The dual Banach space of £>°(S) = C(BS) is M(3S), and

(, xF) = W(F) = /qu (1€ M(BS))

for each subset F' of S.
The following property of 35 is well-known; for example, see [78,
Theorem 3.36].

PROPOSITION 5.1. Let S be an infinite set. Then each non-empty
Gs-set in S* has a non-empty interior in S*. O

We shall use the following trivial remark about 35.

PROPOSITION 5.2. Let S be a non-empty set, let T be a subset of
S, and let f : fS — (S be a continuous function with f(S) C S. Then

f7HT) = f-U(T).

PROOF. Set R = S\T, so that R = BS\T. Then f~1(T) C f~(T)
and f~1(R) C f~Y(R). Also f~1(T) N f~*(R) = 0 because TN R = ),
and f~1(T)U f~Y(R) = 3S, and so 8S\ f~1(T) c BS\ f~4T). O

Let S; and S5 be non-empty sets. Then there are two projections
7 (s1,82) — 85, S1 xS — 5,

for j = 1,2. These two maps have continuous extensions to maps
m;  B(S1 x S) — (S}, and so there is a continuous surjection

(51) T:U— (7T1(U),7T2(U)), ﬁ(Sl X SQ) — ﬁSl X /652 .

This map is a homeomorphism if and only if at least one of the two
sets S; and S, is finite.

Uniform ultrafilters The following definition is given in [18, §7] and
(78, Definition 3.13].

DEFINITION 5.3. Let S be an infinite set, and let k be an infinite
cardinal with k < |S|. An ultrafilter U on S is k-uniform if |U| > &
for each U € U, and uniform if |U| = |S| for each U € U.
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We denote the set of points in S* which correspond to k-uniform
ultrafilters on S by U,(S) and the set of uniform ultrafilters by Usg.
Clearly each U,(S) is a compact subspace of 5S. By [78, Theorem
3.58], |Us| = 2%", where k = |S|, and so Ug is a non-empty, compact
subset of S*. Let T be a subset of S. If |T'| = |S|, then the set T*NUg
is a non-empty, compact subset of Ug; if |T'| < |S|, then T* N Ug = ().

We shall several times use the following easy remark. Let S be
an infinite set, and let x be an infinite cardinal with x < |S]. Let
p o€ M(BS) with p | Ug(S) = 0, and take ¢ > 0. Since |y is a
regular Borel measure, there is a compact subset K of £S \ U,(S)
such that |u| (K) > ||p|]| —e. For each x € K, there exists U, € x
with |U,| < k. There is a finite open cover {U,,,...,U,,} of K, and
then U := U,, U---UU,, is a subset of S such that |U| < x and
|l (U) > [[ul] — &, so that

ln=n 1T <<

We shall also require the following result; the present proof was
pointed out to us by Andreas Blass, and we are grateful for this.

PROPOSITION 5.4. Let k be an infinite cardinal. Then there is a
uniform ultrafilter U on k such that, for each infinite cardinal ¢ with
( < K, the set k can be partitioned into ( pairwise disjoint sets with
the property that, for each cardinal n with n < (, the union of each
collection of n sets of the partition is not a member of U.

PrROOF. Set K = @{¢ : ¢ < k}, and let p : K — ( be the
appropriate projection. Then |K| = &, and so we can identify K and
K as sets.

Consider the family F of all subsets of K of the form pgl(S ), where
S is a subset of ¢ such that |\ S| < ¢, and where ¢ < & is an infinite
cardinal. It is easy to see that F has the finite intersection property,
and so F is contained in an ultrafilter, say U, on K.

Take an infinite cardinal ¢ with ¢ < k. Then

' {a) N K aech

is a partition of K. For each n < (, the union U of n sets of the
partition is the set of elements v € K such that p.(y) € T for a certain
subset T" of ( with |T'| = . The complement of U belongs to U, and
so U € U, as required. O

P-points We recall that a point x of a topological space X is a P-point
of X if each Gy-set in X containing z is a neighbourhood of z.
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THEOREM 5.5. (CH) Let S be an infinite, countable set. Then there
is a P-element in S*.

Proor. This is [18, Theorem 9.13]. O

By a theorem of Shelah (see [130], [134]) the existence of P-points
in the space N* is independent of the theory ZFC. Conditions on an
ultrafilter that are equivalent to the corresponding point in SN being
a P-point of N* are given in [22, Theorem 2.24].



CHAPTER 6
The semigroup (4S,0)

Let S be a semigroup. We shall show that there are two products O
and < on the Stone-Cech compactification 35 of S such that (S, 0)
and (S, <) are semigroups, and we shall begin a study of these semi-
groups. The particular purpose of the present chapter is to establish
properties of the semigroups that are to be used in our main study, to
be given in Chapters 7 and 11-13, of the Banach algebras (¢1(S)”, O)
and (£1(S)”, ). Our belief is that these properties of the semigroups
cast a bright light on those of the Banach algebras defined thereon.

Of course, the semigroups (45, 0) and (4S5, ) are very well-known;
they are the topic of the monograph [78].

The definitions and basic properties Let S be a non-empty set,
and let * be a binary operation on S, so that * is a map from S x S to
S; the image of (s,t) is denoted by s * t. For each s € S, the map

Li:t—sxt, S—SCps,

has a continuous extension to a map L, : S — (3S. For each u € (35,
define sou = Ls(u). Next, the map

R,:s—sou, S—p(35,
has a continuous extension to a map R, : 55 — (5. For u,v € (35, set
uov = R,(u).

Then O is a binary operation on (35, and the restriction of O to S x .S
is the original binary operation *. Further, for each v € 35, the map
R, is continuous, and, for each s € S, the map L, is continuous.

We see that

(6.1) uov = liénlign So * tg

whenever (s,) and (t3) are nets in S with lim, s, = v and limgtg = v.
Similarly, we can define a binary operation <& on (35 such that

(6.2) uov= limlicrxnsa * tg

whenever (s,) and (¢g) are nets in S with lim, s, = v and limgts = v.

79
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Let (S, -) be a semigroup. Then the two extensions of - are the
binary operations O and < on (S5; it is immediately checked that
both O and < are associative on S [78, Theorem 4.4]. Thus we
obtain the following fundamental result.

THEOREM 6.1. Let S be a semigroup. Then (S,0) and (3S, <)
are semigroups containing S as a subsemigroup. Further:

(i) for each v € BS, the map R, : u +— wuowv is continuous, and
(8S, O) is a compact,
right topological semigroup;

(ii) for each s € S, the map Lg : u+— sou is continuous;

(iii) the minimum ideal K(3S, O) exists, and E(BS) # 0. O

The semigroup maps O and < that we have defined here agree
with the semigroup maps defined in several different ways in [78].

From now on, we shall generally discuss the semigroup (45, O); of
course, analogous results hold for the compact, left topological semi-
group (35,<). Let u,v € 3S. We shall sometimes write uv for uowv
(and w? for uou, etc.); for subsets U and V of 85, we set

oV ={uocv:uelU veV};

the notations S[’;ﬂ and S[*OO] always refer to subsets of (4S5, O), so that,
for example,

S[tl]:{ul\jn-Dun:ul,...,unGS*}.

Note that, in the case where S = N and u,v € ON, the element
uow is denoted by u+ v in [78], but, for us, u + v denotes the element
6y + 0, € L1(BS).

We note that there appear to be several deep open questions about
the semigroup (87, O); for example, it is open whether or not there is
an element u € BN with u? = w2, but with u? # u.

We shall see later (in Theorem 12.20) that, in the case where S is
a weakly cancellative semigroup, the map L., defined for u € 35, is
continuous if and only if u € S. However this is not true for every
semigroup, as the following example shows.

EXAMPLE 6.2. Let S be a right zero semigroup,

as in Example 3.30. Clearly uov =v (u,v € 85), and so (S, O)
is also a right zero semigroup. In this case, L, is continuous for each
u € 3S. O
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EXAMPLE 6.3. Set S = N,,, a weakly cancellative semigroup. Then
uov = v and uov = u for u,v € S*. Thus (5*,0) is a right zero
semigroup

with SE;] = 5%, and (5%, ) is a left zero semigroup.

]

Let S be a semigroup without an identity. Then S does not have
an identity [78, Corollary 9.30], and (8S)# = 3(S#).

Let S be a semigroup, and let T" be a subsemigroup of S. We have
identified BT with T'; in fact, (87, O) is the subsemigroup (7', O) of
(8S, O) [78, Remark 4.19]. Suppose that T is a left (respectively, right)
ideal in S. Then (T is a left (respectively, right) ideal in (S, O).

Let S and T be semigroups, and let 6 : S — T be a homomorphism.
Then 6 extends to a continuous map 6 : S — (T, and

0:(6S,0)— (BT,0) and 6:(8S,0) — (BT,<)

are homomorphisms.

In fact (5.5, O) is the largest compactification of S which is a com-
pact, right topological semigroup, in the sense that any other such
compactification is a continuous homomorphic image of (S, O).

Since V' = (35, O) is a compact, right topological semigroup, we
have definitions of L,u and R,u for each v € V and u € M (V); clearly,
Lyp=vopand Ryp = pow.

Let S be a subsemigroup of a group G, and let s € S, with inverse
s € G. Then s7' O3S C BG; in the case where S\ sS is finite, we
have s71 0 .S* C S*. Now suppose that S\ sS is finite for each s € S.
Then GOS* C S*. For example, we have Z ON* C N*,

The points of 5.5 have been identified with ultrafilters on S, and so
the product O can be defined in these terms;

the following characterization of the product uov is taken from [78,
Theorem 4.15].

PROPOSITION 6.4. Let S be a semigroup, let u,v € B3S, and let W
be a subset of S. Then the following conditions on W are equivalent:

(a) W belongs to the ultrafilter uow;
(b) {s € S:s'W € v} belongs to u;

(c) there exists a set U € uw and a family {Vs : s € U} of sets in v
such that sVs C W (s € U). O

Let u,v € S, and let U € w and V' € v. Then v € U and v € V,
and so uov € UV. Hence UV € uow.
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PROPOSITION 6.5. Let S be a cancellative semigroup.
(i) For each v € S, the maps L, | S and R, | S are injective.
(ii) For each s € S, the maps Ly and Ry are injective on [3S.

PROOF. These are [78, Lemmata 6.28 and 8.1], respectively. U

PROPOSITION 6.6. Let S be a semigroup such that (3S,0) is requ-
lar. Then S is reqular.

PrROOF. Let s € S. There exists u € S with souos = s. Let
(to) be a net in S such that lim, ¢, = w. Then lim, st,s = s, and so
stos = s eventually. Thus there exists t € S with sts = s. 0

Let S be a semigroup. Clearly we have E(S*) C 5. Note that,
for S the semigroup of Example 6.3, we have S* = Sf = S| = E(S™).

Let S =Sy or S = Fy. Then it is proved in [13] and [1], respectively,
that K(8S, O)NK(BS, <) = 0.

Let S be a semigroup, and consider (E((3S), <), a partially ordered
set. In the case where S is weakly left cancellative, no element p € S*
can be a right identity for 4S5, and so no element of E(3S) is right
cancellable. In the case where S is cancellative, E(3S) contains an
infinite decreasing sequence (combine Theorems 6.12 and 6.32 of [78]).
It is stated in [78] that ‘it is a difficult open question” whether or not
there exists an increasing infinite chain p; < py < -+ in E(N*) with
pi # p; for i # j. It follows by combining Theorems 12.29 and 12.45 of
(78], that, with CH, there exist maximal elements in (F(N*), <); it is
not known whether or not this is a theorem of ZFC. See also [?].

We shall require the following result, taken from [78, Theorems 9.4
and 9.7 and Lemma 9.5].

PROPOSITION 6.7. (i) Let G be a countable group, and let q be a
right mazimal idempotent

in G*. Set

C={ueG :uoqg=yq}.

Then C is a finite, right zero subsemigroup of BG. Further, suppose
that u,v € BG \ (BGOC) and that uoqg =voq. Then u = v.

(ii) Let S be a countable, cancellative semigroup. Then each non-
empty, open subset of S* which contains an

tdempotent also contains a right mazximal idempotent. O

Let S be a semigroup. There is a discussion of identities in 45 and
S* in [78, §9.4]. Let us quote [78, Corollary 9.35]. Suppose that S is
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countable and that (S*,0) has a right identity. Then S* has at least
2¢ right identities, and so S* does not have an identity.

We have results from [78, Theorem 5.8 and Lemma 5.11] about
idempotents and finite products that we shall require.

PROPOSITION 6.8. Let S be a semigroup.
(i) Let (sn) be a sequence in S. Then there exists p € E(BS) with
p€ FP{(s,:n>m)) (meN),.

(ii) Let p € E(BS) and A € p. Then there exists a sequence (s,) in
S with FP{(s,)) C A. O

DEFINITION 6.9. Let S be a semigroup, let T be a subset of S, and
let we BS. Then T*(u) ={s €T :s'T € u}.

PROPOSITION 6.10. Let S be a semigroup, let T be a subset of S,
and let w € 8S. Then:

(i) u € E(BS) if and only if T*(u) € u whenever T € u;
(i) s7'T*(u) € u (s € T*(u)) whenever u € E(3S).

PROOF. The two clauses follow from Proposition 6.4 and from [78,
Lemma 4.14], respectively. O

Topological centres of the semigroup (S We now consider the
analogues for semigroups of the topological centres for second duals of
Banach algebras that were defined in Definition 2.24. The following
concept is well-known; see [98], for example.

DEFINITION 6.11. Let S be a semigroup. The left and right topo-
logical centres, 3,@ (8S) and Btr)(QS), of BS are
DBS)={uepS:uov=uov (vepBS)}

and

M(39) ={uepS:vou=vou (vepBs)},
respectively; S is Arens regular if ng)(ﬁS) = 3@(65) = (S, left
strongly Arens irregular if 3,@55) = S, right strongly Arens irreg-

ular if 3£T> (8S) = S, and strongly Arens irregular if it is both left and
right strongly Arens irregular.
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Our set BEE) (6S) is equal to the topological centre

A(BS) ={s € BS: L, is continuous on (S},

as defined in [10] and [78, Definition 2.4].
Let T be a subsemigroup of a semigroup S. Clearly

3988y NpT c 319(BT) and 3(BS)N BT c 3BT ;

if S is Arens regular, then so is 7. We see that 3?) (6S) = 39 (BT)
where T' = S°P.

In Chapter 12, we shall give examples of semigroups which are Arens
regular and which are strongly Arens irregular; for example, by The-
orem 12.20, each infinite group is strongly Arens irregular. Assuming
this, we exhibit here a semigroup which is right, but not left, strongly
Arens irregular.

EXAMPLE 6.12. Let G be an infinite group, and set S = G x G,
with the product specified by the formula

(CL, {L') ’ (bv y) = (a’b7 ay) (CL, b,[L’, y e G) )

as in Example 3.35:

We claim that S is not left strongly Arens irregular.

Indeed, take u € G*, say u = lim, x,, where (z,) is a net in G.
Then ((es,z,)) is a net in S, and it is convergent to an element of 35
that we may denote by (eg,u). Since (eg, z4) - (b,y) = (b, y) for each «
and each (b,y) € S, we see that (eg,u) € 3\(35). Since (e, u) & S,
the claim holds.

We also claim that S is right strongly Arens irregular. For this we
use the continuous surjection 7 : 3(G x G) — BG x BG of equation
(5.1). Take Q € BET)(HS). For each u € 3G, we have (u,eg) € 9,
and so (u,es)o0@Q = (u,eg) © Q. Thus vom(Q) = u o m(Q) and

wom(Q) = u o m(Q). It follows that m(Q), m(Q) € 37(8G) = G,
and so @ € G x G = S. Thus 3758)(55) = S, as claimed. O

Subsemigroups and ideals in 55 Let S be a semigroup. We now
consider some subsets, subsemigroups, and ideals in 55, where 35 is
taken with the semigroup operation O.

Let S be a semigroup. A condition for S* to be a subsemigroup of
B3S is given in [78, Theorem 4.28]. Thus (5*,0) is itself a semigroup
if and only if, for each A € P(S) and each infinite B C S, there is
a finite subset F' € P;(B) such that ({s™'A: s € F} is finite. Let
S be an infinite, trivial semigroup at p € S. Then S does not satisfy
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this condition, and so S* is not a semigroup. In the case where S*
is a semigroup, it is a compact, right topological semigroup, and so
E(S*) # 0, and each of the subsets Sy and S is a subsemigroup.
We now consider ideals in (S, O). For example, we see immed-
iately from (6.1) that Z™* and Z~* are closed left ideals in (5Z, O); of
course, neither is a right ideal. We start with the following well-known

triviality; it will be used implicitly many times.

PROPOSITION 6.13. Let S be a semigroup, and let uw € (3S. Then
the left ideal 3S o in 3S is closed, and 3Sou = Sou. U

We shall see below that, in general, the right ideal uo S is not
closed in 5.

PROPOSITION 6.14. Let S be a semigroup.
(i) Let L be a left ideal in (3S,0). Then L is also a left ideal.
(i) Let I be an ideal in (3S,0). Then I is also an ideal.

PRroor. (i) This is [78, Theorems 2.17].
(ii) This follows from (i) and Theorem 3.25(ii). O

PROPOSITION 6.15. (i) Let S be a semigroup. Then K(3S) is an
ideal in (BS, O).

(ii) Let S be an abelian semigroup. Then R is an ideal in (58S, O)
for each right ideal R in 8S, and R = K(BS) for each minimal right
ideal R in 3S.

(iii) The set K(BN) contains idempotents which are right mazimal
in E(Z*).

PrOOF. These follow from Theorems 4.44, 2.19(a), and 8.65, res-
pectively, of [78]. O

Let p be a minimal idempotent in SN. Then po (N is a minimal
right ideal in ON, and po SN = K(0N), and so the right ideal po SN is
not closed. It is interesting that it is an open question whether or not
K(BS) is a prime ideal in 3S; see [77].

The next theorem is [78, Theorems 4.31 and 4.36]; the related result
[31, Theorem 9(ii)] is not correct.

THEOREM 6.16. Let S be an infinite semigroup. Then:
(i) S* is a left ideal in (5S,0) if and only if S is weakly left can-

cellative;
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(ii) S* is an ideal in (58S, 0) if and only if S is weakly cancellative.
]

COROLLARY 6.17. Let S be an infinite, weakly cancellative semi-
group. Then S[*n] is a closed ideal in (6S,3) for each n € N, and S[*OO]
is a closed ideal in (S, 0).

PROOF. By Theorem 6.16(ii), S* is an ideal in S, and hence so
are S[’fn] for n € N, and so is SE;O}. The result follows from Proposition
6.14(ii). O

EXAMPLE 6.18. Let G be a group, and let m,n € N. In Chapter
3, we defined a regular Rees matrix semigroup with zero of the form

S =M°(G,P,m,n).
We now consider 5S. First, we see using Proposition 6.5(ii) that
the group G acts bijectively on G and G*, and so we can consider
M°(BG, Pg,m,n) and M°(G*, Pg,m,n) in our earlier notation for
Rees semigroups. In fact, it follows easily from equation (6.1) that,
in the notation of (3.2), we have

(88,0) = M°((8G, D), Pg,m,n)
and

(5%,8) = M°((G",8), Pa,m,n),
where P = P. Since G* is an ideal in the semigroup (GG, O), it is
clear that S* U {o} is an ideal in the semigroup (45, O). O

We now define some closed subsets T[fﬂ in S*; they are closely related
to the sets %

DEFINITION 6.19. Let S be a semigroup. Set Tﬁ] = S*, and set

T = 5*01}, (n €N).

41
In the case where S is weakly cancellative, each T, [’;] is a closed ideal
in 45, and % C T[Z] One suspects that in fact % = T[* (n € N).

n]
However, this is not necessarily the case: it will be shown in Theorem

6.46, below, that kaﬂ] #* N*D% for k > 2.

PROPOSITION 6.20. Let S be an infinite, countable, cancellative,
unital semigroup.
(i) E(K(8S))\ Sk is infinite, so that K(BS) and Spy are not closed.

(ii) There are right cancellable elements of 3S in E(K(3S)).
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(iii) There is a dense, open subset U of S* such that each element
of U is right cancellable in (8S, O).

PROOF. These are Corollaries 8.23 and 8.26 and Theorem 8.10,
respectively, of [78]. O

PROPOSITION 6.21. Let S be an infinite semigroup that is weakly
left cancellative and right cancellative. Then BS contains right can-
cellable elements.

PRrROOF. This is [78, Theorem 8.10]. O

PROPOSITION 6.22. Let S = (N, +) and T = (N, -). Then the set

E(K(BS)) is a left ideal in (6T, 0).
PRrROOF. This is [78, Theorem 16.24]. O

PROPOSITION 6.23. Let S be an infinite semigroup.

(1) Suppose that S is weakly left cancellative, with |S| = k. Then
(8S, O) contains 2% minimal left ideals, and hence 3S contains 22
minimal idempotents.

(ii) Suppose that S is cancellative. Then (S, O) contains at least
2¢ manimal right ideals.

PRroOOF. These follow from Theorem 6.42 and Corollaries 6.41 and
6.43 of [78]. O

COROLLARY 6.24. Let S be a semigroup such that (8S,0) is a
group. Then S is a finite group.

PROOF. Since (4S,0) is a group, S is a cancellative semigroup. By
clause (ii) of the proposition, S cannot be infinite. O

In fact a semigroup S is a finite group whenever (£5,0) is a can-
cellative semigroup [79].

PROPOSITION 6.25. Let S be an infinite semigroup which is weakly
left cancellative and nearly right cancellative. Then S* contains an
isomorphic copy of Fy as a subgroup, and £*(S*) contains an isometric
and isomorphic copy of £*(Fy) as a closed subalgebra.

ProoF. This follows from [78, Lemma 6.31 and Theorem 7.35];
the proof of Lemma 6.31 must be slightly modified. The result was
first proved (for the semigroup N) in [76]; a more general and simpler
proof is given in [120]. O
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In the case where the infinite semigroup S is just weakly cancella-
tive, it may be that S* does not contain a copy of Fs; for example, this
is the case when S = N,,, as we see from Example 6.3.

Subsets of S* We first characterize the set S[*z].

PROPOSITION 6.26. Let S be an infinite semigroup, and take a sub-
set A of S. Then AN S[*Q] # () if and only if there is an infinite subset

T of S such that t;*AN-- Nt 1A is infinite whenever t1, ..., t, € T.

PROOF. Suppose that there is a set T" with the specified property.
For each F' € Py(T), there is vp € S* with svp € A (s € F). Let
v € S* be an accumulation point of the net (vz). Then sv € A (s € T),
and so wv € A (u € T*). In particular, AN Sk # 0.

Conversely, suppose that there exist u,v € S* with uv € A. Set
T ={te€S:tve A}. Then T € u and T is infinite. For each
ti,...,t, € T,wehavet;"AN---Nt;'A € v, and hence t; 'AN---Nt; LA
is infinite. U

The following result was pointed out to us by Yevhen Zelenyuk.

COROLLARY 6.27. Let S be an infinite, cancellative semigroup.

Then S["‘Q] s not dense in S*.

PROOF. By Theorem 3.23, S contains an almost left disjoint set,
say F. By Proposition 6.26, F' N Spy = 0. O

The next result follows from [78, Theorem 8.22].

PROPOSITION 6.28. Let S an infinite, countable, cancellative semi-
group. Then there ezists a sequence (p,) of minimal idempotents in .S

such that {p, :n € N} N Sty = {p, : n € N}. O

Recall from Example 6.3 that we can have S[*2] = S* for a certain
weakly cancellative semigroup S.

We shall later be concerned with the following subset of S*.

DEFINITION 6.29. Let S be a semigroup. Then Dg is the subset of
S* which is the complement of the union of the sets F™* taken over all

almost left disjoint
subsets ' of S.

In the case where S has no almost left disjoint subsets F' of S, we
take Dg = S*. For example, Dg = S* when S = N,,. Since each set
F* is open in S§*, the set Dg is closed in S*.
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THEOREM 6.30. Let S be an infinite, weakly cancellative semigroup.

Then % C Dg.

Proor. It is sufficient to show that S[“Q] C Dg.

Assume towards a contradiction that there exist u,v € S* and an
almost left disjoint subset F' of S such that uov € F. Then we see
that {s € S : s7'F € v} € u. In particular the set {s € S : s7'F € v}
contains points so and ty with sy # t5. We have salF N talF € v,
and so s, F'Nt,'F is infinite, a contradiction of the fact that F is an
almost left disjoint set. O

We are indebted to Tmre Leader for the proof of the fact that, at
least in the case where S = N, we have S} G Ds.

The following result is essentially [78, Theorem 6.35].

PROPOSITION 6.31. Let S be an infinite, weakly cancellative semi-
group which is either countable and right cancellative or a subsemigroup
of a group. Then the closed set Ds has an empty interior with respect
to S*, and S[*Q] is nowhere dense in S*.

PROOF. Let V be a non-empty, open subset of S*. Then there is an
infinite subset X of S with X* C V. By Theorem 3.20 or Theorem 3.22,
X contains an almost left disjoint subset, say F'; F* is a non-empty,
open subset of S* with F* C V and F*NDg = ). Thus int g«(Dg) = (.
It follows from Theorem 6.30 that S [*2] is nowhere dense in S*. U

COROLLARY 6.32. Let G be an infinite group, let m,n € N, and set
S = M°(G,P,m,n). Then I = S*U {o} is an ideal in 5S such that
I is nowhere dense in I.

ProOOF. We see that Ijy) = M((G*)[g, P, m,n) U {o}, and so this
follows from the proposition. O

PROPOSITION 6.33. Let G be a countable group or the semigroup
(N, +), and let u,v € G with (BGou) N (BGov) # 0. Then either
u€ BGov orve Gou.

Proor. This is [78, Corollary 6.20]. O

PROPOSITION 6.34. Let G be a countable, infinite group. Then
there is an almost left disjoint subset F' of G such that:

(i) [F7] = 2%
(ii) each element of F* is right cancellable in (8G, O);
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(iii) (GO F*)N Dg = 0;
(iv) (F™*) is a free semigroup in (G, O).

(v) Suppose further that G is abelian. Then GG\ (GO (F*)) is a
prime ideal in (GG, 0).

ProOF. By Theorem 3.22, there is an almost left disjoint subset
F in G. By [78, Theorem 6.30] (with R = G and T' = F'), we may
suppose that each element of F™* is right cancellable and that

(BGOw) N (BGTv) =0

whenever u,v € F* with u # v. Properties (i) and (ii) are immediate,
and (iii) follows because sF'is an almost left disjoint set for each s € G.

(iv) Suppose that ey, ..., em, fi,..., fn € F* and that

e1o---0e,=fio---of,.

We shall show that m = n and that ¢; = f; (i € N,;,), which gives
the result. Assume towards a contradiction that this is false, and that
m+n takes its minimum value for this. We then have e,, = f,, because
otherwise (8Goe,,) N (BGo f,) = 0. Since e, is right cancellable, it
follows that e;o - oep_y = fio---of,_1. Butnowm—1=n-—1
and e; = f; (i € Ny,_1), as required.

(v) Set T'= (F*) and U = G\ (GOT). We claim that u,v € GOT
whenever u,v € G and wowv € G OT this is sufficient to show that U
is a prime ideal in GG. It suffices to show that u,v € GOT whenever
u,v € G* and uov €T,

Choose u,v € G* and uy,...,u; € F*suchthat uov =u;0--- ouy
and k& € N is minimal for such a representation. By (iii) and the fact
that G’{Q] C D¢, we have k > 2.

By Proposition 6.33, v € G ouy or up € fGov. Suppose first
that up = xowv for some x € BG. Since uy & GE], we have z € G.
But now v € GOT and, by (ii), v € Gowo---ou—; C GOT.
Suppose second that v = xowu, for some x € SG. Then we have
wpo -+ 0uE = uoxou, and so, by (ii) again, ujo -+ oug_1 = uow.
If € G, then immediately we have u,v € GOT. If x € G*, then
u,z € GOT by the minimality of k, and then also v € GOT. O

Uniform ultrafilters Let S be an infinite semigroup, and let k be an
infinite cardinal with x < |S|. We shall now obtain some results about
the subset U, (S) of k-uniform ultrafilters

in S*.



6. THE SEMIGROUP (8S, D) 91

PROPOSITION 6.35. Let S be an infinite semigroup, and let k be
an infinite cardinal with k < |S|. Then the subset 3S \ Ui(S) is a
subsemigroup of (6S, O) and of (S, <).

PROOF. Let u,v € BS\ Uk(9), and take U € u and V € v with
|U|,|V| < k. Then certainly UV € uowv and [UV| < k, and so we have
uov € S\ Ug(S). Similarly, uov € 55\ Uk(S). O

Let S be a weakly cancellative semigroup. The fact that Ug is a
left ideal in S* is stated in [78, Exercise 6.4.1]. That Ug is also a right
ideal in S* was first proved in [75]; there is a simpler proof in [15,
Lemma 3.1], and we essentially repeat this proof below in a slightly
more general context. We again write uv for uow.

PROPOSITION 6.36. Let S be an infinite, weakly cancellative semi-
group, and let k be an infinite cardinal with £ < |S|. Then U.(S) is a
prime ideal in (3S,0).

PROOF. Let s € S and = € U,(S). Each member of the ultrafilter
sz contains a set of the form sV, where V' € z. Since |V| > &, since
V C s71(sV), and since S is weakly left cancellative, it follows that
|sV| > k. Thus sz € U,(S). Since U, (S) is closed in S*, it follows that
(BS)ox = Soxz C U(S), and so U,(S) is a left ideal in 3S.

Now take € Ui(S) and y € (5, and assume towards a con-
tradiction that xy & Uk(S). Then there is an ultrafilter W € zy
with |W] < k. By Proposition 6.4, there exists U € x and a family
{Vu:uwe U} withuV, CW (u e U). Since Uy(S) is a left ideal,
y & U,(S), and so there is an ultrafilter V' € y with |V| < k.

We claim that U C WV L. Indeed, for each u € U, the set V NV,
belongs to y, and so is non-empty. Choose t € VNV,. Then u € Wt 1,
and so the claim holds. Since S is weakly right cancellative, |IW¢™!| < x
for each ¢ € S, and so |U] < |[WV ™| < k, a contradiction of the fact
that U € x and = € U,(S).

Thus xy € U,(S), and U,(S) is a right ideal, and hence an ideal.

By Proposition 6.35, U.(S) is a prime ideal. O

We have shown in Proposition 6.31 that, in the case where S is
countable, weakly cancellative and right cancellative, S[*Q] is a nowhere
dense subset of S*. The following theorem is more general.

THEOREM 6.37. Let S be an infinite, weakly cancellative semigroup.

(1) Suppose that S is right cancellative. Then S*Ug is nowhere dense
m Us.
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(ii) Suppose that S is left cancellative and that |S| is a regular car-
dinal. Then UgS™* is nowhere dense in Ug.

ProOF. By Proposition 6.36, Ug is a ideal in 3S.

We may suppose that S has an identity es. Set x = |S|, and
enumerate S as {s, : @ < K}, with sy = eg.

Let V € [S]”, so that V N Us is a non-empty, open subset of Us.
We shall inductively define a sequence (¢, : 0 < k) of distinct points
in V with ty = eg. Suppose that 7 < k, and assume that ¢, has been
defined for each o < 7. Set T, = {s,,t, : 0 < 7} and

W, =T "I, T T*T T, T

Since S is weakly cancellative, the set W, is finite whenever 7 < w and
has cardinality |T;| < x whenever w < 7 < k. Choose t, € V '\ W,.
This continues the inductive construction of the sequence (t, : 0 < k).
Set T'={t, : 0 < Kk}, so that we have T* C V*.

(i) Fix s,t € S. We claim that S*Us N sT*t = (), which will imply
that sugt € S*Us for each ug € T*. In particular, S*Us N'T* = () and
so VNUg ¢ S*Us, and hence (i) holds.

Assume towards a contradiction that there exist z € S* and y € Ug
with xy € sT*t. By Proposition 6.4, there exist U € x and a family
{Vi.:u €U} Cysuch that uV, C sTt (u e U).

Certainly the set U contains two distinct points, say S,,sg € U
with a # 3. We have s,V;, U sgVs, C sTt. Take v > max{a, 3} such
that s,t € T,. Then (s,V,, UsgV;,) \ sTht C s(T'\ T,)t. However
Vso N'V;, belongs to the uniform ultrafilter y, and so !Vsa N Vsﬂ‘ = K,
whereas |s;'T3 U s T3] < k. Thus there exists r € V;, NV, such that
sar & T3 and sgr & Tj. We have s,7, sgr € sTt, and 50 8,7 = st4t for
some o > o and sgr = st,t for some 7 > 3. Since r is right cancellable,
necessarily o # 7, say 7 > 0. Then t, € W, a contradiction of the
choice of T);. The claim is proved.

(i) Again, fix s,t € S. We claim that UgS* N sT*t = (), which will
again imply the result.

Assume towards a contradiction that there exist x € Ug and y € S*
with zy € sT*t. By (i), y € Ug, and so there exists V € y such
that |V| < k. Since k is a regular cardinal, there exists o < k with
V U{s,t} C S,, and then S, € y. By Proposition 6.36, zy € Us, and
so the set {st,t: 7 > o} belongs to the ultrafilter zy. By Proposition
6.4, there exist U € x and {V,, : u € U} C y with

uV, C{st;t:7>0} (uel).
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Take u € U. Since V,, NY € y, we may choose 54,53 € V, NV
with o # 3. Since V C S,, we have o, < o. Further, us, = st,t
and usg = st,t for some 7,p € (o,k). Since u is left cancellable,
necessarily 7 # p, say 7 < p. We have o, f < 7, and so u € T, 'T? and
t, € lengng’TpTgl C W,, a contradiction of the choice of ¢,. The
claim is proved. O

Special subsets of SN There are certain subsets of SN = (N, O) to
which we shall refer; for a full discussion of these sets, see [78].

Let G be a group, and take v € BG. Then {U™! : U € u} is an
ultrafilter in SG. In the case where (G, +) is abelian, we denote this
element of SG by (—1) - w.

PROPOSITION 6.38. (i) Each element of N*\Nj, is right cancellable.

(ii) There exists an element a of N such that a is right cancellable.
PRrROOF. (i) This follows from [78, Theorem 8.18].

(ii) Take p € E(N*) with p € F'S{(3" : n >m)) (m € N), and set
a = ((=1) - p)op in SZ. Then a € Nj;. The proof that a is right
cancellable in SN is contained within that of [78, Example 8.29]. O

DEFINITION 6.39. Let
P={2":neN} and H:ﬂ{m:neN} :

PropPOSITION 6.40. We have:
1) |]P>*| — 2c;
ii) (P*) is a free subsemigroup of BN;

iv) (ZOP*)N Dy = 0;

(

(

(iii) each element of P* is cancellable in ON;

(

(v) BZ\ (ZOT(P*)) is a prime ideal in (GZ, O).

Proor. This is essentially the same as the proof of Proposition
6.34: the fact that we can choose G = Z and F' = PP in that proposition
follows from [78, Corollary 8.38], which shows that each element of P*
is cancellable in (fZ, O), and [78, Lemma 6.8], which implies that

(BNowu) N (ANov) =10

whenever u,v € P* with u # v. O
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PROPOSITION 6.41. The set H is a compact subsemigroup of N*
containing all the idempotents of BN; there are 2¢ idempotents in H;
H contains an infinite decreasing sequence of idempotents; if u,v € N*
and wov,v € H, then u € H.

PROOF. This is contained in [78, Chapter 6.1]. O

We shall now prove that N_E)] C N# DN_E],

general fact that N’[kk ) & N* O % for each k > 2. We are grateful to
Neil Hindman for an essential contribution to the proof of the following
theorem. We first introduce some notation.

Each number n € N has a unique expression in the form

and indeed the more

oo

n = Z gi(n)2°,

i=0
where g;(n) € {0,1} and ¢;(n) = 0 eventually. We set
supp n = {i € N:¢g;(n) =1},

and define v : n +— [supp n|, N — N, The map 7 has a continuous
extension to a map v : SN — ON. Clearly P = {u € N : v(u) = 1}.
We also define

e:nr—(g(n):1€N), N-—{0,1}*,

and extend e to a continuous map ¢ : N — {0,1}¥. Observe that
the map ¢ is a homomorphism from the semigroup (SN, O) onto the
group of 2-adic integers. We shall use the following easily checked facts.
First, we have

(6.3) y(uwov) =y(u)oy(w) (uepPN,veH).
Second, let u € BN. For each n € N, we have u € 2"N if and only
if eg(u) = -+ = g,-1(u) = 0. It follows that v € H if and only if

e(u) = 0. It is now easy to see that, if v € N* and e(u) contains only
finitely many 0’s or only finitely many 1’s, then u € Z O H.
We shall also require three lemmas; we maintain the above notation.

LEMMA 6.42. Let u,v € N* with y(uov) € N. Then nov € H for
some n € 7.

PROOF. Set m = y(uov) and B = {n € N: y(n) = m}, so that
uov € B. Since R, is continuous and B is open in SN, there exists
k € N such that kov € B, so that y(kov) =m.
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Assume towards a contradiction that v ¢ Z OH. Then the sequence
e(v) contains infinitely many 0’s; choose

i > max{supp k} with &;(v)=0.

Clearly ¢;(kov) = ¢j(v) (5 > ). Since &,(kowv) is equal to 1 for
exactly m values of r, the sequence e(v) contains only finitely many
1’s, and so v € Z O HL.

The result follows. U

LEMMA 6.43. Let uq,...,ur € N*, and set u = w0 -+ Dug.
(i) Suppose that y(u) € N. Then vy(u) > k.
(ii) Suppose that y(u) = k. Then u € Hy,.

PROOF. (i) The proof is by induction on k. The result is clear for
k = 1. Suppose that k > 2, and assume that the result holds for £ — 1.
By Lemma 6.42, there exists n € Z such that nowu, € H. By replacing
ug by noug and ug_1 by (—n)oug_1, we may suppose that u, € H.
Now, by (6.3),

(6.4) () =(uro - oup—y) oy (u).

Since v(u) € N, we have y(u;o --- ou,_1) € N and v(ui,) € N. By the
inductive hypothesis, y(u;o -+ oug_1) > k—1, and y(uy) > 1, and so
v(u) > k, continuing the induction.

(ii) Again the result is clear for £ = 1 because P* C H. Suppose
that £ > 2, and assume that the result holds for £ — 1. Again, we may
suppose that u;, € H and that (6.4) holds. Since y(u) € N, necessarily
Y(wro - oupr),y(we) € N. By (i),

’Y(UlE\--'D’LLk_l)Zk}—l.

Thus y(ux) = 1 and y(ujo -+ ouk_1) = k — 1. By the inductive
hypothesis, u; 0 -+ oug_1 € Hjgx_yj, and so u € H,.
The result follows by induction on k. 0

COROLLARY 6.44. Let k € N. Then N* , . C N¥,

1] 5= N
ProoF. Certainly Nipy C % It follows from Lemma 64%)
that y(u) = k + 1 for each u € Nj; ;. However, let u € P, C Nj,.

Then v(u) = k. The result follows.
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We now fix k£ € N with k£ > 2. Let {E, : n € N} be a partition of
N into infinite subsets. For j,r € N, set

Ajp = {27 +2™ 2™ . 4 QM1 4 O

My > Mp_1 > -+ > 1Moy > My >j, Mi_1, My € ET}
and then set
A= {4, greN, j<r}.
We see that y(u) =k +1 (u€ A)

LEMMA 6.45. (i) ANHpq = 0.

(i) AN (HOHpy ) # 0.

PROOF. (i) Assume towards a contradiction that uy, ..., ux41 € H
with u € A, where u = ujo -+ ougyy. It follows from equation (6.3)
that uy,...,up; € P*. Since u € A and R, is continuous for each
v € S, we can successively choose mg,mi,...,mg—1 € N such that
M1 > -+ >mg >mg and (270 4+ 2™ 4 ... + 2" gy, € A, and
SO

{2° 1 s >my_q, 2™ 4 2™ - £ 2L L 2% € A} € upyg .

Now choose r € N such that my_, € E,. It follows from the definition
of A that ui1 € EY. Note that this shows that r is independent of the
choice of mg, mq,...,mp_1. We see that

AN{2m 2™ .. 4 2™ iy > - >ny >ng, ng € B} €.
Again from the fact that j < r in the definition of A, we have
{2M0 4 2™ 4 4 2™ i > >y > ng, g <1, € B} Ew.
Thus there exists 7 € N with 7 < r such that
B:={2 42" ... 42" inp > >n; > j} Eu.
However this is a contradiction because 2'N € u and BN 2"N = ().
(ii) In this proof, we set Pjg = {0}. For j € N, define

X; = (P _yOE:OE; - v > j},

so that (X;) is a decreasing sequence of non-empty, closed subsets of
HIf,). Choose v € (\{X; : j € N}. B

Let 7 € N. We claim that 2 ov € A. Indeed, choose B € v. Since
v € X, there exist r > j, v € PE‘FZ], and y,z € B with royoz € B.
Now 2 ozoyoz € A, C A, and so (220B)N A # 0, as claimed.

Choose w € P*. Then wov € HOH,. Since 20v € A (j €N)
and R, is continuous, we also have wov € A. Thus (ii) follows. U
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THEOREM 6.46. Let k € N with k > 2. Then

N, ¢ N ON.
PROOF. It is immediate that NE‘kH] C N* D%.
Let A be the set defined above. By Lemma 6.45(i), AN Hyqy = 0.
It now follows from Lemma 6.43(i), that A N Nj,y = 0. On the

other hand, by Lemma 6.45(ii), A N (HD]HT[;C]) # (), and so we have

A (N-ON,) # 0. Thus N # N DN, O






CHAPTER 7

Second duals of semigroup algebras

Let S be a semigroup, and consider the Banach algebra A = (£1(S), *).
Throughout this chapter, we shall consider the second duals (A”, O)
and (A", <) of A; the definitions of these second duals were given in
Chapter 2. We shall also consider the closed subalgebras (¢1(35), O)
and (£1(8S5), ©) of these algebras.

The Banach algebra M ((S) We first introduce a Banach algebra
that will be at the centre of much of the remainder of this memoir.

DEFINITION 7.1. Let S be a semigroup. Then M(BS) denotes the
Banach space of complex regular Borel measures

on 3S, and the two products O and <& on M(GS) are defined by
identifying M (3S) with £1(S)".

Thus we have definitions of

pwov and powv for pveM(BS).

We shall often write uw o u for 6, oy, etc., in the case where u € 8S
and p € M(BS).

The first paper to consider the Banach algebra (¢1(S)”,0) is prob-
ably [29]. For an early survey which includes a discussion of the Banach
algebras (M (3S),0) and (M(5S), <), see [31]. The above formulation
of the two products on M (3S) is given in [115] (in a special case).

The element of £*°(S) or C(3S) which is constantly equal to 1 is
denoted by 1. Note that the augmentation character

on ¢1(S) corresponds to the constant function 1 in £°°(S), and the
second dual of this character on M(3S) corresponds to the constant
function 1 in C(5S); indeed this latter character is the map

¥ (u, 1) = u(BS), M(BS)—C.
We shall require the following technical result about elements of

M(3S). The family of Borel subsets
of 35 is denoted by Bgg.

PROPOSITION 7.2. Let S be a left cancellative semigroup.
(i) For B € Bgs and s € S, the set sB € Bgs.

99
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(ii) For p € M(BS) and s € S, set pus(B) = p(sB) (B € Bgs).
Then us € M(BS). Further, (nov)s = usov (u,v € M(BS)).

PRrROOF. (i) The family {E C S : sE € Bgs} contains the compact
subsets of S and is closed under countable unions and complement-
ation because S is left cancellative, and so the family contains Bgg.

(ii) Clearly us is a Borel measure.

To see that pu, is regular, take B € Bgg and ¢ > 0. Choose a
compact subset K of sB with |u(sB) — u(K)| < ¢, and set L = s7'K.
Then L is compact and sL = K, and so |us(B) — pus(L)| < €. Thus
ps € M(BS).

For each s € S, the map p — p, is weak-* continuous on M (3S)
because sB is clopen in 3S whenever B is clopen in 3S. Let f € £1(9),
and take s,t € S and B € Bgg. Then

(fsat)(B) = f(sBt™") = (fot)(sB) = (f ot)s(B),

and so fsot = (fot),. It follows successively that fsov = (fov), for
v € M(3S), and then that (uov)s = psov for u,v € M(BS). O

Introverted C*-subalgebras We have defined introverted submod-
ules in Definition 2.30. We now give a variant of this definition.

DEFINITION 7.3. Let S be a semigroup. A closed subspace X of
0°°(S) is a left-introverted C*-subalgebra

if:

(1) X is a C*-subalgebra of £°(S5);

(ii) X is a left-introverted submodule of £>°(S), where £>°(S) is
regarded as the dual module of £*(S).
Similarly, we define a right-introverted C*-subalgebra of ¢°°(S). The
space X is an introverted C*-subalgebra if it is both a left- and a right-
introverted C*-subalgebra.

In particular, £°°(5) itself is an introverted C*-subalgebra of £>°(S).
Further examples will be given in Chapter 8.

Let X be a C*-subalgebra of £°°(S). The character space of X is
denoted by ®x. (In the case where X = £>°(.S), of course ®x = 35.)

Let X be a left-introverted C*-subalgebra of £*°(.S). As in Chapter
2, the space X’ is a Banach algebra for the product O specified in
equation (2.16). This product gives a product, also denoted by O, on
®y, and we claim that the compact space $x is a semigroup with

respect to O. Indeed, let u,v € ®x, regarding v and v as characters
on X. Take s € S, and let A\ € X. Then (0, 6, - A) = (dp, A - Js)
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and (0, 00y, A) = (0u, 0y - A) by equation (2.16). Now take Aj, Ay € X.
Then it follows that

)\1>\2 : 55 = ()\1 : 55)(>\2 : 58)7
and so &, - MAg = (6 - A\1)(dy © A2). Hence we have
<(5u‘:‘(5v: )\1)\2> = <(5u‘:‘5117 )\1><(5u‘:‘(5v: )\2>:

and so 9, 00, is a character on X, necessarily of the form 4, for some
x € &yx. Thus (Py, O) is a semigroup, and hence it is a compact,
right topological semigroup.

There is semigroup morphism vy : S — ®x. Suppose that F :=
co(S) C X, so that X separates the points of S. Then the map vx is
an injection, and we can regard S as a subset of @ x. Clearly S is dense
in @, and so Py is a compactification of S. As in equation (2.17), we
have

X' =019 x (E°/X°).

We have already defined a quotient map wx : A” — X’. This

induces a continuous semigroup homomorphism

(7.1) mx: (6S,0) — (Px, 0).

Let (so) and (tg) be nets in S such that lim, s, = v and limgtg = v
in ®x. Then lim, J,, = 9, and limg 51&[, = ¢, in the weak-* topology of
X", and so

0y 00, = limliénésa * Oty = limliénésatﬁ = dy00-

Thus it is consistent to identify ¢, od, with the point x = uowv of ®x :
the compact, right topological semigroup (®x, O) is identified with a
subsemigroup of (X', O).

Let X be a right-introverted C*-subalgebra of ¢°°(S). Then, sim-
ilarly, (®x, <) is a compact, left topological subsemigroup of (X', <),
and

UV = lignlim Sqatg  in Py

In particular, (55, <) is a compact, left topological semigroup.

The above was first proved by Civin and Yood [16] in the case
where X = £°°(S). In particular, our two definitions of the product O
in 35 are consistent. Clearly

(3.7 (M(8S)) N 3S) € 317(3S)

we do not know an example where this inclusion is proper.
For examples and further discusssion of introverted C*-subalgebras
of £°(S), see Chapter 8.
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Spectra The first result concerns the spectra
of elements in the algebras ¢1(5S) and M(3S).

PROPOSITION 7.4. Let S be a non-unital semigroup, and let s € S*.
Set A=101(S), L=1(%3S), and M = M(3S) = A". Then:

(i) in the finite case, or(s) = on(s) = {0,1,¢, ..., C* 1}, where k
is the period of s and ¢ = exp(2ir/k);

(ii) in the infinite case, or(s) = op(s) = D.

PROOF. The results for o (s) are immediate from Proposition 4.5.
The results for o(s) then follow from Proposition 2.21(i). O

Closed subalgebras and closed ideals Now we consider closed sub-
algebras and closed ideals in the specified Banach algebras.

Let S be a semigroup, and let p € M(3S), s € S, and v € 3S.
Then

(7.2)  supp(s - pu)=s-supp p, supp(pov)C (supp p)ov;

in the case where either p € M(3S)" or v is right cancellable in 35S, it
follows from Proposition 4.4 that

(7.3) supp (pov) = (supp p)ov.

It is very tempting to think that we should also have the inclusion
supp (vopu) C wvo(supp u), or at least supp (vopu) C wvo(supp p).
However, this latter inclusion may fail, even in the case where S = N,
as we shall see in Proposition 9.27, below.

Let T be a subsemigroup of a semigroup S. The isometric em-
bedding of £1(T) into £1(S) extends to an isometric embedding of the
Banach algebras (M (87),0) and (M(B8T),<) into (M(5S),0) and
(M(BS, <), respectively; the image of p € M(GT) in M(5S) is just
the measure Ji defined by setting ji(B) = u(BNT) for a Borel subset
B of 35, and we shall identify p and .

Let S and T be semigroups, and let 6 : S — T be an epimorphism.
Then there is an induced continuous epimorphism 6 : £1(S) — ¢1(T),
and hence a continuous epimorphism ¢ : (M (5S), O) — (M(5T), O).
Suppose that there is a non-zero, continuous point derivation on the
algebra (M (BT), O). Then, by Proposition 2.2(ix), there is a non-zero,
continuous point derivation on (M(AS), O).

PROPOSITION 7.5. Let S be a semigroup.

(i) Let L be a closed, left ideal in (58S, O). Then M(L) is a weak-
x-closed left ideal in (M(5S), O).



7. SECOND DUALS OF SEMIGROUP ALGEBRAS 103

(ii) Let U and V be subsets of S, and let € M(U) and v € M(V).
Then pov € M(UQV).

(iii) Let I be a left (respectively, right) ideal in S. Then M(BI) is
a left (respectively, right) ideal in (M(5S), O).

(iv) Let I be an ideal in S. Then there is a continuous epimorphism
from (£Y(3S), O) onto (£Y(B(S/I)), T) and from (M(BS), O) onto
(M(5(5/1)), O).

PROOF. (i) We have noted that M (L) is a weak-*-closed subspace
of the Banach space M(35).

Let u € M(3S) and v € M(L). Then there are nets (f,) in £1(S)
and (gg) in ¢'(L) such that u = lim, f, and v = limg gs. Since L is
a left ideal in S, we have f,ogs € ('(L) C M(L). Also we have
faov =limg f, o093 € M(L) for each «, and hence

pov=1lim f,ov e M(L)

because R, is continuous. Thus M (L) is a left ideal in (M(5S), O).

(ii) This is similar.

(iii) This follows from (ii).

(iv) There is an epimorphism 6 : S — S/I, and so there is a con-
tinuous epimorphism 6 : ¢1(S) — ¢'(S/I). We can identify 5(S/T)
with 5S/(6I, and so it follows that we have a continuous epimorphism
0" (M(5S), 0) — (M(B(S/I)), O). Clearly the map

0" | £1(8S) : £1(BS) — 1 (B(S/))

is a continuous epimorphism. O

For example, M(Z**) and M(Z~*) are non-zero, closed left ideals
in (M(8Z),0) with M(Z*) = M(Z**) & M(Z*). However we shall
show in Proposition 9.28 that M (R) is not necessarily a right ideal in
(M(BS), O) whenever R is a closed right ideal in 35S

PROPOSITION 7.6. Let S be an infinite, weakly left cancellative
semigroup. Then M(S},) is a |- ||-closed left ideal in M(3S,0) for

each n € N, and M(S[) is a || - ||-closed left ideal in M(BS, D).

PrOOF. By Theorem 6.16(i), S* is a left ideal in 35, and so each
of Sj; and S is a left ideal in 5S. By Proposition 6.14(i), each of S[’;l]
and S[*OO] is a left ideal in 3S. The result now follows from Proposition

7.5(1). O

PROPOSITION 7.7. Let S be a semigroup. Then M (S*)? C M(%)
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Proor. We may suppose that S is infinite, for otherwise the result
is trivial. o
Take U C S with U N Sy = 0, and set A = xp € £>°(5), so that

p(U") = (u, A)  (p € M(SY)),

and A is a non-zero, continuous linear functional on M (S*). We shall
show that (uov, A) =0 (u,v € M(S*)"); this will imply that we have

supp (uov) C Sy (n,v € M(SY)),

giving the result.
Fix p,v € M(S*)", and let z € S*. Then there is a sequence (s,,)
in S such that lim, . (Sn, v - A) = (x, v - A). Set

Un:U{s;fU:mzn} (neN).

Assume towards a contradiction that ({U* : n € N} # (), say
v € N{U : n € N}. Then (s,,v) C U for some strictly increasing
sequence (ng) in N. Let u be an accumulation point of the sequence
(8n,). Then u € S*, and uov € U because R, is continuous. Thus
uov € UN Spy» & contradiction. This shows that ({Uy; : n € N} = 0.

It follows immediately that, for each ¢ > 0, there exists ng € N
such that v(U}) < e (n > ng). Thus

(xov, \) =(x, v - A\) = lim (s,, v - A\) = lim v(U}) <e.

n—oo

This holds for each € > 0, and so (zov, \) = 0. Since R, is weak-*-
continuous on M (S*), it follows that (uov, A\) = 0, as required. O

COROLLARY 7.8. Let S be an infinite, cancellative semigroup. Then
M (S*) is not essential.

Proor. By Corollary 6.27, % =# S* and so, by the proposition,
M(S*)? # M(S*). O

COROLLARY 7.9. Let S be a semigroup such that S* is a sub-
semigroup of 3S. Then M(S*) is a closed subalgebra of M(BS), and

M(S*)? C M(%) Further, for each u,v € M(S*) and each compact
KCS*\%, we have |pov| (K) = 0. O

A small variation of the argument in Proposition 7.7 gives the fol-
lowing result.
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ProproSITION 7.10. Let S be a semigroup, and let I be a closed
ideal in BS such that M (I) is an ideal in M(3S). Then

supp (pov) C ST (u € M(S*), v e M(I)). 0

THEOREM 7.11. Let S be an infinite semigroup. Then the following
are equivalent:

(a) £1(S) is a dual Banach algebra
with respect to co(S);

(b) S is

weakly cancellative;

(c) S* is an ideal in (5S,0);

(d) £1(S*) is an ideal in (¢1(3S),0);

(e) M(S*) is an ideal in (M(3S),0).

PROOF. Set A = (1(S)

(a)<(b) This is Theorem 4.6.

(b)<(c) This is Theorem 6.16(ii).

(e)=(c)<(d) These are immediate.
=(e)

(a)=(e) Set E = ¢¢(S). As we remarked in Chapter 2, E° is a
closed ideal in (A”, O). Thus M(S*) is a closed ideal in M (3S). O

Let S be a weakly cancellative semigroup, and set A = £1(S) and
E = ¢(S). Then

(7.4) (M(BS),0)=(A",0)=AK E° = 61(8) X M(S™)
and
(7.5) (81(55), 0)= ﬁl(S) X 21(5*).

In particular this shows that M(S*) and ¢'(S*) are prime ideals in
M(BS) and £1(35), respectively. In the case where £1(S) is semisimple,
we have RM(ﬁS) = RM(S*) and Rel(gs) = Rgl(s*).

Let S be a semigroup. Recall that we have defined (in Definition
6.19) Ty, = 5" and Tj;, ;) = S*T};, (n € N). In the case where S is
weakly cancellative, each T}, is a closd ideal in (85, D).

COROLLARY 7.12. Let S be an infinite, weakly cancellative semi-
group. Then M(T(;,)) is a closed ideal in M(3S). In particular, M(Sy)
is a closed ideal in M((S).

PRrRoOOF. This is an immediate induction from the theorem and
Proposition 7.10. 0
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We have noted that it is not necessarily true that 75 = % (see

Theorem 6.46). So the above result leaves open the following question.
Question Is M (%) a closed ideal in M ((3S) for each infinite, count-
able, weakly cancellative semigroup 57

Even the special case where S = N is open.

THEOREM 7.13. Let S be an infinite, cancellative semigroup. Then
there exists a non-empty subset V' of S* with s7'Vt~' =V (s,t € S)
and such that

(7.6) (nov)({v}) =0 (veV, pveM(ST)).

PROOF. Set V. = {v € S*: (nov)({v}) =0 (u,v € M(S*)}. By
Corollary 6.27 and Proposition 7.7, V' # ().
Let s € S and v € V. For each u,v € M(S*), we have

(nov)({s™'v}) = (povos)({v}) =0,

noting that vos € M(S*) by Theorem 7.11. Thus s™'V C V. We also
have sv € V because

(nov)({sv}) = (nsov)({v}) =0

in the notation of Proposition 7.2(ii), noting that ps, € M(S*) by The-
orem 7.11. Thus V C s7'V, and so s7'V = V. Similarly, we have
Vi1 =V (t € S), and so the theorem follows. O

Second duals of Rees semigroup algebras The Rees semigroup
algebras were introduced in Chapter 4.

EXAMPLE 7.14. Let G be a group, let m,n € N, and consider the
regular Rees matrix semigroup with zero

S = M°(G, P,m,n) described in Chapter 3; here, P = (a;;) €
M., (G°) is a sandwich matrix, identified with an element of ML, (¢1(G)).
We have described £1(S) = (M°((Y(G), P,m,n), xp ) in Chapter 4, and

we have described the semigroup
BS = M°(BG, P,m,n)

in Example 6.18. An element of M(3S) is now identified with an
element of M, ,(M(5G)) U Cd,. By using equations (4.7) and (4 8)
and taking iterated limits, we see that the product in (M (5S), O) is
given as follows. Let pu = (Nw) = (v35) € M, ,(M(G)). Then

ol

(T7) (uOv)ie= > pO0u, Ovet Y. @l

(4,k)EN(P) (j,k)eZ(P)

14i5) ¢ (Vke) o
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and

(7.8) pBd, =0, Du—(ZZ% Nm)

i=1 j=1
Thus M(3S)/Cé, = M(M(BG), Pg,m,n) (isometrically and isomor-
phically). Similar formulae describe the product in (M (5S), < ).
Further we see that
M(S*) = M(M(G*), P,m,n),
and so M (S* U {o}) is a closed, complemented ideal in (M (5S), O).

EXAMPLE 7.15. Let G be any infinite group, take

p—( ¢ €
€a €eqg ’
and set S = M°(G, P,2). Then P is a regular sandwich matrix. Take
w € M(G*) with u # 0, and consider the element

o= ( ‘5 ‘O“ ) € My(M(G)).

It follows from (7.7) that POv =0 (v € My(M(G))) and from (7.8)
that @04, = 0. Thus @0O0W¥ = 0 (¥ € ¢(S)”). Similarly, we have
POV =0 (Ve l(S)), and so ® € 37(¢1(S)"), whereas ® & (1(S).
It follows that £1(S) is not strongly Arens irregular.

We shall see in Corollary 12.18 that M°(¢(G), P,n), is strongly
Arens irregular whenever P is invertible in M, (¢(G)). O

Ideals on uniform ultrafilters We now investigate some properties
of subspaces of M(3S) defined in terms of the subsets Ui(S) of S*

consisting of the sk-uniform ultrafilters.

PROPOSITION 7.16. Let S be an infinite semigroup, let k be an
infinite cardinal with k < |S|, and let u € M(BS). Then p € M(U(S))
if and only if (1, x37) = 0 for each W € [S]<F

ProoF. We have I(U,(S)) = Co(BS \ Ux(S)), and the latter space
is the closed linear span of functions of the form yy;-, where W e [S]<".
The result follows. 0

PROPOSITION 7.17. Let S be an infinite semigroup, and let k be
an infinite cardinal with £ < |S|. Then the space M(3S \ U(S)) is a
|| - [|-closed subalgebra of the Banach algebra (M(3S), O).
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ProOF. We know that L := M(8S \ Uk(5)) is a || - ||-closed sub-
space of M(3S).

Take p, v € L; we shall show that pov € L. Since Lis || - |-closed in
M (3S), it suffices to supose that there exist subsets U,V € [S]<" with
supp p C U and supp v C V. But now |UV| < & and, by Proposition
7.5(ii), we have

supp (pov) cUDOV c UV C BS\ Uk(S).
Hence pov € L, as required. O

THEOREM 7.18. Let S be an infinite, weakly cancellative semigroup,
and let k be an infinite cardinal with k < |S|. Then M(Uk(S)) is a
closed, prime ideal in M(3S), and

M(BS) = M(BS\ Ux(S5)) x M(Ux(5))
as a semidirect product.

PROOF. Set M = M(BS5).

By Proposition 6.36, U(S) is a closed, prime ideal in (S, and so,
by Proposition 7.5(i), M (Uk(S)) is a closed left ideal in M.

We shall prove that pov € M(U,(S)) whenever p € M(U(S)) and
v € M, thus establishing that M(U.(S)) is a right ideal. Since R, is
continuous on M, it suffices to suppose that p = u, where u € U,(S5).

Set v = v | Ug(S) and vy = v | (BS \ Ux(S)), so that v = vy + vs.
Since uov; € M(U,(S)), it suffices to show that uovy € M(U,(S)).
By Proposition 7.17, it is further sufficient to consider the case where
supp v, C V for some V € [S]<*, and so we do consider this case.

Let W e [S]<". We claim that there exists a set U € u such that
UVNW = (. Assume towards a contradiction that this is not the case.
Then, for each U € u, there exists uy € U and vy € V with ugvy = wy
for some wy € W. Define T' = {uy : U € u}. Then TNU # () for each
U € u,and so T' € u. We have |V x W| < &; for every (v,w) € Vx W,
the set {s € S : sv = w} is finite because S is weakly right cancellative.
We have

WV_1:U{{SGS:sv:w}:(v,w)GVxW},

and so [WV ™| < k. Then T C WV~ and so |T| < k, a contradiction
of the fact that 7' € w. Thus the claim holds.

Take s € U € S\ WV~ Then (sv, xyw) =0 (v € V), and so we
have (v, x37 - s) =0 (v € V). It follows that (f, xy - s) = 0 for each
f € l(V), and hence

<87 V2 'XW>:<V277XW'S>:O'
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Thus (u,vs - x3) = 0, and so (uove, Xx3) = 0. By Proposition 7.16,
we have uovy € M(U,(S)), as required. Thus M (Uk(S)) is a closed
ideal in M(S).

The remaining results now follow from Propositions 7.17. U

Approximate identities It follows from Proposition 7.6 that M (S*)
is a closed left ideal and, in particular, a subalgebra, of M (3S) when-
ever S is weakly left cancellative. Thus it is sensible in this case to ask
whether or not M (S*) has a right (approximate) identity. The follow-
ing result is immediate in the case where S is cancellative, for in this
case M(S*) is not essential by Corollary 7.8. However the result also
covers some cases where M (S*) factors; see Example 7.32, below, for
example.

THEOREM 7.19. Let S be an infinite, weakly left cancellative semi-
group. Then there is no bounded net (uy) in M(S*) such that

(7.9) Uoy — u  weak—x (u € S*).

In particular, (M(S*),0) does not have a bounded right approzimate
identity.

PROOF. We may suppose that S has an identity. We first suppose
that, in addition, the semigroup S is countable.

As usual, we enumerate S as {s, : n € Z'}, with sy = eg, and we
shall inductively choose a sequence (t, : n € Z1) with ty = s9. For
n€Zr, set S, ={so,...,8,} and T,, = {to,...,t,} (when t, has been
defined). Now suppose that n € Z*, assume that T,, has been specified,
and set

Uy = SIS T,
Then U, is a finite set with U, D (S, UT,). Choose t,;1 € S\ U,.
This continues the inductive construction of the sequence (t,). Set
T = {t, :n € Z*}, an infinite subset of S.
Let W be an infinite subset of T', and let £k € N. We set

Vivg = U{(Sz_k)_ltn b, € Won >k},

We observe that each Viy, is infinite and that Viy; O Viyy (J < k).
Further, if W; and W5 are disjoint, infinite subsets of T, then it follows
from the definition of U, that Viy, 1 N Viy,1 = 0. Define

VW:S*ﬂﬂ{ijkik‘EN}.

Since Vjyr is the intersection of a decreasing sequence of non-empty,
clopen subsets of S*, Viir is a non-empty, Gs-subset of S*. Clearly
Viv, N Viy, = 0 whenever Wy and W5 are disjoint, infinite subsets of T'.
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By Proposition 5.1, there exists Ry, C S such that Ry, is non-empty
and Ry, C Viy.

We claim that s™'Viy C Viy (s € S). Indeed, take s = s; € S and
u € s 'Viy. Then su € Viy, and so u € S*. Take U € u. For each
k € N with k > j, there exists ¢t € U such that st € (S"%)~¢, for
some t, € Wandn >k, and so t € Viy_1. It follows that UNViyx # 0
for each k € N, and so u € Vi, (k € N). Thus u € Vjy, giving the
claim.

Assume towards a contradiction that (u,) is a bounded net in
M(3S) such that (7.9) holds; we may suppose that (u,) C Mg(S*).
Let {Wi,...,W,,} be a partition of T into infinite subsets, and then
set R; = Rw, (i € N,,). For each i € N,,, choose u; € R}, and
then choose «a; such that (u;opue)(Rf) > 1/2 for o > ;. Choose
a > max{aq,...,0n}-

Next, for each © € N,,, choose s; € S with

1o 1
fio (87T RY) = (8i0 flas XR,) > 5
By our claim, s, 1VVT,Z, C Viy,. Since the sets Viy,, - -, Vi, are pairwise
disjoint, we have
“ m
o(S%) > (TR > —.
o) 2 3 als D) > 5

But this holds for each m € N, a contradiction of the fact that (i) is
bounded.

We now consider the general case, where S need not be countable.

By Proposition 3.17, there exists an infinite, countable subsemi-
group U of S such that UsNU =0 (s € S\ U), and U is weakly left
cancellative. Assume towards a contradiction that (p,) is a bounded
net in M (B9) satistying (7.9). Set V = S\ U, and, for each «, set
Vo = o | U, and &, = o | V. Let v € U. By our condition,
U0V cV,andso (vo&,) | U =0 for each a. Thus (v,) satisfies (7.9)
with respect to the semigroup U, a contradiction of the special case.

We conclude that M (S*) does not have any bounded net satisfying
(7.9). O

The following result is proved in a similar way; we omit the proof.
Note, however, that it is not just a symmetric version of the above
theorem.

THEOREM 7.20. Let S be an infinite, weakly right cancellative semi-
group. Then (M(S*),0) does not have a bounded left approximate
identity. 0
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Nilpotents and radicals Let S be a semigroup. We seek to determine
the radical and nilpotent
elements of the two Banach algebras (¢1(5),0) and (M (8S),0).

Let S be a semigroup, and set

Ji={neM(pBS):s - p=p(s€S), ups)=0}.

It is easily seen that J; is a closed, nilpotent ideal

of index 2 in M(S), and so J; C Rar(as)-

The standard definitions of the set £(.5) of left-invariant means on
a semi-group S, of left-amenable semigroups, and of amenable groups
are recalled in Definition 9.1, below. Granirer [60] proved that Ry (ss)
is infinite-dimensional whenever S is an infinite, left-cancellative, left-
amenable semigroup. The following proposition extends this result:
clause (i) follows from [116, Theorem (7.31)(ii)(b)] and clause (ii) fol-
lows from [87, Corollary 4.5] (see also [136]).

PROPOSITION 7.21. Let S be an infinite, left-amenable semigroup.
(i) Suppose that S is left cancellative. Then dim Ry;gs) > 2°.

(i) Suppose that S has no finite left ideal groups or that there are in-
finitely many finite left ideal groups. Then the space Rygs) 15 infinite-
dimensional. U

Let G be an infinite and amenable or locally compact and non-
discrete group. Then Rj;(gg) is not norm-separable [63]. It seems to
be an open question for each non-amenable group G whether or not
M(BG) is semisimple.

There is a generalization of the above result, which we give just in
the case where S = Z. Set A =(Y(Z) and M = M(BZ).

For ¢ € T, regard ¢ as an element of Wz, so that ¢ gives a character
on A; indeed, (6, () = ¢™ (m € N). The second dual of this character
is the character p +— (u, () on M. For n € N and r € Z, xy,, is the
characteristic function of the set nZ+r; we denote by x;, ¢ the function
whose value at k € Z is (*x,,,(k), so that x,.¢ € £>°(Z). We note that

57" * Xn,s,d = Xn,s,¢ 57“ = Can,s—r,C (n S N, s € Z, C € T) .
Now define
ng = {pJ eM:nopu=_C"p, <N7 Xn,T,C> =0 (7“ e Nn)}

Clearly J,, ¢ is a (M, A")-closed linear subspace of M, and we see easily
that J, ¢ is an ideal in M of index 2. Let ¢ € T, and set

Je = J{Ime:m eN}.
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Since Jy e U Jpe C e (m,n € N), it follows that J: is a closed,
nilpotent ideal of index 2 in M, and so J; C Rys. Indeed, the family
{Jom ¢ :m € N} is an ascending chain of distinct closed ideals in M.
Thus there is an element p € Je such that p ¢ J, ¢ for any m € N.
Finally, we set
J=1ln{J : (€T},

Then J is a closed, nilpotent ideal of index 2 in M. We have obtained
the following result.

THEOREM 7.22. The set J is a closed, nilpotent ideal of index 2 in
the Banach algebra (M(BZ), O), and so J C Ra(pz)- O

These remarks were first established by Civin and Yood

[16, Theorem 3.5] in the special case where ¢ = 1.

We now exhibit some nilpotent

elements of our algebras. We require a preliminary lemma, sug-
gested by George Willis.

LEMMA 7.23. (i) For each n € N, the algebra (*(Fy) contains a
non-zero nilpotent element of index n + 1.

(i) The algebra (*(Fy) contains a quasi-nilpotent

element which s not nilpotent.

PROOF. (i) Let n € N.

First we consider the commutative group algebra £*(Z). The Fourier
transform of £1(Z) is defined to be the Banach function algebra A(T)
on T; since A(T) contains all functions on T that have 2 continuous

derivatives, it is clear that there are non-zero functions hy,..., h,11 in
A(T) such that h;h; = 0 for 4,5 € N,y and ¢ # j. Thus there exist
non-zero functions fi,. .., fu41 in £1(Z) such that f; * f; = 0 whenever

i,7 € N,11 and ¢ # j. Clearly we have f; * f; #0 (i € N,,y1). We may
suppose that || fill; =1 (i € Nyja).

Set A = ((F,). We denote the two generators of the group Fy by
a and b; we identify Z with the subgroup {a™ : n € Z} of Fy, and thus
regard (1(Z) as a closed subalgebra of A. For convenience, we write
fbg for the element f x &, x g when f, g € A; we similarly abbreviate
other products in A.

Define

f=3"fbfm i A
j=1
By calculation, we see that f2 = 27;11 fjbf]z+1bfj+2, and, continuing,
that
[ = hbf30f30- - bfibfas .
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It follows that f**! = 0.

We claim that f" # 0, which will imply the result. Indeed, take
k € N with k > 2 let g1,...,gx be non-zero elements of ¢1(Z), say
with ||g;|l, =1 (j € Ny), and set g = g1bgob - - - bgi. Then the support
of g is a family of words in Fy of the form

a™ba™b- - -ba™*

where my,...,my € Z and a™ € suppg; (j € Ni). Now two words of
the form a™ba™2b---ba™* and a™ba™b---ba™ in Fy are equal if and
only if m; = n; (j € Ni), and so there can be ‘no cancellation” when
the product g1bgeb - - - bgy, is formed. This shows that ||g||, = 1, and so
g # 0. Hence (i) is established.

(ii) The above proof shows that, for each n € N, there exist elements
fims ooy fagin in €HZ) with ||f;,]l, =1 (¢ € Nypq) and such that the
element 5, := >°7 | finbfjs1, has the property that ||Fyy||, = 1 and
F'1 =0 in ¢1(Fy). We have ||F,||, < n. By making a suitable choice
of elements in A(T), we may also suppose that f;,,f;, = 0 whenever
m # n and for all appropriate i, j, and so F,,F,, = 0 in A whenever
m #n.

Now choose constants ay, > 0 such that ay, < 27% (k € N) and

Z nfaf <af (keN),

n=k+1
and set F =Y > o,F,, so that ' € A because >~ n|a,| < oo.
Then

F¥=Y"ofFf (keN),
n=k

and so F* # 0 (k € N), whence F is not nilpotent. However, we see
that HF’“H1 < 2-27% and so v4(F) = 0; thus F is quasi-nilpotent. [

THEOREM 7.24. Let S be an infinite semigroup which is weakly
left cancellative and nearly right cancellative, and set L = (1(3S) and
M = M(BS). Then the Banach algebra L contains a nilpotent

element of index n + 1 for each n € N. Further,

{0} #N, QL& L and {0} #Nu G Qu G M.

PROOF. By Proposition 6.25, £!(S*) contains an isometric and
isomorphic copy of £(F,) as a closed subalgebra, and so it follows
from Proposition 7.23 that {0} # Ny € @Qr. Let s € Z*. Then
|s"l;, =1 (n € N), and so v(s) = 1. Thus s ¢ @, and hence
Qr & L. O



114 7. SECOND DUALS OF SEMIGROUP ALGEBRAS

We have not been able to determine whether or not ¢(5Z) is
semisimple, and whether or not the radical of M(5Z) is equal to the
ideal J specified in Theorem 7.22, above.

The semi-character space of 3S Let S be a semigroup, and set
A = (*(S). We shall now consider the character spaces of (¢1(3S5), O)
and A” = (M(3S), O); for the algebra ¢!(3S), we must find the semi-
characters on (45, O).

Recall that the spaces of semi-characters and characters on a semi-
group S are denoted by &g and Vg, respectively. We have remarked in
Chapter 3 that (s U {0}, -) and (¥g, -) are unital, abelian, compact
topological semigroups;

the former is the dual semigroup to S. Recall also that &5 = ¥, =
I, the dual group of G, when G is an abelian group.

DEFINITION 7.25. Let S be a semigroup, and let ¢ € ®gg. Then ¢
1 a continuous semi-character
if it is continuous with respect to the topology of BS.

Here are some examples of continuous semi-characters on (45, O).

For ( € &g, we denote by E the element of C'((Z) that is the extension
of the function s +— ((s) on S. Then the map

ZZUHE(U), BS — D,

is a continuous semi-character on (35 in the case where ( € Wg, also (
is a continuous character on (3S. Set

(7.10) LiCC, Dy — Dgg.

Then ¢ is an injection.

Let T be a subsemigroup of S such that 55\ T is an ideal, and
hence a prime ideal, of 35, and let ¢ be a semi-character on (45, O).
Then ¢ - y7 is also a semi-character on (45, O). For example, suppose
that S is weakly cancellative, and take 7" = S; we obtain the family
of semi-characters that correspond to the semi-character space ®g of
£1(S) (but in a different way from that specified in equation (7.10)). If
K = K((3S) were a prime ideal in S, we would obtain an interesting
new semi-character. Let G be a countable, abelian group, let F' be
an almost left disjoint subset of G, and set [ = G \ (G O F*) in the
notation of Proposition 6.34(v). Then our result shows that I is a
prime ideal

in 4G, and so this is another way of generating semi-characters on

(BG, O).
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For example, set S = (Z,+), so that &5 = Ug = T. We regard Q/Z
and R/Z as subsets of «(T) by identifying # € R/Z with the element
t(¢), where ¢ = exp(2wix). Then ¢(¢) € Vgz. However, there are many
other semi-characters.

PROPOSITION 7.26. Let G be an abelian group with dual group T'.

(i) Each continuous semi-character on 3G is a character, and has
the form () for some ¢ € T.

(ii) For each ¢ € T, the map p— {(u, t(C)) is a character on M (SGQG).

PRrROOF. (i) This is immediate.

(ii) Set M = M(BG). Clearly the map ¢ : p — (p, ¢) is in M’
For v € M and ¢ € T, we have v - ( = (v, (). Now take u,v € M
and ¢ € I'. Then

<MDV7 C) = <M7 v C> = <M’ <><V7 C)a
and so g € . U

Let S be a semigroup. We denote the topology on ®zg of pointwise
convergence on (S by 7, and we identify ®¢ with ¢(Pg), and so regard
®g as a subsemigroup of Wgg C ®gg. We are interested in the relative
topology 7 on ®g. The usual topology on ®g is denoted by d; certainly
we have d C 7. The closure of ((®g) in (VUsg,7) is denoted by ®g.

An early work on the space analogous to ® for a locally compact
abelian group G is by Glicksberg [58]; we are grateful to Salvador
Hernandez Munoz for this and other references. The main result of
Glicksberg is that a subset of G which is 7-compact is already compact
in G; the proof relies strongly on a theorem of Grothendieck [69].

THEOREM 7.27. Let G be an infinite abelian group.

(i) There are characters on 3G that are not continuous, and the
map ¢ : (Pg,d) — (P, T) is not sequentially continuous.

(ii) The map R: ¢ — ¢ | L1 (BG), Pupe) — Paa, is a continuous
surjection.

PROOF. Set M = M(3G) and L = (*(3G).

(i) This is a consequence of [58, Corollary 2.5]. Here is an elemen-
tary proof in the case where G = Z (and ¢z = T).

Forke N/setay=1-3-----(2k—1) (so that a1 = (2k+ 1)),
and set (, = exp(im/ag), so that (; € T and lim, (x = 1 in T. Then
lim, (¢ = 1 for each n € Z. The sequence (¢(¢x) : k € N) consists
of continuous characters in the compact space Wgsz, and so has an
accumulation point, say ¢ € Wgy. Clearly we have ¢ | Z =1 | Z.
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For k € N, set F}, = a;.(2N+ 1), an infinite subset of N; the closure
of Fy, in BZ is Fj,. For each n € F},, we have ¢ = —1, and this implies
that (x(s) = —1 (s € F},). Take n € Fyy1, say n = may; for some
m € 2N + 1. Then n = (2k + 1)may, € Fy. Thus Fi,; C Fj, and so
Fpy1 C F}. Since 37 is compact, there exists so € ({{Fy : k¥ € N}, and
we have ¢(sg) = —1. Hence ¢ is not continuous on $Z, and so ¢ is not
a continuous character.

This also shows that the sequence (¢((y)) is not convergent in ®gz,
and so the map ¢ : (T,d) — (®pz, 7) is not sequentially continuous.

(ii) This is immediate from Proposition 2.21(ii). O

THEOREM 7.28. Let G be a countable, infinite abelian group with
dual group T.

(i) There are 22° semi-characters which are not characters on 3G.

(i) There are 2% characters on G, each of which belongs to 1(T).

PROOF. (i) Let F' be an almost left disjoint subset of G. We define
o(s) =1 (s € G) and define p(u) arbitrarily in D for v € F*. By
Proposition 6.34(iv), (F™*) is a free semigroup, and so ¢ can be extended
to a semigroup homomorphism ¢ : (GO F*) — D.

Set U = BG \ (GOF*). By Proposition 6.34(v), U is a prime
ideal in SG. Set p(u) = 0 (u € U). Then we have extended ¢ to a
semi-character on SG; the extension is not a character.

By Proposition 6.34(i), |F*| = 2%, and so the result follows.

(ii) This is contained in both [71] and [132]. O

In fact, the argument for (ii), above, shows that there exists an
element ¢ € Vgi whose range is all of .
Thus in the case where S is the semigroup (8Z, O ), we have

L(T) g \IJS g CI)S and

o(T)| = @5\ 5| =2

For further results on the space (®g,7), see [132]. We conclude
with a summary for the specific case where G is equal to Z; all the
results follow from more general statements in [58].

THEOREM 7.29. The topology T on T is neither discrete nor metriz-
able; the only convergent sequences in (T, T) are eventually constant;
the only compact subsets of (T, T) are finite; the space (T,T) is not
locally compact. U

The main question that we have left open is the following.
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Question Is T 7-dense in Wg57 If this is not the case, is the space Vg
connected?

Examples Let us discuss the topological centres and radicals of some
examples.

EXAMPLE 7.30. Let S be a set with |S| > 2, and consider the right
Z€ero semigroup

on S. Thenuov =uov =v (u,v € 35), and so S is Arens regular.
Also we have

pov=pov=_{u v (uveM(BS))),
and so £1(S) is Arens regular, as noted in [92].
By Proposition 2.13, Rags) = {p € M(3S) : (i, 1) = 0}, and so
M (3S) is not semisimple. O

EXAMPLE 7.31. Let S = Z? be the semigroup specified in Example
3.32, so that S is left cancellative, but not weakly right cancellative.

Set U = {0} x Z, so that U is a subsemigroup of S, and take
u € U*. Then we check easily that u € 39 (8S) and u € Str)(ﬁS), and
so S is neither left nor right strongly Arens irregular. Since Z x {0}
is a subgroup of S and £*(Z) is not Arens regular, £!(S) is not Arens
regular. U

EXAMPLE 7.32. Let S be the semigroup N,, described in Example
4.9. Then S is weakly cancellative and, by Theorem 7.11, [ = M (S*)
is a closed ideal in (M(3S), O).

Let u,v € S*. Then uov = v and uw o v = u, so that (S*, O) is
a right zero semigroup. Clearly 3\ (BS) = 3 (8S) = S, and so S is
strongly Arens irregular. We have

pov = (u v (pe M(BS),vel),
pov = (v,hp (nel, veM(BS)).
Thus the closed ideal M (S*) factors, despite the fact that, by Theorems

7.19 and 7.20, M (S*) has neither a bounded left approximate identity
nor a bounded right approximate identity. Set

p(p) = (1) (p e M(BS)),

so that ¢ is a character on M((S) and ¢ | I is the unique character
on I.

Let p € M(S*) be such that poa = p o aand pob = p o b for any
two specified distinct points a,b € S*. Then clearly p = 0. Thus £1(5)
is strongly Arens irregular.
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By Example 4.9, ¢*(S) is semisimple, and so Ry gs) = R; and
Rovgs) = Ryr(s+). By Proposition 2.13, Ry = Ny = Qr = (ker ¢) N 1,
and so

Rrps) = {w € M(S) : {p,1) = 0}.
Similarly, Ry1(gg) = {p € €'(S*) : (1, 1) = 0}. It follows that M (3S)
and ¢1(3S) are not semisimple. O

ExAMPLE 7.33. Let S be the semigroup N, described in Example
4.10. Then S is abelian, but not weakly cancellative, so that M (S*) is
not an ideal in (M (5S), O).

Let uw,v € S*. Then uov = w and u ¢ v = v, so that (S*, O) is
a left zero semigroup. Clearly BEZ) (BS) = y)(ﬁS) = S, and so S is
strongly Arens irregular. We have

pov = (nlp (e M(BS), v e M(SY),

pov = (v (ue M(S7), v e M(5S)),
so that M (S*) is a closed subalgebra of M(3S) and M(S*) factors.
Also,
It follows that ¢1(S) is a closed ideal in M(3S), and so we have the
decomposition M(3S) = M(S*) x ¢1(9).

Let p € M(S*) be such that poa = p o aand pob = p o b for any
two specified distinct points a,b € S*. Then clearly p = 0. Thus £1(5)
is strongly Arens irregular. 0

EXAMPLE 7.34. Let S be the abelian, countable, weakly cancella-
tive semigroup N x {0, 1} of Example 3.33, and set A = ¢'(S). Then
(S is identified as a set with SN x {0,1} and

(u,i) 0 (v,7) = (uow,0), (u,7)o(v,j) = (uowv,0)
for each u,v € N and i, j € {0,1}. Further, M(3S) can be identified
with M (SN) x {0, 1}, and

(w, i) o (v, j) = (pov,0), (u,i)o(v,j) = (uov,0)
for each p,v € M(5S) and 4, j € {0,1}. Now choose u € N*. For each
(v,j) € BS, we have

((u,0) = (u, 1)) o (v,5) = (vov,0) — (uov,0) = (0,0)

and, similarly, ((u,0)—(u, 1)) (v, 7) = (0,0). This shows that we have
(u,0) — (u,1) € 3?(A"). Clearly (u,0) — (u,1) & A, and so A is not
strongly Arens irregular.

It is also clear that A is not Arens regular.
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We shall see in Example 12.21 that, nevertheless, S itself is strongly
Arens irregular. U






CHAPTER 8

Related spaces and compactifications

In this chapter, we shall consider introverted C*-subalgebras of Banach
modules £*°(S) for a semigroup S and of L>(G) for a locally compact
group G. In particular, we shall define the spaces W AP(S) and AP(S)
on a semigroup S, and the four spaces WAP(G), AP(G), LUC(G), and
RUC(G) on a locally compact group G, together with their character
spaces, which are compactifications of S and G, respectively.

It is possible to find a framework of semi-topological semigroups
with certain extra properties that subsumes these two similar theories,
but we have chosen not to follow this route.

Submodules of (*(S) Let S be a semigroup, and then let X be an
introverted C*-subalgebra (see Definition 7.3) of £°°(S) such that

co(S) C X, so that (X', O) and (X', <) are Banach algebras. The
character space of X is ®x. As in Chapter 7, the space (Py, O) is a
compact, right topological semigroup,

the map vx : S — ®x is an injection, and Py is a compactification
of §; we regard S as a subsemigroup of (®x, O) and of (Py, <).
As in equation (7.1), there is a continuous semigroup homomorphism
wx : (S, 0) — (Px, O), and this map is the identity on S.

DEFINITION 8.1. Let S be a semigroup, and let X be an introverted
C*-subalgebra of £>°(S) such that c¢o(S) C X. Then

@}ZQ)X\S, (@})[Q}Z{UDU:U,U€¢§(}.

It is clear that ®% is an ideal or subalgebra of ®x if and only if S*
is an ideal or subalgebra, respectively, of 35S.

Let S be a weakly cancellative semigroup, and set A = £1(S) and
E = ¢y(9), as before. Let X be an introverted C*-subalgebra of £°°(5)
with F C X, so that E° | X is a closed ideal in X’. We denote the
quotient map (X', O0) — (X', 0)/(E° | X) = A by gx.s, so that gx s
is the dual of the canonical embedding of £ in X, and we write ¢g in
the special case where X = A’. Clearly

qx,s(Rx,0y) = Ra,
121
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and so Riar,0y N A = Rs. Let pg be the augmentation character on
A, and define
Px,5 = ¥Ps5 © 4x,5
with ©s = ¢g o gs. Then ¢x g is a character on (X', O), called the
discrete augmentation character on X'. The discrete augmentation
character on A”
is different from the character ¢ on A”. In fact,

(8.1) ps((f;m) =ws(f) (f €A, peM(ST)).

We now give some examples of such introverted C*-subalgebras.

DEFINITION 8.2. Let S be a semigroup, and let A € £*°(S) = (*(S)'.

Then
LON) ={\-t:teS}.

The functional X\ is weakly almost periodic (respectively, almost peri-
odic) if the set LO()) is relatively compact in the weak (respectively,
|- 1I-) topology on £%°(S).

The spaces of these functionals are denoted by W AP(S) and AP(S),
respectively.

Let S be a semigroup, and set A = ¢1(S). The spaces W AP(S) and
AP(S) are easily identified with WAP(A) and AP(A), respectively, so
that they are each introverted

subspaces of £*°(S). Clearly each of AP(S) and WAP(S) is a C*-
subalgebra of £°°(5), and

AP(S) € WAP(S) € £%(S).

Thus WAP(A) and AP(A) are introverted C*-subalgebras of £>(S).

An example of a semigroup S with AP(S) C WAP(S) = (>=(S) is
given in [104, Theorem 3|.

Let S be an infinite semigroup. Then (®y ap(s), O) coincides with
the compact, left topological semigroup (®w ap(s), <), and so the semi-
group (Pwap(s), O) is a compact, semi-topological semigroup, which
we now denote by wS.

This space is denoted by WAP(S) in [78].

PROPOSITION 8.3. Let S be a semigroup which is either weakly left
cancellative or weakly right cancellative. Then co(S) C WAP(S), and
the map Ywap(s) : S — wS s injective.

PROOF. Suppose that S is a weakly left cancellative semigroup,
say. It is sufficient to show that x¢y € WAP(S) for each s € S. For
s,t € S, we have x5 - t = x¢-1(5). Since each set t~'{s} is finite,
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it follows that LO(x{s}) C co(S). Let W be the weak-* closure of
LO(x¢sy) in £2°(S). Then W is weak-* compact. However, W C ¢y(.5),
and so the weak-* topology on W coincides with the weak topology, and
so LO(x(sy) is relatively weakly compact. Hence xs3 € WAP(S). O

The following characterization of WAP(S) is given in [78, Theorem
21.18].

PROPOSITION 8.4. Let S be a semigroup, and let X\ € SC. Then
A€ WAP(S) if and only if (uov, \) = (u o v, \) (u,v € S*). O

The argument of the following result is essentially contained in [43].

THEOREM 8.5. Let S be an infinite semigroup which is a subsemi-
group of a group G, and let X be an introverted C*-subalgebra of £°°(S)
with WAP(S) C X. Then there is a non-empty subset V' of ®x such
that

sVt=V (s,teG) and VN(PY)g=0.

PROOF. Set

U=25\(S05)U(5o5)),

an open subset of S*. It follows from Proposition 6.31 that U # ().
Let u € U and v € S* with v # u. There is a non-empty subset F'
of S such that u € F* C U and v ¢ F™*. Set A = xp. Then clearly

(uov, Ay =(uov, \) =0 (u,ve S,
and so A € WAP(S) C X by Proposition 8.4. Since (u, \) # (v, \),

we see that mx(u) # 7wx(v).

Set V = 7(U), a non-empty subset V of ®x. Then sVt =V for
each s,t € G. Assume towards a contradiction that V N (®% )9 # 0.
Then there exist elements u € U and vy, vy € S* such that

m(u) = m(vy) om(ve) = w(vyove).
However u # vy ovg, and so this contradicts the above remark. O
The space (®4p(s), 0) is a compact, topological semigroup
which is sometimes denoted by S, and sometimes by 0S; it is de-
noted by AP(S) in [78]. We shall use the notation bS. This space is

the Bohr compactification
of S.

We have the following maps. There are: continuous semigroup
epimorphisms

(8.2) (3S,0) =% (wS,0) =% (bS,0);
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isometric embeddings

Ty

(C(bS), -) == (C(wS), -) = (C(BS), ) ;

continuous epimorphisms

(M(BS),0) 2o (M(wS), 0) =5 (M(bS),0) .

The maps T}, and 7} o T are of the form mx for X = WAP(S) and
X = AP(9), respectively, where mx was defined in Chapter 2.

Further, let us regard 8S as a subset of £1(3S) ¢ M(BS), wS
as a subset of £1(wS) C M(wG), and bS as a subset of £1(bS) C
M(bS). Then we have T, | S = m, and T} | wS = m, and so
T, . (¢Y(BS),0) — (Y (wS),0) and T} : (*(wS),0) — (£1(bS),0)
are continuous epimorphisms.

Finally, we have continuous embeddings

Corpsy — Parws) — Pu(as) -

Let S be a semigroup, and set A = ¢1(S). We wish to clarify one
point; the clarification involves WAP(S). Set M = A” = M(3S5), and
L =(¢Y(BS). Then we have

AcCcLcM and A'cL’'c M.

Now take A € A" = C(8S) C £>°(3S) = L' and u € 5S. Then we can
calculate A - uw and u - A in both A" and L’. How are these functions
related?

For A € A, the functions A - v and u - X in A’ are defined in equation
(2.12) as functions of s € S, with u = ¢, for & € A” and s = d;, for
a € A. For A € L' and u € 35, the functions A - v and u - A in A’ are
defined in equation (2.11) as functions on 3S. Now define

(L) (v) = AMuow), (ry\)(v) =Avou) (veps).

Then u - A=r,A=Xo R,and \ - u =¥, ,\A =\ o L, as elements of
L’ (where R, and L, act on (45, O)), and we shall henceforth use the
notations ¢, A and r,\ for these functions. For the special case where
A € A, the functions u - A and X - u in A’ coincide with A o R, and
A o L,, respectively, as functions on S. Since R, is continuous on /35,
we have u - A =X o R, = r,A on 35, and so the two possible values
of u - X\ coincide. However, L, is not continuous on (35, and so the
two possible values of A - u may not coincide. Indeed, /,A = X - u in
C(BS) for each u € S if and only if A € WAP(S).
Now let p € M and u € 5S. For A € A’, we have

<NDU7 /\> = <M7 u - )‘> = <:u7 Tu}‘)
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Let ;1 € L” be any extension of y (so that g | A" = u). Then
</’IU,>\>:<[’I,U)\>:<M,U)\>:<MDU,,)\> (/\EA,)a

and so
(B -u) | A= pou.

We also have

(s-m)|A=sop (s€5).
However there is no relation between (u - 1) | A" and wop for general
u € BS. To see this, let S be a weakly concellative semigroup. We
claim that, for each uy € S*, there exists y = d,, € M such that p has
no extension i € L” with (ug - 1) | A = upop. Indeed, by Theorem
12.20, below (this is a well-known result), ug & 3 (8S), and so there
exists vy € S* with ugovg # ug © vg ; take \g € A’ with (ugowvg, Ag) =1
and (ug ¢ v, Ag) = 0. Assume towards a contradiction that g € L" is
an extension of 9,, € M with (up - 1) | A" = ugop. Then

(uo « fi, Ao) = (fi; Ao - 1) = (vo, Ao - 1)

because \g - pu € A’, and so (ug - 11, Ag) = (ug © vg, A\g) = 0. How-
ever (upop, Ag) = 1. Thus (uy - 1, Ao) # (upou, A\o), the required
contradiction.

Submodules of L>°(G) For the remainder of this chapter, G is a
locally compact group.

We shall again utilize the left and right translations ¢; and r;, de-
fined for functions f on G and t € GG by the formulae:

(8.3) (Lef)(s) = f(ts),  (ref)(s) = f(st) (s€G).

The dual space of L'(G) is the space (L®(G), || - ||..) ; this space is
a C*-algebra with respect to the pointwise product, which is defined
save on locally null sets. We can also define the above left and right
translations on L*(G).

The space L'(G) is a closed ideal in the Banach algebra M (G), and
so L'(G) is a Banach M(G)-bimodule. Hence its dual space L>®(G) is
also a Banach M (G)-bimodule; in particular, we can define d5 - A and
A - 0 for s € G and A € L®(G). In fact, these elements of L>(G) are
denoted by s - A and A - s, respectively. We have

A=X-s, rA=s-\ (t€G, e L®Q)).

We shall also require the obvious definitions of s - A and A - s for
s€ G and A € L>(G)'. Indeed,

(84) (s- A, AN =(A A-s), (A-s, A =(As-A) (A€ L¥(G)).
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DEFINITION 8.6. Let G be a locally compact group. A closed sub-
space X of L°(G) is a left-introverted C*-subalgebra

if:

(i) X is a C*-subalgebra of L*°(G);

(ii) X is a left-introverted submodule of L>(G), where L*(G) is
regarded as the dual module of L'(G).
Similarly, we define a right-introverted C*-subalgebra of L>(G). The
space X is an introverted C*-subalgebra if it is both a left- and a right-
introverted C*-subalgebra.

DEFINITION 8.7. Let G be a locally compact group. Then LUC(G)
and RUC(G) denote the closed subspaces of CB(G) consisting of the
bounded, left (respectively, right) uniformly continuous functions

on G, so that

LUC(G) = {AeCB(G):t— A, G— CB(G), is continuous} ;
RUC(G) = {Ae(CB(G):t—nr\, G— CB(G), is continuous} .
We write UC(G) for LUC(G) in the case where LUC(G) = RUC(G).

Note that our notions of left and right uniformly continuous func-
tions are interchanged from the definitions given in [72].

Let A € L*(G). It is shown in [21, Proposition 7.15] that A is in
the equivalence class of a function in LUC(G) (respectively, RUC(G))
if and only if the map t +— X - t, G — L>®(G), (respectively, the map
t—t- A G— L*®(G),) is continuous.

The spaces LUC(G) and RUC(G) are, respectively, left- and right-
introverted C*-subalgebras of L>(G).

For A\ € L™®(G), set LO(\) = {{;) : t € G}, essentially as before.

DEFINITION 8.8. Let G be a locally compact group. Then X is
weakly almost periodic (respectively, almost periodic) if the set LO(\)
is relatively compact in the weak (respectively, || - ||-) topology on L>(G).

The spaces of these functionals are denoted by W AP(G) and AP(G),

respectively.
We have AP(G) = AP(L'(G)) and WAP(G) = WAP(LY(Q)) (see
(34, Theorem 1.1]). Further
AP(G) = AP(G4) NCB(G), WAP(G)=WAP(G,) NCB(G).

Each of the spaces AP(G) and W AP(G) is an introverted C*-subalgebra
of L>(G). Clearly

AP(G) C WAP(G) C LUC(G) € CB(G) C L™(G),
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and

Co(G) C WAP(G).
It was proved by Granirer [62] (see also [92, Corollary 4]) that we have
WAP(G) = LUC(G) if and only if G is compact.

The character spaces of these algebras are denoted by
Par@), Pwarw), Prucw), Prvcw), Pre),

respectively. (Elsewhere, these spaces are denoted by WAP(S), G-C,
GHUC  etc.; see [10], [43], and [78].) We shall again use the notation
bG for ® op(), the Bohr compactification

of G, and wG for @y ap). Of course , we have identified Pop(q)
with SG. We have continuous surjections

Qo) — o) — Prucie) — Pware) — Pare) -

Since Cy(G) separates the points of G, there is a natural embedding
of G in Pwap), in Prycq), and in Prye(q), and we regard G as a
dense, open subspace of these spaces. For a discussion of AP(G) in the
case where G is a group, see [72, Chapter 18], for example. For certain
groups G, the space bG may be just a singleton, but bG is an infinite
group whenever G is an infinite, maximally almost periodic group, and,
in particular, whenever G is abelian or a free group. More precisely, the
map v is an injection if and only if G is a maximally almost periodic
group;

for more details on these topics, see [113, Chapter 3.2.16].

Let G be a locally compact group, set A = L'(G), and let X be a
left-introverted C*-subalgebra of L>(G) with Co(G) C X C LUC(G).
Then X is identified with the Banach algebra C(®y), and (X', O) is
identified with the Banach space M(®x) of measures on ®x, and so
we can regard (M (®x),0) as a Banach algebra. As in Chapter 2, X°
is a closed ideal in (L'(G)”, O) and there is a quotient map

mx : (LNG)', O) — (LN@)", B)/X° = (X',0).

The space X is also a left-introverted subspace of £°(G), and so X’
is also a quotient of (¢1(G@)”, O); fortunately, this new product coin-
cides with O [21, Theorem 5.15]. Similarly, suppose that X is a left-
introverted C*-subalgebra of ¢*°(G) such that X C CB(G) C L*(G).
Then X is a left-introverted C*-subalgebra of L>(G); again the two
possible definitions of O agree, and in fact X € LUC(G) [90, Lemma
3], [107].

Let X be an introverted C*-subalgebra of L>*(G) with Cy(G) C X,
and set £/ = Cy(G). The quotient map

Ry : @@ |E, (X', 0) = (E, 0)= (M), +).
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is a continuous epimorphism. Further, the map
gx.c=qa © Rx : (X', O) = (((G), *),

is a continuous epimorphism. (Recall that g was defined in equation
(1.5).)

PROPOSITION 8.9. Let G be a locally compact group, and let X be
an introverted C*-subalgebra of L= (G) with Co(G) C X. Suppose that
there is a non-zero, continuous point derivation at the discrete augmen-
tation character on M(G). Then there is a non-zero, continuous point
derivation at the discrete augmentation character on X', and so X' is
not weakly amenable.

ProOF. This follows from Proposition 2.2(ix). O

Let G be a locally compact group, and let X be a left-introverted
subspace of £°°(G) with Cy(G) C X € CB(G). For p € M(G), define
Ou € X' by

(O, ) = /G A(s)du(s) (A e X).

Clearly 0 | Co(G) = p (1 € M(G)). In particular, (005, \) = A(s)
for each s € G. The map 0 : M(G) — X' is a linear isometry. (For a
discussion of an embedding of (M(G), x ) into (A”, O) which is a right
inverse to this map R/, see [53, Chapter 2] and [21].) We define

SZX,G = ¥a ° 4x,G -

Then again @x ¢ is a character on (X', O), called the discrete augmen-
tation character. We also regard the map ¢x e o g¢ as the discrete
augmentation character

on M(G); this coincides with the definition in [23].

PROPOSITION 8.10. Let G be a locally compact group, and let X be
a left-introverted C*-subalgebra of £>°(G) with Co(G) C X C CB(G).
Then 0 : (M(G), x) — (M(®x), O) is an isometric embedding, and

M(®x) = 0(M(G)) x Co(G)°,
where Co(G)° is the annihilator of Co(G) in X'.
ProOF. This is [96, Lemma 4.1]. O
In fact, in the above case, we regard M (G) as a closed subalgebra of

M (®x). We also regard ®x as a compact subset of M (®x); it is again
easily checked that (®x,0) is a compact, right topological semigroup.
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(The character space @1 (q) is discussed in [101]; it is a very com-
plicated object, and it is not a semigroup unless G is discrete or com-
pact. See also [24] for a long discussion of @ (c).)

Since the space (bG,0) is a compact topological group, we can
define the measure algebra (M (bG), =) on bG; it is immediate from
the definitions that the product x coincides with the product O on
M (bG), and so we have a continuous epimorphism

(8.5) 7 (M(BG),0) — (M(bG), *).
Clearly 7 : (M(G*),0) — (M(bG \ G), %) is also a continuous epi-
morphism.

Again, let X be a left-introverted C*-subalgebra of ¢*°(G) with
Co(G) C X C UB(G). Let u,v € ®x, and take nets (s,) and (t3) in
G with lim, s, = v and limg?g = v. Again we have

uov = limlim s,tg.
a B

Let S be a subset of G. Then S denotes the closure of S in ®y,
and S* = S\ S. In particular, % = ®x \ G, so that ®% is the growth
of Gin &y .
Let p € M(®x). Then, as before, we define L,, R, € B(M(Px))
as the map
L,:v—pov, R,:p—vou MPx)— MPx).

We shall often write uv for uov when u,v € ®y.

PROPOSITION 8.11. Let G be a locally compact group.

(i) Let K and L be disjoint, non-empty, compact subsets of ®ruc(c)-
Then there is a symmetric neighbourhood W of eq with K N W L = ().

(i) Let A and B be subsets of G such that AN B # 0 in Qruc@)-
Then ANWB # () for each neighbourhood W of eq.

(iii) Let A be a subset of G. Then W A is a neighbourhood of A in
®x for each neighbourhood W of eq.

PrOOF. (1) Choose \ € C(CDLUC(G)) with )\((I)LUC(G)> C I, with
A| K =1, and with A | L = 0. Since A\ | G € LUC(G), there is a
symmetric neighbourhood W of eg in G such that

A(ws) — A(s)] < % (s€GweW).

For each w € W and v € ®1y¢(q), we have |A(wu) — A(u)| < 1/2, and
so [AMwu)] <1/2 (w e W, u e L). Hence K N WL = (.

(i) and (ii) These are immediate from [78, Exercise 21.5.3]. O
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Let G be a locally compact group, and let X be a left-invariant
subspace of L>(G). We recall from Definition 2.31 that the topological
centre

of X' is

34(X') ={ue M(®x) : L, is weak-*-continuous on X'} .
In the case where X is introverted, we see easily that
3 X)={pe M®x):puov=pov (ve M(Px))}.

Thus 3,(X’) coincides with our previous definition of 3" (M (8G)) in
the case where X = L>*(G).

We recall some history of calculations involving the group algebra
LY(G). First, L'(G) is Arens regular if and only if G is finite: this
was first proved by Civin and Yood [16] for G abelian and in the
general case by Young [139]. In fact, L'(G) is always strongly Arens
irregular. This was proved for G compact by Isik, Pym, and Ulger in
[82]. The general case was first proved by Lau and Losert in [95]; see
also [99]. A different proof in the abelian case is given by Ghahramani
and McClure in [52], and a proof of a generalization of this theorem is
given by Neufang in [110].

THEOREM 8.12. Let G be a locally compact group. Then
3(LUC(G)) = M(G).
PRrROOF. This was first proved in [92]; see also [21, Theorem 11.9]

and [110] for a more general result. O

We shall extend the above result considerably in Theorem 12.24.

For an extension of the above result to topological groups which are
not necessarily locally compact, see [41].

As a comparison, we state the following result [21, Theorem 11.4].

THEOREM 8.13. Let G be a locally compact group, and let X be a
| - ||-closed L'(G)-submodule of L°°(G) such that X C WAP(G). Then
X is introverted

and 3;(X") = X'. O

For each u € ®x, we have the map L, | ®x : v — uov, &y — Px.

DEFINITION 8.14. Let G be a locally compact group, and let X be
a left-introverted subspace of L>(G). Then

31(Px) ={ue€ Px: L, | Px is continuous} .
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Clearly G C 3;(®x) and 3;(X') N®x C 3;(Px). Our definition of
3¢(®x) coincides with that of A(®x) given in [78, Definition 2.4]. In
the case where X is an introverted subspace of L>(G), we have

3:(Px) ={u e Px :unv=uov (vedx)},

and so our new definition coincides with that of 39(56’) given in Def-
inition 6.11 in the case where G is discrete and X = (*°(G).

THEOREM 8.15. Let G be a locally compact group. Then
3i(Prvcw) =G

PRrooOF. This is proved in [98]; for later proofs of slightly stronger
results, see [118] and [45, Theorem 4.2]. O






CHAPTER 9

Amenability for semigroups

In this chapter, we shall discuss left- and right-amenability for semi-
groups. Our main results will give new information about the support
in 3S of left-invariant measures on a semigroup S.

The seminal paper on the amenability of semigroups is [29]; the
present classic reference for the theory of amenable groups and semi-
groups is [116].

Definitions As usual, we begin with basic definitions and properties,
now of invariant means and amenability for semigroups.

DEFINITION 9.1. Let S be a semigroup, and let yn € M(BS). Then

[t is a mean on S if
ull = (1) =1,

left-invariant if s - u=p (s € ),

right-invariant if p - s = p (s € S), and invariant if it is both
left-invariant and right-invariant.

A subset X of M(3S) is S-invariant

if S - X - S CX and fS-invariant

if pSO0X0OpS C X.

The semigroup S is left-amenable (respectively, right-amenable, am-
enable)

if there is a left-invariant mean (respectively, right-invariant mean,
invariant mean) on S.

The sets of means and of left-invariant means on S are denoted by

M(S) and £(S), respectively.

We shall also require the following standard definition, which is
closely related to Definition 9.1.

DEFINITION 9.2. Let G be a locally compact group, and consider an
element A € L*(G)'. Then A is a mean on G if

[Al={A,1) =1,
left-invariant if s - A=A (s € G),
133
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and invariant if
s-A=A-s=A (seq).

The group G is amenable
if there is a left-invariant mean on G.

There is also some theory of amenability for more general topolog-
ical semigroups [93], [109].

Let S be a semigroup. It is clear that M(S) and £(S) are BS-
invariant, weak-* compact, convex subsets of M(3S). Clearly 99t(S)
is a subsemigroup of (M (3S),0), and so (M(S), Od) is a compact,
right topological semigroup. Thus this semigroup has a minimum ideal
K(9M(S)), and it contains minimal idempotents; for this, see Example
3.44.

A semigroup which is both left-amenable and right-amenable is
amenable; a left-amenable

group is amenable [19, Proposition 3.3.49]; a subgroup of an amenable
group is amenable, and a left or right ideal in a left-amenable semi-
group is itself left-amenable, and so a subgroup of the form sSt of an
amenable semigroup S, where s,¢ € S, is amenable; see [116, Chapter
1] for details of these results. However a subsemigroup of an amenable
group need not be itself left-amenable [80]. Each abelian semigroup is
amenable; the standard example of a non-amenable group is [F.

It is interesting to note that a left-amenable, cancellative semigroup
is always a subsemigroup of an amenable group; this is a result of Wilde
and Witz [133], given as [116, (1.27)].

The cardinality |£(S)] of the set of left-invariant means on a semi-
group S has been much studied; see [116, Chapter 7] for a definitive
account. The general conclusion is, as Paterson remarks, ‘remarkably
simple’: the cardinality is the ‘largest possible’ unless the semigroup
possesses some strong property which limits this cardinality. For ex-
ample, it is proved in [116, Corollary (7.8)] that

£(G) =27

for an infinite, amenable group G. The value of |£(S)| for semigroups S
is also discussed in [116, Theorem (7.26)] (see also [133]); often |£(.S)|
is a large infinite number. However, we are more interested in special
cases where |£(9)| is finite. There are semigroups S with |£(5)| = 1.
Indeed, let T' be any semigroup, and let S = T'°. Clearly in this case
|£(S)| = 1: the unique (left-)invariant mean in M (5S) is d,.

PROPOSITION 9.3. Let S be a left-amenable semigroup, and suppose
that |£(S)| = 1. Then S contains exactly one finite group ideal.
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Proor. This is explicitly stated in [87, Corollary 4.6]; it also fol-
lows from the solution given to Problem (7-14) in [116]. O

PROPOSITION 9.4. Let S be a semigroup, and let u € M(BS) be
left-invariant. Then

(9.0)  vou= (@)= (v )= ( /ﬂ S du) i (v e M(BSs)).

In particular, uvop = p (uw € BS) and pou = (u, ). Further,
9.2) u(s™ ) = p(U) (s € )
for each Borel subset U of 3S. Fach left-invariant mean is a minimal

idempotent in the algebra (M(BS),0)
and in the semigroup (IM(S), O).

PRrROOF. Equation (9.1) holds for v = s € S, and hence for each
v € (1(S) with finite support; it now holds for each v € M(3S) by
taking weak-* limits.
For each s € S and F' C S, we have
p(E) = {pxr) = (s - pxr) = (pxF - 9)
= <ﬂ7 Xs_1F> = :u(silF) = ﬂ(s_lF) )
whence (9.2) holds for U = F. The general case follows by taking
intersections and unions of sets and noting that u is a regular measure.
Let u € £(S). By (9.1), we have u € J(M(BS5)) \ {0}. Now take
v e I(M(BS))\ {0} with v < . Then vou =v. But vou = (v, 1)u
by (9.1), and so v = au for @ = (v, 1). Since v # 0, necessarily «a # 0.
Since vov = v, we have a® = «, and so a = 1. Thus v = pu, and
hence p is a minimal idempotent in the algebra M (3S). Suppose that
v € M(S) and that v < p, so that vou = v. Again vopu = p, and so
V= [. U

PROPOSITION 9.5. Let S be a semigroup such that the semigroup
(8S, O) is amenable. Then S is amenable.

PROOF. Let p € £2(3S) = M(B((8S)q)) be an invariant mean
on #S. Then C(4S) is an S-invariant subspace of ¢*((3S5)4), and so
w| C(BS) belongs to M(3S) and is an invariant mean on S. O

DEFINITION 9.6. Let S be a semigroup. Set
Mo(BS) = {pne€ M(BS): (u 1) =0},
My(BS) = {neM(BS): (u 1) = 1}.
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Clearly (My(5S),0) and (M;(5S),0) are both subsemigroups of
the semigroup (M(5S), O), and so both are right topological semi-
groups. Now take u € J(M(BS)), and set o = (u, 1). Then o? = a,
and so « =0 or « = 1. Thus

J(M(BS)) € Moy(BS) U Mi(35).

The semigroup (M (4S), O) has a minimum ideal, namely {0}. How-
ever, we are interested in the minimum ideal K (M;(55)).

PROPOSITION 9.7. Let S be a left-amenable semigroup. Then:

(i) the minimum ideal K(M,(5S),0) exists, and consists of the
left-invariant elements of M,(BS).

(i) £(S) = K(9M(S),0).

PrOOF. (i) Take u € M;(5S) with p left-invariant. By Proposi-
tion 9.4, u is an idempotent and M;(8S)opu = {u}, and so {u} is a
minimal left ideal in M;(5S). By Theorem 3.7(iii), the smallest ideal
K(M,(3S)) exists; every minimal left ideal is a singleton of the above
form, and so K (M;(3S5)) is the set of left-invariant elements in M; (55S).

(ii) [135, Theorem 2.11] Let u € £(S) C M;(BS). Then p is an
idempotent in 9M(S), and {u} is a minimal left ideal in 9(S). By
Proposition 3.8(i), £(5) = K(9M(9)). O

Let S be a semigroup. It would be interesting to characterize
K(9(S),0) in the case where S is not left-amenable. For example, is
this ideal always weak-* closed? Temporarily set K; = K(9(S),0)
and Ky = K(9(S),<). Then clearly K; = K, when S is abelian, and
K1 N Ky # 0 when S is amenable; always K1 N Koy # ().

PROPOSITION 9.8. (i) Let u be a right-invariant mean on a semi-
group S, and let L be a left ideal of S. Then {u, xr) = 1.

(ii) Let S be a right-amenable semigroup. Then S has at most one
manimal left ideal.

(i) Let S be a left-amenable semigroup. Then S has at most one
minimal right ideal.

PROOF. (i) Let a € L. Then La™' = S, and so a - xp = xs by
(4.3). Hence (u, xr) = (1 - a, x2) = (@ - xr) = (b, xs) = 1.

(ii) Let p be a right-invariant mean on S. Assume that L; and
L, are two distinct minimal ideals in S. Then L; N Ly = (), and so
XLiULs = XLy + XL,- By (i), u(L1 U Ly) = 2, a contradiction of the fact
that [|u|| = 1.

(iii) This follows by applying (ii) to S°P. O
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The following result is stated without proof in [33, page 145].

PROPOSITION 9.9. Let S be a simple, reqular, amenable semigroup
such that E(S) is finite. Then S is a group.

PROOF. Since E(S) is finite, there exists a minimal idempotent,
say p, in S. Since S is regular, it follows from Proposition 3.6(i) that
Sp is a minimal left ideal in S, and p € Sp. Thus the structure theorem
3.7 applies. Since S is simple, K(S) = S.

By Theorem 3.7(iii), K(.S) is the union of the minimal left ideals
of S. Since S is amenable, it follows from Lemma 9.8(ii) that S has
at most one minimal left ideal, and so S is a minimal left ideal in S.
Similarly, S is a minimal right ideal in S. By the structure theorem
3.7(iv), S = Spy is a group. O

THEOREM 9.10. Let S be an infinite semigroup.

(i) Suppose that S is weakly left cancellative.
Then (S is not right-amenable.

(ii) Suppose that S is cancellative. Then (S is not left-amenable.

PRrROOF. (i) By Proposition 6.23(i), (85, O) contains at least two
distinct minimal left ideals, and so this follows from Proposition 9.8(ii).

(ii) By Proposition 6.23(ii), (4S5, O) contains at least two distinct
minimal right ideals, and so this follows from Proposition 9.8(iii). [

We remark on the limits of the above theorem. A semigroup S is
said to be extremely left-amenable

if there exists u € 55 such that sou=u (s € 5). In this case, we
have vou =u (v € 55); define M € (£°°(3S5))" by setting

(M, A) = Alu) (A€ £7(55)).

Then M is a left-invariant mean on (4S5, O), and so (3S, O) is left-
amenable in this case. A more general concept that implies the left-
amenability of (85, O) is given in [89].

The class of extremely left-amenable semigroups can be character-
ized algebraically. Indeed, a semigroup S is extremely left-amenable if
and only if, for each a,b € S, there exists ¢ € S with

ac =bc=c.

That each extremely left-amenable semigroup has this property is due
to Granirer [61], and the converse is due to Mitchell [106]. There
are many examples of infinite semigroups which are extremely left-
amenable. For example, the semigroup N,, of Example 3.36 is weakly
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cancellative and extremely left-amenable. Let S be any infinite semi-
group with a zero. Then S and (S, O) are extremely amenable semi-
groups (in the obvious sense), and so neither clause (i) nor clause (ii)
of Theorem 9.10 holds for an arbitrary infinite semigroup.

The support of means Let S be a semigroup. We wish to determine
some properties of the supports of means and of left-invariant means
on S. For example, let ;1 € M(S). Then [133, Lemma 4.1]

supp i =(({F : F C S, {u, xr) = 1}
DEFINITION 9.11. Let S be a semigroup. Then
L(BS) = | J{supp pn: p € £(5)},
where we take L(5S) = 0 in the case where S is not left-amenable.
Let (u,) be a sequence in £(S), and set u = > >° | p,/2". Then
w € £(S) and supp p = (J{supp p, : n € N}.

We enquire when the set L((3S) is closed in 5S. In fact, we do not
even know whether or not L(SN) is closed in GN.

PROPOSITION 9.12. Let S be an infinite, cancellative semigroup,

and let € £(S). Then pu € M.(S*), and so L(3S) C S*.

PROOF. Let v € 8S. By Proposition 6.5, s~!v is a singleton for
each s € S and all these points are distinct. Let s € S. Since s - u = p,

we have u({s™'v}) = u({v}), and so u({v}) = 0. Thus p € M.(S*). O

The following remark was made in [40, Proposition 2.1], following
a partial result in [133, Theorem 4.3].

PROPOSITION 9.13. Let S be a left-amenable semigroup, and take
€ £(S). Then supp p is a closed, left ideal in (3S.

PROOF. Let u € £(S), and take s € S and FF C S such that
(i, xr) = 1. Then {(u, xs-1.p) = 1, and so supp u C s~! - F. Hence
s - supp 4 C F. Tt follows that s - supp s C supp p. Since right-
multiplication in S is continuous, uwo supp p C supp g (u € (S).
Thus supp u is a left ideal in 3S. O

EXAMPLE 9.14. (i) Let S be a right zero semigroup,
so that

uvov=uv (u,v€ pBS);
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S is both left amenable and left cancellative. For each v € 35, we have
dy € £(5), and so v € L(S). Thus we cannot replace ‘cancellative’ by
‘left cancellative’ in Proposition 9.12. In fact, K(3S) = L(5S) = 3S.
(ii)) Let S = Ny. Then £(S) = {pu € M(S*) : ||u|l = (1, 1) = 1},
and so L(3S) = S*, which is closed in 5S. In particular, §, € £(S) for
v € 5%, and so we cannot replace ‘cancellative’ by ‘weakly cancellative’
in Proposition 9.12. U

PROPOSITION 9.15. Let S be a semigroup, and let L be a minimal
left ideal in 3S. Then there is a minimal idempotent pg € IM(S) with
supp po C L.

PrOOF. Choose u € L. Then s - uw € M(S)N L (s € S), and so
supp (powu) C L (u € M(S)). Since {powu: p € M(S)} is a left ideal
in (M(S), O), it contains a minimal idempotent, say . The element
1o has the required properties. O

Parts of the next result were given in [97, Lemma 4] by a different
argument.

PROPOSITION 9.16. Let S be a left-amenable semigroup.
(i) Let I be a minimal left ideal of (5S,0). Then there is a left-

invariant mean fo on S such that supp po = 1.

(ii) L(BS) and L(BS) are ideals in (S,0).
(iii) K(3S) C L(3S) and K(BS) C L(39).

PROOF. (i) Let u € £(S), and take v € 5S. Then pov € £(S5),
and we have supp (uov) = (supp u)ov by (7.3). Choose v € I, and
set pg = pov. Then supp o C I. For s € S, s - supp pg = supp fo,
and so supp po is a closed left ideal in 5S. Hence supp g = 1.

(ii) It is immediate from Proposition 9.13 that L(35) is a left ideal.
As in (i), L(BS) is a right ideal. By Proposition 6.14(ii), L(3S) is an
ideal in 3S.

(iii) This is now immediate. O

Let S be an infinite, weakly cancellative semigroup. We remark
that there is no measure u € M(S) such that supp p O K(8S5). For
set K = K(8S), and take p € M(3S). It follows from [15, Theorem
2.3(i)] that there is a family {U, : @ < w;} of open subsets of S* such
that Uy NK #0 (o <wy) and U, NUsNK =0 (o, < w1, a # B).
Of course |u| (U,) = 0 for all save countably many values of a, and so
there exists o < w; such that supp p C K \ Uy C K.
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Recall that each cancellative, abelian semigroup is
maximally almost periodic.

PROPOSITION 9.17. Let S be an infinite, mazximally almost periodic
semigroup, and let p € £(S). Then

u(m) =0.

PROOF. Set F' = E(fS) and o = p(F).

Let A : S — G be a monomorphism from S into a compact topo-
logical group GG. Then h extends to a continuous homomorphism
h : (8S,0) — G. We have h(u) = e¢ (u € F), and so it foll-
ows that h(s™'F) = {h(s)™'} (s € S). This shows that the family
{s71F : s € S} is pairwise disjoint; each set s™'F has measure o, and
this is a contradiction unless a = 0. U

PROPOSITION 9.18. Let S be an infinite, weakly left cancellative,
left-amenable semigroup. Then, for each o > 1, J(M(BS)) has mini-
mal elements of norm c.

PRrROOF. By Proposition 6.23(i), there are minimal left ideals L,
and Lo in (£S,0) with Ly N Ly = (). By Proposition 9.16(i), there are
i, o € £(S) such that supp pr, = Ly, (k= 1,2). For ay,ay € C with
a; +ag =1, set v = ajg + agpie. Then v € T (M(BS)), v is minimal,
and ||v|| = |a1| + |az|, which can take arbitrary values in [1,00). O

The following result is well-known.

LEMMA 9.19. Let S be an infinite, left-amenable semigroup, and let
e £(S). Let B be a Borel subset of S with (B) > 0. Then

{se€S:u(s*BNB)>0}
belongs to q for each q € E(3S).

PROOF. Let ¢ € E((3S), let B be a Borel subset of 35 such that
wu(B) > 0, and set

A={seS:u(s'BNB)=0}.

Assume towards a contradiction that A € ¢q. By Proposition 6.8(ii),
there exists (s,) in S such that FP{(s,)) C A. Choose n € N such
that nu(B) > 1. For k,m € N with k£ < m < n, we have

w((SgSk—1 -~ 8281)_13 N (SmSm—1-"" 8281)_13)
= (BN (SmSm_1--+5ks1) "B)=0.



9. AMENABILITY FOR SEMIGROUPS 141

It follows that

I (U (SmSm—1-"" 5231)_13> >nu(B)>1,

m=1

a contradiction. Thus S\ A € ¢, giving the result. d

THEOREM 9.20. Let S be an infinite, left-amenable semigroup, and
let w € £(S). Let K be a compact subset of 3S with p(K) > 0, let
q € BE(BS), and let Q € q. Then there exists p € E(3S) N Q such that
KNpK # 0.

PROOF. Set T = {s € S: u(s"' K N K) > 0}. By Lemma 9.19,
E(3S)CT.

We shall find p € E(3S)NQ and x € K such that pr € K. This is
sufficient to prove the theorem. We may suppose that () C T

By Proposition 6.10(i), we have Q*(¢) € ¢: choose t; € Q*(q), so
that p(t; 'K N K) > 0, and then set K; =, 'K N K and

Q= {set;'Q"(q) : u(s'K1 N K1) > 0}
By Proposition 6.10(ii), t;'Q*(q) € ¢ and {s € S : p(s 'K, N K;) > 0}

belongs to ¢ by Lemma 9.19, and so @1 € ¢, whence Q7(q) € gq.
Next choose t5 € Q7(q), so that

pt KN KNt KN K) > 0.

Continuing in this way, we find a subset {¢,, : n € N} of S such that
FP((t,)) C Q and

u (ﬂ{t—lK NK:te FP{((t,... ,tn))}> >0

for each n € N. Since {t 'K N K :t € FP{(t,))} is a family of non-
empty, compact subsets of 58S with the finite intersection property,
there exists z € (J{t 'K NK : ¢t € FP((t,))}. By Proposition 6.8(i),
there exists p € F(4S) such that

p € FP((t,:n>m)) (meN),

and hence p € Q. Since tx € K for each t € FP{(t,)), we have pz € K,
and so p and x have all the required properties. O

THEOREM 9.21. Let S be an infinite, left-amenable, cancellative
semigroup. Then:

(i) L(BS) C E(S*)DS* C Sf;
(ii) in the case where S is countable, L(BS) ¢ Sfy.
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PROOF. (i) We have E(S*) # 0; take ¢ € E(S*). Set U = 3S\{es}
if S has an identity eg, and U = (S otherwise.

Let v € L(3S), and take A € v. Then there exists p € £(5) with
w(A) > 0. By Theorem 9.20, with K = A and Q = U, there exists
p€ EBS)NU and z € A such that pr € A. Since pr € F(S*)0S*,
v € E(S*)0S*, and so the result follows.

(ii) By Proposition 6.28, there is a sequence (p,,) of idempotents in
K(8S) and u € {p, : n € N} \ Sp;. Each ideal 5"p, is a minimal left
ideal. By Proposition 9.16(i), for each n € N| there is u, € £(5) with
SUpPP f, = S*pp. Set =3 "7 f1,/2". Then u € supp p C L(BS). O

THEOREM 9.22. Let S be a weakly left cancellative, left-amenable
semigroup. Then

K(BS) C L(BS) C S

[oo] *

ProoF. This now follows from Proposition 9.16(ii) and Theorem
9.21. O

Means in M (SN) We now make some remarks that are specific to the
semigroup (N, +).

For n € N, define f, € ¢'(N)y by fn = xn,/n, and let 1 € M(SN)
be a weak-* accumulation point of the sequence (f,). It is immediate
that p is a mean on N, and then it is clear that p is invariant, so that
p € £(N). The set of means that arise is £¢(N), and then

Lo(BN) = | J{supp 41 : p € Lo(N)}.
Clearly Lo(4N) ¢ L(ON).

We also give some notation taken from [78, §6.7].

DEFINITION 9.23. Let U be a subset of N. Then the upper density
of U 1s

_ N,
d(U) = limsup [T N :

and o
A={uepBN:dU)>0 (Ucu)}.

A related concept which occurs frequently in ergodic theory is that
of the upper Banach density d*(U)
of a subset U of N. Indeed d*(U) is the supremum of the numbers
a € R such that, for each £ € N, there exist m,n € N with n > k such
that
UN(m+N,)| > an.
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See [78, Chapter 20]. Note that d*(U) > d(U). There is an extensive
literature in ergodic and Ramsey theory about subsets U of N (and
other semigroups) with d*(U) > 0. A famous theorem in this context
is that of Szemerédi [78, Corollary 20.14]:

each such set U contains arbitrarily long arithmetical progressions.

PROPOSITION 9.24. The subset A is a closed left ideal in (SN, O),
and the subset N*\ A is a left ideal in (SN, O).

ProOF. This is [78, Theorems 6.79 and 6.80]. O

THEOREM 9.25. In the above notation, A = Lo(GN).

PROOF. Let u € A. Take U € u, and set § = d(U), so that § > 0.
There is a strictly increasing sequence (ny) in N such that

(9.3) 2|UNN,,|>dnx (keN).

For k € N, let f,, be as above, and let ;¢ be an accumulation point of
the set {f,, : k € N}, so that p € £4(N). Since f,,, (U) > /2 (k € N),
we have p(U) > §/2, and so U Nsupp p # (). Thus u € Lo(BN).

Let u € Ly(HN). For each U € u, there exists p € £¢(N) such that

w(U) > 0, say 6 = u(U). There is a strictly increasing sequence (ny)
in N such that equation (9.3) holds, and so d(U) > 6/2 > 0. Thus
u € A. O

Clause (i) of the next result also follows from [7, Theorem 2.6]
(where different terminology is used). It was already shown in [40,
Proposition 3.4] that K3S) C L(8S) whenever S is a semigroup con-
taining a ‘C-subset’, which includes the case where S = N.

PROPOSITION 9.26. (i) The set A is not contained in K(ON).

(if) K(5N) ¢ Lo(BN).
(ili) Lo(BN) ¢ K(6N), and K(BN) C L(ON).

PROOF. Set K = K(AN), L = L(AN), and Lo = Lo(AN).

(i) A number n € N is said to be square-free

if n & p?N for each prime number p. Let A be the set of square-free
numbers. Then it is clear that d(A) > 0, and so A* N A # (). However,
by [78, Theorem 4.40], we have A* N K # (). Hence A ¢ K.

(ii) Since N*\ A is a left ideal in (ON, O), we have (N*\A)NK # (.
But A = Ly(8N) by Theorem 9.25, and so K ¢ Lj.

(iii) This follows immediately. O
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We can now give an example that was promised on page 102.
PROPOSITION 9.27. There exist u € £o(SN) and v € N* such that

supp (vop) ¢ vo(supp p) .

PRroOOF. By Proposition 9.26 and Theorem 9.25, there exists a mea-
sure p € L£o(ON) such that L ¢ K(ON), where L = supp u. Take
v € K(PN). Then supp (vopu) = L, and vo(supp u) C K(ON) be-
cause K (ON) is a right ideal. The result follows. O

PROPOSITION 9.28. The closed subspace M (K (BN)) of M(SN) is
a left ideal, but not a right ideal, in (M (SN), O).

PROOF. By Proposition 6.15, K(AN) is an ideal in SN. By Propo-

sition 7.5(1), M(K(PN)) is a left ideal. By Proposition 9.27, there

exists v € K(ON) and p € M(N*) with vou ¢ M(K(ON)), and so
M(K(PN)) is not a right ideal. O

Our final remark in this chapter is to show that there are often

idempotents in S* which are not in L(35S).

THEOREM 9.29. Let S be a infinite, cancellative, abelian semigroup.

Then E(S*)\ L(BS) is dense in E(S*).

PROOF. By Proposition 3.16, there is a sequence (s, : n € N) in S
which has distinct finite products. Let A be an infinite subset of N such
that N\ A is infinite, so that (s, : n € A) has distinct finite products;
set ' = FP{(s, :n € A)). For each pair {ki, ko} of distinct elements
of N\ A, we have s, F' N s, F = 0 (using the fact that S is abelian),
and so {spF : k € N\ A} is an infinite family of pairwise disjoint sets
in 8S.

Let 11 € £(S). Then it follows that p(F) = 0. Since F' is an open
subset of 45, it follows that F Nsupp x = 0, and so FNL(3S) = (). By
Proposition 6.8, there exists p € F N E(BS). The result follows. O

We now summarize some results in the special case where S is the
semigroup (N, +); here

L= L(BN) = | J{supp p: n € £(N)}
and K = K(SN), the minimum ideal of (GN, O).
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THEOREM 9.30. (i) L and L are ideals in (BN, O).
(i) KC L and K C L C N

[o0]®

(iii) L ¢ Niy and L ¢ E(N*), O

The main point that we have left open is the following.
Question Is L(AN) closed in GN?






CHAPTER 10

Amenability of semigroup algebras

There is an extensive literature studying the amenability and weak
amenability of Banach algebras on locally compact groups and on semi-
groups.

In this chapter, we shall discuss the amenability of the semigroup
algebras ¢1(.9) for a semigroup S.

Locally compact groups Let us first recall the known theory of the
amenability of Banach algebras on locally compact groups G. The
results reveal that conditions for the amenability and weak amenability
of the group algebra

LY(G) and the measure algebra M(G)

are known; they also concern the Fourier algebra A(G).

The first result combines two famous theorems of B. E. Johnson
83], [85], [30].

THEOREM 10.1. Let G be a locally

compact group.

(i) L'(G) is an amenable Banach algebra if and only if G is an
amenable

group.

(ii) LY(G) is weakly amenable. O

Clause (i) of the above theorem is extended in the next theorem.
Recall that the notions of a C-amenable

Banach algebra A and of the amenability constant,

AM(A), of A were defined in Definition 2.3.

THEOREM 10.2. Let G be a locally compact group. Then the follow-
ing are equivalent:

(a) G is an amenable
group;

(b) LY(Q) is amenable;

(c) AM(LY(G)) = 1;

(d) LY Q) is approzimately
amenable.

147
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PrOOF. The equivalence of (a) and (b) was first proved in [83];
see [19, Theorem 5.6.42]. That (b) implies (c¢) was explicitly given
by Stokke [131, Corollary 1.10], and the converse is immediate. The
equivalence of (a) and (d) is given in [51, Theorem 3.2]. O

COROLLARY 10.3. Let G be an amenable group, and let n € N.
Then AM (M, (¢1(G)) = n.

PROOF. Since AM(¢*(G)) = 1 and ¢!(G) has an identity, this fol-
lows from Theorem 2.7(iv). O

Clauses (i) and (iii) of the following theorem were proved by Dales,
Ghahramani, and Helemskii in [23]; clause (ii) is [51, Theorem 3.1].

THEOREM 10.4. Let G be a locally compact group.

(i) M(G) is amenable

if and only iof G s discrete and amenable.

(ii) M(G) is approxzimately amenable

if and only if it is amenable.

(iii) The following are equivalent: (a) G is discrete; (b) there is
no non-zero, continuous point derivation at the discrete augmentation
character on M(G); (¢) M(G) is weakly amenable. O

Fourier algebras We give one further known example involving amen-
ability and amenability constants.

Let G be a locally compact group, and let A(G) be the Fourier
algebra

of G. This algebra was introduced by Eymard [39], and has been
much studied. See [19, Definition 4.5.29] for a definition of A,(G) for
1 < p < oo; we have A(G) = Ay(G). When G is abelian, A(G) is
isometrically isomorphic to L'(T'), where I' is the dual group of G.
Now let I be the dual object of GG, so that I' is the collection of all
(equivalence classes of ) continuous, irreducible, unitary representations
of G on a Hilbert space; for m € T', let d, be the degree of m, the
dimension of the corresponding Hilbert space.

In the case where G is finite, A(G) is amenable, and the amenability
constant

is calculated by Johnson in [86]. Indeed, [86, Theorem 4.1] shows
the remarkable formula that
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This constant is a rational number. For example, it is shown by Runde
in [126] that, in the case where G = Aj, the alternating group on 5
letters, we have

AM(A(A35)) = 61/15.

We see that AM(A(G)) = 1 if and only if G is abelian; for G non-
abelian, AM(A(G)) > 3/2 [86, Proposition 4.3], and so the interval
(1,3/2) consists of ‘forbidden values’ for the constant AM (A(G)) when
G is a finite group. Let n € N. Then it is shown in [100, Theorem 4.9]
that necessarily sup {d, : 7 € v} < n? whenever 2AM (A(G)) < n.

Let GG be an infinite locally compact group such that

{mel:d, =n}

is finite for each n € N. Then Johnson showed that A(G) is not
amenable. For example, A(SO(3)) is not amenable.

Let G be a locally compact group.

Then it follows easily that A(G) is amenable whenever G is al-
most abelian, in the sense that G has an abelian subgroup of finite
index [100, Theorem 4.1]. The converse of this statement is proved
by Forrest and Runde in [48, Theorem 2.3]. It is proved in [126] that
AM(A(G)) = 1 if and only if G is abelian; the same result is estab-
lished for the related algebras A,(G) in [127] whenever 1 < p < oc.
We remark that it is also shown in [48] that A(G) is weakly amenable
if and only if the connected component of the identity in G is abelian.

It will be seen in this chapter that the number 5 places a role in
the calculation of amenability constants; it is interesting to note that
the same number arises in the context of the ‘operator C-amenability’

of Fourier—Stieltjes algebras; see [128] and [129, Theorem 2.3].

Semigroup algebras Now that characterizations of the groups such
that L'(G) is (weakly) amenable are known, it is natural to ask when
a semigroup algebra £'(S) is (weakly) amenable. There are several
known partial results, which we summarize in the following theorem.
The force of these results seems to be that £1(.9) is amenable if and only
if S is ‘built up from amenable groups’; we shall resolve the question
when ¢1(S) is amenable by showing exactly how S is built up from
amenable groups in this case.

For an early survey on when a semigroup algebra is amenable, see
[93]; a key paper for us is [33].

PROPOSITION 10.5. Let S be a semigroup.
(i) Suppose that S is abelian and E(S) = S. Then £1(S)

15 weakly amenable.
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(ii) Suppose that £*(S) is an amenable Banach algebra. Then: S
1s an amenable semigroup; S has only finitely many idempotents, and
S has a minimal idempotent; each ideal I in S is a reqular semigroup
and, in particular, I = I'?; 01(S) is a semisimple algebra.

(iii) Suppose that S is unital and left or right cancellative. Then
(1(S) is amenable if and only if S is an amenable group.

(iv) Suppose that S is abelian. Then (1(S) is amenable
if and only if S is a finite semi-lattice of amenable groups.

PROOF. (i) For each semigroup S with E(S) = S, £1(S) is spanned
by its idempotents, and so this follows from Proposition 2.2(v).

(ii) Let I be an ideal in S. Then ¢!(I) is a closed ideal in £1(S),
and it is complemented as a Banach space. By Proposition 2.2(vii),
¢*(I) is an amenable Banach algebra. It is proved in [32] that S and T
are amenable, and in [33] that [ is regular and that £(I) is finite. The
fact that £1(S) is semisimple now follows from [37, Theorem 5.11].

(iii) This is [67, Theorem 2.3].
(iv) This is a theorem of Grgnbeack [68]. O

In fact, it can be shown that ¢1(.9) is ‘left-amenable’ if and only if
S is a left-amenable semigroup [91].
The following corollary is at least implicit in [33] and [37].

COROLLARY 10.6. Let S be a semigroup such that £'(S) is amen-
able. Then:

(i) £Y(S) has an identity;
(ii) K(S) exists and is an amenable group.

PROOF. (i) Since £!(S) is amenable, £'(S) has a bounded approx-
imate identity. By Proposition 10.5(ii), S is regular, and so, by (3.1),

S = JwSq:p.q € E(S)}.

By Proposition 10.5(ii), the set E(S) is finite, and so it follows from
Proposition 4.3 that ¢!(S) has an identity.

(ii) By Proposition 10.5, S is regular and has only finitely many
idempotents. By the structure theorem 3.12, K(.5) exists as an ideal
in S. Since S is an amenable semigroup, the semigroup K (S5) is also
regular and amenable; certainly E(K(5)) is finite and K (.S) is simple.
The result now follows from Proposition 9.9. O

Let S be a semigroup such that ¢1(S) is weakly amenable. Then
certainly S = S2. We do not know of an abelian semigroup S such
that ¢1(S) is weakly amenable, but S is not regular.
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The weak amenability of £1(S) is considered by Blackmore in [11].
It is shown that ¢!(S) is weakly amenable whenever S is completely
regular,

in the sense that, for each s € S, there exists t € S with sts = s
and st = ts.

ExAMPLE 10.7. Let S be an infinite set which is a right zero semi-
group.

As in Example 4.11, f x g = vs(f)g (f,g € €1(9)), and so it
follows from Proposition 2.13 that ¢1(S) is weakly amenable, but not
amenable. O

ExAMPLE 10.8. Let S be a semigroup, and let S° be the semigroup
formed by adjoining a zero o to S. Then clearly £!(5°) = ¢1(S) & C4,
as a Banach space. The product in £1(S°) is such that

f*éoz(so*f:SDS(f)éo (fegl(‘s’))v

and so £1(S°) = £1(S) x C6,. Assume that £1(S°) is [weakly] amenable.
Then it follows from Proposition 2.2, (vii) and (x), that ¢(S) is also
[weakly| amenable. O

ExAMPLE 10.9. Let T'= (Z,+) x S be the semigroup of Example
3.32, where S is the right zero semigroup on N. Then 7T has infin-
itely many idempotents, and so £1(T) is not amenable by Proposition
10.5(ii). (In fact, 7" is left-amenable, but it is not right-amenable be-
cause it has disjoint minimal left ideals Z x {n}; see Proposition 9.8(ii).)
Since Z is an abelian group, £!(Z) is a unital, commutative, amenable
algebra; by Proposition 2.14, £*(Z x S#) is weakly amenable. O

ExaMPLE 10.10. Let S be Ny or N,, as in Examples 3.36 and 3.37;
the semigroup algebras £1(.S) were described in Examples 4.9 and 4.10,
respectively. Clearly S is abelian and E(S) = S, and so, by Proposition
10.5, (i) and (ii), £*(S) is weakly amenable, but not amenable.

Let S = N,. Then we claim that A = (1(S) is approximately
amenable;

we shall apply the criterion of Proposition 2.10. The details follow
a remark of Rick Loy, to whom we are grateful. Indeed, for n € N, set

Fo=6,®0,+ > (0;—6;-1)®(5;—6;1) €AB A,

Jj=1
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where dy = 0, and set u,, = §,,. Certainly = (F,) = 2u,, and lim,, au,, = a
for each a € A. We check that

and that
Take a = > oo o0, € Aand n € N, and set b = Y 0 agdy, € A.

Then
b-F,=F, b= (Zak> E,,
k=n
and so
la - F,—F, - a+u,®a—a®u,|. = [[6h®b—b®d,|.

o0
< 2 ol
k=n

Thus ||a - F, = F, - a4+u, ®a—a®uy,l, — 0asn — co. We have
shown that the conditions in Proposition 2.10 are satisfied, and hence
A is approximately amenable.

Let S = N,. Then we again claim that A = ¢1(S) is approximately
amenable. Indeed, for n € N, set

Fp,=26®0 — 2(53‘ ® 0j41 + 0j11 @ 05 — 2011 ® Gj41) € AQ A,
j=1
and set u = 01, the identity of A. Certainly m4(F,,) = 2u (n € N). Set
Ap,=0, - F,—F, -0, +0 Q0 — 0 @ (k€N>

Then A; = 0. Also, for k € {2,...,n}, we have

k—1 k—1
Aj = 561 —01@0k+ Y _(6:®5j11—6:®8;)+ Y (6,005 —0;41®0%) = 0.
j=1 j=1

Similarly, for £ > n + 1, we have Ay = 6 @ 011 — Opa1 @ Iy
Take a =Y 7, aydy € A and n € N. Then, as above,

la - Fp,—F, -a+6 ®a—a® o] SZZ’O&M —0 as n— 0.
k=n

We have shown that the criteria for the approximate amenability

of A given in Proposition 2.10 are satisfied. This gives the claim. O

We have no characterization of the semigroups S such that £1(S)
is approximately amenable.
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EXAMPLE 10.11. Let S = M°(G, P,m,n) be a regular Rees matrix
semigroup
with a zero over a group G. As in Chapter 4, we have

0Y(S) = M°(CY(G), P,m,n) = M(LY(G), P,m,n) & C5,

isometrically as a Banach space, with the product xp specified in equa-
tions (4.7) and (4.8), where G = pSp\ {0} is a group for each primitive
idempotent p € E(S). Thus

B = ('(8)/Cs, = M(LM(G), P,m,n)

isometrically and isomorphically.
In each such case, ¢1(.9) is weakly amenable [11, Corollary 5.3].
Now suppose that ¢!(S) is amenable. Then B is amenable. By
Corollary 10.6(i), £*(S) has an identity, and so M(¢}(G), P,m,n) has
an identity. As in Proposition 2.16, it follows that m = n, that P is
invertible in M, (¢(G)) with inverse @, and that the map

0:a— Qa, M,((YG))— MUYG),Pn),

is a topological isomorphism with ||f|| = ||Q||. Thus M, (¢*(G)) is
amenable, and so (!(G) is amenable by Theorem 2.7(i); finally, this
implies that the group G is amenable.

Conversely, suppose that G is amenable, that m = n, and that P
is invertible as a matrix in M, (¢!(G)). Then £!(S)/Cé, is topologi-
cally isomorphic to M, (£1(G)). Since ¢!(G) is 1-amenable, it follows
from the remarks after Proposition 2.16 that M(£}(Q), P,n) is nv(P)*
amenable, where v(P) = max{Y _, [[(P71).] : i € N,}. We have ex-
plained in Chapter 4 that we are in the situation of Example 2.11,
and so, by Theorem 2.12(ii), £'(S) = M°('(G), P,n) is C-amenable,
where

C = 4nv(P)* + 1.

In particular, we have shown that M°(¢(G), P,n) is an amenable
Banach algebra if and only if G is an amenable group, m = n, and P
is invertible as a matrix in M, (¢1(G)). O

We now determine exactly when a semigroup algebra is amenable.
The result is conjectured in the last paragraph of [33], with reference
to [32] for the method. The authors of [33] remark that they could
prove the conjecture if they could achieve a certain technical step. Thus
they require to know that ¢£!(J) has a bounded approximate identity
in the case where £!(.S) is amenable and J is an ideal of S. However in
this case £1(J) is a closed, complemented ideal in the Banach algebra
01(S), and so £'(J) is amenable, and hence has a bounded approximate
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identity by Proposition 2.2(ii); indeed, by Corollary 10.6, £1(.J) has an
identity.

THEOREM 10.12. Let S be a semigroup. Then the Banach algebra
01(S) is amenable

if and only if the minimum ideal K(S) exists, K(S) is an amenable
group, and S has a principal series

S=hL20L2 21, 12I,=K(S)

such that each quotient 1;/1;+1 is a reqular Rees matriz semigroup
of the form M°(G,P,n), where n € N, G is an amenable group,
and the sandwich matriz P is invertible in M, (£1(QG)).

PROOF. Suppose that £1(S) is amenable. By Propositon 10.5(ii),
S is regular and E(.5) is finite, and so the structure theorem

3.12 applies. By Corollary 10.6(ii), K(S) is an amenable group.
Each quotient I;/1; is a completely o-simple, regular semigroup with
finitely many idempotents, and so, by Theorem 3.13, has the form
T = M°(G, P,m,n) for some m,n € N, a group G, and a sandwich
matrix P. By Proposition 2.2(vii), £}(T) is amenable, and so, as in
Example 10.11, T" has the specified form.

Conversely, suppose that S has the specified form. Then ¢!(K(S))
is amenable by Theorem 10.1(i), and ¢'(T') is amenable for each quo-
tient T = I;/I;;1, as above. Hence ¢'(S) is amenable by Proposition
2.2(+i). 0

The example given in [37, Example 6.3] is not a counter-example
to the conjecture of Duncan and Paterson, despite the remark on [37,
p. 365], because the specifed matrix P is invertible in My (¢1(G)).

Some calculations

ExAaMPLE 10.13. We give some specific examples of finite-dimen-
sional, amenable semigroup algebras A = M?°(C, P,n), and calculate
lleall;- So far we have shown that [[e4|; > 2n — 1, and that all the
values 2n — 1 can be attained.

We again identify P and @ = P~! with the numerical matrices (c;)
and (3;;), respectively.

Take
000 1 -1 -1 1 1
0110 -1 1 -1 1
P=110910| &= 1 1 1 -1 |
1101 2 0 0 0
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so that PR = 2I, € My and Q = P! = (1/2)R. In this case, we have
lleall, = 14/2 + |1 —4/2| = 8, the smallest even integer that can be
attained.

Next take
11110 -1 1 3 1 =2
11001 2 2 -2 =2 0
P=1]1101200 , R= 1 -1 1 -1 2 ,
1 0011 2 -2 =2 2 0
00101 -1 1 -1 1 2

so that PR = 415 € My and @Q = (1/4)R. Then ||Q] = 36/4 = 9
and Y 75 Bi; = 3/2, so that, by (4.10), [leall, =19/2>2 -5~ 1;in
particular, ||e4||; is not a natural number. It can be shown by numerical

calculation that 19/2 is the smallest non-integer that can be obtained
with G = {e}. O

EXAMPLE 10.14. We give an example of an algebra A = £!(.S) such
that ||e4||,; takes the smallest non-integral value that we have found,
namely 25/3. Our algebra A is amenable.

Indeed, take G = Zy = {0,1}, with 1 + 1 = 0, and consider the
semigroup S = M°(Zsy, P,3), where P is the sandwich matrix

P = € M;3(Z3),

—__ o

0
0
1

S o O

so that S is a regular Rees matrix semigroup

with a zero over the group (Zs,+). The corresponding matrix in
M3(€1(ZQ)) 18

pP—

[SEEESENG
20 O
O

where we are writing e = d§y and @ = ;. The determinant of this
matrix P is A = 2e — a € £1(Z,), with inverse A™! = (2¢ 4+ a)/3. The
inverse @) of P is

1 2e +a e+2a —2e—a
AL —a e—a a =—| —-e—2a e—a e+ 2a
e—a —a e e—a —e—2a 2e+a

and so pg(Q) = 1. Thus eq = Q and |[[el|], = 25/3. O
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ExAaMPLE 10.15. We present an example of a semigroup S such
that A = ¢'(S) is amenable, but supp e4 is not finite.
Indeed, we set S = M°(Z, P, 3), where P is the sandwich matrix

0 0 o
P = 1 01 € M;3(Z?),
o 00

so that S is a regular Rees matrix semigroup
with a zero over the group (Z,+). The corresponding matrix in

M;(¢Y(Z)) is

P =

o2 o
o Q@ O

e
e
e
where we are writing e = dg and a = ;. The determinant of this
matrix P is A = e — 2a € ('(Z), an element with inverse

1 1 1
Ail = —55,1 ((50 —+ 5571 -+ 1—1(572 + - ) )

A~! has infinite support in £!(Z) and [|[A™!||; = 1. The inverse of P is

a—e e —a
Q=A"1 a —e a ,

—a (& a—e

and the identity of A is e4 = Q + 26,. Clearly supp e, is infinite, and
lleall, =9+ 2 =11 because |[A™ x (a—e)||, =1 O

The amenability constant of a semigroup algebra We now ex-
plore some ideas related to the amenability constant of a semigroup
algebra. It is convenient to begin with some new notation.

DEFINITION 10.16. Let S be a semigroup such that £1(S) is amen-
able. Then Cg is the amenability constant of £*(S) and Es = |E(S)]
1s the number of idempotents in S.

Let S be a semigroup. We know from Proposition 10.5(ii) that Eg
is finite whenever C'g is finite. We are interested in the relationship be-
tween the constants C's and Es. For example, the argument of Duncan
and Paterson in [33] shows that

VEs <Cg

whenever ¢1(S) is amenable; however this is rather a weak estimate.
We also seek the minimum value of C's which forces S to be an amenable
group; for example, it was shown by Stokke in [131, Theorem 3.2] that
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S is a group whenever Cs < 2. More generally, we seek to determine
the values that Cg can take (and ‘forbidden values’ that Cg cannot
take).

We note that, if S and T are semigroups such that £!(S) and ¢*(T)
are isometrically isomorphic (so that Cs = C7r), then S and T are
isomorphic as semigroups, and so Eg = Fr.

The first result deals with the case where C's = 1 or Eg = 1; the
result will be strengthened in Corollary 10.28.

PROPOSITION 10.17. Let S be a semigroup such that £*(S) is amen-
able. Then the following are equivalent: (a) Cs = 1; (b) Es =1; (c) S
1S @ group.

PROOF. Since the Banach algebra ¢'(S) is amenable, it follows
from Proposition 10.5(ii) that S is regular and has a minimal idem-
potent. Suppose that Fg = 1. Then S is a group by Proposition
3.6(ii), and so (b) = (c). Clearly Eg = 1 whenever S is a group, and
so (¢) = (b). By Theorem 10.2, (c) = (a), and (a) = (c) by [131,
Theorem 3.2]. O

PROPOSITION 10.18. Let S = T° be a semigroup formed by adjoin-
ing a zero to a semigroup T, and take C' with 1 < C' < 5. Then £1(S)
is not C'-amenable.

Proor. We have noted in Example 4.7 that there is a contraction
0 :¢Y(S°) — ¢(D) and that the amenability constant of £1(D) is 5.
Hence the amenability constant of £1(S) is at least 5. O

Let A = ¢'(S). We recall that (A® A, || -||.) is isometrically iso-
morphic to (€1(S x S), || - |l,); we shall use this fact when we calculate
the norm |ju|| _ of some elements u € A® A (c¢f. equation (1.1)).

PROPOSITION 10.19. There is an infinite, completely 0-simple, reg-
ular semigroup S such that |£(S)| = 1, such that Cs = 5, and such
that Es = 2, so that S is not a group.

PrROOF. We take G = Z, and set S = G° = Z U {0}, so that S is
an infinite semigroup with a zero. Set A = ¢1(S).
For n € N, define

n

2(51—5o)®(57j—5o)+5o®50eA@A.
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Let n € N. We see the following. First, ||u,||. = 5. Second,

7(t) = —— 3" (60 — 8) + 8, = &,

and so equation (2.2) is satisfied. Third, J, - u, = uy, - 0y = 0y @ Jy,
and so 0, - u, — u, - 0, = 0. Finally, for each k € Z, we have

Ok - (5o®5o) = (50@60) + O,
and

n—+k
5kun_un6k 2n+1<z Z) 5_5 (6*j+k_50)7

j=—n+k j=-n

so that ||05 - w, —u, - &l < 81k|/(2n+ 1). It follows easily that

nliIglOHa Uy — Uy -all =0 (a€ A,
giving equation (2.1).
We have shown that (u,) is a bounded approximate diagonal for A
with ||u,||, =5 (n € N), and so A is 5-amenable.
By Proposition 10.18, A is not C-amenable for any C' < 5, and so
Cs = 5. Clearly Es = 2. Since S has a zero, |£(S5)| = 1. O

We are seeking to calculate Fs and Cg in the special case where
S = M°(G, P,n), a regular Rees matrix semigroup with a zero over
a group G; here n € N, G is amenable, and P is a sandwich matrix
which is invertible in M, (¢(G)), so that ¢'(S) is amenable. Recall
from equation (3.5) that Eg = |[N(P)| + 1.

We first note a result essentially already given in Example 10.11,
above; we also use Proposition 2.4(i) and equation (4.12).

THEOREM 10.20. Let S be the Rees matriz semigroup M°(G, P,n),
as above. Then

2n — 1 < |leall, < Cs < 4nv(P)* +1,
where A = ((S) and v(P) = max{>__ [[(P71),|l: 7 € N,}. O

We shall now try to calculate C's more accurately for the semigroup
S = M°(G, P,n). In the following, all sums are taken over the set N,,,
unless we state otherwise. The first lemma is surely well-known.

LEMMA 10.21. Let n € N with n > 2. Then each diagonal
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for Mi,, has the form

Z Tk (Z E; ® Em) )
jik i
where Y xj; = 1.

PROOF. Let u = Zmu Tijneli; @ By be a diagonal for M, where
each ;0 € C. For each r € N,,, we have E,, - u = u - F,,, and so
Zijke = 0 unless ¢ = £ = r. Thus we may suppose that

u = Zl’ijkEij ® B,
ijk
where each z;;, € C. Now take r,s € N,, with r # s. Since
E-u= Z xsjkErj ® Eis and u - E., = Z xsjkErj ® Ejs )

s,7,k T4,k
it follows that xy;, = 2, for each j, k € N,,, say the common value of

Zg;, for s € Ny, is 5, Thus u has the specified form.
Since ma(u) = Zj x;j > . Ey, it follows that Zj z;; = 1. O

We adopt the notation (M°(C, P,n), xp) and (M°(C,n), ) from
Definition 4.13 (in the case where G = {e}).

LEMMA 10.22. Let n € N with n > 2. Then each diagonal for
(M°(C,n), x) has the form

ijk <Z Ei; ® Em) + 00 ® 0y,
gk i
where Y xj; =1, 3w =0 (k€ Ny), and 32, x5, =0 (j €N,).

PrROOF. Set A = M°(C,n) and B = M, and identify A with
B & Co,, as before. We temporarily denote the module actions in
A® Aand B® B by -4, and -p, respectively.

A diagonal u for A has the form

U=V —YR b — 0, R 2+ wo, ® I, ,

where v is a diagonal for B, y,z € B, and w € C. By Lemma 10.21,
v has the form specified in that lemma; in particular, > ;%5 =1 Set

The projection of A® A onto A® B is denoted by R. Let r,s € N,,.
Then

R(ETS ‘A u) :Ers ‘B U+Z£L'jk <250®Ek1) —5O®Z,
i,k

i#£s
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and R(u -4 E,s) =v -g E.. It follows that

-3 (So) T
i#£s

This holds for each s € N,;; since n > 2, this implies that z = 0 and
> Tk =0 (k € N,). We now see that z + 1 = 0.

Similarly, y = 0 and ), x;, = 0 (j € N,,). Thus our diagonal u
now has the form v = v + wd, ® J,.

We confirm that 6, -4 u=1u -4 d,, and so a -4, u = u -4 a for each
a € A.

We know that

wa(u) = mp(v) + nxd, + woy = ZE“ + (w —

But ma(u) =es =), E;i — (n—1)d,. Hence w = 1.
Thus our diagonal u has the specified form. U

We continue to take G = {e}. Let P = (;;) € M, be an invertible
sandwich matrix, so that each o;; € {0,1}, and set Q@ = P! = (§3;), a
before. Again all indices range over the set N,,, unless we say otherw1se
Thus we have

:Zﬁﬂ’ QEij:ZﬁriErj, and  p(QE;;) = 0.

PropPOSITION 10.23. Letn € N withn > 2, and let P be an invert-
ible sandwich matriz. Then each diagonal for (M°(C, P,n), xp) has
the form

Z xjkﬁriﬁskErj & Esi

i,5,k,r,s

+ Z x]k 61 ﬁské X Esz + Z Tk 1_ﬁk)ﬁmEr] ®5
1,5,k i,5,k,r

+Z.T]]€ ﬁk) ®60+50®507
1,5,k

where Y i =1, 3 xp =0 (k € Ny, and 37, 25, = 0 (j € N,).
Further, ||ul|, > 2n + 1.

PRrROOF. The form of the diagonal follows by combining equation
(4.15) of Theorem 4.16 with the above lemma.

Let A = M°(C,P,n) and B = M(C, P,n), and again identify A
with B & C6,.
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Set v = Zi,j,k,r,s ik BriBskErj @ Es;. We shall calculate the value of
vl in B& BC A® A. In fact,

HUHﬂ = Z ijk’ﬁriﬁsk = Z ‘Brz’ Z ijkﬁsk .
5,ms |k @,r 7,8 k
Each column of () contains terms with sum equal to 1, and so

Bl =D 1Bl =1 (GEN,),

whence 7, |8, > n. Now set X = (z;;) € M,, and note that

XQt = Zl‘jkﬁskEks )

J.k,s

where M? is the transpose of a matrix M. The conditions imposed on
X imply that X(1,1,...,1)" = 0, and so the sum of each column of
X@Q"is 0. We have tr (P'XQ") = tr (X) = 1, where ‘tr’ denotes the
trace of a matrix. Let ¢; = (P'XQ");; (j € N,,). The 5™ column of
X @' has some terms with sum ;, and the remaining terms must sum
to —(;, and so the sum of the moduli of these terms is at least 2 (.
We have >, (; = 1, and so

Z Z Tk Bsk
7,8 k
We conclude that |[v|| > 2n.
The expression for v contains the term d, ® d,, which is not in the
linear span of the other terms in the expansion of u, and so we have
lvll.. > 2n + 1, as required. O

>2) |Gl > 2.
J

The following theorem now follows from our earlier estimates.

THEOREM 10.24. (i) Let S = M°(G,n), where G is an amenable
group and n > 2. Then A =1('(S) = M°({*(G),n) has

leall,=2n—1, Cs=2n+1, and Eg=n+1.

(ii) Let S = M°(G, P,n), where G is an amenable group, P is an
tnvertible sandwich matriz, and n > 2. Then

A= EI(S) = MO(Kl(G), P,n)
has

leal, >2n—1, Cs>2n+1, and n+1<Eg<n?.
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Proor. Clause (i) is immediate. We have verified clause (ii) in the
special case where G = {e}; the lower bounds follow because there is
a contractive epimorphism from A onto M°(C, P,n). O

We now examine the special case where n = 2 and A = M°(C, P, 2)
for an invertible matrix P. The above estimates give |lea||, > 3 and
Cs > 5. First we see that a surprising uniqueness result holds in this
case.

PROPOSITION 10.25. Let S = M?°(2). Then the Banach algebra
A=1YS) = M°(C,2) has a unique diagonal
1 1
§(E11 — B1p) ® (B — Ey) + §(E22 — Ey1) @ (Ey2 — E1z) + 0o ® 5, -
Further, |leall; = Es = 3 and Cs = 5.

PRrROOF. The unique 2 x2-matrix (z;;) satisfying the conditions that
T11 + T92o = 1 and that
T11 + T12 = Top + X = T11 + Xog = T2 + T2 =0

is given by 17 = x99 = 1/2 and x15 = 97 = —1/2. Thus the form of
the unique diagonal, say u, is as specified. Clearly |lul|, = 5, and so
Cq = 5.

The idempotents of S are eqq, €99, and 9,, and so Fs = 3. ]

As noted in Example 4.14, there are just two sandwich matrices
P with n = 2 for which A = M°(C, P,2) is amenable; these are the
identity matrix and the one that is specified by

10 . 10
P:(l 1)’ QZPIZ(—l 1)’

where we again identify P and () with matrices in M.

PrOPOSITION 10.26. Let P be as above. Then the Banach algebra
A= M°(C, P,2) has a unique diagonal. Further,

||€A||1:3, ES:4, and 05:11.

PROOF. Since ¢(Q) = 1, the identity of A is (), and so |leal|; = 3.
Set Fij = QE%J (Z,j € NQ), so that
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Also, p(A — QA) takes the values 0, 1, 0, and —1, respectively, when
A= FE — FEp, A= FEy — Eo, A= FEy — Ey, and A = Eyp — E,
respectively. Thus it follows from Proposition 10.25 and Theorem 4.16
that the unique diagonal for A is

1 1
§(F11 — Fio) @ (F11 — Fo) + §(F22 — Fy) @ (Fag — F2)

1 1
+§(F11 — Fi3) ® 6, — §(F22 — F51) @6, + 0, ® dy
=(E11 Q@ By —2E11 @ Ey; — E19 ® By + 2E15 @ Eyy — Eyy ® By
+2F5 @ B9 + Ey @ By — 2E9 @ Eyy + Fa @ Epy
—2E5 @ Egg — Eoy @ Eyy + 2E9 @ Ex)/2

1 1 -1
+§(0 0)@(504—50@(50.

It follows that Cs = (18/2) +2 = 11. Clearly Eg = 4. O

In the case where n > 3, there are many matrices satisfying the
conditions of Proposition 10.23, so certainly there is no uniqueness
result, and hence it is hard to calculate amenability constants explicitly.

THEOREM 10.27. Let S be a semigroup such that 1(S) is C-amen-
able for some C' < 5. Then S is an amenable group.

PRrOOF. First suppose that S is a Rees matrix semigroup with zero
of the form M°(G, P,n), as in Theorem 10.20. In the case where n = 1,
so that S = G°, we have Cs > 5 by Proposition 10.18. In general, by
Theorem 10.24(ii), Cs > 2n + 1, and so Cg > 5 for n > 2. (In the
case where n = 2, we have Cs = 5 or Cs = 11 by the above two
calculations.)

Now suppose that S is a semigroup such that £(S) is C-amenable
for some C' < 5. By Theorem 10.12, S has a principal series

for which each quotient I;_;/I; is a completely o-simple, regular semi-
group with finitely many idempotents. By Corollary 2.6, ¢1(S/I;) is
C-amenable.

Assume towards a contradiction that m > 1. Then S/I; is a com-
pletely o-simple, regular semigroup with finitely many idempotents;
each such semigroup has the form M°(G, P,n) by Theorem 3.13. By
our preliminary remark, the amenability constant of £1(S/1;) is at least
5. Since there is contractive epimorphism from ¢1(S) onto ¢!(S/1I;),
the amenability constant of £1(S) is at least 5, a contradiction. Thus
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m = 0, and so K(S) = S. By Corollary 10.6(ii), K(S) is an amenable
group. U

COROLLARY 10.28. Let S be a semigroup. Then the following are
equivalent:

(a) S is an amenable group;
(b) £1(S) is amenable with AM(£'(S)) = 1;
(c) 1(S) is amenable with AM(¢(S)) < 5. O

In particular the interval (1,5) is a set of ‘forbidden values’ for Cs.

ExaMPLE 10.29. We consider the special case of Theorem 10.20 in
which G is a singleton and P is P, or @), as defined in Example 3.43,
so that our semigroup is P,, or Q,,. The formulae for P;! and @,' in
M, are exhibited in Example 4.15. For each i € N,,, we have

2PNl <2,

and so v(P,) = 2. By Theorem 10.20, Cp, < 16n + 1. However, by
equation (3.8), we have Ep, = (n? +n +2)/2, and so
Cp, _ 32n+2
< —
Ep, " n?>+n+2

On the other hand,
Ca, - llecanll, o 107"
Eq, = |EQu)] ~ [E(Qn)]

by (4.13). In particular, it is not true that Cs/Eg is bounded either
above or below, as had been conjectured. U

0 as n— 0.

— 0 as n— o0

Let S be a semigroup such that A := ¢!(S) is amenable. By The-
orem 10.24(i), we can have Cs = 5,7,9,..., and we can also have
Cs = 1. We wonder which further values of C's can be attained. We
have shown that numbers in the range (1,5) are forbidden values for
Cs, and we suspect that this is also true for the intervals (5,7) and

(7,9).
[Added in proof. In [56], the authors obtain the following results, which
partially answer some points in the above paragraph.

(1) Let S be a finite, abelian semigroup with E(S) = S, so that S
is a semilattice. Then Cg is always of the form 4n+ 1 for some n € Z*,
and each such value can be attained.
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(2) There is a finite, abelian semigroup S (in fact, a Clifford semi-
group) such that Cs = 43, which is not of the form 4n 4 1 for any
n € ZT, and also there are Clifford semigroups S such that Cyg is not
an integer.

(3) There is no abelian semigroup S such that 5 < Cs < 9.]






CHAPTER 11

Amenability and weak amenability for certain
Banach algebras

In this chapter, we shall show that some algebras on compactifica-
tions of semigroups are not amenable and that some are not weakly
amenable. In particular, we shall prove the following results. First, let
S be an infinite semigroup. Then ¢1(S)” = M(3S) and ¢1(3S) are not
amenable. Second, let G be an infinite locally compact group. Then
LY(G)" is not weakly amenable; this latter result answers a question
first raised in [54] and discussed in [23].

Amenability of M(3S) Let S be a semigroup. We shall first discuss
the known results on the amenability of M (5S); throughout, M(5S)
has the product O.

The first result is essentially [54, Corollary 1.9]. Suppose that S
is an infinite semigroup, and assume that M (/5S) is amenable. Then,
by Proposition 2.22, £1(S) is also amenable; by Proposition 10.5(ii),
it follows that S is amenable. Thus, in the case where S is either left
or right cancellative, it follows from Proposition 10.5(iii) that S is an
amenable group, and this is shown to be a contradiction in Lemma
11.6, below. It is claimed in [54, Theorem 1.3] (see also [46, Theorem
4.9.3]) that M (BS) is not amenable whenever S is a weakly cancellative
semigroup. But the proof given is not correct: it relies on [54, Theorem
1.2], and our Example 7.34 shows that this latter result fails even for
an abelian, countable, weakly cancellative semigroup S. (However in
this case M (3S) is clearly not amenable.) The proof of [54, Theorem
1.3] does apply whenever S is an infinite semigroup which is weakly
cancellative and nearly right cancellative. Indeed, suppose that S is
a weakly cancellative and nearly right cancellative semigroup, and as-
sume that M (3S) is amenable. Then ¢!(S) is not left strongly Arens
regular by Proposition 2.26. However, by Theorem 12.15, to be proved
below, £1(S) is left strongly Arens regular, the required contradiction.

Our first result on the amenability of M(3S) and of £(3S) does
recover [54, Theorem 1.3] by a short argument; however stronger results
will be proved later.

167
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PROPOSITION 11.1. Let S be an infinite, weakly left cancellative
semigroup. Then neither (M(3S), O) nor (¢1(3S), O) is amenable.

PROOF. Set I = M(S*). By Proposition 7.6, [ is a closed left ideal
in M(S); certainly I is complemented as a Banach space.

Assume towards a contradiction that M(3S) is amenable. By
Proposition 2.2(viii), I has a bounded approximate identity. But this
contradicts Theorem 7.19.

Assume towards a contradiction that ¢!(3S) is amenable. Then,
by Proposition 10.5(ii), the semigroup (85, O) is amenable. But this
contradicts Theorem 9.10(i). O

EXAMPLE 11.2. Let S be the right zero semigroup

on S; the product in M(BS) is specified in Example 7.30. By
Proposition 2.13, both M (3S) and £'(3S) are weakly amenable, but
neither is amenable. 0

ExAMPLE 11.3. Set S = N,,. It follows from Proposition 2.13 that
both M (S*) and £!(S*) are weakly amenable, but neither is amenable.
It then follows from Proposition 2.2 that M (3S) and £*(3S) are weakly
amenable, but not amenable. O

EXAMPLE 11.4. Let S be the semigroup N,. Assume towards a
contradiction that M((S) is amenable. Then £!(S) is also amenable
by Proposition 2.22, a contradiction of a remark in Example 10.10.
Thus M (3S) is not amenable.

By Proposition 2.13, M (S*) is weakly amenable; as in Example
10.10, ¢1(S) is weakly amenable. However, as in Example 7.33, we
have M (3S) = M(S*) x £1(S), and so, by Proposition 2.2(iv), M(35S)
is weakly amenable. U

The first step of our main proof is the following easy remark.

PROPOSITION 11.5. Let S be a semigroup such that (M(3S), O)
is amenable, and let I be an ideal in S. Then both (M(GI), O) and
(M(B(S/I)), O) are amenable.

PROOF. By Proposition 6.14(ii), 8] is a closed ideal in 3S.

By Proposition 7.5(iii), M (81) is a closed ideal in M (3S). Certainly
M (I) is complemented in M (3S) as a Banach space, and so it follows
from Proposition 2.2(vii) that M (31) is amenable.

By Proposition 7.5(iv), M(3(S/I)) is a quotient of M(3S) by a
closed ideal, and so it follows from Proposition 2.2(vii) that M (5(S/I))
is amenable. U
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Part of the following proof follows the argument of [51, Theorem
3.3]; we thank Fereidoun Ghahramani for pointing this out to us.

LEMMA 11.6. Let S be a semigroup such that (M(3S),0) is amen-
able. Then (1(S) is amenable, S is amenable, S has a finite group ideal,
E(S) is finite, and each ideal in S is a reqular semigroup. Further,
(8S,0) is amenable.

PROOF. By Proposition 2.22, ¢!(S) is amenable. By Proposition
10.5(ii), S is amenable, E(.S) is finite, and each ideal in S is regular.

There exists pg € £(5); o is an idempotent in (M (5S),0). Define
I = poo M(BS). Then I is a closed, complemented ideal in M ((3S),
and so, by Proposition 2.2(vii), I has a bounded approximate identity,
say (fta). Let v € £(S). Then v = pgov € I, and so lim, v o u, = v.
But also vou, = p, for each «, and so v = lim,, p,. This shows that
v = po, and so |£(5)] = 1.

It follows from Proposition 9.3 that S has a finite group ideal. It is
now clear that (45, 0) is amenable. O

LEMMA 11.7. Assume that there is an infinite semigroup S such
that (M(5S),0) is amenable. Then there is an infinite, completely o-
simple, reqular semigroup T with finitely many idempotents for which
(M(GT),0) is amenable.

PROOF. Let F' be the finite group ideal in S specified in Lemma
11.6, and set T' = S/F. Then T is a semigroup with a zero. By
Proposition 11.5, M(8T) is amenable. Thus we may suppose that S
has a zero o.

Since S is a regular semigroup and FE(S) is finite, it follows from
Theorem 3.12 and Proposition 11.5 that we may suppose that there
is an infinite, completely o-simple, regular semigroup 7' with finitely
many idempotents for which (M (47'),0) is amenable. O

THEOREM 11.8. Let S be a semigroup such that (M(5S),0) is an
amenable Banach algebra. Then S is finite.

PROOF. Assume towards a contradiction that there is an infinite
semigroup S such that M(3S) is amenable. By Lemma 11.7, we may
suppose that S is an infinite, completely o-simple, regular semigroup
with finitely many idempotents.

By Proposition 3.13, S is isomorphic to a regular Rees matrix semi-
group with zero of the form M°(G, P,m,n), where G is an infinite
group, and m,n € N. By Proposition 2.22, £1(S) is amenable, and so
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we can apply the results in Example 10.11 to see that m = n, that
P is invertible in M, (¢£!(G)), and that ¢(S)/C4, is topologically iso-
morphic to M,,(£1(G)). Hence M(3S)/Cé, is topologically isomorphic
to M, (M (BG)), which is thus amenable. By Theorem 2.7(i), M(8G)
is amenable. But this contradicts both Proposition 11.1 and Lemma
11.6.

This concludes the proof of the theorem. O

Let S be a semigroup, and let X be an introverted

C*-subalgebra of £>°(S) (for example, let X = WAP(S)). Suppose
that X’ is an amenable Banach algebra. It would be of interest to
determine conditions on X that force S to be finite.

Amenability of £1(3S) Now let us turn to the amenability of £1(3.9).

THEOREM 11.9. Let S be a semigroup such that (¢1(3S),0) is an
amenable Banach algebra. Then S s finite.

PROOF. Assume towards a contradiction that S is an infinite semi-
group such that (£!(3S),0) is an amenable Banach algebra.

By Proposition 10.5(ii), 55 is a regular semigroup and E(3S) is
finite. It follows from Proposition 6.23(i) that each subgroup of S is
finite.

By Proposition 6.6, the semigroup S itself is regular, and of course
E(S) is finite. Thus, by Theorem 3.12, S contains an infinite subgroup.

We have obtained the required contradiction. O

Weak amenability of M (S*) Let S be a semigroup. Before consid-
ering the weak amenability of the Banach algebra M (35S), we look at
the weak amenability of M (S*). We recall that Corollary 7.9 shows
that M (S*) is a Banach algebra whenever S* is a subsemigroup of 35.

PropPoOsSITION 11.10. Let S be a semigroup such that S* is a sub-

semigroup of BS with S[*2] # S*. Then M(S*) is not weakly amenable.

PrOOF. By Corollary 7.9, M(S*)? C M(Sy). Since Sp; # S*,
M (S*) is not essential, and hence not weakly amenable.

PRrROPOSITION 11.11. Let S be an infinite, cancellative semigroup.
Then
M (S*) is not weakly amenable.

PRrOOF. By Corollary 7.8, M(S*) is not essential, and hence it is
not weakly amenable. 0
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Weak amenability of M (3S) We now consider when M (55 itself is
weakly amenable. We first give an easy example, not covered by later
results, where it is not weakly amenable.

EXAMPLE 11.12. Let S be an infinite trivial semigroup
at p € S, so that st =p (s,t € S). Thus S is not weakly cancella-
tive. We note that

pov=(u, ), Vp (v € M(3S)),

and so M(BS)8 = Cp and M(3S) is not essential. By Proposition
2.2(iil), M(BS) is not weakly amenable. O

The following result is immediate from equation (7.4) and Proposi-
tion 2.2(x).

PROPOSITION 11.13. Let S be a weakly cancellative semigroup. Sup-
pose that (M (S), O) is weakly amenable. Then (1(S) is weakly amen-
able. 0

We do not know of a semigroup S such that M(3S) is weakly
amenable, but £!(S) is not weakly amenable.

We now approach our main results on weak amenability. In the
following, we again often write uv for uwov when u,v € 3S.

THEOREM 11.14. Let S be an infinite, weakly cancellative semi-
group. Assume that there is a non-empty subset V of S* such that

(11.1) st =V (st € 57)
and
(11.2) (nov)({v}) =0 (veV, uveM(SY)).

Then there is a non-zero, continuous point derivation
at the discrete augmentation character of the Banach algebra M(35),
and M(BS) is not weakly amenable.

PrRoOOF. The discrete augmentation character on S is denoted by

Ps. Set A= (1(S), so that A” = M(3S).
For each € A”, define

Aw) = Y {ufeh) v e Vh .

Then |A(p)| < ||p||. Clearly A is a linear functional on A”, and so
the map A : p — A(u) is a continuous linear functional on A”. Since

V # (), we have A # 0. We have A | A = 0 because V' C S*; further, it
follows from the hypothesis (11.2) that

Alpov) =0 (u,ve M(SY)).
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Let s € S and € A”. Then
A(sop) = Y {(sop)({v}):veV})
— S {u{s e e vy

= D {nl{u}):ues 'V} =27y

because s~V = V. Similarly, A(uos) = A(u) because Vs=! = V.
Thus

A(fou)=Mpof)=es(H)AMp) (f €A, pe M(S)).
We claim that the continuous linear functional A is a point deriv-
ation
at ¢s. By (7.4), M(BS) = A x M(S*). Take a,b € A", say a =
(f,u) and b = (g,v), where f,g € A and p,v € M(S*). Then

Alaod) = A(f*g)+A(fov)+ A(pog) + A(pov)
= A(fov)+A(uog)
= @s()AW) + @s(g)A(p)
— Bs(@)A®) + Fs(B)A(a).
Hence A is indeed a point derivation at og. O

THEOREM 11.15. Let S be an infinite, cancellative semigroup.

Then there is a non-zero, continuous point derivation at the discrete
augmentation character of the Banach algebra M(BS), and M(3S) is
not weakly amenable.

PRrOOF. By Theorem 7.13, there is a non-empty subset V' of S*
such that s7'Vt=' =V (s,t € S) and such that equation (11.2) holds.
Thus the result follows from the theorem. 0

EXAMPLE 11.16. Let S = Z? be the semigroup specified in Example
3.32. It follows from Theorem 11.1 that M (3S) is not amenable. There
is an epimorphism 6 : S — Z. By Theorem 11.15, there is a non-zero,
continuous point derivation on M (SZ), and so M(3S) is not weakly
amenable. U

We noted in Example 4.8 that ¢!(S) is not necessarily weakly
amenable when S is a finite semigroup, and we noted in Example
11.3 that there is an infinite, abelian, weakly cancellative semigroup
S such that M(4S) is weakly amenable, so that the above theorem
would be false if we replaced ‘cancellative’ by ‘weakly cancellative’ in
the statement.
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Locally compact groups We now apply our results to resolve an
open question about group algebras of locally compact groups.

THEOREM 11.17. Let G be a locally compact group. Then the foll-
owing conditions on G are equivalent:

(a) the group G is infinite;
(b) there is a non-zero, continuous point derivation at the discrete
augmentation character of (L*(G)", O);

(c) the Banach algebra (LY(G)”, O) is not weakly amenable.

PROOF. (a) = (b) We first suppose that G is not discrete. By The-
orem 10.4(iii), there is a non-zero, continuous point derivation at the
discrete augmentation character on M(G). But now, by Proposition
8.9 (with X = L*(@)), there is a non-zero, continuous point derivation
at the discrete augmentation character of (L'(G)”, O).

We next suppose that the group G is discrete (and infinite), so that
LYG) = (1(G) and (LY(G)",0) = (M(BG), O). Now G satisfies all
the conditions imposed on S in Theorem 11.15, and so the result follows
from that theorem.

(b) = (c¢) This follows from Proposition 2.2(iii).
(¢) = (a) Assume that the group G is finite. Then G is amenable,

and so /1(G) = (L*(G)”, O) is an amenable Banach algebra, and hence
(LY(G)”, O) is weakly amenable, a contradiction of (c). O

The fact that (L'(G)”, O) is not weakly amenable in the case where
G is an infinite abelian group was first shown by Forrest in [47] by
a different argument. Further partial results are given in [96]. The
arguments of [23, §4] show the same result in the case where G is a
maximally almost periodic group, but do not extend to general infinite
groups.

We now extend the above result to cover more general algebras.

THEOREM 11.18. Let G be an infinite locally compact group, and
let X be an introverted C*-subalgebra

of L*(G) with WAP(G) C X. Then there is a non-zero, continu-
ous point derivation at the discrete augmentation character of (X', O),
and the Banach algebra (X', O) is not weakly amenable.

PROOF. As in the above proof, we may reduce to the case where
G is discrete.

Suppose that G is discrete. By Proposition 8.5, there is a non-empty
subset V' of ®x such that sVt =V (s,t € G) and V N (P%);g = 0.
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Define a continuous linear functional A on M (®x) by setting

Ap) = {u(w) v eV} (pe M(®x).

As in Theorem 11.14, A is the required continuous, non-zero point
derivation. (l



CHAPTER 12

Topological centres

In this chapter, we shall investigate the topological centres

of some Banach algebras and some semigroups. We shall discover
some small sets that are determining for the left topological centre, in
the sense of Definition 12.4, below.

Arens regularity of semigroup algebras We first record the fol-
lowing condition for the Arens regularity of a semigroup algebra ¢1(.9);
the result was first proved in [137] and follows easily from Theorem
2.28. Explicit conditions for the Arens regularity of £1(S) are given in
[138]; a more extended version of the following theorem is given as [4,
Theorem (2.7)]. Results in [16] and [21] discuss the Arens regularity
of weighted convolution algebras of the form /(G w).

THEOREM 12.1. The following are equivalent for a semigroup S;

(a) £1(S) s

Arens regular;

(b) WAP(S) = (>(5);

(c) there do not ezist sequences (sn) and (t,) in S such that the
two sets {Sptn, : m < n} and {syt, : m > n} are disjoint. O

For example, let S be a right zero semigroup. Then £1(S) is Arens
regular, as explained in Example 7.30. The Arens regularity of various
semigroup algebras has also been studied by Esslamzadeh; the following
result, among others, is proved in [38].

THEOREM 12.2. Let S be an infinite, reqular semigroup with finitely
many idempotents. Then £'(S) is not Arens reqular. O

An example within Example 7.14 exhibits an infinite, regular semi-
group S with F(S) finite for which £1(.9) is not strongly Arens irregular.

Sets determining for the topological centre We now introduce a
new condition related to the topological centre of a Banach algebra.

DEFINITION 12.3. Let A be a Banach algebra. A subset V of A” is
determining for the left topological centre
of A" if ® € A whenever ® € A” and POV =0V (Ve V).

175
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Clearly, if there is such a set V, then A is left strongly Arens irreg-
ular. We note that, for ®, ¥ € A” we have @0V = & S U if and only
if lim, ® - a, = ® OV whenever (a,) is a net in A with lim, a, = ¥ in
(A", o(A”, A")). The condition that Le, defined on (A”,0), is continu-
ous at V¥ is a stronger condition

DEFINITION 12.4. Let S be an infinite semigroup. A subset V' of
S* 1s determining for the left topological centre

of M(BS) if the only element p of M(S*) such that pov =p o v
for each v € V is p = 0. A subset V of S* is determining for the
left topological centre of 5.5 if there are no elements u of S* such that
uov=1u < v for eachv € V.

We note that the set V' is determining for the left topological centre
of M(3S) if the only element p of Mg(S*) such that pov = p o v for
each v € V is p = 0. Suppose that S* is determining for the left
topological centre of M (3S) and of 35, respectively. Then ¢1(S) and
S, respectively, are left strongly Arens irregular.

We note that V' is determining for the left topological centre of
M(3S) if and only if, for each v € V| we have limg_., pu - s = pov
whenever s — v with s € S; again this is weaker than the condition
that the map u — powu, BS — M(3S), is continuous at each point of
V.

In the case where the semigroup S is abelian, we use the phrase
determining for the topological centre.

Our results will extend known results, which we first summarize.

The first result in this area seems to be one of Butcher [14, Theo-
rem 4.4.2], which states in a different language that ¢(S) is strongly
Arens irregular whenever S is a countable, cancellative abelian semi-
group such that S* is the union of two disjoint left ideals of 8S5; we
shall recover this within Corollary 12.6, below. Various generalizations
of these results for abelian semi-topological semigroups are given by
Parsons in [115].

Second, the following theorem is proved in [92]. Let S be a can-
cellative semigroup, and suppose that ¢t € 4S5 is such that top=topu
for each p € M(3S). Then t € S. (In [92], the result is claimed in
the case where S is only weakly cancellative, but the proof does not
hold in this generality, as pointed out by Bami in [5]; we shall recover
a stronger form of this claimed theorem for weakly cancellative semi-
groups in Theorem 12.20, below.) Our result extends the result proved
in [92] because it only requires that the equation tou =t ¢ u hold for
each u € 35, indeed, it only requires this equation to hold for each
in a ‘two-element’ subset of S*.
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Third, let G be a group. Then it is proved in [98] by what is called in
[118] a ‘lengthy argument’ that G is strongly Arens irregular (and that
the analogous result holds for all locally compact groups G). Thus the
only element p of M(G*) such that pov = p o v for each v € M(G*)
is © = 0. It is proved by Neufang in [110] that G* is determining for
the left topological centre of M(SG). Theorem 12.15, below, extends
this to cancellative (and more general) semigroups. In fact Neufang’s
theorem also applies to various weighted convolution algebras; see also
[20] and [21, Corollary 11.10].

Our results in this section will considerably strengthen all the above
results, and will provide shorter proofs. We shall prove that, for many
semigroups S, there is a two-element subset of S* that is determining
for the left topological centre of M (3S).

At least for abelian semigroups S, no singleton is determining for
the topological centre because rox = x ¢ x for each x € S*. We shall
give an example concerning this at the end of the chapter.

New results We now give our new results.

THEOREM 12.5. Let S be an infinite semigroup, and let K be a
non-empty, closed subset of S*. Suppose that there exist subsets U and
V' of S and right cancellable elements a € U* and b € V* such that the
following conditions are satisfied:

() UNV =10;

(ii) SOacU and SObCV;

(iii) for each x € K, either (x o S)NU =0 or (x o S)NV = 0.

Let p € M(BS) and v € M(K), and take € > 0. Then there exist
two functions Ag, Ny € C(BS)p) such that

(12.1) (moa,N\g) > ||p]l —e and  (uob,Np) > ||p|| — €
and either
1
(12.2) [(vox,\g)| < 5 vl (z € BS)
or
1
(12.3) (v ox, \p)| < 3 lv||  (x € pBS).

Let p € M(K) with poa =p ¢ a and pob=puob. Then p = 0.

PROOF. Let € M(3S) and v € M(K), and take ¢ > 0.

Since a and b are right cancellable in 55, it follows from Proposition
4.4(iii) that ||poal| = ||[pob| = ||p|]. Thus there exist A, Ay € C(85) ]
such that equation (12.1) is satisfied.
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By (ii), 3S0a C U and 3S0b C V, and so
supp (poa) CU and  supp (uob) C V.

By (i), UNV = . Thus, by replacing A\, by A, - Xz and Ap by A - Xy,
we may suppose that A\, and )\, vanish outside U and V', respectively.

Let f=>"" o;x;, where aq,..., o, € C with Y"1 |oy| = 1, and
T1,..., %, € K. Take i € N,,,. By (iii),

either (z;05,XA,) =0 (s€8) or (x;os, ) =0 (s€S9).
Thus

either [(fos,A\)| <= (s€8) or [(fos, )| <= (s€9),

N | —
DN —

and hence either
1 1
wos Al <5l (s€8) or [wos <5l (s€8).

Since the map z — v ¢ x, 3S — M(S*), is continuous, it follows that
either equation (12.2) or (12.3) is satisfied.

Now let p € M(K) be such that poa = poa and pob = pob,
and assume towards a contradiction that p # 0; we may suppose that
||l = 1. We apply the above remark with v = 1 and € = 1/2. Since
poa=poaand pob = puob, this is indeed a contradiction. U

We make two remarks on the above proof.

First, the fact that the elements a and b are right cancellable was
used only to establish that ||poal = ||p|| and that ||pobl = ||ul.
However these two equalities hold for all elements a,b € S* whenever
pe M(BS)" (and in particular for p € 55S).

Second, in the last clause, we did not really need the condition that
poa=poaand pob= puob, but only the weaker condition that

1
(12.4) max{||jpoa—poal,||pob—pobl} < §|lu||

to obtain a contradiction. We do not know whether or not the number
‘1/2’ on the right-hand side of (12.4) can be replaced by ‘1’. Note that
we cannot be sure that there are (necessarily left-cancellable) elements
a of S* such that [aov| = ||v| (v € M(S5%)).

The following corollary subsumes the result of Butcher mentioned
above (taking S = Z, U = N, and V' = —N). The result also covers
the case of the free semigroup S = S, and many other semigroups.

COROLLARY 12.6. Let S be an infinite semigroup. Suppose that
U and V are disjoint, infinite subsemigroups of S such that U* and
V* are left ideals in S*. Then, for each pair {a,b} of right cancellable
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elements with a € U* and b € V*, the set {a,b} is determining for the
left topological centre of M(3S).

Suppose, further, that S is cancellative. Then such a pair {a,b}
of right cancellable elements exists, and so €1(S) is left strongly Arens
wrreqular.

Proor. We apply Theorem 12.5, taking K = S*. It is clear that
the conditions of Theorem 12.5 are satisfied, and so {a, b} is determin-
ing for the left topological centre of M(/35).

Suppose that S is cancellative. Then it follows from Proposition
6.21 that there are such right cancellable elements a € U* and b € V*.
Hence (1(9) is left strongly Arens irregular. 0

Example 7.34 exhibits an infinite, abelian, weakly cancellative semi-
group S such that £1(S) is not strongly Arens irregular. Thus we can-
not replace ‘cancellative’ by ‘weakly cancellative’ in the above corollary.

Countable semigroups We establish our main theorem for certain
countable semigroups; for the uncountable case, see Theorem 12.15.

THEOREM 12.7. Let S be an infinite, countable semigroup

such that S is weakly cancellative and nearly right cancellative.
Then there exist a and b in S* that are right cancellable in (35, O)
and such that the two-element set {a,b} is determining for the left
topological centre of M((3S).

Suppose that S is also nearly left cancellative. Then ¢1(S) is strongly
Arens irreqular.

Proor. We may suppose that S has an identity eg. We enumerate
S as a sequence (s,), where sy = eg, and we use the notation involving
<, [t], and [F] from Chapter 3; [F]] is finite whenever F' is finite.

Since S is nearly right cancellative, there is an infinite subset X of
S such that, for each s,t € S with s # t, the set

Eg, ={reX:sx=tx}

is finite. We may suppose that eg € X.

We shall construct a sequence (t,,) in X by induction. Set ty = so.
Once ty, ..., t, have been defined, set

Tn = {507'--7Sn7t17---7tn}-

The sequence will satisfy the following three conditions for each n € Z™:

(i) sT, N [T,,] = 0 whenever s € S with t,,; < s;

(ii) Stpy1 # ttne1 whenever s,t € T, with s # t;

(iii) rs < tt,+1 whenever r,s,t € T,,.
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Take n € Z*, and assume that tg, ..., ¢, have been specified in X. Since
S is weakly cancellative, the set T),[T7?] is finite; since S is nearly right
cancellative, | J{Es; : s,t € T,, s # t} is finite. We choose ,,41 € X
so that ¢, is strictly greater than the maximum of the union of these
sets; the element ¢,.; is such that the above conditions (i)—(iii) are
satisfied. The inductive construction continues.

Note that s, < ¢, (n € ZT), and so |J{[t,] : n € ZT} = S. Also
S* = (S\ [tg])* for each k € N.
Define ¢ : S — Z* by setting
o(s)=min{n € Z* : s € [t,]} (s€S9).

Suppose that ¢(s) = m € N. It follows from (iii) that t,,_1 < st, < t,41
whenever n > m, and so

(12.5) o(sty,) € {n,n+1} (n>m).
Now suppose that m > 2 and that £ < m — 2. Then t,,_5 < ss; by

(i) because sT,, 2 N [T;,_2] = 0. Further, ss; < t,,41 by (iii) because
s € T,,. Thus ¢(ss;) € {m —1,m,m + 1}, and so

(12.6) o(ssp) e {m—1,mm+1} (m>k+2).

For s € S, set v(s) = ¢(s) (mod 8). Then v : S — Zg has a
continuous extension, also denoted by ~, to a map v : S — Zg. It
follows from (12.6) that, for each x € S* and s € S, we have

(12.7) Y(zos)=v(xos) € {y(x)—1,v(x),y(x)+ 1} C Zs.
Set
A={ty:y(tn) =1}, B={ty:(t,) =5},
so that A and B are infinite subsets of S. Then set

U={seS:v(s)e{l,2}}, V={seS:7(s) €{56}},

sothat ACU and B C V.

Choose a € A* and b € B*. We claim that a is right cancellable in
(S. Indeed, let u; and uy be distinct points of 35, and take disjoint
N; and Ny in S with u; € N; (j =1,2). For j = 1,2, set

Y = {smtn : Sm € Nj, t, € A, m <n},

so that Y; € ujoa. Take my,ma,ni,ne € N with m; < ny, me < no,
and my # ma. Then S, tn, 7# Smytn,: this holds for ny < ng by (iii) and
for ny = ny by (ii). It follows that Y1 NY; = 0, and so ujoa # uyoa,
as required. Similarly, b is right cancellable in 3S.

It follows from (12.5) that SOa C U and SOb C V.

Let 2 € S*, set k = v(x), and take s € S. Suppose that z ¢ s € U.
Then it follows from (12.7) that & € {0,1,2,3}. Suppose that ros € V.
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Then, similarly, & € {4,5,6,7}. Thus either (z o S)NTU = @ or
(x o S)NV =10.

We have shown that the hypotheses of Theorem 12.5 are satisfied
(with K = S*), and so {a,b} is determining for the left topological
centre of M(3S). Thus £1(S) is left strongly Arens irregular.

Now suppose that S is also nearly left cancellative. Then ¢!(S°P)
is left strongly Arens irregular, and so ¢1(S) is right strongly Arens
irregular, and hence strongly Arens irregular. 0

There is a small modification of the above proof; it shows that, at
least for cancellative semigroups, ‘most’ pairs {a,b} are determining
for the left topological centre.

THEOREM 12.8. Let S be an infinite, countable, cancellative semi-
group.

(i) Let P and Q be infinite subsets of S. Then there ezists a € P*
and b € Q* such that a and b are right cancellable in (5S, O) and such

that the two-element set {a,b} is determining for the left topological
centre of M(3S).

(ii) (CH) We may suppose further that a and b are P-points in S*.

PROOF. (i) We carry through the above proof, without mention of
the set X, but we choose the sequence (¢,,) to have the extra property
that t, € P when n = 1 (mod 8) and ¢, € Q when n = 5 (mod 8);
such a choice is possible. This ensures that a € P* and b € Q*.

(ii) We choose a and b so that they are P-points in A* and B*
respectively; this is possible by Theorem 5.5. Then a and b are P-
points in S5*. U

Now suppose that S is an infinite, countable semigroup such that
S'is just weakly cancellative, but may not be nearly right cancellative.
Then the proof in Theorem 12.7 can be carried through, save that
condition (ii) that arises in that proof need not hold. Thus we cannot
be sure that the elements a and b which are constructed are right
cancellable in 35. Taking account of the first remark after Theorem
12.5, we see that we do have the following closely related result.

THEOREM 12.9. Let S be an infinite, countable, weakly cancellative
semigroup. Then there exist a and b in S* that are right cancellable
in (8S, O) and such that {a,b} is determining for the left topological
centre of BS. Further, S is strongly Arens irregular.

PROOF. The above remarks imply that {a, b} is determining for the
left topological centre of S, and so S is left strongly Arens irregular.
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The semigroup S°P also satisfies the same conditions as S, and so S°P
is left strongly Arens irregular and S is right strongly Arens irregular.
Hence S is strongly Arens irregular. 0

We see from Example 7.33 that the semigroup S = N, is not weakly
cancellative, but nevertheless any two-element subset of S* is deter-
mining for the left topological centre of £1(S). An easy example of a
semigroup S with £1(S) Arens regular was given in Example 7.30.

We wish to enquire which special pairs {a,b} are determining for
the left topological centre of 3S or of M(3S); for our results, we must
restrict consideration to abelian semigroups. The following theorem
will provide some examples

THEOREM 12.10. Let S be an infinite, weakly cancellative, abelian
semigroup, and let ) be a non-empty, compact space. Let ¢ : 35S —
be a continuous function such that

(12.8) p(uov) =) (ueps, ves).

Take a,b € S* with p(a) # ¢(b). Then {a,b} is determining for the
topological centre of 3S. Suppose, further, that a and b are right can-
cellable. Then {a,b} is determining for the topological centre of M (3S).

ProoF. Take p € M(BS) such that poa = poa and pob = puob.

Set K ={u € S*: p(u) = p(a)} and W = S*\ K, so that K is
compact and W is a non-empty, open subset of S*. Further, it follows
from (12.8) that K and W are left ideals in S, noting that S* is an
ideal in 8S. Take € > 0, and choose a compact subset L C W such that
beLand ||u|L—pu|W| <e. We may suppose that L = ¢~ (p(L)),
and hence that L is a left ideal in 5S. We see that supp (voa) C K
and supp (vob) C L for each v € M(55)).

Set g = p | K and ps = p | L. Then supp (aop;) C K,
supp (aop) =supp (poa) C K, and supp (aopg) C L. We have

|lpoa— (aop +aop)| <e,

and so ||aous|| < e. Similarly, |[bou || < e.
Suppose that either p € M(3S)" or that a and b are right can-
cellable. By Proposition 4.4, ||u|| = ||poal| = ||uob||, and so

el < flpalf 422, gl < a2l + 2

Hence 2 [|u|| < [|pal| + ||l + 4e < [[u]] + 4e, and so p = 0.
The result follows. O

We shall apply the above with a special choice of ¢, S, and (2.
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Indeed, we shall first prove the following remark, taken from [88].
Let f: R — R* be a uniformly continuous function such that
(12.9) ‘l|im f(s+t)—f()]=0 (seR).

t|—o0

Set X = UC(R). We regard R™ as a subset of ®x and f as a continuous
map from R to ®x, and then we extend f to a continuous map, still
called f, from ®x into itself.

Now fix s € R. For each A € X and € > 0, choose § > 0 such that
|IA(z) — AM(y)| < € whenever z,y € R and |z — y| < d, and then choose
m € RT such that |f(s +t) — f(¢)| < 6 whenever |t| > m. Then

(Ao flls+1) = (Ao )] <e

whenever [t| > m. We now regard A o f as an element of C'(®y). For
each u € ®%, we have

(Ao f)lsou) = (Ao fllu)]<e.

It follows that f(sowu) = f(u) as points of Px.

In particular, set f(z) = log(Jz| + 1) (z € R), so that f satisfies
equation (12.9). Set ¢ = f | N, and extend ¢ to a continuous function
¢ : PN — Px. Then ¢ satisfies equation (12.8), taking S = N and
2 = ®x. Since p(N) contains an unbounded sequence in R*, the set
©(BN) N @% is infinite.

The above function f is a ‘slowly oscillating function’” in the sense
of [45]; the arguments of [45] are related to those above.

In the corollary below, we shall use the following notation. Let
S = (N, .), and let v € N. Then we write 2 - u for the appropriate
element in (45, 0). It is easily seen [78, Lemma 13.1] that

(12.10) n- (uov)=m- -u)om-v) (neN, uveN).

COROLLARY 12.11. (i) For each a € N*, {a,2 - a} is determining
for the topological centre of BN.

(ii) There exist minimal idempotents p and q in N* such that {p, q}
is determining for the topological centre of BN.

(iii) For each a € N* such that a is right cancellable, {a,2 - a} is
determining for the topological centre of M(ON).

(iv) There exist a,b € E(K(BN)) such that {a,b} is determining
for the topological centre of M(ON).

(v) There exist a,b € N such that {a,b} is determining for the
topological centre of M (SN).
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PROOF. (i) Take a € N* such that a is right cancellable, and set
b=2-a Take ¢ to be as above. Clearly ¢(b) = log2 + ¢(a), and
so p(b) # p(a). By Theorem 12.10, {a,2 - a} is determining for the
topological centre of M (SN).

(ii) Choose p € N* to be a minimal idempotent, so that, by Theorem
3.26 and Proposition 6.41, p € K(N*) N H. Set ¢ =2 - p. By (12.10),
q is an idempotent. To see that ¢ is also minimal, we first note that
there exists u € N* with uou = p because p € H. Now N*ouoN* is
an ideal in N*, and so K(N*) € N* O« ON*. Thus

g=2-peN'OpON"C K(N).

Again by Theorem 3.26, ¢ is a minimal idempotent.

(iii) Let @ and b be as in (i), with a right cancellable. We show
that b is also right cancellable in N*. For suppose that u,v € SN with
uob=wvob, and let 7 be the continuous extension of the quotient map
N — Zy. Then 7(b) = 0, and so w(u) = mw(v). If m(u) = 1, replace
u and v by uol and vol, respectively. Thus we may suppose that
m(u) = m(v) = 0, and so there exist u; and vy in SN with 2 - u; = u
and 2 - v; = v. Hence u;0a = usob, and so u; = vy and u = v, as
required.

By Theorem 12.10, {a,2 - a} is determining for the topological
centre of M (ON).

(iv) Now chose a € FE(K(PON)) such that a is right cancellable;
such an element a exists by Proposition 6.20(ii). By Proposition 6.22,

2. a € E(K(pN)). By (iii), {a, 2 - a} is determining for the topological
centre of M(ON).

(v) By Proposition 6.38(ii), there exists a in Nj_; such that a is
right cancellable. Then clearly 2 - a € N _,. By (iii), {a,2 - a} is

[o0]®

determining for the topological centre of M (GN). O

The most interesting question that remains open seems to be the
following. Can we find a and b in K(ON) or E(N*) such that {a,b} is
determining for the topological centre of M(SN)? We shall now show
that we can find a 4-element subset of E(N*) which is determining for
the topological centre of M (SN).

In the next two results, we continue to use the notation X = UC(R)
and ¢ : N — &y, as above. By Proposition 6.15(iii), there are ele-

ments in K (SN) which are right maximal in E(Z*).
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LEMMA 12.12. Let q be right mazimal in E(Z*), and let n € M(N*)
be such that ||u]| =1 and pog = qop. Set

C={u€eZ :uoq=q} and A={ue€fBN:pu)eplC)}.
Then ||p | Al > 1/3.

PRroOOF. Note that A is a left ideal in SN because ¢ satisfies equa-
tion (12.8), and that C' C A.

Set B=N*\A, uy =pl| A, and ps = p | B, so that p = pq + po.

By Proposition 6.7(i), the set C is finite, and R, is injective on
BN\ C, and hence on B. By Proposition 4.4(ii), ||usoq|| = ||u2]|-

Fix ¢ > 0. Then there is a compact subset K of B such that
\pa| (B\ K) < e. By replacing K by ¢ (¢(K)), we may suppose that
K is a left ideal in SN. Set ph, = po | K. We have

supp (poq) C A, supp(qom) C A, and supp(qopus) C K.
Since pog = qopu+qous, we have ||pog —qopu; — qopb|| < e. Since

supp (Lo g — ¢o ) Nsupp (qopy) =0,
it follows that ||goub|| < e, and hence ||gous|| < 2¢. This holds for
each € > 0, and so qous = 0.
Assume towards a contradiction that ||u|| < 1/3. Clearly we have
pogq=qop, and so ||pog| < 1/3, whence

lp2ll = llpzeqll = lpeg — moql < llpogll+ llueql <2/3
and [|p|| < 1, the required contradiction. This shows that ||u|| > 1/3,
as required. O

THEOREM 12.13. There exists a subset V of E(N*) with |V| = 4
such that V' is determining for the topological centre of M(GN).

PROOF. Let ¢ : fN — ®x be as above. Since p(SN) N &% is
infinite, there are four distinct points, say z1, a9, 3, 24, in (GN) N O%.
Let Uy, Uy, Uz, Uy be pairwise disjoint, open subsets of ®x such that
z; € U; (j € Ny). Since ¢ is continuous and satisfies (12.8), each
¢~ 1(U;) is a non-empty, open subset of N* and a left ideal, and so, by
Theorem 3.25, each ¢~ !(U;) contains an idempotent; by Proposition
6.7(ii), there is a right maximal idempotent, say p;, in ¢ 1 (Uy).

For each m € N, the element m - p is also a right maximal idem-
potent, and so we obtain right maximal idempotents ps = mo - p,
ps =mgz - p, and py = my - p in o~ (Us), 9~ (Us), ¢~ (Us), respect-
ively, for suitable my, ms3, my € N.

For j € Ny, set

C;={uepN:uop;=p;} and A;=¢ '(p(C))).
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We have ¢(C;) = logm; + ¢(C1) (j = 2,3,4), and so, by choosing
ma, ms3, my appropriately, we may suppose that A; N A; =0 (i # 7).
Assume towards a contradiction that there exists p € M (N*) with
|l = 1 and such that pop; = pjop (5 € Ny). By the lemma,
llp | Ajll > 1/3 (j € Ny), and so ||p|| > 4/3, a contradiction. Thus V
is determining for the topological centre of M (GN). O

Uncountable semigroups We now extend Theorem 12.7 to cover
some uncountable semigroups; the proof is similar to that previously
given, but the details are somewhat different.

THEOREM 12.14. Let S be an infinite semigroup such that S is
weakly cancellative and nearly right cancellative. Then there exist a

and b in Ug such that a and b are right cancellable in 8S and clauses
(1)-(iii) of Theorem 12.5 are satisfied with K = Us.

PROOF. We may suppose that S has an identity eg. Set k = |5],
and enumerate S as (s, : @ < k), where sy = eg. For 0 < K, set
Se = {Sa < 0}

The case where kK = w has been covered in the proof of Theorem
12.7, and so we may suppose that k > w.

Since S is nearly right cancellative, there is a subset X € [S]*® such
that, for each s,t € S with s # t, the set

E:={reX:sx=tx}

is finite; we may suppose that eg € X. We shall construct a sequence
(ta : o < k) in X with ¢y = s0.
Suppose that 7 < k, and assume that ¢, has been defined for each
o < T.Set
T, =(S;U{t,:0<T1}),

a subsemigroup of S. Since k > w, we see that |T;| < max{w, ||} < k.

We define the subset U, of S to consist of the elements u € S such
that there are x1,x9,y1,y2 € T, and o < 7 such that ziuy; = xot,ys.
Thus {t, : ¢ < 7} C U,. Next the subset V; of S consists of the
elements v € S such that there are xq,xs,y1,y2,u € U, such that
T1vYy; = xoulye. We note that |V:| < max{w,|o|} < k because S is
weakly cancellative. Further,

U{Es,t:s,tGST, s#tH = |7 <k,

and so there exists ¢, € X \ V; such that ¢, ¢ Es; whenever s,t € S,
with s # t. This continues the inductive construction of the sequence
(to : a0 < R).
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Set
T=A{ty:a<K}.

For each 7 < k, take W, to consist of the elements w € S such
that xiwy, = wot,;ys for some x1, w9, y1,y2 € T;. Then we claim that
U.-NW, = 0. For assume that u € U. NW,. Then t, € V,, a
contradiction of the choice of ¢.. Thus the claim holds. In particular,
W, N W, = @ whenever 0,7 < k with ¢ # 7. Let s = s, € S and
w € S. Then, for each 7 > o, we have w € W, if and only if ws € W,.

Let A be a subset of T" with |A| = &, and let a correspond to a
uniform ultrafilter on A, so that a € A*NUg; set U = (J{W, : t, € A},
so that A C U. For each s € S, we have st, € W, eventually; if also
ty € A, then st, € U. Thus s0a € U, andso SOa C U.

We claim that a is right cancellable in 3S. Indeed, let u; and wus
be distinct points of 5.5, and take disjoint subsets N; and N, of S such
that u; € N; (j = 1,2). For j = 1,2, set

Y, ={sats : Sa € Nj, t, € A, a < 0 < K},

so that Y; € u;oa. As before, Y1 NY, = 0. Thus uyoa # usoa, as
required.
Similarly, there exists a subset B € [T]", a set

V= J{W,:ta € B},

and a corresponding point b € B* N Ug such that b is right cancellable
in #S and SOb C V. By taking A and B to be disjoint, we may
suppose that U NV = 0.

We claim that, for each s € S and each « € Ug, we have o s € U
if and only if € U. For suppose that = ¢ s, € U, where o« < k. Then
{ueS:us, € U} €z Since x is a uniform ultrafilter, it follows that

{uES:usae U{WﬁiiﬁEA}} €x.
B>a
But this set is contained in Uz, ,{Wps : t5 € A}, and therefore it is

contained in U. Thus « € U. Similarly, z ¢ s € V if and only if z € V.
Hence clause (iii) of Theorem 12.5 is satisfied.
Thus a and b have the required properties. O

It follows from the theorem that the only element p € M (Ug) such
that poa = p o aand pob= o bis p = 0; we shall obtain a stronger
result in our main theorem, below.

THEOREM 12.15. Let S be an infinite semigroup
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such that S is weakly cancellative and nearly right cancellative.
Then there exist a and b in S* that are right cancellable in (S, O)
and such that the two-element set {a,b} is determining for the left
topological centre of M(3S).

Suppose that S is cancellative and P and Q) are subsets of S with
|P| =|Q| =|S|. Then we can take a € P* and b € Q*.

PRrOOF. Set k = |S|. The case where k = w is covered in Theorem
12.7, and so we may suppose that x > w.

We may suppose that S has an identity egs. Enumerate S as a
sequence (s, : o < k), where sy = eg.

We follow the construction specified in Theorem 12.14 to obtain
sets U, V;, and W, for each 7 < k, aset T = {t, : @« < k} in S, and
two points a,b in Us. In particular, ¢, € V; (7 < k). As before, a and
b are right cancellable in 3S. We shall use the fact, which is contained
in the proof of Theorem 12.14, that an expression of an element in S
in the form s,tg, where a < 3 < &, is unique.

In this case, a corresponded to a uniform ultrafilter on a subset
A € [T]". By Proposition 5.4, we may suppose that A has the following
additional property: for each infinite cardinal ( < k, the set A can be
partitioned into ( pairwise disjoint sets such that, for each n < (, the
union of each collection of 7 sets of the partition is not a member of a.
(This implies that a cannot be a ‘k-complete’ ultrafilter.)

We shall prove that {a,b} is determining for the left topological
centre of M(3S). Let € M(S*) have the property that

poa=puoa and pob=puob.

We assume towards a contradiction that p # 0.

We first write g = pg+pe, where iy = p | (85\Us) and pg = u | Us,
so that ||u|| = ||p1|| + ||2]]. Take € > 0. By Theorems 12.14 and 12.5
(with K = Ug), there exist = € {a,b} and A € C(8S) such that

1
(mox, A) > |l + [|pell —e and  [(p2 o 2, A)] < 3 [ 22| -
It follows that .
(o2 M < Nl + 5 kel

Since pox = p o x, we have ||uz|| /2 < e. This holds for each € > 0,
and so s = 0. Thus p | Us = 0. Since |u is a regular measure, there
is a compact subset C' of 35 \ Ug such that |u|(C) > 0, and so there
is a set Y € [S]<" such that |u| (Y) > 0.

Let Y be a subset of S of minimum cardinality with |u|(Y) > 0;
say |Y| = ¢. Necessarily ( is infinite, and we have seen that { < k.
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Enumerate Y as (y, : ¢ < (). For 0 < k&, set

I, = {yeY :yt, = sl for some a< <o},
Jy = {yeY ytzg=s,t, forsome a < f<o}.

Take y € I,. Then y € U,,1, and so y & I, for any 7 > o because this
would imply that t, € Uo_lef C V,, and this is not the case by the
choice of t,. Thus I, N I,.; = (). Set

I={ty:o<k, I, 20}, J={t,:0<k, J, #0}.

Then it follows that |I| < |Y| = ¢ < k. Similarly, |J| < k. Now set
W =A\({UJ). Then W € a because a € Us. Suppose that yt = stz
where y € Y, t,t3 € W, and a < # < k. Then necessarily o = 3.

By our choice of the point a € Ug, the set W can be partitioned into
pairwise disjoint sets F, for ¢« < ¢ such that, for each n < ¢, the union
of n of the sets F, is not a member of a. Define a function ¢ : W — ¢
by setting ¢(t) = ¢ whenever t € E,.

Now define

Z=A{yt:teWwith ¢(t) <.}.

Let v € Uy. For each t € W, the set {y, : ¢ > ¢(t)} belongs to v,
and so Z € voa. Thus Uy ¢ a C Z.

However, we claim that Z ¢ uwoa for each u € 3S. For take u € 5S
and assume that Z € uoa. By Proposition 6.4, (a)=-(c), Z contains
a set of the form s, R for some o« < k and some R € a such that
R C {tg: B > a}NW. Fix such an «, and let s,tz € Z, where
a < f < k and tg € W. Then s,tg = y,t for some t € W with
@(t) < ¢ < ¢. This implies that t = g, and so satg = yts. If y, # Sa,
then {t € T': s,t = y,t} is finite because T' was chosen to be a subset
of the witness set X, and so the set

Ry:={t €T :s,t =yt forsome y €Y with y # s,}

has cardinality at most |Y| = ¢ < k. Thus R\ Ry € a. For each
t € R\ Ry, we have s,t = y,t for a unique y, = s, € Y, and, in this
case, ¢(t) < t. But, for each ¢ < {, we have

{teW: o)<} | B, :in<i},

and the set on the right-hand side does not belong to a. This contra-
diction shows that Z € uoa, as claimed. Hence (8Sca)N Z = (.

Let v denote the restriction of u to the compact set Uy. For each
e > 0, there exists A € C(8S5)p) such that

(noa, A) > ull —e =[]+ llp — vl —e.
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We may suppose that (supp A\)NZ = {), and hence that (v ¢ a, \) = 0,
which implies that |(u ¢ a, \)| < ||p—v||. Since poa = p © a, it
follows that ||v|| < e. But this holds for each € > 0, and so v = 0.
Since |u| (Y) > 0 and p | Uy = 0, it follows that there exists
Yy C Y such that |Yp| < |Y] and || (Yp) > 0. But this contradicts the
fact that Y is a subset of S of minimum cardinality with |u|(Y) > 0.
Hence p = 0, as required. O

COROLLARY 12.16. Let S be a weakly cancellative and nearly can-
cellative semigroup. Then £1(S) is strongly Arens irreqular. O

COROLLARY 12.17. Let S = M°(G, P,n), where G is a group and
P is an invertible sandwich matriz in M,((*(GQ)). Then there is a
subset V' of S* of cardinality 2n such that V' is determining for the left
topological centre of M(3S); further, in the case where G is abelian,
2n 1s the minimum cardinality of such a set V.

ProoOF. By Theorem 4.16, we may suppose that P is the identity
matrix, so that £1(S) = M°(¢}(G),n). By Theorem 12.15, there exist
a,b € G* such that {a, b} is determining for the left topological centre
of M(BG). Set a; = (a); and b; = (b);; for i € N, and then set
V ={ay,...,a,,b1,...,b,}, so that V C S* and |V| = 2n. It is easily
checked (by matrix multiplication) that V' is determining for the left
topological centre of M(5S).

In the case where G is abelian, the minimum size of a subset of G*
that is determining for the left topological centre of M (5G) is 2. By
considering ‘diagonal’ elements of M, (M(G)), we see that 2n is the
minimum cardinality of such a set V. O

COROLLARY 12.18. Let S be a semigroup such that the Banach
algebra £1(S) is amenable. Then there is a finite subset of S* which is
determining for the left topological centre of M(3S). Further, £1(S) is
strongly Arens irreqular.

Proor. By Theorem 10.12, S has the structure described in that
theorem. Let 1" be a semigroup which is a quotient of the form I;/1;4,
or of the form K(S). By the above corollary, there is a finite subset
of T* which is determining for the left topological centre of M (ST).
By a small modification of the proof of Theorem 2.25, we obtain a
finite subset of S* which is determining for the left topological centre
of M(3S). Tt follows that ¢1(S) is left strongly Arens irregular, and
hence strongly Arens irregular by symmetry. 0
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EXAMPLE 12.19. Let S = ({U,y Sj) U{o} be an abelian semigroup,
where {S; : j € N} is a countable family of pairwise disjoint infinite
subgroups and S;S; = {o} when ¢ # j; such a semigroup is specified in
Example 3.34. Let V' be a subset of S* such that V' is determining for
the topological centre of 35, and let i € N. We claim that V N .S; # 0.
Indeed, set T = S\ S;, and assume that V C T. Then S;T = {0}, and
souov = uov = o for each u € S; and v € V, a contradiction. It
follows that V' is an infinite set. U

The above theorem can be modified slightly as before to establish
the following result.

THEOREM 12.20. Let S be an infinite, weakly cancellative semi-
group.

Then there is subset V' of S* of cardinality 2 such that V is deter-
maning for the left topological centre of 3S, S is strongly Arens irrequ-
lar, and the map L, : u+— vou, (BS — B3S, is continuous if and only
ifves. O

ExAMPLE 12.21. In Example 7.34, we presented an infinite, count-
able, weakly cancellative semigroup for which ¢(S) is not strongly
Arens irregular. By the theorem, S' is strongly Arens irregular. U

ExAMPLE 12.22. At the beginning of this chapter, we raised the
possibility that, for certain semigroups S, a singleton could be de-
termining for the left topological centre of M(3S). We now give an
example to show that this situation can arise.

Let S = Sy be the free semigroup on two symbols, a and b, and let
|w| be the length of a word w in S. Set U = {ba" : n € N}, and choose
x € U* such that z is right cancellable in both (35S, O) and (35, ©);
by Proposition 6.20(iv) such a choice is possible.

Set

A = {tha" € S:te S;neN, and |t| <n},
B = {tbha" € S:te S neN, and [t| >n},

so that A and B are disjoint subsets of S, and hence ANB = . Clearly
S*O0x C Aand S*Ox C B.
Now assume that there exists p € M (S*) such that ||u|| =1 and

(12.11) lpor —po x| <1.
Since supp (uox) C A and supp (¢ ¢ ) C B, we have
lpox —p ol =llpoxl 4+ |pn ozl .
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Since z is right cancellable in (£S5, O), it follows from Proposition
4.4(iii) that ||poz|| = ||u|| = 1. Thus we have a contradiction, and so
the only p in M(S*) satisfying (12.11) is p = 0. In particular, {z} is
determining for the left topological centre.

We can modify the above slightly to see that the free group Fy has
the same property. Indeed let x € Fy have the form

x=a™b" - a"k "
as in equation (3.7); we define d(z) = ny, and set
A={xeFy:|z|<2d(z)}, B={xelFy:|z|>2d(z)},

so that AN B =10. Set C' = {b"a" : n € N}, and choose v € C*.

We claim that, for each u € F}, we have uov € A and uov € B.
It is obvious that uov € A. Now take (z,) in Fy and (y3) in C such
that v = lim, z, and v = limg yg, and then v o v = limg lim, z,y3. We
may suppose by passing to a subnet that either lim, d(z,) = —oo or
that there exists m € N such that d(z,) > —m for each a. The claim
is again clear in the former case. In the latter case we can suppose that
ys has the form b"?a™# with ng > m for each (3, and then, once again,
the claim holds.

We claim that v is right cancellable in (6F,0). Indeed, assume
towards a contradiction that there exist uy, us in Fy with uy # ug such
that uy0v = ugov. For j = 1,2, choose U; € u; such that Uy NU; = 0;
we have

{zb"a" : x € U;, n=d(zb"a")} € ujowv,

and so there exist z; € U; and n; € N such that x,0™a} = x2b™ay and
n; = d(xz;b™a™). But now ny = ng, and hence x; = x5, a contradiction
because U; N Us = (). Hence the claim holds.

Again {v} is determining for the left topological centre of M (Fs).

In fact, for each p € M(Fy) \ ¢*(F;), we have supp (nov) C A,
supp (1 © v) C B, and [[pov]| = [[u, and so [[pov —povl| = ]|
This implies that v is such that u € ¢1(Fy) whenever p € M(Fy) and
[pwov —povl| <l

By replacing the above element v by an idempotent in SF; oo,
we find an idempotent p which is determining for the left topological
centre of SIFy. However we cannot deduce that p is determining for the
left topological centre of M (8F;) because p is not right cancellable in
GF,. O

We do not know an example of an amenable semigroup S such that
a singleton is determining for the left topological centre of M (3S5).
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Let S be a semigroup, and let v € 3S. Then one can ask whether,
for u € 3S, the continuity of L, : 85 — (S at v forces u to belong to
S. (This is a stronger hypothesis than that {v} is determining for the
left topological centre of 3S.) Such a point v has been exhibited by
Protasov [117, Theorem 1] in the case where S is a countable group.

Locally compact groups The final theorem of this chapter applies
to locally compact, rather than discrete, groups. It is analogous to
Theorem 12.7, and the proof uses a similar idea.

Let G be a locally compact group. For an introduction to the theory
of the C*-algebra X = LUC(G), see Chapter 8. In particular, we have
M(®x) = M(G) x E°, where E = Cy(G), and we identify E° with
M(D%).

We remark that the proof of the following theorem is considerably
easier in the case where G is also assumed to be o-compact.

DEFINITION 12.23. Let G be a locally compact group, let X be a
left-introverted C*-subalgebra of L*(G), let v € Oy, and let Y be a
topological space. A function f : ®x — Y is G-continuous at v if
lim; ., f(t) = f(v), where we require that t € G in the limiting process.

Thus, in the case where X is introverted, L, : ®x — M(Px) is
G-continuous at v € ®x if and only if pov = pow.

THEOREM 12.24. Let G be a locally compact, non-compact group,
and set X = LUC(G). Then there is a 2-element subset V' of ®x such
that

M(G)={pe M(®x):L,| Py is G-continuous at each point of V}.

PRrROOF. Let U be a fixed compact, symmetric neighbourhood of eg
in G, and let (K, : o < k) be a family of compact subspaces of G such
that U C K, (a < k), such that | J{K, : « < k} = G, and such that «
is the minimum cardinality of such a family (so that & is the compact
covering number of G).

We shall inductively choose a k-sequence (t, : @ < k) of points of
G and an increasing k-sequence (E, : a < k) of subsets of G such that
the following properties hold for each o < k:

(i) E, can be covered by |a| compact subsets of G ;
(i) U C K, C Eq;

(iii) U{UEs : B < a} C Ey;

(iv) U{Esty U Bty 1y < 3 < a} C Ey;

(V) ta # ULEst, 7 < B < a}:
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(Vi) ty & U{EglEg 1B < a}.
Indeed, set Fy = Ky and ty5 = eg. Now suppose that 0 < a < k, and
assume that t3 and E3 have been specified for each 5 < a. We choose
E, to satisfy (i)-(iv), and then choose ¢, to satisfy (v) and (vi); clearly
such choices are possible. This continues the inductive construction.

Certainly we have (J{E,:a <k} =G. Set T = {t, : a < K}.

Take o < k. Then UFE, C FE,.1 by the construction, and so we
have UE, C E,i; in ®x. By the continuity of the multiplication,
UE, = UE,. By Proposition 8.11(iii), UF,, is a neighbourhood of E,,.
Hence we see that

(12.12) E,CintEy .
We define

E=()G\Ea;

a<k

we see that

(12.13) ox\E=J (ex\GVE.) = JEa.

a<k a<k

In the special case where G is o-compact, we have £ = &x \ G, but
this is not necessarily true in the general case, and this latter possibility
makes the proof more complicated.

Let C' and D be disjoint subsets of T'. By (v), we have CNUD = (),
and so, by Proposition 8.11(ii), CND = @ in ®x. Thus the natural map
from G4 onto ®x has a restriction to 71 which is a homeomorphism
onto T'.

We next claim that each u € T*NFE is right cancellable in (®x, O).
To see this, take xz,y € $x with xou = yowu, and assume towards a
contradiction that x # y. Let K and L be disjoint, compact neigh-
bourhoods of x and y, respectively, in ®x. Then

rou € G{(EgﬂK)ta:ﬁ<a</f},

you € G{(EﬂﬁL)ta:5<oz<f<;},

where we are using here the fact that v € E. By Proposition 8.11(i),
there exists a symmetric neighbourhood W of eq with K N WL = (;
we may suppose that W C U. Since rou = you, it follows from
Proposition 8.11(ii) that there exist (1, aq, B2, 0 < Kk with 51 < o
and (5 < ag such that

(Es, N K)to, NW(Eg, N L)te, 0.
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By clause (vi) in the construction, this can occur only if a; = ao.
However, in this case, it follows that K N WL # (), a contradiction.
Thus u is indeed right cancellable, giving the claim. By Proposition
4.4(iii), we have ||p|| = ||powu| (p € M(Px)) for each such w.

Define a map ¢ : G — k by setting

o(s) =min{a < k:s€ E,}.

Each a < k can be expressed in the form o = (3, + n,, where 3, is a
limit ordinal or 0 and n, < w. For s € (G, we define

Y(8) =Ny (mod 12),

so that we have a map v : G — Zq».
Let A = {t, : 7(ta) = 2} and B = {t, : 7(to) = 8}, and choose
a € A*NE and b € B*N E, so that, by the above remark,

lull = llweall = llpebll (u e M(®x)).

It follows from Proposition 5.4 that we can suppose that the element
a € A has the extra property that, for each cardinal { < k, the set A
can be partioned into ¢ pairwise-disjoint subsets D, such that a does
not belong to the closure of the union of strictly fewer than ( sets in
the partition {D, : n < (} of A.

Set
X1 = {seG:q(s) €{2,3}},
Xy = {seG:y(s) €{8,9}},
Yi = {s€G:9(s) €{0,1,2,3,4,5}},
Yo = {SEG:7<3)6{6777879710711}}a

Z = {seG:v(s)€{56,7,8,9,10,11,0}}.

sothat X1 CY), Xo CYoC Z, YUY, =G, and Y1 NY, = 0.

Let w € U and s € G with ¢(s) = a. Then us € E,y1 by the
construction. Also, if us € Eg, then s € Egyq, and so we see that
necessarily v(us) € {v(s) — 1,7(s),v(s) + 1}. Thus X; NUZ = (), and
SO

(12.14) XinZ=190.

Suppose that s € G with ¢(s) = . Take § with @ < § < k. By
(iv), above, sts € Esi1 and, by (vi), sts & U{Es : § < ¢}, and so
@(sts) € {6,0 + 1}. Thus 7(sts) € X; whenever § > « and t5 € A, and
hence uoa € X; when u € ®x. Now let u € M(®x). Then we have

(12.15) supp (poa) C X; .
Similarly, supp (zob) C X.
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Now fix 8 < k and take s € G with ¢(s) = a, where a > 3 + 1.
Then stg € E,41 by (iv). Also, we see that stg ¢ Ejs for any § with
0 +1 < «: this holds because the fact that stg € Ej5 implies that
s € Emax{g+1,6+13 by (iv). Thus it follows that ¢(stg) € {o, a0 + 1}
whenever « is a limit ordinal or 0 and ¢(stg) € {a — 1l,a,a + 1}
otherwise. Thus

v(stg) € {7(s) — L,y(s),7(s) + 1}.
Hence, for each fixed t € T and each u € Y, N E, we have uot € Z.
This shows that

(12.16) supp(vot)C Z (ve M(YaNE), teT).

We now fix y € M(®x) such that the map L, : &x — M(Py) is
G-continuous at both a and b. We further set

p=p| (Ox\E), p=plE, vnn=p|Y1, vrn=pl|(2\Y1),
so that u = pu; + v1 + 15, and hence
(12.17) umazlltim,umt:1im(,ulmt+ulmt+u2mt),

where ¢ € X in the limit, because L, is G-continuous at a.
We claim that in fact v; = 15 = 0, so that p = p;. Indeed, since
supp (poa) C Xy, it follows from (12.17), (12.16), and (12.14) that

qua:}fim(,ulmt—l—ljlmt) |71

Thus ||u| = llpoall < [lpmll + . Similary, [lu] < el + (vl
because L, is G-continuous at b, and hence

2|l < 2 gl + Nl =+ [l

But 2 |||l = 2 ||| + 2 ||| + 2 ||v2|l, and so p = pg, as claimed.

In the case where G is o-compact, so that E = ®x \ G, we have
already proved that p € M(G), giving the result (with V' = {a,b}).
Thus the remainder of the proof is necessary only in the case where G is
not o-compact, and so k > w; we now suppose that we are considering
this case.

It follows from (12.13) that

1l (HE) = |l -

We now further assume towards a contradiction that p # 0. Since
the measure 1 is regular, it follows from (12.12) that there exists o < r
such that |u|(E,) > 0; we fix this index «, and then we choose ¢
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to be the smallest cardinal number with the property there exists a
Borel subset H of E, with a compact covering number ¢ and such
that |u| (H) > 0. We observe that ( is necessarily infinite and that
¢ <la| < k.

Let (C,, : 1 < ¢) be a covering of H by relatively compact subsets
of H. For each ts € A, we define §(ts) < ¢ by the requirement that
ts € Dg(s). We then set

S={stsg:B>6+1,s€H, 0(ts) <min{n < (:se€UC,}}.

We now claim that (®xyoa)n.S = 0.

To see this, assume towards a contradiction that there exists an
element z € (Pxoa) N S. Since US is a neighbourhood of x, there
exist 8 < k and s € Ej such that soa € US. We fix such s and 3,
and observe that there is a subset Ay of A such that

Ao {t,:v>p}, a€dy, and sA;CUS.

Hence we see from the definition of S that, for each ¢, € A, there exist
ueU, o€ (a+1k), and £ < ¢ such that t; € A and st, = uvts for
some v € C¢ with

O(ts) < min{n < ¢ :v € U*C,} .

Since v € E,, we have wv € UE, C E,41, and so it follows from
our construction of the set 7" that 6 = v, and hence that s = uv € UC.

We now fix £, and repeat the preceding argument with any other
element ¢,/ in place of ¢, to obtain the equation st.,, = u'v'ty for some
u € U, some v € H, and some ¢’ € (a+ 1,k), where ty € A satisfies
the condition that 6(ty) < min{n < ¢ : v € U?C,}. Again this implies
that s = w/v/, and hence that v' € U?C¢. So 0(t,) < &, and hence we
see that

Ay C U l)77 ;
n<§

by our remarks on the partition {D,, : n < (} of A, this is a a contra-
diction of the assumption that a € Ay. Thus (dxoa) NS = 0, as
claimed.

Let p= | H, so that |p| (H) > 0. Then
,uma:%imuut:Pm(put—k(,u—p)ut).

But it is easy to see that supp (lim;_.4(pot)) C S, and so, by restricting
the measures to the closed set ®x oa, we have

poa=(poa) | (Pxoa)=lim((p—p)ot) | (Pxoa),
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and this implies that
ol + Nl = pll = llpll = lpoal < llp—pll -

Hence p = 0, a contradiction.

We have shown that the only element p € M(®%) such that the
map L, : &x — M(Px) is G-continuous at both a and b is p = 0.
Set V' = {a,b}. Certainly each ¢ € M(G) is such that L, | ®x is
continuous on ®x. Further, M(®yx) = M(G) x M(P%), and so the
result follows.

This concludes the proof of the theorem. O

A similar result to the above has been proved by Filali and Salmi
in [45, Theorem 14] in the special case where G is o-compact.

The result of Protasov mentioned above has been extended to the
following by Protasov and Pym in [118]. Let G be a locally compact,
o-compact, non-compact group, and set X = LUC(G). Then there
exists v € ®x such that v € G whenever u € &x and L, : &5 — P%
is continuous at v.

In our earlier memoir [21], we considered the topological centre of
Beurling algebras L'(G,w); here, w is a weight on the locally compact
group G. We regret to say that the proof of Lemma 12.1 in [21] is
incorrect, and that the result is false; we are grateful to Zhiguo Hu for
pointing this out and for providing a counter-example to the statement.
The lemma was used in the proof of Theorems 12.2 and 12.3 of [21]; the
latter result states that L'(G,w) is strongly Arens irregular whenever
w is diagonally bounded on a dispersed subset of G.

However, as we remarked, the latter theorem can also be proved
by a modification of the proof of [21, Theorem 11.9]. Further, we also
noted that Neufang gave an independent proof of this theorem in [112].



CHAPTER 13

Open problems

We believe that the following questions are open.

(1)

(2)

(3)

(4)

Let S be a semigroup such that ¢1(S) has an identity e4. Is
lleal|, necessarily rational? Is this true in the case where £1(.5)
is amenable?

Let S be a weakly cancellative semigroup.

Is M(Spy) a closed ideal in M(35)? Is M(Nj) a closed
ideal in M (SN)?

Let S be a left-amenable semigroup. The subset L(3S5) of 85
was defined in Definition 9.11. Give an example where L(35)
is not closed in S. For example, is L(ON) closed?

Find an infinite semigroup S such that

(3.4 N BS) ¢ 317(8S),
where A = (1(S).

Let S be a semigroup. When is (¢1(3S),0) semisimple?

Is this true whenever S is cancellative? Is (¢!(SN),0)
semisimple? If these algebras are not semisimple, describe
their radicals.

An example for which (£!(3S),0) is not semisimple is
given in Example 7.32.

Let S be a semigroup, and let Ry be the radical of (M (35), 0).
Is Ry, always nilpotent?

Is it always true that R%, = 07 Is (M (0F;), ) semisimple?
When are the radicals of the two algebras (M (4S),0) and
(M(BS), <) equal as sets?

The closure (in the topology of pointwise convergence on [(7)
of the set of continuous characters in ® 7 consists of characters.

Are there any other characters? Is Wgy, the space of char-
acters on (37, connected?

199
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(8) Let S be a semigroup such that £1(S) is amenable. Can it be
that the amenability constant
Cs of £1(S) belongs to the interval (5,7)? Give examples
of semigroups S such that

Cs ¢ {1,5,7,9,11,...}.

(9) Let S be a semigroup, and set X = WAP(S). Suppose that
(X', O) is amenable. Does it follow that S is finite?

(10) Is there a semigroup S such that M (BS) is weakly amenable,
but £1(S) is not weakly amenable?

(11) Let S be an infinite, (perhaps countable) cancellative semi-
group. Show that there is no measure p € M(S*) such that

max{|lpoa—poal, [[pob—po b} <|ul .

It is proved in Chapter 12 that this is true if the right-hand
side of the above inequality be replaced by ||u|| /2.

(12) Do there exist idempotents
p and ¢ in OGN (or S, for some semigroups S) such that
{p,q} is determining for the left topological centre of
M(pN)?

(13) For exactly which (non-abelian) groups G is there an element
a € G* such that the singleton {a} is determining for the left
topological centre of M(8G)? Let G = H x F, where H is
abelian and F' is finite. Then no singleton is determining for
the left topological centre. Are these the only such groups?

(14) For which semigroups S is
(M(BS),0) strongly Arens irregular?
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