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We propose a first-principles methodology for calculating the behavior of isolated impurities immersed in
quantum fluids. To obtain an accurate description of correlation effects between the impurity and the host, we
work in the frame of reference in which the impurity is stationary, building on the work of C. H. Leung, M. J.
Stott, and C. O. Almbladh �Phys. Lett. 57A, 26 �1976��. We apply our methodology to the case of a positron
immersed in an electron gas. Our positron relaxation energies and annihilation rates are similar to those from
the best existing many-body calculations. Our annihilating-pair momentum densities are significantly different
from previous data and include a “tail” after the Fermi edge.
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I. INTRODUCTION

Quantum impurity problems are of widespread interest in
condensed-matter physics. Here we study a positron in a ho-
mogeneous electron gas �HEG� as an example of an impurity
problem in which a particle of one species is immersed in a
fluid of another species, and where quantum effects are im-
portant for both the host and impurity. Examples of other
problems of this type are the Mahan exciton1 in semiconduc-
tor physics, in which a hole in the valence band interacts
with an electron gas in the conduction band �or an electron
interacts with a hole gas�, and an impurity atom in a Bose-
Einstein condensate. Our approach requires knowledge of
the explicit interaction between the host and impurity par-
ticles and the availability of a reasonably accurate mean-field
description of the host, such as the Kohn-Sham density-
functional theory �DFT� �Refs. 2 and 3� of electrons or the
Gross-Pitaevskii equation4,5 for Bose-Einstein condensates.
An important characteristic of our approach is the inclusion
of nonadiabatic impurity-host effects. We have chosen to
present results for the positron problem, firstly, because they
can be compared with data in the literature to gauge their
accuracy and, secondly, because nonadiabatic effects are ex-
pected to be important as the electron and positron are of
equal mass. Applications of our method to other problems
such as those mentioned above require only straightforward
modifications.

There are several experimental techniques for studying
defects in materials that involve injecting small numbers of
positrons into samples and measuring the resulting annihila-
tion radiation.6 On entering condensed matter, a low-energy
positron thermalizes rapidly and may be trapped by open-
volume defects such as vacancies, where the nuclear repul-
sion is weak. The positron lifetime is measured as the time
interval between the detection of a photon emitted in the �+

radioactive decay that produces the positron and the detec-
tion of the two 0.511 MeV photons emitted when the posi-
tron annihilates an opposite-spin electron.6 The lifetime is
characteristic of the defect at which the positron settles, and
positron annihilation spectroscopy is an important, nonde-
structive technique for characterizing open-volume defects.
Measuring the Doppler broadening of the annihilation radia-
tion or the angular correlation between the two 0.511 MeV

photons yields information about the momentum density
�MD� of the electrons in the presence of the positron. Mod-
eling is then required to extract information about the unper-
turbed system from the experimental data.

This paper is arranged as follows. In Sec. II we discuss
the use of two-component DFT in studies of positrons in real
materials. In Sec. III we describe our methodology for treat-
ing quantum impurities. In Sec. IV we discuss the calculation
of the relaxation energy. In Sec. V we discuss the calculation
of the annihilating-pair MD and in Sec. VI we discuss the
calculation of the electron-positron pair-correlation function
�PCF� and annihilation rate. We describe the elimination of
finite-basis and finite-size errors from our results in Sec. VII.
We present our results in Sec. VIII. Finally, we draw our
conclusions in Sec. IX.

Throughout we use Hartree atomic units, in which the
Dirac constant, the electronic mass, the magnitude of the
electronic charge, and 4� times the permittivity of free space
are unity: �=me= �e�=4��0=1. We specify the density of a
HEG by the radius rs of the sphere that contains one electron
on average in units of the Bohr radius.

II. TWO-COMPONENT DFT FOR POSITRONS
IN REAL MATERIALS

The most widely used method for modeling positrons in
real materials is two-component DFT,7 in which the interac-
tion between the electrons and the positron is described by a
functional of the densities of the electron and positron com-
ponents. Within the local-density approximation �LDA�, this
functional is obtained directly from the relaxation energy ��
of a positron in a HEG, which is the difference between the
energy of a HEG with and without a positron immersed in it.
Equivalently, �� is the electron-positron correlation energy.

Two-component DFT can lead to accurate electron and
positron densities but the DFT orbitals yield very poor
annihilating-pair MDs ��p̄� and electron-positron PCFs g�r�
because they do not include the full effects of the strong
electron-positron correlation.7,8 The results can, however, be
substantially improved by correcting the calculated PCFs and
MDs using accurate data for a positron in a HEG.7,8 The
effective electron density felt by the positron, and hence the
annihilation rate, is proportional to the contact PCF between
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the positron and the electrons, g�0�. The annihilation rate
for a positron immersed in a paramagnetic HEG is 	
=3g�0� / �4c3rs

3�, where rs is the electron density parameter
and c is the speed of light in vacuo.6 If the electron and
positron motions were uncorrelated then g�0� would be unity,
but the strong Coulomb attraction leads to much larger val-
ues, particularly at low densities, where a bound state may be
formed. Together, our results for ��, g�0�, and ��p̄� permit
the construction of a two-component DFT within the LDA
for a positron in a HEG, which in turn will enable the cal-
culation of the annihilation rates and MDs used to interpret
the results of positron annihilation experiments.

III. GENERATING ORBITALS FOR
AN IMPURITY-IN-HEG SYSTEM

A. Hamiltonian

Consider a single impurity particle of mass mp and charge
qp immersed in a gas of electrons in a finite cell subject to
periodic boundary conditions. Suppose the electron mass is
me and the electron charge is qe. Let the electron coordinates
be �ri� and the impurity position be s and define nondimen-
sional coordinates r̃i=r /rs and s̃=s /rs. In terms of these co-
ordinates the boundary conditions on the wave function are
independent of rs, and the rs dependence appears explicitly
in the Hamiltonian, which is

Ĥ�rs,me,qe,mp,qp� = �
i=1

N
− 1

2mers
2�r̃i

2 −
1

2mprs
2�s̃

2

+ �
i=1

N

qeqpvE��r̃i − s̃�rs�

+ �
i=1

N−1

�
j=i+1

N

qe
2vE��r̃i − r̃ j�rs�

+
�N + qp

2�vM�rs�
2

, �1�

where vE is the Ewald interaction and vM is the Madelung
constant. Note that vM�rs�=vM�1� /rs and vE�r̃rs�=vE�r̃� /rs.
It is therefore easy to show that

Ĥ�rs,me,qe,mp,qp� = Ĥ�meqe
2rs,1,− 1,mp/me,− qp/qe�meqe

4.

�2�

Henceforth we shall assume that me=1 a.u. and qe=
−1 a.u. since results for other electron masses can be ob-
tained by rescaling the density and energy.

B. Coordinate transformation

1. Transformation of the Hamiltonian

We follow the suggestion of Leung et al.9 that it is useful
to describe a positron in a HEG using the set of electron
positions relative to the position of the positron. The advan-
tage of this formulation is that the mean-field single-
determinant approximation for the wave function of this sys-
tem includes explicit electron-positron correlation, whereas

in the laboratory frame the ground state consists of a com-
pletely delocalized positron and a HEG.

Throughout this section we write �i f as �f /�ri, �i
2f as

�2f /�ri
2, etc. The Hamiltonian can be written as

Ĥ = �
i=1

N
− 1

2

�2

�ri
2 −

1

2mp

�2

�s2 − �
i=1

N

qpvE�ri − s�

+ �
i=1

N−1

�
j=i+1

N

vE�ri − r j� +
�N + qp

2�vM

2
. �3�

Let

X =
1

N + mp
	�

i=1

N

ri + mps
 and

xi = ri − s ∀ i � �1, . . . ,N� . �4�

Then it can be shown that

�2

�s2 = �
i=1

N

�
j=1

N
�2

�xi � x j
−

2mp

N + mp
�
j=1

N
�2

�X � x j
+ 	 mp

N + mp

2 �2

�X2 ,

�5�

�2

�ri
2 =

�2

�xi
2 +

2

N + mp

�2

�X � xi
+ 	 1

N + mp

2 �2

�X2 . �6�

Hence

Ĥ = −
1

2�N + mp�
�2

�X2 + ��
i=1

N �−
1

2
	1 +

1

mp

 �2

�xi
2 − qpvE�xi�

+ �
i=1

N−1

�
j=i+1

N �−
1

mp

�2

�xi � x j
+ vE�xi − x j� +

�N + qp
2�vM

2 �
� T̂CM + Ĥ�, �7�

where T̂CM is the center-of-mass kinetic-energy operator and

Ĥ� is the Hamiltonian for N interacting particles of mass 

�mp / �1+mp� a.u. and charge −1 a.u. in the presence of a
fixed charge of magnitude qp a.u. at the origin. In addition to
the usual Ewald interaction between particles there is an in-
teraction term −�1 /mp��i=1

N−1� j=i+1
N �� /�xi� · �� /�x j�.

In order to reduce finite-size effects we may use k-point
sampling within one-electron theories. Physically, this means
creating a simulation cell containing multiple copies of a
primitive cell, each of which contains a single impurity. The
many-electron Hamiltonian is
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Ĥ� = �
i=1

N �−
1

2


�2

�xi
2 − �

Rp�Vs

qpvE�xi − Rp�
+ �

i=1

N−1

�
j=i+1

N �−
1

mp

�2

�xi � x j
+ vE�xi − x j�

+
�N + Np

4/3qp
2�vM

2
, �8�

where the �Rp� are the primitive-cell lattice vectors, Vs is the
simulation-cell volume, N is the number of electrons in the
simulation cell, and Np is the number of primitive cells in the
simulation cell. For a given primitive cell, increasing the
k-point sampling increases the size of the simulation cell and
hence reduces single-particle finite-size effects. Given finite
computer resources, it may be preferable to use k-point sam-
pling rather than simply increasing the size of the primitive
cell, because the number of orbital coefficients grows lin-
early with the number of k points but quadratically with the
size of the primitive cell. However, if multiple k points are

used then Ĥ� no longer corresponds exactly to an untrans-
formed Hamiltonian for a single impurity in a periodic cell.
Furthermore, k-point sampling does not reduce the finite-size
error due to the interaction of images of the impurity particle.

2. Boundary conditions on the transformed wave function

The wave function ��s ;r1 , . . . ,rN� is antisymmetric with
respect to the exchange of ri and r j if and only if
��X ;x1 , . . . ,xN� is antisymmetric with respect to exchange
of xi and x j, so the coordinate transformation preserves the
antisymmetry of the wave function with respect to same-spin
electrons.

The wave function must satisfy the many-body Bloch
theorem,10,11

��s;r1, . . . ,rN� = Uks
�s;r1, . . . ,rN�exp�iks · 	s + �

i=1

N

ri
 ,

�9�

where the Bloch vector ks lies in the first Brillouin zone of
the simulation cell and U is invariant under the translation of
s or any of the �ri� through a simulation-cell lattice vector
Rs. Furthermore, the Hamiltonian is separable in our trans-
formed coordinates �see Eq. �7��, so we may write

��s;r1, . . . ,rN� = �P�x1, . . . ,xN�exp�iP · X� , �10�

where P is the center-of-mass momentum, which can take
any value consistent with the choice of Bloch vector �see Eq.
�12��. In order to specify fully the boundary conditions on
the wave function, we need to choose the values of both ks
and P.10,11 Our untransformed system is homogeneous and
therefore invariant under the translation of all particles
through any vector whatsoever. Hence P is not constrained to
lie in the first Brillouin zone of the primitive cell, as is the
case for an inhomogeneous periodic system.10,11

For all simulation-cell lattice vectors Rs and impurity par-
ticle and electron coordinates,

��s;r1, . . . ,rN�exp�iks · �N + 1�Rs�

= ��s + Rs;r1 + Rs, . . . ,rN + Rs�

= �P�x1, . . . ,xN�exp�iP · �X + Rs��

= ��s;r1, . . . ,rN�exp�iP · Rs� . �11�

Hence

P = �N + 1�ks − Gs
CM, �12�

where Gs
CM is a simulation-cell reciprocal-lattice vector.

Now consider translating r1 through a simulation-cell lat-
tice vector Rs, keeping the other coordinates fixed. In that
case x1 is mapped to x1+Rs and X is mapped to X+Rs / �N
+mp�. It follows from Eqs. �9� and �10� that

�P�x1 + Rs,x2, . . . ,xN�

= �P�x1, . . . ,xN�

exp�i	ks −
1

N + mp
P
 · Rs .

A similar result is obtained when the other electrons are
translated. So the wave function �P�x1 , . . . ,xN� satisfies
twisted boundary conditions with a Bloch vector

ks� = ks −
1

N + mp
P . �13�

The center-of-mass kinetic energy is

TCM =
�P�2

2�N + mp�
. �14�

This must be added to the ground-state energy of the system

described by Ĥ� to obtain the total ground-state energy. In
the ground state for a given ks one should choose Gs

CM so
that TCM is minimized, in which case P is simply equal to
�N+1�ks reduced into the first Brillouin zone of the simula-
tion cell.

As discussed in Sec. III C 1, the method used to evaluate
the extra terms requires ks�=Gs /2 for some simulation-cell
reciprocal-lattice vector Gs. By far the easiest way to satisfy
the two conditions on ks� is to choose ks=P=0, in which case
ks�=0 and TCM=0. When simulating the system described by

Ĥ�, the � point should therefore be included in the k-point
mesh.
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It might be imagined that violating the boundary condi-
tions on the wave function required for an exact correspon-
dence with an untransformed system would not matter. As
already noted, the use of multiple k points always eliminates

the possibility of correspondence with an untransformed sys-
tem. In practice, however, it appears to be essential to satisfy
the boundary conditions and to use just a single k point, as
discussed in Sec. III E 2.

C. Evaluating the extra interaction terms

1. Expectation value with respect to a Slater determinant of orthonormal orbitals

Henceforth, �i�� /�xi. Let

D↑�x1, . . . ,xN↑
� =

1
�N↑!� �1

↑�x1� ¯ �N↑
↑ �x1�

] ]

�1
↑�xN↑

� ¯ �N↑
↑ �xN↑

� � , �15�

where the orbitals are orthonormal, i.e., ��i
↑ �� j

↑�=�ij ∀i , j� �1, . . . ,N↑�. Then

�D↑� �
i=1

N↑−1

�
j=i+1

N↑

�i · � jD
↑� = �

i=1

N↑−1

�
j=i+1

N↑

���i
↑���i

↑� · �� j
↑��� j

↑� − ��i
↑��� j

↑� · �� j
↑���i

↑�� . �16�

Likewise,

�D↑��
i=1

N↑

�iD
↑� = �

i=1

N↑

��i
↑���i

↑� . �17�

Now let ��x1 , . . . ,xN�=D↑�x1 , . . . ,xN↑
�D↓�xN↑+1 , . . . ,xN�, where D↓ is a Slater determinant of orbitals for spin-down elec-

trons. Suppose j� i. Then

����i · � j�� = ��D↑��i · � jD
↑� if i and j are both spin up

�D↓��i · � jD
↓� if i and j are both spin down

�D↑��iD
↑� · �D↓�� jD

↓� if i and j have opposite spins.
� �18�

Hence

����
i=1

N−1

�
j=i+1

N

�i · � j�� =�D↑� �
i=1

N↑−1

�
j=i+1

N↑

�i · � jD
↑� +�D↑��

i=1

N↑

�iD
↑� ·�D↓� �

j=N↑+1

N

� jD
↓� +�D↓� �

i=N↑+1

N−1

�
j=i+1

N

�i · � jD
↓�

=
1

2�
i,�

�
j,�

���i
����i

�� · �� j
���� j

�� − �����i
���� j

�� · �� j
����i

��� , �19�

where we have made use of the fact that the terms with �
=� and i= j in Eq. �19� cancel.

Suppose �i
� is an eigenfunction of a single-particle

Hamiltonian with eigenvalue Ei
�. Then, so long as it is com-

patible with the boundary conditions on the simulation cell,
�i

�� is also an eigenfunction with eigenvalue Ei
�, as can be

seen by taking the complex conjugate of the single-particle
Schrödinger equation. So, either �i

����i
� or �i

�� and �i
� are

a complex-conjugate pair of degenerate eigenfunctions.
It is easy to show by integration by parts that ��i

� ���i
��

+ ��i
�� ���i

���=0. If �i
����i

� then ��i
� ���i

��=0. So, if all
the occupied orbitals are complex-conjugate pairs or satisfy
�i

����i
� then

�
i=1

N�

��i
����i

�� = 0 �20�

and hence the direct term in Eq. �19� is zero.
The complex conjugate of a Bloch orbital with Bloch vec-

tor k is a Bloch orbital with Bloch vector −k. Suppose we
have chosen a particular simulation-cell Bloch vector ks�.
Then each single-particle Bloch vector must be of the form
k=ks�+Gs, where Gs is a reciprocal-lattice point of the simu-
lation cell. It can be seen that −k is a legitimate Bloch vector
if and only if the ks�=Gs /2 for some Gs. Hence it is only
possible to occupy the orbitals in complex-conjugate pairs if
ks�=Gs /2 for some Gs.
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In a closed-shell ground state �for which the conditions
described above are satisfied� the expectation value of the
extra interaction is

���−
1

mp
�
i=1

N−1

�
j=i+1

N

�i · � j�� = −
1

2mp
�
�

�
i=1

N�

�
j=1

N�

���i
���� j

���2,

�21�

which is clearly negative.
Suppose

�i
��x� = �

Gp

ciGp

� exp�i�ki
� + Gp� · x� , �22�

where Vp is the volume of the primitive unit cell, the ciGp

� are
plane-wave expansion coefficients, the �Gp� are the

reciprocal-lattice vectors of the primitive cell, and ki
� is the

Bloch k vector of orbital i, spin �. Then

�� j
����i

�� = i�ki
�,kj

�Vs�
Gp

�cjGp

� ��ciGp

� �ki
� + Gp� . �23�

This expression together with Eq. �21� is used to evaluate the
extra interaction.

2. Hartree-Fock equations

Let f i
� be the occupation number of state �i

�. Let

ĥ1� = −
1

2

�2 − �

Rp�Vs

qpvE�x − Rp� . �24�

The expectation value of the Hamiltonian is

���Ĥ���� =
�N + Np

4/3qp
2�vM

2
+ �

i�

��i
��ĥ1���i

��f i
� +

1

2�
i�

�
j�
	��i

�� j
��v̂E��i

�� j
�� − �����i

�� j
��v̂E�� j

��i
��

−
1

mp
���i

����i
�� · �� j

���� j
�� − �����i

���� j
�� · �� j

����i
���
 f i

�f j
�. �25�

To derive the Hartree-Fock �HF� equations, we minimize the expectation value of the Hamiltonian with respect to �k
��,

subject to the constraint that the orbitals remain orthonormal. Introducing Lagrange multipliers �	ij
��, we perform an uncon-

strained minimization of

L = ���Ĥ���� − �
�

�
i,j

	ij
���i

��� j
��f i

�f j
�. �26�

This gives

ĥ1��k
��x� + �

j�
	� �� j

��x���2vE�x − x��dx��k
��x� −

1

mp
�� j

���� j
�� · ��k

��x�
 f j
�

− �
j
	� � j

���x��vE�x − x���k
��x��dx�� j

��x� −
1

mp
�� j

����k
�� · �� j

��x�
 f j
� = �

j

	kj
� � j

��x�f j
�. �27�

Writing the left-hand side of Eq. �27� as ĝ1
��k

� and taking the
inner product with �i

�, we find that ��i
��ĝ1

���k
��=	ki

� f i
�. This is

Hermitian and therefore unitarily diagonalizable. Let �Ek
�� be

the eigenvalues of the matrix ��i
��ĝ1

���k
��. Unitary transfor-

mations among the set of occupied orbitals do not alter the
value of the Slater determinant and hence the expectation
value of the Hamiltonian. Let us therefore perform the uni-
tary transformation to the set of orbitals in which ��i

��ĝ1
���k

��
is diagonal, giving the canonical HF equations

ĝ1
��k

��x� = Ek
��k

��x� . �28�

These equations should be solved self-consistently because
the operator ĝ1

� depends on the orbital values.
If the orbitals are real or are part of a complex-conjugate

pair then the direct part of the extra interaction is zero. This
is assumed to be the case in our calculations.

3. Kohn-Sham equations

By the Hohenberg-Kohn theorem2 the ground-state en-
ergy can be written as

E�n� = ���T̂��� + ���Â��� + EH�n� + Eext�n� + Exc�n�

+ NvM/2, �29�

where n�x� is the ground-state electronic number density in
the transformed system, which we assume can be written as
the number density of a noninteracting �auxiliary� system
with a ground-state Slater wave function � �with orbitals
��i

��x���,
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EH�n� =
1

2
� � n�x�n�x��vE�x − x��dxdx� �30�

is the Hartree energy �electrostatic energy arising from the
electronic charge density�, Eext�n� is the ground-state expec-
tation of the external potential energy that gives rise to the

charge density n, ���T̂���+ ���Â��� is the expectation value

of the kinetic-energy operator T̂= �−1 / �2
���i�i
2 and the ex-

tra interaction operator Â, and Exc�n� is an unknown
exchange-correlation �XC� functional, which will be ap-
proximated by the LDA functional. By the Hohenberg-Kohn

theorem for the noninteracting system, ���T̂��� and ���Â���
are functionals of the density n.

As shown by Hohenberg and Kohn,2 the energy functional
of Eq. �29� should be minimized with respect to n �i.e., with
respect to the Slater wave function that gives rise to n�, to
yield the ground-state energy and charge density for the
given external potential energy,

Eext�n� = − qp� n�x� �
Rp�Vs

vE�x − Rp�dx +
Np

4/3qp
2vM

2

�31�

due to the positron.
Inserting our expression for the expectation value of the

extra interaction operator �Eq. �21�� into Eq. �29� and noting
that n�x�=�i���i

��x��2, we require that E�n� is stationary with
respect to changes in the ��i

���x��, subject to the constraint
that the orbitals remain orthonormal. This gives the Kohn-
Sham equations,

�−
1

2

�2 +� n�x��vE�x − x��dx� − qp �

Rp�Vs

vE�x − Rp�

+
�Exc�x�

�n �i
��x� +

1

mp
�

j

f j
��� j

����i
�� · �� j

��x�

= Ei
��i

��x� . �32�

The charge density in the transformed coordinate system
is proportional to the electron-impurity PCF so that the LDA
in the transformed coordinates is not equivalent to the LDA
in nontransformed coordinates. Nevertheless �i� by the
Hohenberg-Kohn theorem the XC energy is a functional of
the charge density in the transformed frame, �ii� the LDA is
still a local approximation to the XC energy, and �iii� the
LDA is, in principle, exact for the HEG. There is no reason
to believe that using the LDA in the transformed frame is a
worse approximation than using it in the untransformed
frame. Unlike the case in DFT calculations with LDA or
GGA functionals, however, the single-particle Hamiltonian
of Eq. �32� depends explicitly on the orbital values rather
than just the density.

4. Eigenvalue spectrum in transformed coordinates

Consider the case where qp=0, i.e., we perform calcula-
tions for a HEG. In this case ĝ1

� does not contain any direct
interaction terms. So

ĝ1
���x� = −

1

2

�2� − �

j

f j
�� � j

���x��vE�x

− x����x��dx�� j
��x� +

1

mp
�

j

f j
��� j

����� · �� j
��x�

� �t̂1 + x̂1
� + â1

����x� . �33�

For the HEG, the orbitals are plane waves exp�iGs ·x� /�Vs,
where Vs is the simulation-cell volume. It is easy to show
that

exp�− iGs · x�t̂1 exp�iGs · x� = Gs
2/�2
� , �34�

exp�− iGs · x�x̂1
� exp�iGs · x�

= − �
Gs�

fGs�
�

Vs
� exp�i�Gs − Gs�� · �x� − x��vE�x − x��dx�

= −
1

Vs
�

Gs��Gs

4�fGs�
�

�Gs − Gs��
2 , �35�

exp�− iGs · x�â1
� exp�iGs · x�

= �
Gs�

fGs�
�

mpVs
� exp�i�Gs − Gs�� · �x� − x��iGsdx� · iGs�

= − Gs
2fGs

� /mp. �36�

Hence the HF eigenvalues are

EGs

� = Gs
2	 1

2

−

fGs

�

mp

 −

1

Vs
�

Gs��Gs

4�fGs�
�

�Gs − Gs��
2 . �37�

In the ground state, fGs
=1 for occupied states and 0 for

unoccupied states. Hence, in the infinite-system limit there is
a discontinuity of magnitude kF

2 /mp in the energy band at kF.
The extra interaction results in a very wide band gap opening
up, even though the system is metallic. The same is true for
the Kohn-Sham eigenvalues, as shown in Fig. 1.

When the impurity is present �i.e., qp�0�, the trans-
formed system continues to have a huge band gap. This
makes the use of a finite temperature to aid the convergence
of the self-consistent field process ineffective because the
occupancies quickly become either zero or one as the band
gap opens up. It is very difficult to change the band occu-
pancy during the calculation. If multiple k points are used
then it is unlikely that the initial �random� set of plane-wave
coefficients will lead to the correct number of bands being
occupied at each k point, and hence the calculation becomes
trapped in an excited state. For this reason, calculations with
multiple k points do not generally converge to the same re-
sult when rerun. This sort of problem can be avoided by
using orbitals at � only.

Of course the existence of a “band gap” is not a physical
property of the transformed system. The single-particle ei-
genvalue spectrum in the transformed system does not cor-

DRUMMOND et al. PHYSICAL REVIEW B 82, 035107 �2010�

035107-6



respond even approximately to differences of eigenvalues of

the many-body Hamiltonian Ĥ�. For the HEG the eigenval-
ues of the single-particle kinetic-energy and Coulomb opera-
tors are independent of whether the corresponding state is
occupied or not; however, the eigenvalue of the extra inter-
action operator is much lower when the corresponding state
is occupied—see Eq. �36�—so that Koopmans’ theorem does
not apply. Strictly speaking the true energy band is defined

by differences between the eigenvalues of Ĥ�, which are ex-

actly the same as the eigenvalues of Ĥ, so that the true en-
ergy band is not affected by the change in variables.

5. Symmetry

The exchange part of the extra interaction only operates
between orbitals with the same k. Hence, in a closed-shell
system, symmetry-equivalent k vectors have the same set of
eigenvalues. Orbitals at different k only interact via the
charge density. We can therefore use the minimal set of
symmetry-inequivalent k vectors in our DFT calculations.

Symmetry can be broken by having a partially filled shell.
In this case one can eliminate k vectors that are equivalent
under the lower symmetry of the open-shell system. Partially
filled shells cannot be represented by fractional occupation
numbers because the kinetic energy depends linearly on the
occupation numbers while the extra interaction depends qua-
dratically on them. A symmetry-reduced set of k points can
only be equivalent to the full set if the occupancies are all
either zero or one.

Partially filled shells appear to be undesirable because �i�
they generally lead to a violation of the boundary conditions
on the wave function as discussed in Sec. III B 2 and �ii�
DFT calculations do not converge consistently to the same
energy when partially filled shells are used. In our production
calculations we have used orbitals at � only with magic
numbers of electrons corresponding to closed-shell configu-
rations for the HEG. So in all of our production calculations
the “primitive” cell and “simulation” cells are identical.

6. Need for the extra interaction terms

Throughout this work we consider only closed-shell HEG
and positron-in-HEG systems. Therefore the extra interaction
energy is given by Eq. �21�. The extra interaction is domi-
nated by the terms involving high-momentum orbitals, and
these should be similar in the HEG and positron-in-HEG
systems; hence we may expect a degree of cancellation of the
extra interaction energy when the relaxation energy is calcu-
lated.

Leung et al.9 have argued that the effect of the extra in-
teraction is negligible at low density and have calculated the
annihilation rate of a positron in a HEG under this assump-
tion by rescaling the results of calculations performed for a
proton �assumed to have an infinite mass� immersed in a
HEG. Unfortunately this approximation is a gross violation
of the properties of the system as the magnitude of the ex-
pectation value of the neglected term is approximately equal
to the kinetic energy of the system in the laboratory frame. In
order to assess the importance of the extra interaction and to
allow comparison with previous studies to be made, we have
performed our calculations both with and without the extra
interaction.

D. Density of the electron gas in a finite cell

Consider an impurity particle immersed in an electron gas
of number density n=3 / �4�rs

3�. Consider a primitive cell of
volume Vp. Without the impurity, this cell must contain nVp
electrons. When the impurity is present, the cell should con-
tain nVp+qp electrons in order to preserve charge neutrality.
Provided the cell is sufficiently large, the electron gas will
have density n close to the edges of the cell, since the extra
electrons will screen the charge of the impurity. The �nVp
+qp�-electron primitive cell is therefore appropriate for de-
scribing the behavior of an impurity immersed in an infinite
electron gas of number density n.12 In all our calculations,
when we refer to an impurity immersed in an N-electron
HEG of density parameter rs, the primitive-cell volume is
Vp= �4 /3��rs

3�N /Np−qp�.

E. DFT implementation

1. Modifications to the castep code

Henceforth we assume the impurity to be a positron �so
mp=qp=1�. The CASTEP �Ref. 13� plane-wave DFT code
�version 3.1� was modified to allow the simulation of an
electron gas containing a positron. The modified code per-
forms DFT calculations for the system described by the

transformed Hamiltonian Ĥ� of Eq. �8�. In summary, the fol-
lowing changes to CASTEP have been made: �i� the factor of
1 /
 is included in the kinetic energy; �ii� the exchange part
of the extra interaction term is included in the one-particle
Hamiltonian and energy expectation value; and �iii� modifi-
cations have been made to aid convergence by iterating the
orbitals to self-consistency each time the density is updated
and to switch on the extra interaction once the orbitals have
converged �see Sec. III E 2�.

0 k
F

2k
F

k

0

k
F

2

ε(
k)

Frame in which positron is stationary
Laboratory frame

FIG. 1. �Color online� Kohn-Sham eigenvalues for a HEG in the
transformed frame in which the “positron” �mp=1 a.u.� is station-
ary �solid line� and in the laboratory �untransformed� frame �dashed
line�.
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All our calculations were performed in simple cubic cells.
The positron was represented by its bare Coulomb potential
in each case.

2. Strategies for aiding convergence

When multiple k points or nonmagic numbers of elec-
trons are used, CASTEP does not consistently converge to the
same energy for the reasons discussed in Secs. III C 4 and
III C 5. But, even if orbitals at � only and magic numbers of
electrons are used, getting the self-consistent field process to
converge can still be problematic if N is large. When the
extra interaction terms are omitted from CASTEP, the program
has no difficulty converging.

In order to aid convergence in positron-in-HEG calcula-
tions, we have made use of two strategies: �A� iterating the
orbital coefficients to self-consistency every time the density
is updated and �B� converging the orbital coefficients in the
absence of the extra interaction, then switching on the extra
interaction, and reconverging the orbitals. CASTEP only ex-
plicitly symmetrizes the charge density but the extra interac-
tion depends on the orbital coefficients. Hence, when neither
of these strategies is used, the one-electron Hamiltonian only
has the correct symmetry once self-consistency is achieved.
Approach �B� ensures that the initial Hamiltonian in the pres-
ence of the extra interaction has the correct symmetry and
gives a reasonably good first approximation to the charge
density. Approach �A� ensures that the resulting orbitals have
the correct symmetry at each iteration. In addition, it was
found that using the Kerker14 density-mixing scheme in-
creases the likelihood of converging.

IV. CALCULATION OF THE RELAXATION ENERGY

Let E�N0 ,M0 ,Vp� be the ground-state energy per primi-
tive cell of a set of N0 particles of unit negative charge and
M0 particles of unit positive charge per primitive cell. The
relaxation energy of a particle of charge 1 a.u. is defined as

�� = E�N0 + 1,1,Vp� − E�N0 + 1,0,Vp� . �38�

If the electrons and positron are uncorrelated �but the
electrons are correlated with each other� and the system is in
its ground state and ks=0 then the positron energy is zero
and the electronic energy is unperturbed by the presence of
the positron. In this case the energy per primitive cell of the
system with N0+1 electrons per primitive cell is simply
E�N0+1 ,0 ,Vp�. On the other hand, when the correlations
with the positron are included, the ground-state energy is
E�N0+1 ,1 ,Vp�. So the relaxation energy is the electron-
positron correlation energy of the system with N=N0+1
electrons per primitive cell.

The low-density limit of the relaxation energy should be
the energy of an isolated positronium ion �Ps−�, a bound state
of two electrons and a positron. In practice �i� DFT-LDA is
not able to describe the binding of an entire second electron
to a positronium atom and the low-density limit of our
method will be close to the DFT-LDA energy of a positro-
nium atom; and �ii� this limit appears to be approached very
slowly from above, well beyond the range of rs values that

we have considered. The calculation of the DFT energy of a
positronium atom is discussed in Appendix A.

The first few terms of the exact high-density expansion
of the relaxation energy have been calculated15 within the
random-phase approximation. This expansion is only useful
for rs�0.1, however.

V. MD OF ANNIHILATING ELECTRON-POSITRON PAIRS

A. General expression for the MD

Suppose a single positron is injected into a sample. Anni-
hilation of the positron with an electron of opposite spin is a
second-order process within quantum electrodynamics, lead-
ing to the emission of two photons. By contrast, annihilation
with an electron of the same spin is a third-order process due
to the need to conserve angular momentum, leading to the
emission of three photons. The latter process occurs rela-
tively rarely and, in any case, most positron-annihilation
experiments are designed to detect the photon pairs produced
in opposite-spin annihilation events.6 Throughout this
work, therefore, we consider only opposite-spin annihilation
events.

Consider a HEG with N↑ spin-up electrons and N↓ spin-
down electrons in a periodic simulation cell of volume Vs.
Let N=N↑+N↓. Let �r1 , . . . ,rN� be the set of electron coordi-
nates, where the first N↑ particles are spin-up electrons.
Suppose a single spin-down positron is also present in the
electron gas with position vector s. Let ��s ;r1 , . . . ,rN�
be the wave function for this system. � is antisymmetric
with respect to the exchange of electrons of the same spin.
We will make use of electron-positron center-of-mass and
difference coordinates, r̄i��ri+s� /2 and �ri�ri−s. In
terms of these coordinates we write the wave function as
��r̄1 ,�r1 ;r2 , . . . ,rN�. Define the electron-positron center-of-
mass momentum wave function to be

�̃�p̄1,�r1;r2, . . . ,rN�

=
1

Vs
� exp�− ip̄1 · r̄1���r̄1,�r1;r2, . . . ,rN�dr̄1 �39�

so that

��r̄1,�r1;r2, . . . ,rN� = �
p̄1

exp�ip̄1 · r̄1��̃�p̄1,�r1;r2, . . . ,rN� .

�40�

�Throughout this paper, integration is assumed to run over a
single periodic simulation cell, unless otherwise stated.�
Parseval’s theorem gives

� ���r̄1,�r1;r2, . . . ,rN��2dr̄1 = Vs�
p̄1

���p̄1,�r1;r2, . . . ,rN��2.

�41�

We assume that a positron can only annihilate with an
opposite-spin electron when the two particles coincide. We
also assume that the probability of annihilation occurring
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when the particles coincide is independent of the positions of
the other electrons. Hence the distribution of center-of-mass
momenta for annihilating electron-positron pairs is the same
as the distribution of the center-of-mass momenta when the
positron coincides with an electron of opposite spin.

The unnormalized distribution of the center-of-mass mo-
mentum for the positron annihilating with electron 1 is

� ¯� ��̃�p̄1,0;r2, . . . ,rN��2dr2 ¯ drN. �42�

By the antisymmetry of the wave function, this is equal to
the unnormalized distribution of center-of-mass momenta for
annihilating spin-down-positron-spin-up-electron pairs. If we
normalize this distribution to N↑, we obtain

�↑�p̄� =

N↑� ¯� ��̃�p̄,0;r2, . . . ,rN��2dr2 ¯ drN

�
p̄
� ¯� ��̃�p̄,0;r2, . . . ,rN��2dr2 ¯ drN

=

N↑� ¯� �� exp�− ip̄ · r1���r1;r1, . . . ,rN�dr1�2

dr2 ¯ drN

Vs� ¯� ���r1;r1, . . . ,rN��2dr1 ¯ drN

.

�43�

A similar expression may be derived for the center-of-mass MD of a spin-up positron annihilating with a spin-down
electron, �↓�p̄�. Unless the system is spin-polarized, however, ��p̄�=�↑�p̄�.

B. Derivation of the MD in a one-electron theory

Suppose HF theory or DFT has been used to generate a set of orbitals for a positron immersed in a HEG in the transformed
coordinate system. In the following we assume P=0; it is easy to show that if P�0, then the MD is rigidly shifted by
P / �N+1�, which is simply a finite-size effect. The many-electron wave function in the untransformed coordinate system can
be written as

��s;r1, . . . ,rN� =
1

�N↑!N↓!� �1
↑�r1 − s� ¯ �N↑

↑ �r1 − s�

] ]

�1
↑�rN↑

− s� ¯ �N↑
↑ �rN↑

− s� ��
�1

↓�rN↑+1 − s� ¯ �N↓
↓ �rN↑+1 − s�

] ]

�1
↓�rN − s� ¯ �N↓

↓ �rN − s� � . �44�

Then the numerator of Eq. �43� is

�↑u�p̄� =� ¯� �� exp�− ip̄ · r1���r1;r1, . . . ,rN�dr1�2

dr2 ¯ drN =
1

N↑!N↓!
� � exp�ip̄ · �r1� − r1��

� ¯� �
�1

↑��0� ¯ �N↑
↑��0�

�1
↑��r2� − r1�� ¯ �N↑

↑��r2� − r1��

] ]

�1
↑��rN↑

� − r1�� ¯ �N↑
↑��rN↑

� − r1��
��

�1
↑�0� ¯ �N↑

↑ �0�

�1
↑�r2� − r1� ¯ �N↑

↑ �r2� − r1�

] ]

�1
↑�rN↑

� − r1� ¯ �N↑
↑ �rN↑

� − r1�
�dr2� ¯ drN↑

�

� ¯� ��1
↓��rN↑+1� − r1�� ¯ �N↓

↓��rN↑+1� − r1��

] ]

�1
↓��rN� − r1�� ¯ �N↓

↓��rN� − r1��
���1

↓�rN↑+1� − r1� ¯ �N↓
↓ �rN↑+1� − r1�

] ]

�1
↓�rN� − r1� ¯ �N↓

↓ �rN� − r1� �drN↑+1� ¯ drN�dr1�dr1

=
Vs

N↑!
� exp�− ip̄ · R� � ¯� �

i=1

N↑

�
j=1

N↑

�− 1�i+j�i
↑��0�� j

↑�0�M1iN1jdr2 ¯ drN↑

 � � �1
↓��r��1

↓�r − R�dr ¯ � �N↓
↓��r��1

↓�r − R�dr

] ]

� �1
↓��r��N↓

↓ �r − R�dr ¯ � �N↓
↓��r��N↓

↓ �r − R�dr�dR , �45�

where, in the last step, we have: �i� substituted R=r1−r1� and ri=ri�−r1� ∀i� �2, . . . ,N�, allowing us to perform the integral
over r1�; �ii� made use of the overlap integral theorem for determinants;16 �iii� defined Mij to be the �i , j�th minor of
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�
�1

↑��0� ¯ �N↑
↑��0�

�1
↑��r2� ¯ �N↑

↑��r2�

] ]

�1
↑��rN↑

� ¯ �N↑
↑��rN↑

�
�; �46�

and �iv� defined Nij to be the �i , j�th minor of

�
�1

↑�0� ¯ �N↑
↑ �0�

�1
↑�r2 − R� ¯ �N↑

↑ �r2 − R�

] ]

�1
↑�rN↑

− R� ¯ �N↑
↑ �rN↑

− R�
� . �47�

For each i , j� �1, . . . ,N↑�, we can use the overlap integral
theorem for determinants to determine a �N↑−1� �N↑−1�
matrix BR�i , j� such that

det�BR�i, j�� =
1

�N↑ − 1�! � ¯� M1iN1jdr2 ¯ drN↑
.

�48�

So, finally, the unnormalized MD of annihilating electron-
positron pairs is

�↑u�p̄� =� exp�− ip̄ · R��
i=1

N↑

�
j=1

N↑

�− 1�i+j�i
↑��0�� j

↑�0�det�BR�i, j��� � �1
↓��r��1

↓�r − R�dr ¯ � �N↓
↓��r��1

↓�r − R�dr

] ]

� �1
↓��r��N↓

↓ �r − R�dr ¯ � �N↓
↓��r��N↓

↓ �r − R�dr�dR .

�49�

C. Implementation of the proposed method using plane-wave orbitals

1. Evaluation of the integral over R

The unnormalized annihilating-pair MD �↑u�p̄� is the Fourier transform of

S↑�R� = �
i=1

N↑

�
j=1

N↑

�− 1�i+j�i
↑��0�� j

↑�0�det�BR�i, j��� � �1
↓��r��1

↓�r − R�dr ¯ � �N↓
↓��r��1

↓�r − R�dr

] ]

� �1
↓��r��N↓

↓ �r − R�dr ¯ � �N↓
↓��r��N↓

↓ �r − R�dr� . �50�

We evaluate �↑u�p̄� by a fast Fourier transformation �FFT�
method with S↑�R� being calculated by brute force on a grid
of points in real space.

Note that S↑�−R�=S↑
��R� corresponding to the fact that

�↑u�p̄� is real. Furthermore, the symmetry operations of the
Bravais lattice can be used to evaluate S↑�R� for all but a
symmetry-irreducible set of grid points. Since all lattices
have inversion symmetry, S↑�−R�=S↑�R�, and so S↑ must be
real.

2. Plane-wave bases

Suppose that each orbital is expanded in a plane-wave
basis, thus,

�i
��r� = �

Gp

ciGp

� exp�i�Gp + ki
�� · r� , �51�

where ki
� is the Bloch k vector of the orbital, the �ciGp

� � are a
set of plane-wave expansion coefficients, and the Gp vectors
are integer multiples of the reciprocal-lattice vectors of the
primitive cell. Then the overlaps in the expression for the
MD can be evaluated as

� �i
���r�� j

��r − R�dr

= Vs�
Gp

ciGp

�� cjGp

� exp�− i�Gp + ki
�� · R��ki

�,kj
�, �52�

where we have made use of the fact that, if the k points lie
on a Monkhorst-Pack17 grid, then Gp�−Gp+k j

�−ki
� is a

reciprocal-lattice vector Gs of the simulation cell, which can
only be 0 if Gp=Gp� and k j

�=ki
�.
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3. Evaluation of the determinants of overlaps

The overlap determinants det�BR�i , j�� are evaluated using
lower triangular-upper triangular �LU� decomposition with
CPU requirements that scale as O�N3� with system size. Al-
ternatively, since only one row of BR�i+1, j� differs from
BR�i , j�, and only one column of BR�i , j+1� differs from
BR�i , j�, the Sherman-Morrison formula18 could be used to
evaluate all but the first of the determinants for each R. The
CPU time for evaluating a determinant using this method
would scale as O�N2� with system size.

4. Scaling of the method with system size

For a given R the time taken to evaluate each of the
required orbital overlap integrals ���i

↑��r�� j
↑�r−R�dr, ∀i , j�

scales as O�N� with system size since each element requires
a sum over the basis functions to be performed. There are
O�N2� such overlap integrals to evaluate in total.

For a given R the time taken to compute the determinants
det�BR�i , j�� using LU decomposition scales as O�N3� and
there are O�N2� such determinants to evaluate. Evaluation of
the determinants is therefore the rate-determining step at
large system sizes. The scaling could be improved as dis-
cussed in Sec. V C 3.

The required number of real-space grid points R grows as
O�N�. So, overall, the CPU time required by the method is
expected to scale as O�N6�. However, the evaluation of the
MD only needs to be performed once at the end of the plane-
wave DFT calculation.

5. Form of the MD and suitable fitting functions

The MD of an infinite, noninteracting, paramagnetic HEG
of density parameter rs is �HEG�p�=��kF− p�, where the
Fermi wave vector is kF= �9� /4�1/3 /rs. The inclusion of
electron-electron interactions, as well as the introduction of a
positron, modifies the form of the MD of annihilating
electron-positron pairs, but does not change the Fermi wave
vector in the limit of infinite system size.

The procedure described in this paper enables us to cal-
culate ��p̄� for those particular values of p̄ that are commen-
surate with a finite simulation cell. By fitting a smooth func-
tion of p̄ to our results, we may approximate the continuous
MD of the infinite system. For finite systems, we determine
whether the discrete momenta lie before or after the Fermi
edge by considering whether or not the corresponding orbit-
als would be occupied in a finite, noninteracting, paramag-
netic HEG.

Assuming the MD to be analytic inside the Fermi sphere,
only even powers of p̄ can appear in the Taylor expansion of
the MD about p̄=0. Following Kahana,19 we perform a least-
squares fit of a quartic function to our discrete MD results
before the Fermi edge,

�model�p̄� = A + Bp̄2 + Cp̄4, �53�

where A, B, and C are parameters to be determined by fitting.
After the Fermi edge, we assume the MD to fall off as

�model�p̄� = a exp�− sp̄� , �54�

where a and s are parameters to be determined by fitting to
the discrete MD results after the Fermi edge. �The decay of

the DFT MD was found to be exponential rather than alge-
braic in numerical tests.�

Having fitted the model functions to the pre-edge and
postedge results, we plot the fitted functions, but move the
Fermi edge to its correct position in the infinite-system limit.

VI. ELECTRON-POSITRON PCF

The positron-spin-up-electron PCF is defined to be

g↑�r,s� =
�2p

↑ �r,s�
�1

↑�r��p�s�
, �55�

where

�2p
↑ �r,s� =

N↑Np� ¯� ���s;r,r2, . . . ,rN��2dr2 ¯ drN

� ¯� � ���s;r1, . . . ,rN��2dr1 ¯ drNds

�56�

is the electron-positron pair density, where Np=Vs /Vp is
the number of primitive cells in the simulation cell,
while �1

↑�r�=N↑ /Vs is the spin-up electron density, and
�p�s�=1 /Vp is the positron density. The system is homoge-
neous, so g↑�r ,s�=g↑�r−s�. Hence the PCF is given by

g↑�r − s� =

Vs
2� ¯� ���s;r,r2, . . . ,rN��2dr2 ¯ drN

� ¯� � ���s;r1, . . . ,rN��2dr1 ¯ drNds

.

�57�

Suppose the wave function has the form given in Eq. �44�
with orthogonal orbitals. Then

g↑�r − s� =
Vs

N↑
�
i=1

N↑ ��i
↑�r − s��2

��i
↑��i

↑�
. �58�

From Eq. �57� and the fact that the positron density is
constant, the normalization condition on the PCF in a finite
cell20 can be seen to be ��g↑�r�−1�dr=0. The shape of the
primitive cell results in a slight anisotropy in the PCF at
large distances from the positron. We have therefore spheri-
cally averaged the PCF by integrating g↑�r� / �4�r2� over the
surface of a sphere of radius r. The integration method de-
scribed in Ref. 21 �rule 4� was used.

For a paramagnetic HEG �which is the only case we have
considered in the calculations reported here�, the total PCF is
simply g�r�=g↑�r�.

VII. ELIMINATING SOURCES OF ERROR
IN POSITRON-IN-HEG CALCULATIONS

A. Relaxation energy

1. Finite-basis errors

The finite-basis error in the relaxation energy is found to
fall off as Ecut

−4/3 in numerical tests, as shown in Fig. 2. Hence
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the relaxation energy can be extrapolated to basis-set com-
pleteness. We have done this in all our production calcula-
tions.

2. Finite-size effects

Our DFT calculations suffer from two sources of finite-
size errors: �i� neighboring images of the positron interact
with one another and �ii� momentum quantization �shell-
filling� effects are present. Shell-filling effects are large in
metallic systems such as the HEG, but they tend to cancel
out of quantities such as the relaxation energy, because ex-
actly the same simulation cell is used for the calculations
with and without the positron.

In practice, for the system sizes we have studied �up to a
few hundred electrons� finite-size errors are predominantly
due to shell-filling effects for N�50 at intermediate and high
densities, as demonstrated by the oscillatory behavior of the
relaxation energy as a function of N, see Fig. 3. Finite-size
errors are smaller at lower densities. We have attempted to
reduce finite-size errors by discarding data at small N �i.e.,
N�114 for 1�rs�3.5, N�54 for 4�rs�6.5, and N�14
for rs�7� and then averaging the remaining data.

The bias resulting from finite-basis errors is made negli-
gible by extrapolation but finite-size errors affect the second
or third significant figure of the relaxation energy at high
densities. At low densities, both finite-basis and finite-size
errors are small.

3. XC functional

We have verified that the relaxation energies calculated
using the LDA and Perdew-Burke-Ernzerhof �PBE�22

generalized-gradient-approximation XC functionals are al-
most identical, see Fig. 4. All other results quoted in this
paper were calculated within the LDA.

B. Momentum density

1. Finite-basis errors

Numerical tests suggest that

�Ecut
�p̄� = ���p̄� + a1�p̄�Ecut

−1 + a3/2�p̄�Ecut
−3/2 �59�

is a suitable fitting function for extrapolating the momentum
density at each p̄ to basis-set completeness, see Fig. 5.

2. Finite-size errors

As the system size is increased the density of momenta p̄
at which the MD is evaluated increases. Furthermore, oscil-
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FIG. 5. Dependence of the annihilating-pair MD at particular
momenta on the plane-wave cutoff energy Ecut for positrons im-
mersed in �a� a 114-electron HEG of density parameter rs=2, �b� a
162-electron HEG at rs=2, �c� a 114-electron HEG at rs=5, and �d�
a 54-electron HEG at rs=5. The solid line shows the fit to Eq. �59�
in each case.
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FIG. 2. �Color online� Dependence of the relaxation energy on
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lations in the MD due to shell-filling effects decrease. For
this reason we simply fit �model�p̄� to the MD at the largest
system size for which data are available at each density to
obtain our final results. Results obtained at a range of system
sizes are shown in Fig. 6. It is clear that the momentum
density is well converged with respect to the system size.

3. FFT grid size

It was verified that our MD data are converged with
respect to the FFT grid on which S↑�R� is calculated. A
161616 grid was used in all of our calculations.

C. Electron-positron PCF and contact PCF

1. Finite-basis errors

The PCF should satisfy the Kimball cusp condition23 at
the positron but it cannot do so when the orbitals are ex-
panded in a finite number of plane waves. This leads to sig-
nificant finite-basis errors in the PCF, as can be seen in Fig.
7. We have therefore used a scheme for imposing the Kim-
ball condition on the PCF, which is described in Appendix B.
The remaining finite-basis errors in the cusp-corrected PCF
are relatively small, as can be seen in Fig. 7.

Numerical tests show that the error in the noncusp-
corrected contact PCF g�0� falls off as Ecut

−1/2, see Fig. 8. It is
therefore possible to extrapolate the contact PCF to basis-set
completeness without adding cusp-correction functions. The
fit can be considerably improved by including a term going
as Ecut

−1 , i.e., we fit gEcut
�0� to

gEcut
�0� = g��0� + a1/2Ecut

−1/2 + a1Ecut
−1 . �60�

Although the extrapolation of the noncusp-corrected PCF to
basis-set completeness using Eq. �60� works well at r=0, it

does not work so well at other r, where the dependence of
g�r� on Ecut is more complex. If one uses the extrapolation
scheme of Eq. �60� anyway, the resulting PCF does not sat-
isfy the Kimball condition.

It can be seen in Fig. 8 that the error in the cusp-corrected
contact PCF falls off relatively rapidly. However, in our final
results for the contact PCF we have used the noncusp-
corrected data extrapolated to basis-set completeness because
these data have been subject to less processing and hence
there is less noise in the estimated contact PCF.

2. Finite-size errors

In an infinite electron gas, g↑��r−s��→1 as �r−s�→�. For
a finite electron gas, however, the density of spin-up elec-
trons far from the positron is effectively reduced because on
average N↑ /N spin-up electrons bind to each positron. So
�1p

↑ �r ,s�→ ��N↑ /Np−N↑ /N� /Vp� �1 /Vp�. Hence g↑��r−s��
→ �N−Np� /N. This suggests that to reduce the finite-size er-
rors in the PCF, the PCF obtained in a finite, N-electron cell
in a nonspin-polarized calculation should be multiplied by
N / �N−Np�, despite the fact that this will violate the normal-
ization condition20 on the finite-system PCF.

Once this finite-size correction has been applied, the PCF
is extremely well converged as a function of system size, as
can be seen in Fig. 9. For the contact PCF we simply average
over the noncusp-corrected contact PCF values extrapolated
to basis-set completeness obtained with N�100. For the
whole PCF, we note that it is more important to use a large
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FIG. 6. �Color online� Annihilating-pair MDs for positrons im-
mersed in HEGs of density parameter �a� rs=2 and �b� rs=5. The
MDs have been extrapolated to basis-set completeness. The curves
labeled “Nonint.” show the MD of a free-electron gas.
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plane-wave cutoff energy than a large number of electrons N,
and hence we report cusp-corrected PCFs obtained with N
=54 electrons at the largest plane-wave cutoff energy avail-
able at each density.

VIII. RESULTS

A. Relaxation energy

The fit to our relaxation-energy data shown in Fig. 10 is

���rs� =
A−1rs

−1 + A0 + A1rs − 0.262005B2rs
2

1 + B1rs + B2rs
2 , �61�

where A−1=−0.28877, A0=−0.22339, A1=0.011536, B1
=0.012331, and B2=0.020016. This fitting form tends to the
energy of the positronium ion �Ps−� at low density24 and
could be used as the LDA electron-positron correlation func-
tional in a two-component DFT calculation for a positron in
a real system. Equation �10� does not yield the exact high-
density behavior calculated within the random-phase ap-
proximation, although this is only relevant for rs�0.1.15

Our relaxation-energy results are in reasonable agreement
with the many-body-theory results of Refs. 25 and 27 but are
in clear disagreement with the quantum Monte Carlo �QMC�
data of Ref. 28. The orbitals in the trial wave functions used
in the QMC calculations reported in Refs. 28 and 29 were
single plane waves for the electrons and the positron, which
do not allow for the strong pairing that occurs between the
electrons and the positron at low density. In common with

the most accurate many-body-theory results, our relaxation
energy is higher than the energy of a positronium atom at the
lowest density considered of rs=8. Neglecting the extra in-
teraction as suggested by Leung et al.9 leads to relaxation
energies that increase monotonically towards the DFT-LDA
energy of a positronium atom.

B. Annihilating-pair MD

The annihilating-pair MD depends sensitively on the ac-
curacy of the correlated electron-positron pairing orbital
�i�x� and we expect that our fully self-consistent treatment
of the pairing orbitals will be more accurate than previous
approaches.19,30 As the system size is increased, the momenta
at which the MD is defined become more finely spaced and
the finite-size errors at each point are reduced. We have
therefore fitted a model curve to our MD data obtained at the
largest system size available at each density. We have veri-
fied that our results are well converged with respect to sys-
tem size.

Electron-positron annihilating-pair MDs at different den-
sities are plotted in Fig. 11. The normalization is chosen such
that �0

�4�p̄2��p̄�dp̄= �4 /3��kF
3 . Our results clearly show the

enhancement of the annihilating-pair MD at the Fermi edge
predicted by Kahana19 but our MD data differ quantitatively
from the previous results19,30 for 1�rs�8. In this range, we
find the greatest enhancement of the MD at the Fermi edge at
rs=1, whereas the previous works19,30 found the enhance-
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ment of the MD to increase when the density is lowered. The
previous works19,30 did not report the weight in the MDs
after the Fermi edge. In our calculations the exponential tail
of the MD after the Fermi edge carries an increasing amount
of weight as the density is lowered, which is responsible for
the decrease in the enhancement that we find at the Fermi
edge. We find the exponent s in Eq. �54� to be on the order of
rs over the range of densities we have studied. It is essential
to include the extra interaction when calculating the MD;
omitting it results in a dramatic increase in the enhancement
at the Fermi edge and a substantial transfer of weight to
momenta after the Fermi edge, as shown in Fig. 11. The
Kohn-Sham orbitals do not describe the electron-electron
correlation. Such correlation effects �i� tend to oppose the
enhancement at the Fermi edge, particularly at low densities,
and �ii� introduce an algebraically decaying tail in the MD.31

C. PCF

Electron-positron PCFs at different densities are plotted in
Fig. 12. It is clear that the contact PCF increases rapidly as
the density is reduced. For densities lower than rs=3 there is
a region in which g�r��1, so the probability of finding an
electron is reduced in this region. At higher densities this
region is either nonexistent or very shallow and far from the
positron. The extra interaction has relatively little effect at
short range but results in a more pronounced dip in the PCF
at longer range.

D. Contact PCF

The electron-positron contact PCF is plotted in Fig. 13.
Adapting the fitting form of Ref. 7 slightly, we represent our
contact PCF data by

g�0� = 1 + 1.23rs + a3/2rs
3/2 + a2rs

2 + a7/3rs
7/3 + a8/3rs

8/3

+ 0.173694rs
3, �62�

where a3/2=−1.56672, a2=4.16983, a7/3=−3.579, and a8/3
=0.836389 are determined by fitting. Equation �62� satisfies
both the high-density �random-phase approximation�15 limit-
ing behavior and the low-density �Ps−� limiting behavior dis-
cussed in Appendix C.

The extra interaction reduces the contact PCF at all the
densities we have studied, by about 8% at rs=1, rising to
about 15% at rs=8. Our electron-positron PCF results are in
reasonably good agreement with the many-body-theory re-
sults in the literature,25,26,33,34 but are in strong disagreement
with the QMC results,28,29 which give much smaller values
for the reasons discussed earlier.

The results obtained by Leung et al.9 are, in principle,
equivalent to our results without the extra interaction. The
agreement is excellent at high density but less good at low
density. The difference could be due to the use of different
parametrizations of the LDA exchange-correlation func-
tional, or finite-size errors, or errors arising from the process
of extrapolation to basis-set completeness.

IX. CONCLUSIONS

In summary, we have used a modified one-component
DFT code to calculate the relaxation energy, contact PCF,
and annihilating-pair MD of a single positron in a HEG by
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working in the frame in which the positron is stationary. A
mean-field theory in the transformed frame gives orbitals
��ri−s�, where ri and s are electron and positron positions,
and therefore electron-positron correlations are included ex-
plicitly. It is interesting to observe that the data required to
parametrize a two-component exchange-correlation density
functional can be obtained using one-component DFT calcu-
lations. Our results for the positron relaxation energies and
annihilation rates are in broad agreement with earlier theo-
retical work based on many-body-theory results, except the
QMC results28,29 which are based on inadequate trial wave
functions. The annihilating-pair MDs are particularly sensi-
tive to the description of the electron-positron correlation.
We have reported MDs for a wider range of densities than
previous studies, and our calculations extend to momenta
after the Fermi edge, where we find an exponential decay of
the MD with momentum. The MD bears the imprint of the
DFT description of the electron-electron correlations, and in-
cluding an explicit many-body description would give a
power-law decay of the MD after the Fermi edge.
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APPENDIX A: EVALUATING THE DFT ENERGY
OF AN ISOLATED POSITRONIUM ATOM

We have used the bare Coulomb potential and a reduced
mass of 1/2 to calculate the DFT energy of an isolated pos-
itronium atom. Fixed-occupancy calculations were per-
formed in cubic cells at the � point. For each cell length Lcell,
the energy was extrapolated to basis-set completeness by fit-
ting to

E�Ecut,Lcell� = E��,Lcell� + aLcell
Ecut

�Lcell, �A1�

where aLcell
is a fitting parameter and the exponent �Lcell

turned out to be about 1.44 at all cell lengths.
The resulting energies were then extrapolated to infinite

cell size by fitting to

E��,Lcell� = E��,�� + b exp�sLcell� , �A2�

where b and s are fitting parameters. The exponential form is
appropriate since the positronium wave function falls off ex-
ponentially.

The DFT-LDA energy of an isolated positronium atom
was found to be −0.23098 a.u. while the DFT-PBE energy

was found to be −0.23444 a.u. These are a little smaller in
magnitude than the exact value of −0.25 a.u.

APPENDIX B: KIMBALL CUSP CONDITIONS
ON THE ELECTRON-POSITRON PCF

The Kimball cusp condition23 on the electron-positron
PCF g↑�r� is

	 � ḡ↑

�r



r=0
= − g↑�0� , �B1�

where the bar denotes a spherical average. �To prove this,
note that ��̄�r��2= ���r��2+O�r2�, then differentiate the
spherical average of Eq. �57� with respect to r and make use
of the Kato cusp conditions35 on the wave function.�

The PCF evaluated with orbitals expanded in plane waves
clearly cannot satisfy Eq. �B1� for finite plane-wave cutoff
energies Ecut. This results in large finite-basis errors in the
PCF near r=0.

To enforce the Kimball cusp condition, we replace the
short-range region of the PCF with a function that has the
appropriate behavior. A plane-wave cutoff energy of Ecut im-
plies that only G vectors with G��2Ecut are used to de-
scribe the orbitals and hence that variations on a length scale
less than rcusp�2� /�2Ecut cannot be described accurately.
So we discard the region of the PCF with r�rcusp and re-
place it with exp�c0−r+c2r2+c3r3�, where c0, c2, and c3 are
determined by matching the value, derivative, and second
derivative of g�r� at r=rcusp.

APPENDIX C: LOW-DENSITY LIMITING BEHAVIOR
OF THE ELECTRON-POSITRON CONTACT PCF

For an isolated positronium atom, the normalized wave
function is ��r�=exp�−r /2� /�8�. The probability density
that the electron and positron coincide is ���0��2=1 / �8��.

Consider a positron immersed in a HEG at low density.
Suppose the system resembles a single positronium atom in a
very dilute electron gas in each primitive cell. The density of
the center of mass of the positronium atoms is 1 /Vp. Hence
the pair density for both the electron and the positron being
at r is �2p�r ,r��1 / �8�Vp�. The electron and positron den-
sities are �1�r�=3 / �4�rs

3� and �p�r�=1 /Vp, respectively. So
the contact PCF is g�0��rs

3 /6.
Now let us make the more realistic assumption that the

low-density limit resembles an isolated Ps− ion. For an iso-
lated Ps− ion the electron-positron contact probability density
is 0.020733198005108 a.u. �Ref. 24� So in the low-density
limit g�0��0.1736940334353862647rs

3.
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