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The dynamic spin structure factor S�k ,�� of a system of spin-1/2 bosons is investigated at arbitrary strength
of the interparticle repulsion. As a function of � it is shown to exhibit a power-law singularity at the threshold
frequency defined by the energy of a magnon at given k. The power-law exponent is found exactly using a
combination of the Bethe ansatz solution and an effective-field theory approach.
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The remarkable progress achieved by the theory of one-
dimensional �1D� quantum fluids is rooted in the fact that
dimensionality imposes severe constraints on the fluid’s low-
energy excitation spectrum. Due to these constraints the in-
vestigation of the low-energy dynamics of the fluid reduces
to choosing the effective-field theory from a limited number
of universality classes. Perhaps the most ubiquitous �and
most thoroughly investigated� is the universality class called
the Luttinger liquid.1 Other nontrivial examples include
states with non-Abelian currents and spin-incoherent2–4 and
ferromagnetic liquids.5–9 For all such cases there exist well-
developed analytical methods allowing one to calculate in-
frared asymptotics of dynamical correlation function, spec-
tral properties, and scaling dimensions of local observables.

In a series of recent papers5–19 it has been found that the
dimensionality constraints and the resulting universality may
extend far beyond the low-energy sector of the excitation
spectrum of the fluid. It was shown that there exists a curve
�−�k� in the �k ,�� space at which spectral functions exhibit
power-law singularities of the type

S�k,�� � c�k���� − �−�k���� − �−�k����k�. �1�

Here, ��x� is the Heaviside step function, ��k� and c�k� are
some momentum-dependent functions, and �−�k� is the en-
ergy of the lowest excited state of the fluid at a given mo-
mentum k. In a generic 1D fluid �−�k��0 for all k except a
discrete set of points defined by the Luttinger theorem. The
spectrum of momentum-dependent anomalous exponents
��k� in Eq. �1� is a natural generalization of the spectrum of
scaling dimensions of the low-energy effective theory.
Understanding the structure of the spectrum of ��k� will
greatly advance the theory of 1D quantum fluids. There are
several approaches to this problem. In Refs. 10 and 12 per-
turbation theory was used to get ��k� in a fermionic system.
In Refs. 13–15 an effective-field theory approach
establishing a link with the mobile quantum impurity
problem20–22 was proposed. This approach was comple-
mented by Bethe ansatz �BA� calculations for several inte-
grable models: Calogero-Sutherland,11 Heisenberg,16,17,19 and
Lieb-Liniger.18 Constraints on ��k� implied by symmetries
of microscopic Hamiltonian were discussed in Refs. 8 and
15.

In a recent work5 on the dynamical properties of a
strongly repulsive ferromagnetic Bose gas, observable phe-

nomena such as spin trapping and Gaussian damping of spin
waves were predicted and a link between these phenomena
and the singular behavior �Eq. �1�� of the dynamic spin struc-
ture factor was established. It was shown that, at infinite
pointlike repulsion and for k→0,

��k� � − 1 +
K

2
� k

kF
�2

, �2�

where K is the Luttinger parameter and kF=��0 with �0 be-
ing the average particle density. Assuming the validity of Eq.
�2� at a large but finite repulsion, a crossover between
trapped and open regimes of spin propagation was character-
ized completely. A different approach to the dynamics of the
same system proposed in Ref. 6 confirmed Eq. �2�. The ap-
proach of Ref. 6 was further developed in Ref. 7, demon-
strating that for infinite pointlike repulsion ��k� has the form
�2� for arbitrary k. In Ref. 8 the small k expansion of ��k�
was shown to have the form �2� for arbitrary interparticle
repulsion. However, the case of arbitrary k and interparticle
repulsion remains unexplored.

In this Rapid Communication we investigate the behavior
of ��k� and �−�k� for the dynamic spin structure factor of a
ferromagnetic system of spin-1/2 bosons interacting through
a pointlike repulsive potential of arbitrary strength. This sys-
tem is described by the Yang-Gaudin model.23 Combining
the Bethe ansatz with an effective-field theory, we obtain our
main result: explicit expressions �20�–�22� for ��k� at arbi-
trary k and interparticle repulsion.

The Hamiltonian of the Yang-Gaudin model is

H = �
0

L

dx��x�↑
†�x�↑ + �x�↓

†�x�↓ + g�2� , �3�

where �↑�↓��x� ,�↑�↓�
† �x� are canonical Bose fields satisfying

periodic boundary conditions on a ring of circumference L
and ��x� is the total particle density operator. We consider
the dynamic spin structure factor

S�k,�� =� dx dt ei��t−kx�	 ⇑ 
s+�x,t�s−�0,0�
 ⇑ � . �4�

Here, s+�x�=�↑
†�x��↓�x� is the local spin raising operator and

s−�x�= �s+�x��†. The average in Eq. �4� is taken with respect
to a fully polarized ground state 
⇑ � of the Hamiltonian �3�
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satisfying s+�x�
⇑ �=0 for all x. In the spectral representation
Eq. �4� takes the form

S�k,�� = �
f

�„� − Ef�k�…
	f ,k
s−�k�
 ⇑ �
2, �5�

where the sum is taken over the eigenstates 
f ,k� of the
Hamiltonian �3� carrying the momentum k. The energies
Ef�k� are defined by H
f ,k�=Ef�k�
f ,k�. The frequency �−�k�
in Eq. �1� is given by �−�k�=minf Ef�k�. Thus, the calcula-
tion of �−�k� reduces to the analysis of the energy spectrum
of excitations. The calculation of ��k� directly from formula
�5� is a far more difficult task. It requires the knowledge of
the matrix element and their resummation procedure. For
most integrable models, including Yang-Gaudin, such a cal-
culation is beyond the reach of the existing theory. A way to
bypass this problem is to combine the BA with an effective-
field theory in a way similar to the derivation of scaling
exponents in Luttinger liquids.24–29 This is the route we take
in our calculations.

We begin our analysis with a brief description of BA
equations and a calculation of �−�k�. A general solution to
the Yang-Gaudin model is given by the nested BA.23 All the
states 
f ,k� in Eq. �5� lie in the sector with the z projection of
the total spin given by Sz=N /2−1. In this sector Bethe’s
wave functions are characterized by a set of quasimomenta
	1 , . . . ,	N ,
� satisfying

L	 j + �
k=1

N

��	 j − 	k� = 2�Ij + ��2	 j − 2
� + � . �6�

Here, ��	�=2 arctan�	 /g� is the two-particle phase shift and
Ij =nj − �N+1� /2, where nj are a set of distinct integers. The
branch of ��	� is chosen so that �����= ��. The total en-
ergy E and momentum P of a system are given by
E=� j=1

N 	 j
2 and P=� j=1

N 	 j, respectively. The quasimomentum

 enters in E and P indirectly, through the solution of Eq. �6�.
In the limit 
=� Bethe’s equations �6� are identical to Be-
the’s equations of the fully polarized system,30 Sz=N /2,
which is equivalent to the Lieb-Liniger model.31,32 The dis-
tribution of Ij in the ground state of the model is

Ij = j −
N + 1

2
, j = 1, . . . ,N . �7�

Introducing the quasimomenta density ��	 j�
=1 / �L�	 j+1−	 j�� and taking the thermodynamic limit
0�0� as N ,L→�, one gets the integral equation

��	� −
1

2�
�

−�

�

d� ����K�	,�� =
1

2�
�8�

for the quasimomenta in the state �7� and 
=�. The kernel
K�	 ,���K�	−�� is K�	�=���	� /�	=2g / �g2+	2�. Note
that ��	� should satisfy �−�

� d	 ��	�=�0. This formula to-
gether with Eq. �8� is used to get the value of the Fermi
quasimomentum � as a function of the particle density �0.
The ground-state energy in the thermodynamic limit is

E0 = L�
−�

�

d		2��	� �9�

and the momentum of the ground state is zero.
Consider now the state characterized by a finite value of 


and Ij given by their ground-state values �Eq. �7��. This state
is an excitation above the vacuum, which we shall call a
magnon. Introducing the so-called shift function33 by

F�	 j 

�= �	 j − 	̃ j� / �	 j+1−	 j�, where 	 j are ground-state

quasimomenta and 	̃ j are those of the excited state, we get
the following integral equation for F in the thermodynamic
limit:

F�	

� −
1

2�
�

−�

�

d� K�	,��F��

� = −
� + ��2	 − 2
�

2�
.

�10�

The momentum of the excited state is

k = �
−�

�

d	 ��	��� + ��2	 − 2
�� , �11�

and its energy above the ground state is

�−�k� = −
1

�
�

−�

�

d	 ��	�K�2	 − 2
� . �12�

Here, �− is written as a function of the physical �observable�
momentum k, which is related to the quasimomentum 
 by
the integral equation �11�. The quasienergy ��	� is given by
the solution of the integral equation

��	� −
1

2�
�

−�

�

d� ����K�	,�� = 	2 − � �13�

satisfying a condition �����=0. The parameter � entering
Eq. �13� is the chemical potential, defined by �= ��E0 /�N�L,
where E0 is found from Eq. �9�. One can show that at
small k the dispersion law �12� is parabolic �Ref. 34�,
�−�k�=k2 /2m�, with the effective mass satisfying
m�

−1=−��g�0
2�−1�−�

� d	 ��	�.
Another way to excite the system is to create a particle-

hole pair by moving one of the quantum numbers Ij in Eq.
�6� outside of the ground-state distribution �7�. Such excita-
tions are analyzed in detail in Ref. 32 �see also Ref. 33�. In
particular, at small momentum they are shown to be equiva-
lent to sound waves propagating at the velocity

vs =
1

2�����
� ���	�

�	
�

	=�

. �14�

Any excitation in the N-particle sector with Sz=N /2−1
consists of several particle-hole pairs and one magnon. The
exact lower bound of the particle-hole continuum32 and the
dispersion curve of the magnon are illustrated in Figs. 1�a�
and 1�b�. For all values of the coupling constant g the mag-
non branch lies below the particle-hole continuum. It is thus
the single magnon dispersion �Eq. �12�� that gives the exact
lower bound of the excitation spectrum.

While �−�k� is found using BA exclusively, in order to get
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the threshold exponent ��k� in Eq. �1� for the function �4� we
need to combine the BA solution with a low-energy
effective-field theory. To do so, we adapt the method pro-
posed in Ref. 17 to the nested BA case discussed here. By
doing so we reduce the initial problem to the problem of a
Luttinger liquid minimally coupled to the infinitely heavy
spin degree of freedom. The latter is solved explicitly by a
unitary transformation. As a first step we introduce an auxil-

iary microscopic theory with a local Hamiltonian H̃ depend-
ing on k as an external parameter and having the following
properties: �i� it conserves the total momentum, which will
be denoted by q; �ii� its excitation spectrum at q=k is gap-

less; and �iii� its structure factor S̃ satisfies

S̃�q,��
S„q,�−�k� + �…

→ 1, q = k, � → 0. �15�

In integrable models H̃ can be constructed as a linear
combination of a finite number of mutually commuting
local integrals of motion. The eigenstates 
f ,q� of H are at

the same time the eigenstates of H̃; therefore,

S̃�q ,��=� f�(�− Ẽf�q�)
	f ,q
s−�q�
⇑ �
2, where H̃
f ,q�
= Ẽf�q�
f ,q�. Like for H, the low-energy spectrum of H̃ con-
sists of sound waves and a magnon. The energy of the mag-
non is proportional to �k−q�2 as q→k. Condition �15� re-
quires that the velocities of the right- and left-moving sound
waves be different and given by35

v� = vs � ��−�k�/�k , �16�

where vs is given by Eq. �14�.
The dynamics of sound waves is governed by the Lut-

tinger Hamiltonian

H0 = �
r=�

Hr, Hr =
vr

4�
�

0

L

dx:��x�r�x��2:, �17�

where the operators �r are chiral boson fields
��r�x� ,�r��x���= i�r�rr� sgn�x−x�� related to the micro-
scopic particle density by

��x� = �0 + �2��−1�K��x�+�x� − �x�−�x�� �18�

and the symbol :: stands for the boson normal ordering. In
order to describe the low-energy magnon excitation we in-
troduce the spin-density field s̃�x�, related to the microscopic
spin density by sz�x�= s̃z�x�+�0 /2 and s��x�=e�ikxs̃��x�,
where s�=sx� isy are the local spin-ladder operators of Eq.
�4�. Within the effective theory the operators s̃� are smooth
spin-flip fields. Generally, a local spin flip may excite sound
waves. Thus, an effective theory should contain a coupling
between s̃ and ��. There is no general prescription on how
to derive the corresponding coupling term microscopically.
Here, we construct it as the minimal local coupling respect-
ing the SU�2� symmetry of the microscopic theory, and van-
ishing in the absence of magnon excitations36

Hi = − �
r=�

vr�r

2�
�

0

L

dx �x�r�x�s̃z�x� . �19�

Other possible couplings involve higher gradient terms and
higher harmonics of the density operator �18�. Those are in-
frared irrelevant and do not contribute to the critical expo-
nents. The kinetic-energy density of the spin field is repre-
sented by a higher gradient term �xs̃+�x��xs̃−�x� that can also
be neglected in the calculation of the critical exponents.37

The total Hamiltonian of the effective theory describing the
dynamics near the threshold is thus given by Heff=H0+Hi.
This Hamiltonian is diagonalized by a unitary transformation
eiSHeffe

−iS with S= �2��−1�0
Ldx��+�+�x�−�−�−�x��s̃z�x�. For

the function �4� this gives

��k� = − 1 +
1

4�2 ��+
2 + �−

2� . �20�

What remains is to determine the coupling constants �� in
terms of the parameters of the microscopic theory. This is
done by the comparison of the low-energy spectrum of the

microscopic Hamiltonian H̃, found from the BA solution,
and the spectrum of the effective Hamiltonian Heff.

33 This
procedure yields

�r = 2�rF�r�

�, r = � 1, �21�

where F is defined by the solution of the integral equation
�10�. We solve this equation and find ��k� numerically for
different values of the coupling constant �=g /�0. For easier
comparison with Eq. �2� we represent our result in the form

��k� = − 1 +
K

2
� k

kF
�2

+
�K − 1�2

K
��k� , �22�

where kF=��0 and K=kF /vs is the Luttinger parameter cal-
culated using Eq. �14�.

The function ��k� for different values of the Luttinger
parameter is shown in Fig. 2. One can see that at large values

FIG. 1. Excitation spectrum in the model �3�. �a� and �b� show
the dispersion curve �−�k� �Eq. �12�� of the magnon �solid line� and
the exact lower bound of the particle-hole continuum �dashed line�
for two values of �=g /�0. �c� shows the �-dependent exact lower
bound Ep of the particle-hole continuum at k=kF���0. �d� shows
the �-dependent magnon energy Em=�− at k=kF.
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of � �or K close to 1� the small k expansion derived in Ref.
5 is valid for all values of k, in agreement with Ref. 7. It is
interesting to note that the leading correction to this result is
of the second order, �K−1�2��−2. At arbitrary interaction

strength ��k��k4 as k→0; therefore, the small k expansion
of ��k� found in Ref. 5 remains valid for all values of �,
confirming the general result of Ref. 8. Note that ��k� also
vanishes at k=2kF.

The problem considered in the present work is directly
related to the x-ray edge problem in the theory of the mobile
impurity. In this context, the model �3� was investigated in
Ref. 22. The approach of Ref. 22 exploits a transformation to
the comoving reference frame and combines BA with an
effective-field theory similar to ours. The method of Ref. 22
has recently been successfully applied to the Heisenberg
model and later was shown19 to produce results equivalent to
the method of Ref. 17 used here. A direct comparison of the
present work with Ref. 22 is however not possible, because
the latter is largely based on a Bethe ansatz solution38 vio-
lating continuity conditions.
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