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Summary: With the extent and density of urbanised land-use set to increase, implications arise for 

the quality of semi-natural and ecological processes. This paper incorporates empirical evidence from 

a study of gap crossing within a least-cost path methodology to develop a model of functional habitat 

connectivity for P. pipistrellus  within the City of Birmingham.  The model takes into particular 

consideration lighting and distance from trees, which are known to influence routes chosen by this 

species. The landcover types responsible for delivering function connectivity were then analysed, 

with initial results suggesting greater importance than would be expected for some landcover types 

such as gardens. 
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1. Introduction  
 

Movement between resource patches is an important process in the life history of many species.  The 

role of landscape structure in facilitating movement is of particular interest to landscape ecologists 

(Belisle 2002).   However, structurally connected habitats do not necessarily equate to functionally 

connected habitats.  Additional characteristics of the landscape may also influence the degree to 

which movement between patches is impeded such as the nature of land-cover and land-use types.  

Translating species specific responses to movement barriers into travel costs may be a particularly 

effective approach to estimating functional connectivity (Belisle 2005). 

 

The extent of urbanised land-use is set to increase, characterized by an increase in sealed land-cover 

density (McKinney 2002) and fragmentation of land-use patches (Luck and Wu J 2002; Zhang et al 

2004).  Green networks and corridors have been influential in guiding city planning in many areas of 

the world (Fleury and Brown 1997; Turner T 2006).  However, there are very few studies that focus 

on their role in delivering functional connectivity within urban areas and how this varies with the 

density and composition of the built form.  Some bat (Chiroptera) species are sensitive to structural 

connectivity as well as land-cover types and land-uses, so are ideal model organisms for analyses of 

this nature.    

 

This paper seeks to analyse functional connectivity for Pipistrellus pipistrellus (Schreber 1774), a 

nocturnal species of insectivorous bat commonly present in urban areas in the UK.  Least-cost 

analysis is a method widely used to analyse habitat connectivity and animal movement (Ganskopp et 

al. 2000, Halpin and Bunn 2000, Gonzales and Gergel 2007) but often lacks empirical data to inform 

cost values (Rayfield et al 2010). This paper demonstrates the incorporation of empirical evidence 

within a least-cost path methodology to develop a model of functional habitat connectivity for P. 

pipistrellus .  This species is known to move preferentially along tree lines (Verboom 1997), and is 

responsive to artificial lighting (Arelttaz 2000). Estimates of distance and lighting thresholds for gap 

crossing were therefore derived from field surveys, to inform the modelling of a cost surface. The 

implications for functional connectivity of an urban landscape were subsequently explored through 

least cost path modelling. 

 

 

 



2. Methodology 

 

2.1 Data Inputs 

 

A high-resolution nighttime photographic survey (2008) was secured for the City of Birmingham 

(UK), resampled to 1m pixel resolution, ground-truthed and reclassified to represent ground incident 

lux (lx).  Vegetation cover was estimated using aerial near-infrared photography (2007) at 2m pixel 

resolution and was combined with photogrammetric data (2007) to generate a GIS layer representing 

trees greater than 4m in height.  The lighting and tree cover datasets were used to identify gaps in tree 

lines suitable for bat surveys.  24 survey sites were selected, stratified between three median distance 

classes (20-40m, 40-60m and 60-80m) and three median lux classes (0lx, 0-20 and 20+).  The flight 

path of each crossing bat were recorded using thermal and infra red cameras and mapped in a GIS 

(Fig 1).  The crossing distance and maximum lux for each flight path were calculated.  Bat activity 

was recorded at each site, but where no crossing events were recorded, the distance and lux for the 

darkest possible flight path were calculated.  Data from the most common bat species P. pipistrellus 

was then used to inform the creation of a cost surface for the study area.   

 

 

 
Figure 1:  An example of a lit gap in a tree line, overlain with two bat flight paths. 

 

2.2 Creating a cost surface  

 

Using data from the field studies of flight paths, binomial models for gap crossing were developed for 

both distance from trees (metres) and artificial light (lux).  The modelled probabilities of crossing 

were in turn translated into look-up tables from which distance from trees and light  were reclassified 

into surfaces representing the probability that a bat would move through a given a location.  These 

surfaces were then inverted to convert the probabilities into cost surfaces, then multiplied together to 

reflect the interaction between distance from trees and light. The final cost surface represents the 

impedance on bat movement through the landscape. 

 

2.3 Calculating least-cost paths  

 

In order to simulate the movement of our target bat species through the landscape, a series of least-

cost paths were developed representing the routes of lowest accumulated cost which bats would in 



theory be most likely to use.  Least-cost surfaces were generated for each of eleven origins, 

representing a selection of ponds throughout the study area, chosen for similar size and 

characteristics.  Ponds were chosen, given their value as feeding sites for P pipistrellus and therefore 

the importance of their accessibility.   A grid of sample points evenly placed at 50m intervals were 

then specified as the destinations to which least-cost paths would be generated.  Only sample points 

falling within a 500m radius of the associated pond where used as inputs for this stage of the analysis, 

as this was the maximum spatial scale found to be relevant to explaining P. pipistrellus  activity on 

urban ponds (Hale et al. in press). 

 

The least-cost paths were made into a network data set, then using an Origin Destination (OD) cost 

matrix the length of routes along the least-cost paths to each destination was calculated using ArcGIS 

Network Analyst.  The number of sample points whose least-cost path to the pond was less than 

500m was used as an indicator of functional connectivity.  This was intended to reflect the proportion 

of landscape that theoretically has access to each pond, facilitating comparison between different 

parts of the landscape.   

 

By buffering the least-cost paths from each pond by 10m and extracting the underlying landcover as 

represented by the Ordnance Survey MasterMap topography layer, an indication of the land cover 

types responsible for delivering least-cost paths at each site was derived.  In addition, for each pond 

the proportion of land cover within 10m of the paths was compared to the overall landcover within 

500m of the pond.  This provided an indication of land cover types that were disproportionately 

responsible for delivering connectivity. 

 

All data processing and analysis was computed using python script with ArcGIS10. 

 

3. Results 

 

 
Figure 2: Contrasting least -cost path networks surrounding a) a city centre pond and b) a pond 

located in a residential suburb 

 

 



The landscape across the study area varies both in the density of built landcover as well as associated 

tree cover and lighting levels.  These in turn influence the functional capability of the landscape.  For 

example, figure 2 shows the least-cost paths for two of the ponds studied.  Pond A is situated in a city 

centre location with the density of built landcover within 500m at 81%, with a proportion of sample 

points with least-cost paths to the pond of less than 500m of 58%.  Meanwhile Pond B is situated in a 

residential suburb with a built density of only 39% and with 69% of points reached within 500m.  In 

general, there is a pattern of decreasing landscape connectivity with increasing built density.  40% of 

least cost routes pass through the built form (man-made surfaces), while of the remaining landcover 

types, gardens account for 31% of routes and semi-natural green spaces account for 24%.  These 

figures, however, fail to account for the proportions of overall landcover available.  The next step 

was, therefore, to take into consideration the difference between the proportion of land cover 

responsible for delivering the least-cost paths and the overall proportion of that land cover type 

available.  Figure 3 shows that gardens appear to deliver a greater proportion of least-cost paths than 

would be expected if all landcover was favoured equally.  Meanwhile roads and other built surfaces 

are less favoured.  The variation between sites appears to be due to the surrounding built density, with 

gardens delivering a disproportionately high level of connectivity in low density areas. 
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Figure 3: Difference between landcover delivering least-cost paths and entire landcover available 

within 500m of ponds  

 

 

4. Discussion  
 

The initial results presented suggest greater importance for some landcover types such as gardens 

than would be expected, in delivering connectivity.  That modelled functional landscape connectivity 

for P. pipistrellus  appears to reduce with built density has implications for housing density targets 

and urban biodiversity policy.  The results are potentially sensitive to the way in which the empirical 

evidence is interpreted and input into the model and further work is, therefore, also required to test the 

sensitivity of the model to these inputs.  In addition, the spectral quality of the lighting and 

composition of the tree lines may also be significant and should be explored further. 

 

One limitation is that the model assumes all individuals within a population have the same ability and 

motivation to disperse and that they incur the same movement costs.  This may not be the case 

(Belisle 2005) and models may be further refined to reflect this.  A second limitation is that our model 

assumes individuals are dispersed evenly over the landscape and are all trying to move towards a 



central point (pond).  In reality, roosts will not be spread evenly and bats may move between several 

ponds and other feeding areas.  Therefore, future work might also consider modelling connectivity 

between potential roost locations and multiple feeding destinations and comparing bat activity of 

routes with differing modelled costs.  
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