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We consider two-component one-dimensional quantum gases at special imbalanced commensurabilities which
lead to the formation of multimer (multiparticle bound-states) as the dominant order parameter. Luttinger liquid
theory supports a mode-locking mechanism in which mass (or velocity) asymmetry is identified as the key
ingredient to stabilize such states. While the scenario is valid both in the continuum and on a lattice, the effects of
umklapp terms relevant for densities commensurate with the lattice spacing are also mentioned. These ideas are
illustrated and confronted with the physics of the asymmetric (mass-imbalanced) fermionic Hubbard model with
attractive interactions and densities such that a trimer phase can be stabilized. Phase diagrams are computed using
density-matrix renormalization group techniques, showing the important role of the total density in achieving the
latter phase. The effective physics of the trimer gas is studied as well. Last, the effect of a parabolic confinement
and the emergence of a crystal phase of trimers are briefly addressed. This model has connections with the
physics of imbalanced two-component fermionic gases and Bose-Fermi mixtures as the latter gives a good
phenomenological description of the numerics in the strong-coupling regime.
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I. INTRODUCTION

The notions of quantum liquids and their instabilities are
paradigmatic for condensed-matter physics [1]. For multicom-
ponent fluids, an important set of instabilities is associated with
interactions between components. A classic example is the
Cooper instability of a spin-1/2 Fermi liquid: Even an infinites-
imal attractive coupling between fermions of opposite spins
drives a phase transition into the Bardeen-Cooper-Schrieffer
superconductor [2]. A one-dimensional (1D) counterpart of
the Fermi liquid, the spinful Luttinger liquid, has a similar
instability, where an attractive interspin coupling opens a gap
in the spin channel [3,4].

Traditionally, the bulk of the discussion on two-species
liquids assumed the SU(2) spin symmetry. The recent years
have witnessed a growing availability of experimental studies
of mixtures of unlike particles. This includes loading ultracold
atoms to spin-dependent optical lattices [5] and trapping
atoms of different masses [6] or even different statistics
[7]. While most of experimental progress so far is in the
domain of ultracold atoms, we stress that the relevance of
such asymmetric mixtures is not confined to the realm of
cold gases: Dealing with more traditional solid-state systems,
one faces an asymmetric mixture situation as soon as the
Fermi level spans several bands (which a priori need not be
equivalent). This setup is typical for such diverse materials
as semimetallic compounds, mixed-valence materials, organic
superconductors [8], small-radius nanotubes [9], and even
graphene-based heterostructures [10].

A generic question immediately arises: Given a two-
component mixture, what is the role of (the lack of) SU(2)
symmetry? Or, more precisely, does the symmetry between
components limit the set of instabilities of a liquid? Clearly, the
answer might depend on the universality class of the liquid and
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on the particular way the symmetry is broken. The simplest,
albeit nontrivial, way of breaking the symmetry is to assume
species-dependent masses of the particles. Even if we consider
the few-body problem, this is known to bring new physics
like the Efimov phenomenon: While for an equal-mass Fermi
liquid the only allowed bound state is a Cooper pair, three-body
bound states (trimers) appear once the mass ratio exceeds a
certain threshold [11]. The atom-dimer scattering is strongly
affected by the mass asymmetry [12] and the ultimate fate of
a Fermi liquid in presence of the Efimov effect is currently
an open question being actively investigated [13]. All these
theoretical considerations are strongly motivated by cold-atom
experiments which have recently achieved degeneracy of
Fermi gases with different masses [6] and spin-imbalanced
two-component fermionic gases [14].

The physics of 1D quantum many-body systems offers
powerful methods [4], both analytical and numerical, to have
quantitative predictions on the fate of the Luttinger liquid in
the presence of perturbations. The role of mass asymmetry
for a two-component Luttinger liquid has been investigated in
the renormalization group (RG) framework originally in the
context of solid-state physics [8,15,16] and recently revisited
mostly in the context of cold atoms [17–25] and supplemented
by numerical investigations [26–29]. Overall, the consensus
was that the only new instability arising due to asymmetry
is the collapse (demixing) instability for large asymmetry
and/or strong interspecies attraction (repulsion). Recently, a
novel family of instabilities was predicted [30] to exist due
to the interplay between polarization and asymmetry: These
instabilities only take place for polarized mixtures of either
statistics and are characterized by the locking of the ratio
of the densities to a rational value. Subsequent work in
Ref. [31] elucidated the relation of these instabilities and
existence of few-body bound states. A qualitative picture
of the mode-locking mechanism and the strong-coupling
limit of the trimer formation is given in Fig. 1. The latter
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FIG. 1. Qualitative formation of trimers in the weak-coupling
picture of the bosonization (left) and in the strong-coupling picture
for large interactions (right).

regime recalls another approach to multiparticle bound-states,
which is the use of many-color (N -component) fermions
[32–34] with which the physics of the trimers share qualitative
features.

This paper is divided in two main parts: The first one
investigates in detail the bosonization approach and the mode-
locking mechanism mentioned above, while the second is
dedicated to the specific but important example of the 1D
asymmetric Hubbard model using the density-matrix renor-
malization group (DMRG) technique [35]. The predictions of
the first part account for most of the numerical data, but a
more phenomenological Bose-Fermi picture is proposed as
a complementary analysis. Other important questions such
as those concerning the effect of a trapping potential or the
emergence of crystal phases are eventually addressed.

II. BOSONIZATION ANALYSIS

In this section, we describe the salient features of the
effective bosonic field theory appropriate to a 1D mixture
of two distinct fermionic (or bosonic) atoms. The aim of
this section is to give a bosonization interpretation for
the formation of few-body bound states and their effective
behavior through a mode-locking mechanism between the
two species. Predictions on the nature of the resulting phase
are then made. The theory is a priori valid for models in
the continuum or the continuous version of lattice models
at generic (i.e., noncommensurate) densities. The effects of
the presence of the lattice on certain commensurate densities
are briefly discussed in Sec. II D. Notation conventions are
standard and taken from Ref. [4].

A. Mode-locking mechanism

The two species are labeled by a pseudospin index σ =
↑ , ↓ and their corresponding densities nσ such that n = n↑ +
n↓ is the total density. Each species can be described by a
scalar field φσ and its dual θσ . The creation operators can be
expressed as a function of these fields, with, for fermions,

�†
σ (x) ∼

(
nσ − 1

π
∂xφσ

)1/2 ∑
p

ei(2p+1)(kσ x−φσ ) e−iθσ , (1)

and, for bosons,

b†σ (x) ∼
(

nσ − 1

π
∂xφσ

)1/2 ∑
p

ei2p(kσ x−φσ ) e−iθσ . (2)

We have included all higher harmonics: As a consequence,
the summation is over all integers [36]. The “Fermi momenta”

kσ = πnσ are a priori not equal to each other, corresponding
to a spin-imbalanced situation. The density operators n̂σ read

n̂σ (x) ∼
(

nσ − 1

π
∂xφσ

) ∑
p

ei2p(kσ x−φσ ). (3)

The effective low-energy Hamiltonian can be written in terms
of the fields φσ and their canonically conjugate momentum
�σ = ∂xθσ /π . In the case of absence of interspecies inter-
actions the effective bosonic theory is given by H0(φ↑) +
H0(φ↓), where

H0(φσ ) = vσ

2π

∫
dx

[
Kσ (π�σ )2 + K−1

σ (∂xφσ )2
]
, (4)

where vσ is the sound velocity and Kσ the so-called Luttinger
parameter, which is equal to one in the free fermions or
free hard-core bosons cases. Taking into account density-
density interactions between species, of the generic form∫
dxdx ′ U (x − x ′)n̂↑(x)n̂↓(x ′) changes the effective theory

and brings new kinds of terms: Zero-momentum terms in the
density representation (3) couples the two spin species through
a bilinear operator,

H1 = g

2π

∫
dx (∂xφ↑)(∂xφ↓), (5)

where g is a forward-scattering constant, and higher harmonics
terms involving multiples of the spatial frequencies kσ :

∑
p,q>0

G±
pq

∫
dx cos [2π (pn↑ ± qn↓)x − 2(pφ↑ ± qφ↓)], (6)

where G±
pq are nonuniversal coupling constants. Clearly, if the

generalized commensurability condition

p n↑ − qn↓ = 0 (7)

is satisfied (with p and q coprime integers), and provided
these terms are relevant, they will tend to lock the up and
down fields together. When the densities are fine-tuned to the
definite commensurability (7), then all other cosine operators
in the sum are oscillating, in which case they do not contribute
in the continuum limit (or they are less relevant for multiples
of p and q). The remaining important operator in the sum (6)
is thus the sine-Gordon term

H2 = G

∫
dx cos

√
8φa, (8)

with the combination

φa = 1√
2

(pφ↑ − qφ↓). (9)

For attractive interactions G < 0 (we argue below that this
choice favors the relevance of the term), energy is minimized
when the field is pinned to 〈φa〉 = 0. Notice again that the
above argument on the mode-locking mechanism does not
rely on the presence of a lattice. Last, the cosine locks a
combination of the bosonic modes but at a generic total
density n, there remains another bosonic mode leaving the full
excitation spectrum gapless. We see that the latter describes
the effective behavior of the bound states. In the following, we
dub φb this massless bosonic mode.
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We can draw a last remark on the operators (6): They
have high scaling dimensions near the free fermion fixed
point and are expected to be irrelevant apart from some
special circumstances which are the object of this work. In the
fermionic language, they involve (p + q)-body interactions of
the form

∑
{k}

q∏
i=1

ψ
†
R↓(ki)ψL↓(k′

i)
p∏

j=1

ψ
†
L↑(k′′

j )ψR↑(k′′′
j ) + H.c., (10)

where the summation over {k} runs over all combinations of
2(p + q) − 1 momenta due to the total momentum conserva-
tion law:

∑q

i=1(ki − k′
i) + ∑p

j=1(k′′
j − k′′′

j ) = 0. Such interac-
tions appear at high order in perturbation theory in a Hubbard
model, for example, or after several steps of a RG treatment.
For practical purposes it is simpler to work with the bosonic
formulation given by Eq. (8), and this is what we do from now
on.

In the following, we assume that the densities are commen-
surate via the condition (7) and analyze the simplified effective
theory written in terms of the ↑ and ↓ fields

H = H0(φ↑) + H0(φ↓) + H1 + H2, (11)

where the velocities vσ and Luttinger parameters Kσ are
determined by the intraspecies interactions. The quadratic part
H0(φ↑) + H0(φ↓) + H1 can be diagonalized by a Bogoliubov
transformation [37], which could give a starting point for
a perturbative RG calculation [8,17,19,20,23]. Due to the
velocity asymmetry, additional couplings are generated and
velocities are renormalized along the flow. The discussion
of the nature of the gapped phases and their correlations
remains unclear. In particular, diagonalizing the quadratic
part H0(φ↑) + H0(φ↓) + H1 of the Hamiltonian (11) does
not give, apart from special choice of the parameters, the
combination (9) that appears in the cosine term H2. In the
next section, we take the following strategy: We look for
the conditions under which the quadratic part and the cosine
term are simultaneously diagonalizable. At the price of a
restriction on the parameters range, the analysis can be done
safely both for the criteria of relevance of the cosine and for the
correlation functions in the single-mode phase. In spite of the
limitation of the approach, we believe the scenario does occur
without this restriction: As shown numerically in Sec. III on
a realistic model, the single-mode multimer phase can span a
wide region of the phase diagram.

Last, we notice that, similar to the phase separation
criteria in two-component mixtures (when one of the mode
velocities vanishes), the single-mode phase will undergo a
phase separation instability when the gapless mode velocity
vb vanishes. We thus expect to find the single-mode phase
surrounded with the two-mode phase and a demixed phase.

B. Field transformation

We have qualitatively discussed the fact that the physics
should generically be described by two fields φs where s =
a,b, with φa = (pφ↑ − qφ↓)/

√
2 being the one entering in

the cosine term (8). In general, it is hard to have a complete
form for the transformation between the φs and the φσ . Such
a transformation is important both for the RG analysis and

the calculation of physical correlators, which are naturally
expressed in terms of the φσ ,θσ fields. Below, we discuss a
special case where the transformation can be performed and
its range of validity.

The simplest transformation, and yet rather general, one can
work with is a linear combination of the fields with coefficients
that are independent of the position:

φ↑ = pa↑φa + pb↑φb, θ↑ = ta↑θa + tb↑θb, (12)

φ↓ = pa↓φa + pb↓φb, θ↓ = ta↓θa + tb↓θb. (13)

When p �= q, excitations corresponding to the eigenmodes
φa,b carry both spin and charge modes which are, respectively,
the sum and the difference of the ↑ and ↓ modes. As the
transformation must preserve the commutation relations

[θσ (x),∇φσ ′(x ′)] = iπδσσ ′δ(x − x ′), (14)

[φσ (x),∇θσ ′(x ′)] = iπδσσ ′δ(x − x ′), (15)

we get that paσ taσ ′ + pbσ tbσ ′ = δσσ ′ . Then we have

ta↑ = pb↓/D, ta↓ = −pb↑/D, (16)

tb↑ = −pa↓/D, tb↓ = pa↑/D, (17)

with the determinant

D = pa↑pb↓ − pa↓pb↑ = (ta↑tb↓ − ta↓tb↑)−1. (18)

In a shortened version, we have φσ = Pφs , where P is the
matrix of the p, and θσ = (P−1)t θs . If P is unitary, the θ and
the φ undergo the same transformation. We now impose that
φa = (pφ↑ − qφ↓)/

√
2, which gives

ta↑ = p√
2
, ta↓ = − q√

2
. (19)

As we want to cancel the cross-terms in Eq. (11), we require
that

v↑K↑ta↑tb↑ = −v↓K↓ta↓tb↓, (20)
v↑
K↑

pa↑pb↑ + v↓
K↓

pa↓pb↓ = −g(pa↓pb↑ + pa↑pb↓), (21)

which can be rewritten as

pv↑K↑tb↑ − qv↓K↓tb↓ = 0 (22)

−
(

p
v↓
K↓

+ gq

)
tb↑ +

(
q

v↑
K↑

+ gp

)
tb↓ = 0. (23)

There exists a nonzero solution only if the condition

v↑

(
v↑ + gp

q
K↑

)
= v↓

(
v↓ + gq

p
K↓

)
(24)

is satisfied. When this condition is satisfied, we have a
one-parameter family of transformations with the desirable
property of having only one eigenmode in the argument of the
cosine operator. The parameter is just the choice of scale of
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the field φb: In 1D, we can change the scale of the Bose field
provided we change accordingly its Luttinger parameter Kb.
Here we choose the scale of φb so that

tb↑ = q√
2

√
v↓
v↑

K↓, tb↓ = p√
2

√
v↑
v↓

K↑. (25)

The condition (24) strongly reduces the range of applicabil-
ity of the transformation: For a given coupling g, the Luttinger
parameters and velocities of each species must satisfy the
above relation. When the transformation can be used, (11)
splits into a free boson field for b and a sine-Gordon model
for a: H = H0(φb) + HsG(φa) with HsG = H0 + H2. In this
case, the new velocities and Luttinger parameters associated
with the a,b modes are given by the following relations:

v2
a =

√
v↑v↓
2K

(
p2v↑K↑

v↑
v↓

+ q2v↓K↓
v↓
v↑

− gpqK↑K↓

)
,

Ka = K
√

v↑v↓
va

,

(26)

v2
b =

√
v↑v↓
2K (p2v↓K↑ + q2v↑K↓ + gpqK↑K↓),

Kb = K↑K↓K
√

v↑v↓
vb

,

where we have defined

K = p2v↑K↑ + q2v↓K↓
2
√

v↑v↓
. (27)

With our definition of φa and provided the sine-Gordon
description is applicable, the requirement for the cosine to
be relevant, and thus to enter the single-mode phase, is simply

Ka < 1. (28)

One qualitatively observes that a velocity much smaller than
the other favors a small Ka and that large attractive interactions
g < 0 will help increase va and reduce Ka . In the following,
we consider limiting cases in which the discussion simplifies in
order to identify how the parameters would favor the formation
of a gap in the a sector.

The limit v2
b = 0 (attained with attractive interactions) sig-

nals the transition to the phase-separated or Falicov-Kimball
regime from the multimer phase.

1. The case of equal velocities

When v↑ = v↓ = v0, the condition (24) imposes that either

(i) g = 0 or (ii) K↑
K↓

= q2

p2 . The transformation and new
velocities and Luttinger parameters then take a simple form:
In case (i), we have va = vb = v0 and

φa = 1√
2

(pφ↑ − qφ↓), φb = 1√
2

(qK↓φ↑ + pK↑φ↓),

(29)

Ka = p2K↑ + q2K↓
2

, Kb = K↑K↓
p2K↑ + q2K↓

2
,

while in case (ii) we have K = p2K↑ and

φa = 1√
2

(pφ↑ − qφ↓), φb = pK↑
q
√

2
(pφ↑ + qφ↓),

v2
a = v2

0

(
1 − gp

2qv0
K↑

)
, v2

b = v2
0

(
1 + gp

2qv0
K↑

)
,

Ka = p2K↑, Kb = p4K3
↑

q2
√

1 + gp

2qv0
K↑

.

In both cases, having Ka < 1 would require a very small K↑
(assuming q = 1 for example). This could be realized with
long-range intraspecies interactions but may not be easily
achievable. Notice a peculiarity of the formula for the massive
mode φb in (29): While K↑ and K↓ are length-scale dependent
(in the RG sense), the expression in (29) holds on all length
scales.

2. The limit of large asymmetry

In order to identify the influence of the velocities ratio on
Ka , one can introduce the dimensionless quantities ν = v↓/v↑,
ρ = q/p, and γ = g/v↑. Then, (24) and (26) are rewritten
as

1 + ργK↑ = ν(ν + γρ−1K↓), (30)

Ka = ν
K↑ + ρνK↓

K↑ − ργK↑K↓ν + ρ2K↓ν3
. (31)

If one takes into account (31) only, Ka vanishes in the limit
of large velocity ratio ν → 0 or ∞ and passes through a
maximum in between so that there are two windows of
ν such that Ka < 1. The smaller the maximum, the wider
these windows are so, clearly, negative and large interactions
(γ < 0) favor the mode-locking mechanism. Yet, (30) imposes
another constraint and we just consider the ν → 0 limit
for simplicity. There, this limit is possible provided K↑ �
−1/γρ, that is, in the case of attractive interaction only. As
a consequence, this analysis shows that we should expect the
formation of multimer in the attractive and large interaction
regime, favored by large asymmetry.

3. In the single-mode Luttinger liquid phase

Deep in the massive-a phase, one can make a crude
quadratic approximation to the cosine operator in (8) by
replacing it with a mass term ∝ (pφ↑ − qφ↓)2. This leads
to approximate expressions for the velocity and Luttinger
parameter of the remaining mode b:

v2
b = v↑v↓

p2K↑v↓ + q2K↓v↑
p2K↑v↑ + q2K↓v↓

,

Kb = 1

2
K↑K↓

(p2K↑ + q2K↓)2√
p2 K↑

v↑
+ q2 K↓

v↓

√
p2K↑v↓ + q2K↓v↑

,

which reduces to the correct result for equal velocities.

C. Correlation functions and the nature of the phases

In one-dimensional models, the classification of the ground
states is determined by their dominant correlations. One can
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break discrete symmetries (for instance translational symmetry
on a lattice model) but order parameters associated with
continuous symmetries are always zero. The naming of a
phase then corresponds to the connected equal-time correlator
with the slowest decay in space. Quite generally, these
correlators are asymptotically decaying either algebraically or
exponentially. Such algebraic correlations are usually referred
to as a quasi-long-range order (QLRO). The slowest decay
(or smallest exponent of algebraic correlations) criteria are
based on a random-phase approximation (RPA) argument by
considering a set of weakly coupled Luttinger liquids [4] which
shows that order will build up provided the exponent of the
correlator is smaller than two, and that the main instability is
associated with the smallest exponent. However, if the Green’s
function, associated with �σ which is not an order parameter,
has the slowest decaying exponent, a RG analysis shows that
coupling the Luttinger liquids yield a Fermi liquid phase
(provided that the decay exponent is smaller than two again).
If all physical correlators are exponentially decaying (apart
from the density one which always keep, at least, a quadratic
decay), the term liquid is often used. This approach yet remains
phenomenological as the higher-dimension situation and is
much more involved.

In this section, we follow the standard practice and consider
the correlation functions of various observables to discuss the
nature of the phases that are realized in the single-mode and
two-mode regimes. The asymptotic decay of the connected
correlation functions associated with the order parameter O(x)
typically reads 〈O(0)O†(x)〉c ∝ x−αO with some exponent αO .
In order to compute the correlators, we only keep the first
harmonics in Eq. (1) and begin with the richer case of fermions
where we use the representation in terms of right and left
movers:

�σ (x) ∼ eikσ xei(θσ −φσ ) + e−ikσ xei(θσ +φσ ). (32)

We use the results that when a field φa is pinned, 〈f (φa)〉 =
f (〈φa〉) and its dual θa is disordered, leading to an exponen-
tial decay. In the case of algebraic correlations, the decay
exponents are obtained using the result that, for a field φ

described by H0, the equal-time correlator associated with
Am,n(x) = ei[mφ(x)+nθ(x)] behaves asymptotically as

〈Am,n(x)A−m,−n(0)〉 ∝ x−(m2K+n2/K)/2. (33)

We now give the leading contributions of the order parameters
as a function of the a,b fields, assuming general transformation
coefficients of the ↑ and ↓ modes:

�σ (x) ∼ eikσ xe−i[paσ φa+pbσ φb−taσ θa−tbσ θb] (Green’s function), (34)

n̂σ (x) ∼ −paσ∇φa − pbσ ∇φb + �−1 cos[2kσ x − 2(paσ φa + pbσ φb)] (density), (35)

�↑(x)�↓(x) ∼ ei(k↑−k↓)xe−i[(pa↓−pa↑)φa+(pb↓−pb↑)φb+(ta↓+ta↑)θa+(tb↓+tb↑)θb] (singlet pairing), (36)

�σ (x)�σ (x) ∼ e2i[taσ θa+tbσ θb] (triplet pairing), (37)

where � is a short-range cutoff. Among the multiple com-
binations of right and left movers, we have chosen the ones
which should lead to the lowest decay exponents, by having
the lowest m and n constant. They usually correspond to the
smallest wave vector.

1. The two-mode Luttinger liquid (2M-LL) phase

In the two-mode regime, all correlators are algebraic and the
leading one will strongly depend on the actual coefficients of
the transformation. The expression of Eqs. (34)–(37) are here
understood with general transformation coefficients of the ↑
and ↓ modes as one does not necessarily have to impose the
restriction (19) since φa does not here identify with (9). The
transformation coefficients can be computed exactly [18,21] in
the absence of the cosine term (8). The correlation functions
can as well be computed directly using a Green’s function
approach [24]. In the presence of (8), the coefficients will
be renormalized in this two-mode phase to unknown values.
This regime is rather generic and, depending on the interaction
and densities, with many competing orders among which are
a Fermi liquidlike phase, a superconducting singlet or triplet
FFLO phase [38] (pairing correlations displaying the typical
k↓ − k↑), a spin-density wave (SDW), or charge-density wave
(CDW) phase. The case of equal densities, p = q = 1, has the
dominant channels [4] among the superconducting, CDW, and
SDW fluctuations. In the cases where spin and charge degrees

of freedom separate, CDW and SDW states are mutually
exclusive. Furthermore, for SU(2)-symmetric models, x, y,
and z components of the SDW order parameter are degenerate.
These last remarks are no longer valid in our situation.

2. The single-mode Luttinger (1M-LL) multimer phase

Another regime corresponds to the case where the cosine
in Eq. (8) is relevant in the RG sense. Then the system has
a massive mode φa given by (9) and a massless mode φb.
The massless mode is described in the low-energy limit by
a free bosonic with a velocity vb and a Luttinger parameter
Kb. In this single-mode Luttinger liquid, algebraic decays will
be ruled by this Kb Luttinger parameter when they occur.
When the parameters of the problem satisfy Eq. (24), then the
massless mode can be found explicitly. In this section we use
these results to discuss in detail the behavior of the correlation
functions.

When φa gets pinned, we see that the above correla-
tors (34)–(37) are all exponential because the presence of θa

in their expression, with the exception of the density one.
In particular, all two-body pairing channels are suppressed,
even in the presence of attractive interactions. In order to
construct an operator which has algebraic correlations, the
prefactor in front of θa must vanish. This is realized by taking
the (p + q)-mer combination �

q

↑(x)�p

↓ (x) (bound states of
p ↓-fermions with q↑-fermions) which has the prefactor
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qta↑ + pta↓ which is clearly zero from (19)

�
q

↑(x)�p

↓ (x) ∼ eiQqpxei[(qta↑+pta↓)θa+(qtb↑+ptb↓)θb−(sqpa↑−sppa↓)φa−(sqpb↑−sppb↓)φb], (38)

and, in the special case of trimers,

�↑(x)�↓(x)�↓(x) ∼ eik↑xei[(ta↑+2ta↓)θa+(tb↑+2tb↓)θb−pa↑φa−pb↑φb], (39)

in which Qqp = sqk↑ − spk↓ and sp = p,p − 2, . . . ,(0 or 1),
sq = q,q − 2, . . . ,(0 or 1) are integers accounting for the
combination of left and right movers. We have used a some-
what symbolic notation: By �p(x), we mean �(x + δ1)�(x +
δ2) · · · �(x + δp), where |δi | < �, where � is the short-range
cutoff. We stress that the family of operators (38) is different
from the “polaronic” operators introduced in Ref. [18]: The
latter are constructed specifically for minimizing the decay
exponents in the massless phase of (11). On the contrary, the
family (38) arises naturally in the massive phase of Eq. (11)
as a many-body consequence of a existence of (p + q)-body
bound states in the microscopic counterpart of (11).

The effective theory of this (p + q)-mer object is then
governed by the gapless mode b. Remarkably, as qtb↑ +
ptb↓ = q/pb↑ = √

2K, the exponent is parametrized only by
Kb, K and p,q. In order to have the smallest exponent, we
have to select the combination (sq,sp) which minimizes the
coefficient in front of φb (one cannot have the combination
ppb↑ − qpb↓ = 0) and which is proportional to Cqp = spp −
sqq. We list below the coefficients and corresponding wave
vectors for the simplest commensurabilities:

(q,p) (sq,sp) Cqp Qqp

(1,2) (1,0) 1 k↑
(1,3) (1,1) 2 k↑ − k↓
(1,4) (1,0) 1 k↑
(1,5) (1,1) 4 k↑ − k↓
(3,2) (1,1) 1 k↑
(3,4) (1,1) 1 k↑
(3,5) (1,1) 2 k↑ − k↓
(3,7) (3,1) 2 3k↑ − k↓
(5,7) (1,1) 2 k↑ − k↓

The exponent of the propagator of the (p + q)-mer then
reads 1

2 (K−1
eff + C2

qpKeff), with the effective Luttinger parame-
ter

Keff = Kb

2K2
. (40)

In this phase, the connected density correlations Nσσ ′(x) =
〈nσ (0)nσ ′(x)〉 − 〈nσ (0)〉〈nσ ′(x)〉 remain algebraic with the
following dominant contributions:

N↑↑(x) = −Keff

2π2

q2

x2
+ A↑↑

cos(2k↑x)

x2q2Keff
, (41)

N↓↓(x) = −Keff

2π2

p2

x2
+ A↓↓

cos(2k↓x)

x2p2Keff
, (42)

where Aσσ ′ are nonuniversal amplitudes. The main remarks
are that (i) the ratio of the zero-momentum fluctuations is
exactly (q/p)2 while the ratio of the density is q/p and (ii) the

wavevectors are different since k↑ = πn
q

p+q
and k↓ = πn

p

p+q

as well as their exponents, which ratio should be (q/p)2

exactly. Notice that for the sine-Gordon model, the ratio of the
amplitudes A↑↑/A↓↓ are exponentially small in p − q [39].

When Cqp = 1, we see that the multimer is effectively
behaving as a spinless fermion (as expected from the com-
bination of a total odd number of fermions) which Fermi
level is k↑ and Luttinger exponent Keff. For instance, trimers
belong to this ensemble. The effective interaction between
these spinless fermions, which are spatially extended objects,
is highly nontrivial and certainly depends on the distance,
density, and microscopic parameters (a discussion of such
interactions in the case of a boson mixture can be found in
Ref. [40]). However, its overall effect can be captured by Keff

with effective repulsion expected when Keff < 1 (dominant
CDW fluctuations), and effective attraction expected if Keff >

1 (dominant trimer-pairing fluctuations). The latter turns out to
be a superfluid phase of trimers. By associating an even total
number of fermions, one should effectively expect to build
a bosoniclike multimer. Yet, we see that, in the propagator of
the multimer, one cannot suppress the contribution from the φb

field (as Cqp �= 0) and the exponent is not simply 1/2Keff and
thus not simply related to the one of the density correlations as
one would get for a simple bosonic propagator. Furthermore,
while the momentum distribution of a boson would usually
have a peak at zero momentum, we see that this observable
will be here diverging at Qqp �= 0.

3. The case of a bosonic mixture in the single-mode phase

As previously mentioned, the effective theory under study
can be as well applied to the situation where the particles
are bosons. In the single-mode phase, a bosonic multimer
phase will emerge under the mode-coupling mechanism and
the motivation of this small section is to discuss the form of the
corresponding correlators. We assume repulsive interactions
for the intraspecies channels (for stability reasons and also to
lower the Kσ to be able to fulfill the Ka < 1 requirement)
but attractive interactions in the interspecies channel (as for
the fermions). The boson creator operators are bosonized as
bσ ∼ eiθσ [dropping the higher harmonics term of Eq. (2)],
which immediately yields

b
q

↑(x)bp

↓(x) ∼ ei[(qta↑+pta↓)θa+(qtb↑+ptb↓)θb].

The (p + q)-mer is then a true bosonic molecule with an
effective Luttinger parameter, which is exactly given by (40).
The density correlations do not depend on the statistics and
still have the form of (41) and (42).
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D. Lattice commensurability effects

So far, we have only considered two-component fluids in
the continuum limit which is expected at generic densities on
a lattice or in continuum space. In this section, we briefly
discuss the additional effects arising from the presence of a
lattice.1 An underlying lattice with period a0 can be viewed
as a periodic external potential, in which particles have a
momentum being only defined modulo the reciprocal lattice
vector 2π/a0. Therefore, umklapp processes with momentum
transfer of a multiple of 2π/a0 are allowed at low energy. If
a Fermi momentum kσ of a species σ is itself a multiple of
2π/a0, that is, if a density of species σ is commensurate with
the lattice, s nσ = integer/a0, with an integer s, an additional
term cos(2sφσ ) appears in the low-energy Hamiltonian. The
effects stemming from such a cosine operator alone are well
known: For Kσ � 2/s2 the cosine is relevant in the RG sense
and the system undergoes a Mott transition into a density wave
state with the unit cell of s lattice sites. In a two-component
system, it is possible to have two operators of this sort, one
for each species. Furthermore, if the densities are such that
sn↑ + s ′n↓ is an integer (we set a0 = 1 from now on) for some
integers s and s ′, there is yet another term in the low-energy
Hamiltonian, namely, cos 2(sφ↑ + s ′φ↓) [cf. Eq. (6)].

Here we analyze a simple special case, where

p n↑ − q n↓ = 0, (43)

r n↑ + l n↓ = 1, (44)

or n↑ = q/(pl + qr) and n↓ = p/(pl + qr) with the integers
p, q, r , and l. Given (43) and (44), Eq. (3) yields the
Hamiltonian in the form H0(φ↑) + H0(φ↓) + H1 + Hcos, with

Hcos = G1

∫
dx cos [2(p φ↑ − q φ↓)] (45)

+G2

∫
dx cos [2(r φ↑ + l φ↓)] (46)

+G3

∫
dx cos [2(pl + qr) φ↓] (47)

+G4

∫
dx cos [2(pl + qr) φ↑], (48)

where G1, . . . ,G4 are nonuniversal amplitudes. Interpretation
of Eqs. (45)–(48) is straightforward: Eq. (45) stems from
the condition (43) and is thus insensitive to the presence of
the lattice (cf. Sec. II A); Eqs. (47) and (48) favor the Mott
localization of the species ↓ and ↑, respectively. On the other
hand, operator (46) is unique to two-component lattice systems
and owes its existence to the peculiar commensurability
condition (44). The physical meaning of (44) is clear: By
analogy with Sec. II C, it favors the quasi-long-range ordering
of the operator Or+l = �r

↓(�†
↑)l .

In the following, for the sake of simplicity, we assume equal
velocities of the two components and drop the H1 term. The
dominant instability of the massless theory H0(φ↑) + H0(φ↓)

1We assume that the field theory description is appropriate—for
too-strong interactions and/or too-large asymmetry it breaks down
and the lattice model falls into the Falicov-Kimball universality class
(see Sec III).

FIG. 2. (Color online) Diagram showing the effect of commensu-
rate densities (see text for discussion) in the special case of n↑ = 1/3,
n↓ = 2/3, that is, p = 2, and q = r = l = 1. For 2 − 2/9 < K↓ <

2/9 the interaction with the lattice leads to a formation of a “trimer
crystal” state. For larger (smaller) values of K↓ the system has a
phase transition from a massless phase into a Mott insulator of the
↑ (↓) component. The “trimer” operator cos 2(2φ↑ − φ↓) is always
subdominant.

is due to the operator with largest positive scaling dimension.
Depending on the values of K↑ and K↓, the following
inequalities define which of the operators (45)–(48) is relevant:

p2K↑ + q2K↓ � 2, (49)

r2K↑ + l2K↓ � 2, (50)

(pl + qr)2K↓ � 2, (51)

(pl + qr)2K↑ � 2, (52)

respectively. In Figs. 2 and 3 we plot the (K↑,K↓) diagrams
corresponding to Eqs. (49)–(52) for two values of the densities.
We see that which instability takes place depends on the
values of the bare Luttinger parameters K↑ and K↓ and
thus on microscopic details of an underlying lattice model.
Numerically, a crystal phase has been reported [41] in a
two-component bosonic Hubbard model and a similar result
is presented in the fermionic counterpart in Sec. III F for
the commensurabilities discussed in Fig. 2. These phases do
correspond to the locking of several combinations of the modes
according to Eqs. (45)–(48) but they are achieved for very
large asymmetry. Consequently, the above criteria (49)–(52)
determined for equal velocities are not directly applicable
in these situations. The quantitative predictions of (49)–(45)
could be relevant to the case of strongly renormalized Kσ , for
instance with long-range intraspecies interactions.

A striking feature of the phase diagrams 2 and 3 is
the appearance of the multicritical points where several
instabilities compete. In the above treatment we have only
considered an effect of various operators (45)–(48) alone.
An interplay between different operators is nontrivial and
may lead to consequences not captured by the simple power
counting of Eqs. (49)–(52). Hence, applicability of the above
analysis in the vicinities of the multicritical points is not
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FIG. 3. (Color online) Same as Fig. 2 for n↑ = 1/5, n↓ = 2/5. In
this case, Eqs. (43) and (44) allow two sets of solutions: (A) l = 1 and
r = 3 and (B) l = 2 and r = 1, with p = 2 and q = 1 in both cases.
Solution (A) is always subdominant, while (B) dominates in the
window 2/5 < K↓ < 2/25. For 48/25 < K↓ < 2/5, the dominant
instability is the formation of a Luttinger liquid of trimers.

granted. There are several possible scenarios of the phase
transitions at such multicritical points. For one thing, it is
easy to construct fine-tuned theories where two continuous
transitions occur simultaneously. Another possibility is a first-
order transition, as been observed in numerical simulations of
higher-dimensional bosonic systems [42]. Detailed analysis of
these multicritical points is beyond the scope of the present
paper.

III. TRIMER FORMATION IN THE 1D ASYMMETRIC
HUBBARD MODEL

In this second part, we study the emergence of a trimer
phase on a particular microscopic model: the 1D asymmetric
attractive Hubbard model. After defining the model and
providing its phase diagram as a function of the parameters,
we discuss some limitations of the bosonization approach to
this model and an alternative phenomenological description
that completes the interpretation of the obtained data.

A. Model and qualitative aspects

We consider two species of fermions which internal degree
of freedom is denoted by a spin index σ . They hop on
a lattice with spin-dependent amplitudes tσ (which would
experimentally correspond to different optical lattices for each
species) and interact locally only in the interspecies channel
with a Hubbard term U , which we take negative, as suggested
by the arguments of Sec. II and as a natural choice to favor
bonding between particles. The Hamiltonian is then

H = −
∑

i,σ=↑,↓
tσ [c†i+1,σ ci,σ + H.c.] + U

∑
i

ni,↑ni,↓. (53)

One of the key parameters for the physics is the ratio between
the hoppings η = t↓/t↑. In order to have the possibility of
forming trimers, we take the commensurate condition 2n↑ =

n↓ but the total density n varies freely and is another important
parameter of the physics. Using the notations of Sec. II, we thus
have p = 2 and q = 1 (the simplest new combination one can
have). The Fermi momenta are kσ = πnσ and free fermions
Fermi velocities read vσ = 2tσ sin(πnσ ). Since n↓ � 1, the
maximum total density one can have for this commensurability
is n = 3/2.

The above Hamiltonian has been widely studied in the
case of balanced [3] and imbalanced densities [43] but the
special commensurability where trimers emerge has only been
investigated for one set of data in Ref. [30], showing that
the pairing correlations were indeed suppressed, in agreement
with the bosonization approach. When the asymmetry is very
large, one species behaves quasiclassically (they get localized)
and the model is in the regime of the Falicov-Kimball (FK)
model [44], where there exists a lot of quasidegenerate states
at low energies, analog to a phase separation regime. We
expect generically a first-order transition to this segregated (or
demixed) phase when lowering η in the phase diagrams. The
FK regime can display rather rich physics recently investigated
in Ref. [45] and which is not analyzed here: Our aim is
only to draw the boundary of this regime. Numerically, the
transition to the FK is rather sharp and all observables clearly
display segregation. For η = 1, the arguments of Sec. II
suggest that the two-mode regime will be generically realized.
Qualitatively, in a strong-coupling picture where two spin-↓
fermions are localized on neighboring sites, the delocalization
of a spin-↑ electron on these sites will be favored by attractive
interactions, forming a very local trimer state. This picture
will be correct at small-enough densities and actually not too
large U and too small η; otherwise, such bound states will
agglomerate with other spin-↑ and -↓ fermions, leading to the
FK regime. We thus expect the formation of the trimer phase in
the vicinity of the FK but at both finite U and finite η. Within
the framework of Sec. II and considering that the starting
point of bosonization are free fermions, the ratio between the
velocities ν = v↓/v↑ = 2η cos(πn/3) supports that small η

clearly favors the formation of trimers while small densities
should not.

B. Phase diagrams

The phase diagrams of model (53) are numerically deter-
mined using standard DMRG with open-boundary conditions
(OBCs) and keeping up to M = 2000 states. In order to
discriminate between the different possible regimes, we use
both “global” probes and local observables and correlation
functions. Among global probes, one can use the trimer gap
�t associated with the formation of the bound state. It can be
defined following Ref. [31] as

�t = E0(N↑ + 1,N↓ + 1) + E0(N↑,N↓ + 1)

−E0(N↑ + 1,N↓ + 2) − E0(N↑,N↓), (54)

with E0(N↑,N↓) the ground-state energy with N↑,N↓
fermions. Results as the function of the asymmetry η for
an incommensurate density n = 3/7 and large interaction
U = −4t↑ have been extrapolated to the thermodynamical
limit and are given in Fig. 4. The slow opening of the trimer
gap is qualitatively compatible with the sine-Gordon behavior
of Sec. II although the transformation is not directly applicable
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FIG. 4. Opening of the trimer gap increasing mass asymmetry
(lowering η = t↓/t↑) for a fixed interaction and density. The magni-
tude of the gap (in units of t↑) is small in comparison to U and t↑.
The gray areas are estimates of the transition points. (Inset) Finite-size
extrapolations of the gap. The upper dashed curve shows the behavior
for η = 0.2 when entering in the FK regime.

for any η. Notice that the whole system remains gapless. The
slow opening of the gap makes it difficult to precisely locate
the transition point. In such a situation, a usual approach
would be to use the prediction on the critical Luttinger
parameter Ka = Kc

a at the transition point. Furthermore, the
determination of Ka using correlators in the two-mode phase
is very difficult as it would require to know, and then to
disentangle, the complicated expression of the exponents as
a function of Ka and Kb to extract them independently.

Therefore, we use another global approach to the distinction
between the two-mode and single-mode phases, which is
particularly well-suited for this model, and more generally in
a similar context. Using universal results on the entanglement
entropy (EE), the central charge c of the model can be
extracted, which directly gives access to the number of bosonic
modes, without further information on their nature. Hence,
we expect c = 2 in the two-mode regime while c = 1 in the
single-mode trimer phase. This stairlike expectation in the
thermodynamical limit will be smoothed out by finite-size
effects. The central charge is obtained on finite-systems using
the following ansatz for the EE between a left block of size x

and the right block of length L + 1 − x with OBC:

S(x) = c

6
ln d(x|L + 1) + A t(x) + B, (55)

where d(x|L) is the cord function

d(x|L) = L

π
sin

(πx

L

)
, (56)

and t(x) is the local kinetic energy on bound (x,x + 1)
(obtained numerically), and A,B are fitting parameters. The
first log term is the leading and universal one [46] while
the second accounts for finite-size oscillations due to OBC
and which can have a significant magnitude [34,47]. It is thus

0 20 40 60 80 100 120 140
x

1

1.5

2

x

η=0.25
c=1.02
η=1.0
c=1.95

U=-4
n=3/7

�
�

S

FIG. 5. (Color online) Examples of fits of the entanglement
entropy in the two-mode and single-mode phases using Eq. (55).
It shows a clear quantitative difference with respectively c � 2 and
c � 1, as expected.

essential to take them into account to improve the quality of
the fits. In the end, there are only three parameters in the
procedure and typical examples in both the two-mode and
the single-mode phases are given in Fig. 5. Systematic fits on
finite-size systems provide an estimate of c as a function of
the parameters. As seen in Fig. 6, the c(L) curves cross around
the transition point. Although we do not have any quantitative

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
η

1

1.5

2

c

T.L.
L=56
L=63
L=84
L=105
L=126
L=147

0.51 0.515

1.
85

1.
86

1.
87

0 0.005 0.011/L
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

U=-4, n=3/7

(a)

(b)

FIG. 6. (Color online) Central charge c obtained from fits as
in Fig. 5 as a function of the asymmetry η for U = −4t↑ and
n = 3/7. The stairlike behavior with increasing system size L

allows an efficient determination of the transition. T.L. stands for
thermodynamical limit. In the FK regime (left), fits give c � 0
or irrelevant numbers. (a) Magnification of the c(L) curves in the
crossing region illustrating the extraction of crossing points between
successive sizes. (b) Tentative finite-size extrapolation of the crossing
points ηc(L).
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Trimer 1 -LL

2
-LL

Fali cov-Kimball

FIG. 7. (Color online) Maps of the central charge c vs interaction
U and asymmetry η for a system with L = 112 at four different
densities. For n = 3/7 � 0.428, the lines with error bars are the ones
estimated from Figs. 4 and 6. The η = 0 cuts correspond to data
obtained with a very low but nonzero value η = 0.005.

prediction for the finite-size corrections of c(L) obtained in
this way, we can argue that if L is smaller than the correlation
length associated with the trimer gap, c(L) will be larger than
one as the system is effectively in a two-mode regime. Thus,
c(L) should decrease with L toward one in the single-mode
phase, as observed. In the two-mode phase, there is no obvious
discussion: We only expect that the larger the system, the better
the agreement with the continuous limit. One can also check
the effect of the number of kept states on the fits and see
that they do not have the dominant effect in this model which
converges well numerically. We have estimated the transition
point by extrapolating the crossing points between successive
sizes [see Fig. 6(a)] as a function of the inverse size [see
Fig. 6(b)]. From this approach and the opening of the gap, we
get a critical value ηc � 0.54 ± 0.02 for the mass asymmetry
on this cut. Although the gap is rather small, the trimer region
appears to be rather wide.

Using the central charge calculation, one can map out the
phase diagram in the (η,U ) plane for a fixed density, or in
the (η,n) plane for a fixed interaction U . Results are gathered
in Figs. 7 and 8, respectively. These diagrams display bare
data for a given system with a rather large size L = 112 and
the previous estimate of the cut is given as error bars. These
diagrams show that a wide trimer phase can be achieved at
large-enough interactions, small-enough η, as expected, and
also that low densities strongly favor their formation. At large
densities n � 1.3, the trimer region vanishes within our grid
resolution so that it is at most confined to a very tiny region
between the two-mode phase and the FK regime. While the
large-|U | situation is rather clear, the competition between
the three regimes at small U is more involved. Indeed, two
scenarios can occur in the (η,U ) plane: Either the trimer phase
always separates the FK and two-mode regimes, corresponding

0.4 0.6 0.8 1.0 1.20.1 1.5
n
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Falicov-Kimball

Crystal

FIG. 8. Map of the central charge c vs asymmetry η and total
density n for fixed interaction U = −4t↑ on a system with L = 128.
The lines with error bars are the ones estimated from Figs. 4 and 6.

to two boundaries starting from the (η = 0,U = 0) corner, or
there is a critical |U | above which the trimer phase emerges,
corresponding to a tricritical point (ηc,Uc). We could not
numerically discriminate between both scenarios, but we
do find a small trimer region at relatively small Us (U �
−1 t↑, − 2 t↑) for most densities: We do not have evidence
for a tricritical point with a large Uc. As the density plays a
central role in the stabilization of the trimer phase, we give in
Fig. 8 the central charge map for a fixed interaction U = −4t↑
as a function of the total density n and mass asymmetry. A
similar question about an intervening trimer phase between
the two-mode and the FK regimes can be raised. While the
two-mode and FK are clearly separated at small densities,
we found that if a trimer intermediate phase exists at large
densities up to the (η = 0,n = 1.5) point, its extension will be
particularly small (not seen within our numerical calculations).
In addition to the three main phases, commensurability effects
are also present in this diagram. When the maximum density
n = 1.5 is reached, the ↓-band is completely filled while the
↑-band is half-filled, leading to a single-mode phase well
captured by the central charge approach. Last, as it is discussed
in Sec. III F, a crystal phase (fully gapped) exists for the
commensurate density n = 1 at very small η and is indicated
on Fig. 8. Other commensurabilities could yield additional
crystal-like phases in this diagram but this is beyond the scope
of this study.

C. Observables and effective behavior of the trimer liquid

In this section, we give the behavior of several observables
in order to see how they are affected by the entrance into the
trimer phase or the FK regime and, as well, to investigate the
effective behavior of the trimer fermion.

1. Local observables

First, we select a set of local correlators (living on sites
or on bonds) which illustrate the phenomenological picture
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T

FIG. 9. (Color online) Maps of averaged local quantities in a
system with L = 56 at total density n = 3/7 � 0.428. The noninter-
acting expectation (U = 0 line) has been subtracted in order to unveil
the effect of the interaction.

of the different parts of the phase diagram. We compute the
local double occupancy 〈ni,↑ni,↓〉, the trimer local operator as
Ti = 1

2 (〈ni,↑ni,↓ni+1,↓〉 + 〈ni+1,↑ni,↓ni+1,↓〉) (since the light
particle is in principle delocalized above two heavier), and the
density correlators 〈ni,↑ni+1,↑〉 and 〈ni,↓ni+1,↓〉. This choice
of local correlators is well suited to a strong-coupling picture
as pairs or trimers should in principle correspond to a narrow
bound-state, spread over only a few lattice sites. These local
correlators should then pick up a reasonable weight of the local
bound-state. The results are averaged over all lattice sites and
plotted in Fig. 9. The expectation value at U = 0 has been
subtracted so that the reference state is the free fermions limit
at a given η (the pairing or trimer local correlators defined
above are obviously nonzero even in the free fermions limit).
Figure 9 display behaviors in qualitative agreement with the
picture we have on the trimer formation: The ↑↑ density
correlator is nearly zero everywhere but in the FK regime,
signaling phase separation. On the contrary, ↓↓ density
correlator increases significantly in the region corresponding
to the trimer phase, surrounding the FK pocket, and together
with the local trimer density Ti . Last, we see that the double
occupancies, or pairs, acquire a strong weight with negative
U everywhere in two-mode and single-mode regions: They
are either “independent” or embedded in the trimer bound
state. Their coherence can yet be probed only by measuring
correlations as discussed below.

2. Pairing and trimer correlations, effective behavior
of the trimers

We now turn to the behavior of correlation functions across
the phase diagram. From Sec. II C, and as already observed
for a particular point in Refs. [30,31], the pairing correlations
change from algebraic to exponential decay when entering
into the trimer phase. These correlations are here computed
in the singlet channel and for local pairs P̂i = ci,↑ci,↓. In
addition, we compute the trimer correlator using the local
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FIG. 10. (Color online) Behavior of (a) pairing and (b) trimer
correlations when lowering η and entering the trimer phase along a
cut at U = −4t↑ in the phase diagram (absolute values are displayed).
The Inset of (a) shows the same data but in log-linear scale to highlight
the exponential decay.

trimer operator T̂i = ci,↑ci,↓ci+1,↓ defined on neighboring
sites. The associated correlation functions P (x) = 〈P̂ †

i P̂i+x〉
and T (x) = 〈T̂ †

i T̂i+x〉 are computed with i taken at the center
of the chain. Increasing the mass asymmetry along the same cut
at U = −4t↑ as in previous figures, the suppression of pairing
correlations is clearly seen in Fig. 10(a). On the contrary, trimer
correlations, which are subdominant in the two-mode regime,
are boosted by smaller η, both in amplitude (as for the local
correlators previously evoked) and in the decay exponent,
which gets smaller [see Fig. 10(b)]. Notice that the wave vector
is the same for both correlators since k↓ − k↑ = k↑ = πn/3
for this commensurability. We have tentatively extracted the
decay exponents of both correlators by fitting the functions
using a power law modulated by cosine oscillations. The
correlation length ξ of the pairing correlator in the trimer phase
is obtained using an exponential envelope e−x/ξ . The results
are gathered in Fig. 11, showing the evolution in both phases.
We must stress that the data computed on a finite-size system
display a transition at a lower η than in the thermodynamical
limit. From Sec. II C, we expect that the decay exponent of
the trimer propagator is of the form (Keff + K−1

eff )/2 while
the ↑-density correlations have a decay exponent of 2Keff. A
first consequence is that the trimer exponent should always
be larger than one, which is not reproduced for the lowest
ηs and which we attribute to numerical inaccuracies of the
fits of trimer correlations. Besides, inverting (Keff + K−1

eff )/2
to get Keff is subjected to strong errors when Keff � 1 and
does not tell whether Keff > 1 or Keff < 1 which is essential
for the effective behavior of the trimers. In order to get a
better estimate of Keff, we rather use Friedel oscillations
of the ↑-density operator, which decay exponent α is equal
to Keff in the trimer phase according to Sec. II C. Even
though the approach of Sec. II C is not applicable for most
parameters, the fact that there exists an effective Luttinger
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pairing and trimer correlations. The correlation length of pairing
correlation (in units of the lattice spacing) is given in the trimer
phase. The strong gray areas are the previous estimates of the
transition points while the light maroon area illustrates the location
of the transition on the L = 147 finite-size system under study.
The exponent of the Friedel oscillations of n↑ is also displayed,
together with the expected trimer exponent derived from it (see text
for discussion).

exponent Keff describing the physics of the fermionic trimer
with a propagator (Keff + K−1

eff )/2 and with Friedel oscillations
with Keff is more general: The limitation of the bosonization
approach is rather that Keff will not take the form of Eq. (40).
Local observables are believed to have less numerical errors
associated with a finite number of kept states than correlations
[48]. Thus, we fit the Friedel oscillations of the ↑-density using
the following symmetric ansatz:

ni,↑ = n0 + A
cos q

(
i − L+1

2

)
[d(i|L + 1)]α

, (57)

with 1 � x � L and only four fitting parameters n0, A, q, and
α.2 In the trimer phase, we expect α = Keff. Some typical fits
are plotted in Fig. 12(a). From them, we extract the decay
exponent α and plot it on Fig. 12(b) as a function of the
total density. A cusp is found around n � 0.6 signaling the
transition from the two-mode regime to the trimer phase.
We have seen that a low density favors the formation of
the trimer phase. This figure shows that, in the trimer phase,
we have Keff < 1 for the larger densities, corresponding to
a repulsive effective interaction between trimers (dominant

2We expect that q = 2πn↑ = 2πn/3 and n0 = n↑ but at low
densities, it is usually better to take q and n0 as free independent
fitting parameters due to the depletion of the density at the edges,
which effectively increases it in the bulk. For instance, one has
n0 = (N + 1/2)/(L + 1) for free spinless fermions on a finite system
with N fermions, which is not exactly the average density N/L,
particularly at small N/L.
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FIG. 12. (Color online) (a) Typical Friedel oscillations of the ↑-
density for U = −4t↑, η = 0.3, and L = 144 for various densities
n. The values of n, in descending order, correspond to the curves,
starting from the top of the figure. Full lines are fits using Eq. (57).
(b) Decay exponents obtained from the fits as a function of the density.
The cusp at n � 0.6 roughly corresponds to the transition from the
two-mode to the single-mode regime. (c) Large exponents at low
densities, close to the FK regime when lowering η: Increasing the
size tends to reduce the exponent below one.

CDW order of trimers). We observe that the exponent increases
with decreasing density, compatible with the fact that at low
densities in the trimer regime, the trimers should be close
to free spinless fermions having Keff � 1. Bare data for the
smallest density on a system with L = 144 even display an
exponent Keff � 1.2 larger than one. Interestingly, the trimers
in this model are necessarily objects with a finite extension
of at least two sites and two close trimers may have the
possibility to overlap by delocalizing their ↑ electrons. The
distance dependence and sign of the effective interaction
between trimers is nontrivial—a perturbation theory to derive
it looks challenging as it involves many sites and degrees
of freedom. Yet, since the trimer phase is found close to
the FK regime, we can expect the effective interaction to
become attractive close to this boundary, leading to Keff > 1.
Such physics would correspond to a superfluid phase of
trimers. This would be physically very remarkable since the
microscopic Hamiltonian (53) would contain both the for-
mation of bound-states, or molecules, and their effective
superfluid behavior. However, the behavior close to a phase
separation at small densities is numerically involved. Indeed,
increasing the system size L shows that α actually tends to
decrease below one, as reported in Fig. 12(c), or one enters
the FK regime for larger sizes. We did not find clear evidence
of a stabilization of Keff > 1 in the thermodynamical limit
and understand the observed Keff > 1 as finite-size effects.
A superfluid droplet picture can be qualitatively put forward.
Starting from the FK regime and looking at the local density
pattern, one sees that the fermions are clustered into droplets
while other parts of the box are empty. Approaching the trimer
phase from the FK regime tends to increase the size of these
droplets to gain kinetic energy. When a box confinement is
present (finite system with OBC), it naturally favors the overlap
between trimers, by depleting the edges and can prevent
the droplet from forming (for instance if their typical size
is larger than the box size). Increasing further the size of
the box (at constant density) can lead to droplet formation.
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This is a possible interpretation of the data observed in
Fig. 12(c). In addition, we must stress that there is a lot of
competing low-energy states in the FK regimes so DMRG,
as an essentially variational methods, can be trapped into
metastable states. Even though the thermodynamical limit is
unclear, it is experimentally motivating to have signatures of
superfluidity on mesoscopic confined systems as one has in
cold-atoms setups. We further mention that a recent careful
study of the t-J model on a chain [49] which could qualitatively
contain a similar phenomenon as pair-clustering did not find
evidence for such clustering.

3. Locking between density correlations

Last, the comparison of density-density correlations in
the ↑ and ↓ channels is another interesting point of this
model. In fact, the bosonization results of Sec. II C predicts
that the exponent of N↑↑(x) should be four times larger
than the exponent of N↓↓(x) (if both remain smaller than
two) and that the dominant wave vector should differ by
a factor two. Numerically, the typical behavior for a rather
large interaction U = −4t↑ is given on Fig. 13 for two
values of the asymmetry η in the single-mode and two-mode
regimes. We see that in the two-mode phase [Fig. 13(b)],
the two fluctuations have a slightly different exponent, that
the amplitude are quite different (including the natural factor
four). Yet, the dominant wave vectors are both 2k↑ = k↓. In the
trimer phase, the disagreement with the bosonization picture
is even worse since the two densities are locked together,
and nearly identical [Fig. 13(a)]. This latter fact cannot be
explained by the 1/x2 decay since the leading term is the
oscillating one, with an exponent clearly smaller than two. It
is yet physically not surprising in the strong coupling picture
of Fig. 1: Trimers are local bound states separated by the
typical distance 1/n↑ = 2π/2k↑, which does correspond to
the 2k↑ fluctuations but cannot be accounted by any of the
harmonics for the ↓-density operator of Eq. (3) (we work
at an incommensurate filling). This short-distance binding
cannot be captured by the bosonization results of Sec. II but
a phenomenological Bose-Fermi approach described in the
next section can account for this strong-coupling regime. Last,
the same comment can be made on Friedel oscillations on

the ↓ component: They are locked to the ↑-component in the
strong-coupling picture. One might argue that there could be a
crossover from the weak-coupling to strong-coupling picture
of Fig. 1 as |U | increases, so that the bosonization results could
be valid in the small U ’s region. However, the trimer region is
very sharp at small U ’s and we could not find evidence for such
a weak-coupling behavior in our numerical data, although we
cannot exclude such a possibility.

D. Phenomenological Bose-Fermi picture at large |U|
We here propose a simple picture that reconciles the

numerical observation and a bosonization approach at the cost
of a strong assumption, physically reasonable at large negative
U , but difficult to justify rigorously starting from the micro-
scopic model. This picture has been, for instance, proposed
at large interaction and low-density limit [50]. Bose-Fermi
mixtures of 1D models have extensively studied in recent years
[17,20,21,23,24,26,27,51–54] and a similar picture emerges in
certain regimes of three-component Fermi-gases [55]. When
|U | is large, ↑ and ↓ fermions naturally form onsite pairs
which are effectively hard-core bosons which we label b. We
phenomenologically assume that the system is equivalent to a
Luttinger liquid of hard-core bosons with density nb = n↑, an
effective velocity vb, and Luttinger parameter Kb, while the
remaining unpaired ↓ fermions behave as a Luttinger liquid
of fermions labeled by f and with parameters nf , vf , and
Kf . These two Luttinger liquids interact through an effective
interaction which will contain terms such as∫

dx cos [2π (nf − nb)x − 2(φf − φb)], (58)

which have the tendency to lock the fields φf and φb together
(with 〈φf 〉 = 〈φb〉 for attractive interaction), provided nf =
nb. Such an effect has already been discussed in the context
of Bose-Fermi mixtures [53,54]. Clearly, the latter relation is
the same as the trimer commensurability condition n↓ = 2n↑
(because bosons carry two particles) so that the formation of
trimer is now interpreted as a bound state between the bosons
and the fermions. Following the same reasoning as in Sec. II B,
we can introduce a general transformation of the b/f fields into
two new fields c/d, where φc = (φf − φb)/

√
2. Writing the

matrix transformation from the r = c,d to the s = b,f as prs

for the φ’s and trs for the dual θ ’s, we have

tcf = 1√
2
, tcb = − 1√

2
. (59)

which is slightly different from Eq. (19). Yet the 2kF -like
fluctuating part of the density correlators for the fermions and
the bosons will have the leading contributions (dropping the
x−2 terms):

Nff (x) ∼ cos(2kf x)

x2p2
df Kd

, (60)

Nbb(x) ∼ cos(2kbx)

x2p2
dbKd

, (61)

which have both the same wave vector associated with the
Fermi levels kf = kb = k↑ and same decay exponents since
pdf = pdb from the canonical transformation relations. In this
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picture, the trimer is simply a bound state between the bosons
and the fermions so its propagator reads

T (x) ∼ eikf xeiθb ei(θf −φf ) (62)

∼ eik↑xei[(tdf +tdb)θd+(tcf +tcb)θc−pdf φd−pcf φc]. (63)

From Eq. (59) and the determinant of the transformation
matrix, which gives that tdf + tdb = 1/pdb = 1/pdf , we obtain
that the propagator is of the spinless fermionic type with an
effective Luttinger parameter K ′

eff = p2
df Kd . Clearly, both the

f -fermion and b-boson propagators become short-range, the
latter corresponding to the pairing correlations in the native
fermionic model. Consequently, we recover the physics of
the trimer phase developed in Sec. II, with a better agreement
with the numerical observations in the strong coupling regime.
However, splitting the initial gas of ↓ fermions into two
parts can only be done phenomenologically and could be
questionable in a microscopic derivation. This highlights the
limitation of the bosonization approach of Sec. II at short
distances (high energies).

E. Possible observation of the trimer phase in the presence of
parabolic confinement

In this section, we briefly discuss the condition to favor the
trimer phase in the presence of a parabolic confinement, as
used in cold-atoms experiments. Our goal is only to exhibit
some parameters for which the trimer phase is stabilized and
to give some qualitative comments. The trapping potential is
taken into account by adding the quadratic term

Htrap = 1

2
ω2

∑
i

(i − i0)2 (64)

to Eq. (53), with the trapping frequency ω and the center
of the lattice i0 = (L + 1)/2. According to a local-density
approximation (LDA) picture and using the phase diagram of
Fig. 8, the trimer phase is likely to be found at small-enough
densities and not too small η to prevent the occurrence of
the FK regime. However, we find that the average density of
the trapped system is strongly dependent on the Hamiltonian
parameters. At fixed number of particles N and trap size ω,
changing U and η strongly affects the radius of the cloud
and the density in the middle. We only exhibit in Fig. 14
parameters for which the main features of the trimer phase are
reproduced in the presence of a parabolic confinement. The
density profiles of Fig. 14(a) illustrate the locking of the ↑ and
↓ densities (up to exactly a factor two), and the emergence of
an appreciable density of local trimers (each local maximum
roughly corresponding to a trimer). In Fig. 14(b), the pairing
and trimer correlations are strongly different from that of
a superfluid phase: We have dominating trimer correlations
and exponential pairing correlations as in the homogeneous
counterpart. In agreement with a LDA picture, since we have
seen that Keff decreases with density, the trimer correlations are
boosted at long distances. Similarly, the pairing correlations
decrease slightly faster than an exponential close to the edge
of the cloud. These results are encouraging in the perspective
of a possible achievement of the trimer phase in actual
experiments.
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F. Observation of a crystal of trimers

According to the analysis of Sec. II D, a crystalline phase
of trimers can occur in this lattice model when the total density
n is commensurate. Evidence of this scenario together with a
phase diagram for n = 1 has been proposed in Ref. [41] in the
case of a mixture of two-component bosons for large-enough
asymmetry. As the order parameter (the density) associated
with this transition is independent of the statistics, we expect
a similar scenario (see Sec. II D) and a similar location of the
transition in the fermionic version of the model under study.
Indeed, we give in Fig. 15 an example of the crystal phase.
Notice that very small η are required to stabilize such a phase.
We have not investigated the extension of the phase, which
should rather be small on the scale of the phase diagram of
Fig. 8, and its neighboring phases, which could be either the
two-mode LL or the trimer phase. A crude argument can be
proposed to understand this crystallization within the Bose-
Fermi picture of Sec. III D: When the mass asymmetry is very
large (very small η), it is reasonable to say that the mass of
the boson will be essentially the one of the heaviest particles,
which is the same as the unpaired fermions so that vf � vb.
In terms of commensurability effects, one has nf = nb = n/3
so that standard umklapp terms at 2π (nf + nb) = 4π/3 do
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FIG. 15. (Color online) Observation of the crystallization of
trimers in the commensurability situation of Fig. 2 (n = 1).
(a) The short-range behavior of both pairing and trimer correlations.
(b) Ordering of the local density n↑ with the expected period of three
sites.
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not account for the crystallization. One rather has to look for
higher-order terms with commensurabilities such as 2nf +
nb = nf + 2nb = n = 1, which are typically associated with
terms like ∫

dx cos 2(2φf + φb), (65)

in addition to the one of Eq. (58). Such a term can lock the field
2φf + φb and make the system fully gapped. Last, we would
like to stress that such commensurabilities are rather surprising
in terms of the initial fermion densities as they belong to odd
filling fractions n↑ = 1/3 and n↓ = 2/3.

IV. CONCLUSIONS

In summary, the consideration of unusual commensu-
rability conditions in density-density interactions for 1D
two-component gases leads to a very rich physics with the
possibility of building bound states of (p + q) particles as
the leading order. Such a mode-locking mechanism can be
described within the framework of Luttinger liquid theory,
which reveals the main ingredients to stabilize such a new
phase. In particular, mass or velocity asymmetry is shown to
drive efficiently the transition into the multimer phase. Fully
gapped phases are proposed when taking into account umklapp
couplings specific to lattice models at commensurate densities.
These ideas are illustrated and confronted with the asymmetric
1D attractive Hubbard model for the special commensurability
2n↑ = n↓ for which the formation of trimers is found. The

features of the phase diagram are computed, displaying the
important role of the density in favoring the trimer phase. The
effective behavior of trimers, which are effectively spinless
fermionic objects, is very sensitive to the density and mass
asymmetry. Although the model seems to have promising
features to sustain a superfluid phase of trimers, we did not
find clear evidence for it in the thermodynamical limit, while
finite-size systems display a “superfluid droplets” physics.
Notice that superfluidity of bound states made of four fermions
(quartets) can be achieved reliably in 1D with a four-color
Hubbard model [33,34]. There the bound states are bosons for
which the natural “free” regime (attained in the low-density
limit) is a superfluid phase. A superfluid phase of trimers
would in this respect be even more exotic but is in strong
competition with phase separation. Last, we found that a
trapping confinement supports the trimer phase for reasonably
high densities and that surprising crystal phases can emerge at
commensurate densities.
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10345 (1993); U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[36] F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
[37] S. Engelsberg and B. B. Varga, Phys. Rev. 136, A1582 (1964).
[38] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964); A. I.

Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).
[39] S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B 493, 571

(1997).
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