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We consider two-component one-dimensional quantum gases with a density imbalance. While generi-

cally such fluids are two-component Luttinger liquids, we show that if the ratio of the densities is a

rational number, p=q, and mass asymmetry between components is sufficiently strong, one of the two

eigenmodes acquires a gap. The gapped phase corresponds to (algebraic) ordering of (pþ q)-particle

composites. In particular, for attractive mixtures, this implies that the superconducting correlations are

destroyed. We illustrate our predictions by numerical simulations of the fermionic Hubbard model with

hopping asymmetry.
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Thanks to recent advances in experimental techniques of
dealing with cold gases, it is now feasible to engineer one-
dimensional (1D) quantum fluids by confining atoms in
cigar-shaped traps with tight radial confinement [1]. By
devising an appropriate optical lattice it is also possible to
construct a weakly coupled array of such 1D ‘‘tubes,’’ thus
allowing one to study the dimensional crossover from 1D
to three dimensions. A number of ongoing and planned
experiments deal with two-component mixtures atoms of
either statistics, i.e., Fermi-Fermi (FF), Bose-Bose (BB), or
Bose-Fermi (BF) mixtures [2]. Most of recent theoretical
work dealt with equal-density mixtures, where a rich phase
diagram containing both gapped and gapless phases was
found [3–5]. For mixtures with unequal densities the
ground state is generally found to be a two-component
Luttinger liquid [3,6,7]. For attractive FF mixtures, super-
conducting correlations dominate, thus making the ground
state a 1D analog of the long-elusive Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase, as confirmed both by Bethe
ansatz calculations for integrable models [8] and numerical
simulations [9,10]. The case of unequal mass mixtures—
where integrable microscopic models are not available—
has been studied analytically by means of effective field
theory [3,7], and numerically by Monte Carlo [11] and
time-evolving block decimation (TEBD) [10] methods. A
common result which emerges is that for strong enough
mass asymmetry and/or strong enough attraction the sys-
tem collapses, while for moderate mass asymmetry and
nonzero density imbalance the ground state is again a
gapless two-component Luttinger liquid with an FFLO-
type algebraic order.

In this Letter we study a generic two-component 1D
mixture with density imbalance within the harmonic fluid
approach (‘‘bosonization’’). We reveal a generic mecha-
nism which, for a certain relation between the densities,
opens a gap in the excitation spectrum and completely de-
stroys superconducting correlations. We concentrate on the
properties of the FF mixtures, but our predictions are ap-

plicable to BF and BB mixtures with minor modifications.
Our findings might also be relevant to spin ladder materials
with nonequivalent chains in high magnetic fields. We
further corroborate our predictions by density-matrix re-
normalization group (DMRG) simulations [12] of a
Hubbard model with hopping asymmetry.
Consider the mixture of two sorts of fermionic atoms,

which we label by a pseudospin index � ¼" , # . In the
bosonization approach we introduce for each species a pair
of scalar fields ��ðxÞ and ��ðxÞ which vary slowly on the
scale of n�1

� , where n� are the average densities [13].
Using the Haldane construction we write for the field

operators �y
�ðxÞ�ðn��@x��=�Þ1=2

P
se

isð�n�x���Þe�i��

where the summation over s runs over odd integers s
[14]. For the density operator, n̂�, this leads to

n̂ �ðxÞ � ðn� � @x��=�Þ
X

s

e2isð�n�x���Þ: (1)

One of the advantages of the Haldane representation (1) is
that an effective low-energy Hamiltonian can be written
solely in terms of �� and �� [13]. In the noninteracting
case it is given by H free ¼ H 0ð�"Þ þH 0ð�#Þ, where

H 0ð��Þ ¼ v�

2�

Z
dx½K�ð���Þ2 þ K�1

� ð@x��Þ2�; (2)

where v� are Fermi velocities and K� ¼ 1 the so-called
Luttinger parameters equal to one in the free case. In the
presence of density-density interactions,

R
dxdx0U��0 ðx�

x0Þn̂�ðxÞn̂0�ðx0Þ, Eq. (2) is modified in several ways. First of
all, the s ¼ 0 terms of Eq. (1) give rise to an acoustic
coupling

H 1 ¼ g
Z

dxð@x�"Þð@x�#Þ; (3)

where g is a forward scattering constant for the interspin
interactions. More importantly, higher harmonics of Eq. (1)
generate the terms of the form
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H h ¼
X

s;s0>0

Gss0
Z

dx cos½2ðsk"F � s0k#FÞx� 2ðs�" � s0�#Þ� þ
X

s;s0>0

~Gss0
Z

dx cos½2ðsk"F þ s0k#FÞx� 2ðs�" þ s0�#Þ�: (4)

Here Gs;s0 and ~Gs;s0 are (nonuniversal) amplitudes, and
k�F ¼ �n� are Fermi momenta. Since the separation of
fast and slow variables is inherent in the bosonization
treatment, one has to discard in (4) the terms which oscil-
late on the length scale �k�1

F . Strictly speaking, Eq. (3) is
only perturbative in g. On the contrary, Eq. (2) is assumed
to retain its functional form even in the presence of generic
same-spin density-density interaction, with both velocities
and Luttinger liquid parameters renormalized by interac-
tion terms beyond Eq. (3) and various irrelevant operators,
e.g., band curvature [13]. On a phenomenological level, we
can assume Eq. (2) (where, in general, K� � 1) as coming
from an underlying microscopic model, with Eqs. (3) and
(4) regarded as perturbations.

Equation (4) suggests considering generalized commen-
surabilities of the form

pn" � qn# ¼ 0; (5)

where p and q are relatively prime integers. Notice that this
condition does not imply the presence of a lattice: we only
require the densities to be commensurate with each other.
Equation (5) selects from Eq. (4) the terms with s=s0 ¼
p=q, and the Hamiltonian (4) reduces to

H 2 ¼ G
Z

dx cos2ðp�"ðxÞ � q�#ðxÞÞ; (6)

where we only keep the lowest order term, since the scaling
dimension of the operator coss� is s2 [15].

We now assume that the densities are commensurate via
(5), and analyze the model H ¼ H 0ð�"Þ þH 0ð�#Þ þ
H 1 þH 2 defined by (2), (3), and (6). Since in general
this model is not exactly solvable, the nature of the phases
can, in principle, be determined by an approximate renor-
malization group (RG) procedure. Rescaling the fields via
~�" ¼ p�" and ~�# ¼ q�# the model is brought to the form

considered in Ref. [5], where an RG procedure has been
carried out including the renormalization of velocities v�

[see also Ref. [16] in the fermionic language]. For large
velocity asymmetry and strong attractive (repulsive) inter-
actions the system was always found to collapse (phase
separate). Barring such an instability, two regimes were
found, corresponding to the cosine operator (6) being
relevant or irrelevant in the RG sense.

In the regime where the cosine operator Eq. (6) is
irrelevant we are left with a bilinear Hamiltonian (2) and
(3), which is diagonalized by appropriate linear combina-
tions of the fields [17]. As a result one obtains an effective
theory HA which features two decoupled massless fields
’1;2 with corresponding velocities v1;2 and Luttinger pa-

rameters K1;2:HA ¼ H 0ð’1Þ þH 0ð’2Þ. For an attrac-
tive FF mixture, such a theory describes a 1D analog of the
FFLO phase: all correlations are algebraic in real space and
the pair correlation function oscillates with the FFLO

momentum QFFLO ¼ jk"F � k#Fj.

Another regime corresponds to the case where the cosine
in Eq. (6) is relevant in the RG sense. Then the system has a
massive mode �a and a massless mode �b. The effective
theory HB can be written as

H B ¼ H sGð�aÞ þH 0ð�bÞ; (7)

where H sGð�aÞ ¼ H 0ð�aÞ þG
R
dx cos2

ffiffiffi
2

p
�a is the

sine-Gordon model for the field �a. Equation (7) is char-
acterized by two mode velocities va;b and Luttinger ex-

ponents Ka;b with Ka < 1, so that �a is pinned at a

minimum of the cosine operator in (7). Closed-form ex-
pressions for the parameters of Eq. (7) can be obtained in
several limiting cases. Indeed, for v" ¼ v#, the exact eigen-
modes of H ¼ H 0ð�"Þ þH 0ð�#Þ þH 2 are

�a ¼ ðp�" � q�#Þ=
ffiffiffi
2

p
;

�b ¼ ðqK#�" þ pK"�#Þ=
ffiffiffi
2

p
;

(8)

with the Luttinger exponents

Ka ¼ ðp2K" þ q2K#Þ=2; Kb ¼ KaK"K#: (9)

Notice that for higher-order commensurabilities (larger p
and q) smaller values of K are required for �a to acquire a
gap, cf. Eq. (9).
Deep in the massive phase one can make a crude ap-

proximation to the cosine operator in H 2 by replacing it
with a mass term / ðp�" � q�#Þ2. This leads to

v2
b ¼ v"v#

ðp2K"v# þ q2K#v"Þ
ðp2K"v" þ q2K#v#Þ

;

Kb ¼ 1

2
K"K#

ffiffiffiffiffiffiffiffiffi
v"v#

p ðp2K" þ q2K#Þ2
p2K"v# þ q2K#v"

;

(10)

which reduces to (9) for v" ¼ v#.
We now turn our attention to an interpretation of the

theory (7), focusing on the novel regime with p > 1.
Obviously, excitations corresponding to eigenmodes �a;b

carry both spin and charge. Furthermore, these excitations
correspond to multiparticle states in terms of the original
" , # particles since a particle of the species � corresponds
to a � kink of the field �� [13]. To gain further insight to
the structure of the massive phase we consider its correla-
tion properties. We classify operators OðxÞ according to
whether the asymptotic decay of the correlation functions

hOð0ÞOyðxÞi for x ! 1 is exponential, / e��Ojxj, or alge-
braic, / jxj�2�O . For equal densities, p ¼ q ¼ 1, the
dominant algebraic order (i.e., the smallest decay exponent
�O) is found among the two-point operators: the super-
conducting fluctuations, OS ¼ �"�#, and charge density

wave, OCDW ¼ P
�;�0c y

R����0c L�0 , and spin density

wave, O�
SDW ¼ P

�;�0�c y
R��

�
��0c L�0 . Here c L;R� are

left- and right-moving fermions, respectively, and �� are
the Pauli matrices.
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The case p � q is markedly different: First of all, the
superconducting correlations described by OS always de-
cay exponentially, and so do the x and y components of
O�

SDW. For the CDW and SDWz operators we write

OCDW ¼ O"
LR þO#

LR and Oz
SDW ¼ iðO"

LR �O#
LRÞ, where

the auxiliary operatorsO�
LR ¼ c y

L�c R�. Using (8) we find
for x ! 1

hO"
LRð0ÞO"

LRðxÞyi � jAðb"Þj2e�2ik"Fxjxj�2�" ; (11)

where �" ¼ q2Kb=2K
2
a, b" ¼ pK"=Ka, and Aðb"Þ ¼

jhei
ffiffi
2

p
�ab" ij2. Likewise, for the # species the exponent is

�# ¼ p2Kb=2K
2
a and the amplitude is Aðb#Þ with b# ¼

qK#=Ka. The amplitudes AðbÞ depend exponentially on b:
logAðbÞ / 1=b4 [18]. We thus see that correlations of
OCDW and Oz

SDW are both given by a superposition of

two power-laws (11) with exponents �";#—where the

slower the decay, the smaller (exponentially smaller) is
the corresponding amplitude.

Given the massive mode in the form (8) with p � q, we
construct a compound operator Opþq ¼ �p

# �
q
" which has

algebraically decaying correlations. Specializing for the
lowest order commensurability (5) with p ¼ 2 and q ¼
1, this corresponds to a ‘‘trimer’’ operator O2þ1 ¼
�y

# �
y
# �

y
" . For fermionic " component the corresponding

decay exponent �2þ1 ¼ ðKb=2K
2
a þ 2K2

a=KbÞ=2. We thus
see that in this particular case the dominant correlations in

the massive phase are the 2kF density waves (11) for �" <
1=

ffiffiffi
3

p
, and the ‘‘trimer’’ correlations Opþq for �" > 1=

ffiffiffi
3

p
.

We stress that the competition between OLR and Opþq is

generic, in a sense that it holds irrespective of the statistics
of " and # particles both on the lattice and in the continuum.

Microscopics.—We now focus on the following ques-
tion: Is there a microscopic model whose low-energy ef-
fective theory would be given by Eqs. (5) and (7)?

We start from constructing such a model explicitly in the
weak-coupling regime with respect to the interspecies
interaction. Namely, for the # component we take non-
interacting fermions (or, equivalently, Tonks bosons) of
the mass m# and (linear) density n#, so that K# ¼ 1 and

v# ¼ �n#=m#. For the " species we take a dipolar Bose gas
which is known to be a Luttinger liquid with K" !
�½6�ð3Þn"r0��1=2 as n"r0 ! 1 [19]. Here r0 ¼ m"d2=2�
is the effective Bohr radius associated with the dipole
moment d and � is the Riemann zeta function. We thus
see that for n"r0 ¼ p4�2=6�ð3Þ we have K" ¼ 1=p2.

Furthermore, Galilean invariance fixes the product v"K" ¼
�n"=m" [14]. Constraining the densities via (5) with p >
q ¼ 1, and assuming m" ¼ pm# we have both v" ¼ v#
and p2K" ¼ q2K# ¼ 1 by construction. Now, coupling

the " and # species via, e.g., a short-range interaction
U
R
dxn"ðxÞn#ðxÞ with infinitesimal U generates the terms

of the form (3) and (6) with g ¼ U=�2. The eigenmodes of
the system are then given by Eqs. (8) and a direct calcu-

lation yields Ka ¼ p2K"ð1þ g
K"
v"

p
4qÞ þOðg2Þ and Kb ¼

p2K2
"K#ð1� g

K"
v"

p
4qÞ þOðg2Þ. Thus, having U < 0 yields

Ka < 1 and hence drives the system to the gapped phase,
where the gap � is exponentially small: ln���const=U.
A similar construction can easily be effected for an FF
mixture on a lattice. In this case we take for the " compo-
nent, e.g., a model with finite-range interactions [20].
In the example above we engineer the theory (5) and (7)

by coupling a majority of light and noninteracting # species
to the minority of heavy particles " , which have strong
repulsions among themselves. Such a construction is some-
what ad hoc, and requires fine-tuning. A much more natu-
ral alternative is provided by a simple observation: even
purely local interspecies coupling U generates long-range
effective interactions in higher orders of perturbation the-
ory. Thus, having finiteU andm" � m# should be sufficient
to divert the RG flow towards the theory (7). In this case we
expect a light minority component to provide an effective
coupling between heavy particles of majority species.
To this end we consider an asymmetric attractive (U <

0) Hubbard model

HaH ¼ �X

hiji�
t�ðcyi;�cj;� þ H:c:Þ þU

X

i

n̂i"n̂i#; (12)

where ci� annihilates a fermion with spin � on a site i 2
½1; L� of a chain lattice of length L, hiji stands for pairs of
nearest neighbor sites, n̂i� ¼ cyi�ci�, and t� are hopping
amplitudes for the spin-up and spin-down components. For
	 � t#=t" ¼ 1 the model (12) is solvable by Bethe ansatz

techniques even in the presence of density imbalance. For
n" � n# the ground state is of the FFLO type [8], which, in

present language, corresponds to a gapless fixed point
theory HA—see [21] for a detailed discussion.
For t" � t#, the model (12) is no longer integrable, and

we resort to numerical simulations using DMRG technique
[12]. We use lattices of up to L ¼ 80 sites with open
boundary conditions and DMRG truncation of up to Ns ¼
400 states. We calculate single-particle density matrices


�ðxÞ ¼ hcL=2;�cyL=2þx;�i and pair-pair correlations �ðxÞ ¼
hP L=2P

y
L=2þxi, where P j ¼ cj"cj# is the lattice version of

the superconducting operator OS and h� � �i denotes an
expectation value over the ground state.
Figure 1 shows typical results for the pair-pair correla-

tions �ðxÞ. We find that for small enough hopping asym-
metry, 	> 	c1, the long-distance decay of both single-
particle (not shown) and two-particle correlations is con-
sistent with the FFLO-type laws �ðxÞ / cosðQFFLOxÞjxj��

and 
�ðxÞ / cosðk�FxÞjxj��. On the contrary, once the
hopping asymmetry exceeds some critical value and the
densities are commensurate via (5), the power-law decays

change to exponentials, namely �ðxÞ/e�jxj� �
cosðQFFLOxÞjxj��0

and likewise for 
�ðxÞ, thus unequivo-
cally signaling the presence of a gap. Violating the relation
(5) destroys the gap, and the correlation functions decay
algebraically again.
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The inset in Fig. 1 shows the superconducting correla-
tion function in momentum space. Compared to the
Hubbard limit, we see that the mass imbalance leads to
an overall broadening of the distribution, which now ex-

tends well beyond k"F þ k#F. In addition, the opening of the
gap at commensurate filling depletes the superconducting
correlation at small momentum. Detailed investigation of
the asymmetric Hubbard model (12) is beyond the scope of
this Letter and will be reported elsewhere [22].

Conclusions and outlook.—Summarizing, we have re-
vealed a generic mechanism of opening a gap in two-
component quantum fluids with density imbalance in one
spatial dimension. The gapped phase appears once inter-
actions and mass asymmetry between components is
strong enough, and the densities satisfy Eq. (5).
Depending on the microscopic details, the system develops
quasi-long-range ordering of either 2kF density waves or of
peculiar (pþ q)-particle composites. The proposed
mechanism applies to mixtures of particles of either sta-
tistics, and does not require the presence of a lattice.
Experimental signatures of the proposed state include
(i) the disappearance of the superconducting ordering,
and (ii) appearance of the (pþ q)-particle composites,
which can be detected, e.g., by noise correlation measure-
ments in the time-of-flight absorption imaging using the
techniques discussed in Ref. [23].
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FIG. 1 (color online). Superconducting correlation function
�ðxÞ for the asymmetric Hubbard model (12) for n# ¼ 2n" ¼
3=10: 	 ¼ 1 (black squares) and 	 ¼ 0:3 (red circles). Shown
by blue triangles is �ðxÞ for 	 ¼ 0:3 and ‘‘incommensurate’’
densities n" ¼ 17=80 and n# ¼ 29=80. Hubbard coupling is U ¼
�5t" and the system size L ¼ 80. Lines are guides to the eye.

Inset: Fourier transform of �ðxÞ, same color coding. Arrows
indicate the characteristic momenta: k#F � k"F, k

#
F and k"F þ k#F,

respectively, for the ‘‘commensurate’’ densities n# ¼ 2n" ¼
3=10. We stress that in all these simulations the density distri-
butions for both components are uniform apart from Friedel
oscillations induced by the open boundary conditions.
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