Micro-mechanical analysis of splitting failure in concrete reinforced with fiber reinforced plastic rods

Ye, J Q and Wu, Z J (2000) Micro-mechanical analysis of splitting failure in concrete reinforced with fiber reinforced plastic rods. Cement and Concrete Composites, 22 (4). pp. 243-251. ISSN 0958-9465

Full text not available from this repository.

Abstract

The present investigation provides a micro-mechanical model for the splitting failure analysis of fiber reinforced plastic (FRP) reinforced concrete members subjected to longitudinal tensile stresses. The model consists of three co-axial cylinders: (a) the inner elastic FRP rod; (b) the mid cracked part of concrete; and (c) the outer elastic part of concrete. The anisotropic properties of reinforcement, the compatibility of longitudinal strain at interface and the effect of Poisson's ratio of concrete are taken into account in the analysis. The method can be used to predict the stress distributions in the hybrid structure and the relations between the growth of cracks and the applied end forces. It is found that the number of splitting cracks and the material properties of the anisotropic FRP rods are not the dominant factors in splitting failure. It is also observed that neglecting Poisson's ratio of cracked concrete may under-estimate stresses in the hybrid structure. (C) 2000 Elsevier Science Ltd. All rights reserved.

Item Type:
Journal Article
Journal or Publication Title:
Cement and Concrete Composites
Uncontrolled Keywords:
/dk/atira/pure/core/keywords/engineering
Subjects:
?? concrete hybrid structuresplitting failureengineeringbuilding and constructiongeneral materials sciencematerials science(all)ta engineering (general). civil engineering (general) ??
ID Code:
54254
Deposited By:
Deposited On:
17 May 2012 11:02
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Jul 2024 09:03