
Abstract

This research develops and evaluates queueing models that can be used to model
characteristics of basic call centres, i.e. multi-server systems with time-dependent
arrival rates, general service time distribution and state-dependent abandonments on
arrival (balking). The discrete-time modelling approach which has previously been
used for modelling the time-dependent behaviour of multi-server queues is extended
to incorporate state-dependent balking. Pure birth state-dependent arrival processes
are studied for different arrival rates and are extended for the case of a recurrent ar-
rival rate. Two approximations are introduced to model time-dependent systems with
state-dependent balking. These approximations are proved to bound the actual solu-
tion for M(t,n)/D/s systems. A simulation model for systems with state-dependent
balking is developed. Empirical tests versus this model show that the two approxi-
mations provide bounds of controllable accuracy. The performance of systems with
balking is studied. Results show insensitivity to the service time distribution. The
pointwise stationary approximation (PSA) generally performs well for these systems.
A simple formula to estimate the mean number in the system is derived for busy
systems with balking. Insights potentially useful to call centre management are re-
ported.
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Chapter 1

Introduction to queue modelling of

call centres

1.1 Introduction

A call centre is any group whose principal business activity is talking on the

telephone to customers or prospects. Call centres are central to operations for a

broad range of businesses, including travel reservations; product support; order tak-

ing; emergency services dispatch; and financial transactions [1].

Due to limited resources and unpredictable demand, not all calls can be answered

immediately. However, call centres are equipped with technology which allows calls

to wait when needed. For this reason, call centres can be seen as a subgroup of service

systems where unmet demands are allowed to wait.

A queueing system is a stochastic system having a service facility at which a

population (generally called ‘customers’) arrives for service, and whenever there are

more customers in the system than the service facility can handle simultaneously, a

queue, or waiting line develops. Queueing theory is the branch of applied probability

theory that studies service systems prone to congestion. This area of study was

established almost 100 years ago by the pioneering work of the Danish telephone

engineer Agner Krarup Erlang.

In a queueing system the input is an arriving population that enters the system
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in order to receive service. The output is the same population that leaves the sys-

tem before or after receiving service. As a consequence a queueing model defines

the interacting processes (arrival, service) and the nature of their interaction, which

determines the characteristics of the generated processes (e.g. number of customers

in the system, a sequence of customers’ delays).

This research is concerned with the use of queueing models for call centres.

1.2 The call centre industry

There is no doubt that call centres are today a booming sector in Britain and all

over the world. Having experienced a growth of 250% since 1995 the UK call centre

industry is the largest in Europe [2]. At the end of 2003 there were 5,320 call centres

in the UK employing 790.000 people [3], [2]. By 2007 it is predicted that call centres

in Britain will be employing more than 1 million people [3].

Although some industry analysts predict that call centres will vanish when more

people learn to use the internet, others say that these predictions existed some years

ago, and were not validated. They argue, that people are not going to report a gas

leak by e-mail, or seek advice on a private matter via the internet [2]. This seems to

be the case. Although through the internet people do their transactions in a more

independent way, they need help when it comes to more complicated needs, than a

‘see, buy, pay’ process. In fact, the number of call centres is increasing. Worldwide

growth in the call services market, averaged about 20% per year, during the past five

years, and is expected to continue at a similar rate [4].

The main reason of the recent growth of call centres is that both customers and

organisations benefit from this ‘remote’ service. Indeed, advances in telecommunica-

tions and information technology, enable call centres nowadays to be more efficient.

For example, computer-telephone integration (CTI) enables automatic identification

of the customer’s number and thus a search of any information about this customer

in a company’s database. In this way by the time a customer reaches an agent, the

customer’s record has appeared at the agent’s terminal. This leads to a faster and
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more efficient service.

Call centres have become the preferable way of contacting an organisation since

they provide fast service (given that they are well managed). The access to service is

easier, since there is no need to write or visit an office, or a retail outlet, and often

call centres can be contacted outside normal working hours. On the other hand,

organisations can also deliver services via call centres with reduced costs, since call

centres do not have to be located in an expensive high street location, and because

of the support and back up provided by information technology, less expensive staff

can be used to handle most routine calls [5].

Call centres can be inbound, i.e. deal with incoming calls, or outbound, i.e. initiate

calls to customers, or both. However, most of the call centre industry involves inbound

call centres, and the outbound call centre industry is under pressure due to increase

in relevant legislation and negative customer views of outbound call centres [3].

Recently some call centres have been referred to as contact centres when they are

equipped to deal not only with telephone calls but also with other form of enquiries,

for example emails. However, non-telephony interactions (email, web, letter, fax)

account for less than 9% of contact centre’s activities [3].

In this research we focus on inbound call centres which are the majority of call or

contact centres. Whatever the details of the predictions, the call centre industry is

well established and is not going to vanish. Indeed, its newness and rate of change

mean that there are many management issues worthy of research, as discussed next.

1.3 Call centre management issues

Call centres have significant general management challenges, in human resources

(recruitment, absenteeism, emotional support, burnout, call monitoring policies), MIS

(multi-user multi-site databases, customer tracking, system integration), training, and

quality. As these challenges are better managed and call centres grow larger and more

costly, opportunities to use operations research techniques are of increasing interest

to the industry. Call centre consultants, and telecommunications firms (e.g. AT&T),
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engage in significant non-published research and applications, and there is a need for

more public-domain work on the challenges faced by this important industry [4].

Call centre ‘workforce’ management can be defined as the procedure of matching

service requests with resources. Ideally this means having the right number of skilled

people and supporting resources in place at the right times to handle an accurately

forecasted workload, at agreed service levels with acceptable quality standards. Ac-

cording to Cleveland and Mayben [6], practitioners summarise the above procedure

in nine steps.

1. Choose a service level objective (this would be the service level for inbound call

centres, e.g. 80% of the calls answered in 20 seconds).

2. Collect data, usually from the automatic call distributor (ACD), but also from

other sources such as local networks or voice response units. For example,

Mandelbaum, Sakov, and Zeltyn [7] provide a first, in depth, attempt to describe

the type of data that are available in call centres. Even though this case study

refers to a small bank’s call centre, located in Israel, it gives us an idea of the

notion of call centre data.

3. Forecast call load in each time block, usually the block’s length is between 15

and 60 minutes. The call load includes three factors: average talk time, average

after-call work and call volume.

4. Calculate base staff, i.e. for each time block calculate the number of agents

needed to meet the service level objective.

5. Calculate trunks and related system resources

6. Calculate rostered staff factor, or shrink factor, or shrinkage. This takes into

account breaks, training, and non-phone work.

7. Organise schedules, i.e. assign individual agents to specific shifts.

8. Calculate costs, i.e. since we now know the required number of agents, estimate

the budget needed.
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9. Repeat for higher or lower level of service depending on whether the costs are

permissible or not.

Along similar lines, according to Koole [8], call centre quantitative management

is about finding the optimal service level to personnel trade-off. So, it has to do with

the staffing process, that can be decomposed into five distinct activities [4]:

1. Forecasting (call arrivals by time block and call duration)

2. Performance estimation (predict service level and utilisation for various tele-

phone service representative (TSR) levels in each time block)

3. Staff requirements (select desired number of TSRs in each time block)

4. Shift scheduling (convert staff requirements into shifts, including breaks)

5. Rostering (assign individual people to shifts)

The fourth step in the first procedure and the second in the second one are very

important since human resources contribute 70−80% of the total call centre operating

cost [5], [9]. Accurate calculation of the base staff will lead to a cost efficient balance

between service requests and resources. Thus, it is crucial to use the right models to

calculate the staff requirements, and as a result to control agent utilisation.

1.4 Modelling call centres as queueing systems

As mentioned in section 1.1 call centres can be seen as queueing systems. As a

result, calls queueing provide a means to measure performance of call centres during

operation, and to determine staff needed to serve calls within prespecified service

levels during workforce planning.

Figure 1.1 provides a graphical description of a queueing system which could

represent a simple call centre, or an elementary unit of a more complex call centre

(for example a specific skills unit in a multi-skilled call centre).

Arrivals are calls generated by customers wishing to contact the call centre. In-

creasingly modern call centres have the policy, when all servers are busy, to inform
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Figure 1.1: Entities and processes that comprise a simple call centre, or an elementary
unit of a call centre.

customers on arrival about the current system’s state (i.e. announce anticipated de-

lays). The customers then decide either to wait for service, or leave before joining the

system, a procedure called balking. While waiting for service they might still decide to

abandon the system, a procedure known as reneging. Customers who balk or renege

might call back at a later time; this type of call is known as retrial. When a server

becomes free he is allocated a customer from the queue, usually with a first-come

first-served policy.

It is aknowledged that once the service provider has decided to allow waiting, it is

better to inform customers about anticipated delays [10], [11]. The most convincing

argument on this is our own experience as customers [11]. Informing customers about

anticipated delays tends to cause balking instead of reneging which usually occurs in

invisible queues [11]. The decision whether to join the system or balk depends on

the system’s congestion, thus the announcement of anticipated delays introduces a

state-dependent entry process.

The call centre described above assumes homogeneous customers and agents.

Though this does not always apply in practice, see for example multi-skilled call

centres, the complexity of the problem increases when these assumptions are vio-

lated. As we have pointed out before, in this case the above description could refer

to a specific skilled group of agents, or to a unit of a complex call centre answering a

specific type of calls.

Approximating time-varying behaviour (for example peaks and troughs in arrival

rates) by piecewise-constant behaviour, and then applying stationary analysis over
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intervals of constancy is what is often applied in practice for dealing with the time-

variance [12]. This method is problematic since it assumes that each time block is

independent of all others, with no backlog carried from one to another. Moreover,

calculations used to obtain base staff within each time block, usually involve a classical

queueing formula (Erlang C) (as reported for example in [6], [8]) which assumes a

specific form of service time distribution, ignores abandonments and cannot give any

estimation in case of overloads. The above method is popular among practitioners

due to its simplicity. However, as this provides a crude approximation there is need

for more sophisticated queueing theory models to be employed to shed more light on

call centre queue management.

1.5 Aims of the research

In this context the overall aims of this research are:

• To develop one or more queueing models that incorporate important call centres

characteristics, and overcome some of the limitations of existing models, such

as: time-dependent arrival rates, general service time distribution, balking, and

overload.

• To demonstrate the potential value of these models to provide understanding

and insights into the behaviour of call centre queues of relevance to call centre

management.

1.6 Structure of the rest of the thesis

We note here that because of the massive literature in general queueing systems,

the style which is adopted in this thesis is to review relevant sections of the literature

at appropriate points of the thesis.

From this chapter we conclude that call centres can be described as queueing

systems with time and state-dependent arrival rates, and general service time dis-

tributions. For this reason in Chapter 2 we review those models from the relevant
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queueing theory literature that have been applied, or could be used to model at least

one of these characteristics. We conclude from this review that the discrete-time

modelling approach is the most promising method, since it can deal successfully with

time-dependent arrival rates, and general service time distributions.

Chapter 3 then describes the theoretical concepts of the discrete-time modelling

approach, and reviews in more detail work on this subject. This is done first to

show how the discrete-time approach models time-dependent arrival rates and non-

exponential service time distributions, and second to show why this approach has the

potential to incorporate state-dependent arrivals. Having done so Chapter 4 provides

formulae for calculating state-dependent arrivals, and introduces two approximations

in order to incorporate these state-dependent arrivals in the discrete-time modelling

algorithm.

An investigation is undertaken next to see whether one approximation describes

always a more congested system than the other approximation, and whether these

two approximations bound the actual solution. Chapter 5 presents some theoretical

results. Since deriving theoretical results proved to be difficult and limited, a sim-

ulation model was also developed in order to provide a broader investigation of the

bounding behaviour of the two approximations. Chapter 6 describes and validates

this simulation model. It then uses this simulation model as the exact solution in

order to evaluate the two approximations. It also investigates the factors which affect

the accuracy of the two approximations.

In Chapter 7 the two approximations are used in order to study the performance

of systems with balking and to demonstrate important insights for call centre manage-

ment and modelling. Finally, Chapter 8 summarises the conclusions of this research,

and suggests issues for further research.
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Chapter 2

Literature review of queueing

theory relevant to call centres

characteristics

2.1 Introduction

This chapter is a literature review of queueing research that has been applied or could

be used to model call centres.

Since call centres are complex queueing systems we do not expect to find a method

which will match all their characteristics. For this reason, we review separately meth-

ods that deal successfully with one of their challenging characteristics, in order to

investigate possible extensions to include more. Thus, we focus in Section 2.2 on sys-

tems with time-dependent arrival rates, in Section 2.3 on systems with abandonments,

and in Section 2.4 on systems with general service time distribution.

This review shows the limitations of most analytic approaches. It also indicates the

potential success of the discrete-time approach. We review the relevant literature for

this latter method in the next chapter, where it is presented and discussed in greater

detail as a basis for the research developed in later chapters to model call centres.

Finally, in Section 2.5 we justify why numerical methods are still valuable, though

clearly simulation also provides a valuable option, especially for complex systems.
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2.2 Time-dependent arrival rate

Most of the queueing theory textbooks are concerned with steady-state models,

for example the basic textbooks Kleinrock [13], and Gross and Harris [14]. There are

also tables and graphs for the steady state distribution of number in the system, and

for the expected queue lengths. For example Hillier and Yu [15] cover a wide range

of queueing models (M/M/c, M/D/c, D/M/c, Ek/M/c, Ek/Em/c). In [16] the more

general G/G/c model is considered and, based on the coefficients of variation, tables

are given for the steady-state expected number in the queue and the probability of

not being able to join the system.

In a call centre scenario, at least the arrival rate varies with time. One could argue

that the service rate also varies with time, since a factor of server’s fatigue could be

introduced. However, this variation is insignificant compared with the variation that is

observed in the arrival rates. Different factors, such as advertisements, working hours,

e.t.c., trigger more people to call at some times, thus leading to a time-dependent

arrival rate.

Most of the attempts to deal with queueing systems with time-dependent arrival

rates assume markovian arrivals. This means that the arrival process is Poisson.

Poisson processes often occur in reality due to the Palm and Khinchin limit theorem

[13]. In call centres, there are many independent and statistically-identical potential

customers, who during a small time interval have a small probability of ringing the

call centre, so that arrivals should in theory be at random and as such should follow

a Poisson process. As explained in the previous paragraph the customers’ call prob-

abilities are time-dependent, and thus the arrival process is a time-inhomogeneous

Poisson process. Statistical analysis of arrival data from a call centre has showed

consistency with this assumption [9].

For the transient behaviour of M/M/1/∞, M/M/1/1 and M/M/∞ models closed

form solutions exist, and can be found in [14]. However, these solutions are not

very useable because they involve Bessel functions making them difficult to apply

in practice. Solutions that avoid the use of Bessel functions in the above cases are
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given by Sharma [17]. Still, when there is more than one server, the problem be-

comes too complex. As a result we need to use numerical methods, approximation

methods, or simulation [18]. For example, for the M(t)/M/s(t) case, the Chapman-

Kolmogorov differential equations can be solved numerically by applying the Runge-

Kutta method. Ingólfsson et al. [19] in a survey on approximation methods usually

used for M(t)/M/s(t) systems reported, as expected, that gains in accuracy are paid

for by excessive computer time.

A method which is often used to model time-dependent behaviour is the diffu-

sion approximation. The method was proposed by Newell [20] for a single server

time-dependent queueing system. Since it is simple and flexible it has been very pop-

ular (see for example Kleinrock [21], Duda [22]). According to this method discrete

queueing processes are represented by continuous diffusion ones. However, heavy-

traffic assumptions are needed in order to apply the method. As a result this limits

the applicability of the method, and it cannot be applied in a call centre scenario

where quiet as well as busy time intervals can be observed.

The simplest approximation method that can be used for the M(t)/M/s model is

the simple stationary approximation (SSA). For the SSA to be applied the number

of servers needs to be fixed. SSA uses the stationary model with arrival rate equal

to the overall mean value of the time varying arrival rate. In this way it loses all

the time-dependent nature of the system, however it has been observed [23] that it

performs well when the arrival rate changes very rapidly relative to the service times.

Some effects of non-stationarity on multi-server Markovian queueing systems are

given in [24]. Even though there is no measure for the degree of non-stationarity in the

literature, the authors give a description of what this would be, and are concerned with

sinusoidal arrivals rates. For this kind of arrivals, when the number of servers or the

arrival volatility from the mean arrival rate increases, the stationary approximation

becomes worse.

Another approximation is the pointwise stationary approximation (PSA) intro-

duced by Green and Kolesar [25], which assumes that at each time point steady state

is achieved, and uses the instantaneous arrival rate λ(t), for the mean arrival rate at
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time t. The authors state that if the arrival rate changes sufficiently slowly, relatively

to the service times, the PSA gives good approximations.

These two approximations are used because of their simplicity and because they

often provide upper and lower bounds of the performance measures. However, there

are important cases where both PSA and SSA perform poorly. It is generally admitted

that SSA is a crude approximation since it ignores the time-dependent arrival rate,

while PSA performs poorly for example when fluctuations on the arrival rate are not

sufficiently small (see for example [23]) and cannot be applied in systems in which

even temporarily the offered load exceeds the service capacity. For these reasons other

approximation methods are required.

One successful approach to deal with time-dependent arrival rate is to apply

discrete-time modelling, and use numerical methods to solve the resulting difference

equations [26], [27], [28]. We will discuss this method in more detail in Chapter 3.

2.3 Abandonments

It is acknowledged that research into understanding the lost demand due to aban-

donments would be of great value in managing call centres [4]. Abandonments play a

major role in call centres. Customers of call centres demand quick and efficient ser-

vice, otherwise they abandon the system. Percentages are given to support the above

observations [29], derived from a study focused on calls to an airline ’s reservation

centre, for example:

• Faced with a busy signal, over 30% of callers would not call back.

• Faced with a delay of approximately 15 seconds before being connected with an

attendant, 44% of callers abandoned the call and did not call back.

• Faced with a delay of 30 seconds or more before being connected with an at-

tendant, 69% of callers abandoned and did not call back.

There are two ways in which abandonments occur in a queueing system, balking and

reneging. Balking occurs when an arriving customer leaves the system as soon as he
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realises that he will not be served immediately. In this way he abandons the system

immediately after joining it. Reneging occurs when a customer abandons the system

after waiting for some time.

Usually call centres experience abandon rates over 10%. Hence if abandonments

are taken into account waiting time is no longer appropriate as a single performance

measure, but should be used in combination with desired limits on the abandonment

rate.

As mentioned in section 1.4 modern call centres are increasingly choosing to in-

form their customers about anticipated delays. As a result customers decide upon

arrival whether to join the system or not. It is expected that having been informed

about the time they need to wait until service, if they decide to wait they will wait

until they receive service (given that they were given the right information about

their expected waiting time). For this reason when we have state-dependent balking

(i.e. abandonments which depend on the system’s congestion) we will have a neg-

ligible percentage of customers reneging (leaving after waiting for some time). The

approach adopted in this thesis agrees with what Whitt states in [11] : ‘Assuming

that customers know their preferences, it is natural to assume that customers would

respond to this additional information when all servers are busy by replacing reneging

after waiting with state-dependent balking; i.e., customers should be able to decide

immediately upon arrival whether or not they are willing to join the queue and wait

to receive service. Having joined the queue, customers should be much more likely to

remain until they begin service. Reneging is even less likely if the customer can see

that the remaining time to wait is steadily declining.’ Thus it is important to model

state-dependent balking since this is the dominant mechanism of abandonments when

information about the expected delays is announced upon arrival.

Whitt [11] assumes stationary arrivals and uses birth-and-death models to study

state-dependent balking and reneging. The results of this paper are limited to steady

state and negative exponential service time distribution. Brand and Brand [30] stud-

ied a M(n)/M(n)/s + G system. Again the service is assumed to follow a negative

exponential distribution, though this time it can be state-dependent. Also they can
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include balking since they allow for state-dependent entries, and they can have general

impatience distribution. Still their results are limited to steady state.

Another approach to model abandonments has been using the idea of customer’s

‘patience’ distribution. The time that someone is willing to spend waiting in an

invisible queue, depends on his estimate of the time he has to wait until receiving

service, on his patience, on the service benefits, and on the cost of the call. For

example when someone uses a toll free line he might wait longer than when he pays

for the call, etc.

The problem of taking these factors into account is highlighted in [31], which

attempts to derive the customer’s distribution, by assuming that customers’ estimates

of their waiting times coincide with the actual waiting times. In other words it

assumes that each customer knows how long he will wait until he steps into service.

The basis for this assumption is that a customer has knowledge of the system from

previous visits to it. He then decides when he will abandon the system by balancing

the service benefits against the cost of waiting. However, the assumption that someone

knows how long he has to wait is something that we do not expect to apply in practice,

unless this information is is announced in which case case state-dependent balking

would occur and not reneging.

Another attempt to deal with abandonments can be found in [32]. This assumes

negative exponential service and patience distributions, and steady state, so it is an

M/M/N + M model which they call an ‘Erlang A’ model. In addition this model

cannot deal with state-dependent abandonments.

There are very few papers that deal with abandonments and time-dependent be-

haviour. For example Mandelbaum, Massey, Reiman, Reider and Stolyar [12], [33] use

fluid and diffusion approximations to deal with time-dependent systems which face

abandonments and retrials. The abandonments in their work concern only reneging

and not state-dependent balking, and Mandelbaum and Koole in a subsequent paper

[34] recognise that it is not ready for serious applications.

From the above we conclude that there is need for broader models that can be

developed to model state-dependent balking which is an important characteristic of
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modern call centres.

2.4 Service time distribution

Service time distribution is the distribution of time that the server spends in order

to provide service to a customer. In call centres this is the time to answer a call and

any rapping up time that the agent will spend after the call to update records in the

company’s database or to keep notes, thus it is the time duration between answering

the call and becoming available again.

Much of the queueing theory literature, and in particular most of the models

described in the previous two sections, are concerned with systems with negative ex-

ponential service time distributions. This is because analytic steady-state solutions

exist for the M/M/s systems with finite or infinite capacity. These solutions are

obtained by solving the forward Chapman-Kolmogorov equations. Due to the sta-

tionary nature of these systems, the Chapman-Kolmogorov equations can be easily

solved, after introducing time invariance.

Call centres are expected to have general service time distributions, and not nec-

essarily a negative exponential one. For example statistical analysis of a particular

bank telephone call centre showed that the service time distribution fitted a lognormal

distribution [9]. Though in [32] the authors claim that the service time distribution

in call centres seems to be lognormal, as this was also observed in another call centre,

this clearly does not imply that it can be generalised to all call centres. We could

go further and provide a counter example on this, by considering a simple bank call

centre that receives two types of customers one requiring a short service, the other

requiring a long service. As a result the service time distribution will be bimodal

which obviously cannot described by a lognormal distribution since the latter is a

unimodal one.

However, there are no analytic models for time-dependent queues when general

service distribution is used. There are only some for the limited cases where infinite

servers are used (see for example [35], [36]), which are not useful for the multi-server
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case that we are interested in. Numerical methods could be employed in this case.

These include the phase-type approximation and the discrete-time appoximation.

The phase-type approximation is based on the method of stages which was in-

troduced by Erlang and was generalized by Neuts [37]. According to this method

non-exponential distributions are approximated by distributions that are built up

from mixtures and/or convolutions of exponential distributions. For example an Er-

lang k distribution can be represented as k exponential services in series, while a

hyperexponential k distribution can be represented by k exponential services in par-

allel. As a result the phase-type method approximates the non-markovian system

with a continuous time Markov chain, in which the state variable includes the phase

in which each customer in service is, in addition to the number in the system. How-

ever, there is no convenient way of linking this formulation to the real time axis and

thus it is difficult to incorporate non-stationary arrivals in these models.

Steady-state results with state-dependent arrivals can be found in Marie and Pel-

laumail [38] who study a single server system with feedback with the use of Coxian

distributions, and Driscoll [39] who uses numerical methods to study an Em/Ek/s

system with state-dependent arrivals.

Other research by Gupta and Rao [40] includes calculation of the steady-state

probability distribution in M(n)/G/1/K system. The success of their analysis is due

to the fact that the system under consideration has only one server and that their

analysis is limited to steady state.

The idea of approximating the non-exponential service time distribution with

another distribution is also met in the discrete-time modelling. However according

to this approach the continuous general distribution is approximated with a discrete

one and the system is observed only at specific moments. Unlike the phase-type

approximation discrete-time modelling has been successfully applied to model time-

dependent arrival rates, as we will see in more detail in the next chapter.
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2.5 Numerical, Approximate and Simulation Mod-

els

In addition to the analytical methods already mentioned, simulation also offers an

important modelling approach for real queueing problems including call centres [6].

Whilst simulation can provide the only resort for studying some complex systems

and a convenient approach in others, as is nicely stated by Marcel Neuts in [26],

for models whose structure is mathematically well understood it is desirable that

algorithms making use of existing theory be developed. Indeed as stated by Pidd [41]

computer simulation is no panacea. Realistic simulations may require long computer

programmes of some complexity and producing useful results can turn out to be a

surprisingly time-consuming process.

Numerical algorithms provide feasible computability and not the mere formal

correctness of transform solutions, that most of the time cannot be applied in practice.

Approximation techniques are valuable and this is currently acknowledged from the

scientific community. For example we quote from [42], [43] Schweitzer’s view on

approximations: ‘We have reached the end of the road for exact models and future

efforts should be devoted to developing better classes of approximation models ... it

is better to have an approximate treatment of an accurate model than an accurate

treatment of an inaccurate model’.

In this research we develop the discrete-time approach which is a numerical method.

We believe that having both analytic (or numerical) and simulation methods promotes

powerful modelling. This agrees with Koole and Mandelbaum [34] who also think that

one should blend analytic and simulation methods: ‘analytical models for insight and

calibration, simulation also for fine tuning. In fact, our experience strongly suggests

that, having analytical models in one’s arsenal, even limited in scope, improves dra-

matically one’s use of simulation’.
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2.6 Summary

In conclusion both analytical (or numerical) approaches and simulation have their

advantages and disadvantages, and in many practical and research situations the ‘best’

strategy may well be to use both approaches together. This research tries to fill a

gap by developing queueing theory to model call centres incorporating time-dependent

and state-dependent arrivals and general service time distribution. Simulation models

will be used where appropriate to help validate the queueing models developed.

This thesis will adopt the discrete-time modelling approach which from the lit-

erature review of this chapter seems to be the most promising analytical method to

model call centres. For this reason we describe and review this approach in the next

chapter.
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Chapter 3

Discrete-Time Modelling of

queueing systems

3.1 Introduction

Call centres are service systems where unmet demands are allowed to wait, there-

fore they can be described as we have seen in section 1.4 as M(t)/G/s(t) queueing

systems. However, it is not possible to find an analytic solution for these systems.

By applying discrete-time modelling the above system can be approximated with an

appropriate discrete-time system which is tractable.

This chapter provides the background in discrete-time modelling. In particular,

section 3.2 gives a brief description of how discrete-time modelling is achieved. Sec-

tion 3.3 reviews early and pioneer work on discrete-time modelling. Section 3.4 is a

literature review on work that deals with the difference equations numerically, while

section 3.5 looks at work that deals with the difference equations analytically. The

rest of this chapter describes the discrete-time algorithm which is our starting point

in order to extend it to include balking. This numerical algorithm was developed here

at Lancaster, through the work of previous thesis, and forms the basis for the work

undertaken in the remainder of the thesis.

19



3.2 The discrete-time approach

Discrete-time systems are systems which are accessed (observed and updated)

at specific times. For discrete-time modelling of queueing systems the time axis is

segmented into a sequence of equal non-overlapping intervals of unit duration, called

slots. The points on the time axis which are defined by all multiples of this slot are

called epochs (a term introduced by J. Riordan [13]).

In the discrete-time approach we would like to update the state probabilities at

one epoch based only on the information we have from the previous epoch, since this

would make the calculations easier. This is possible if the system’s description at

epochs forms a first order Markov chain. In discrete-time modelling this is achieved

by defining the basic unit of time (slot) to be equal to the basic unit of service.

Thus, the service duration is an integer multiple of slot duration, and the system’s

state description is then extended to include extra variables which record the residual

service times of all ongoing services. This introduces at epochs an embedded Markov

chain. Extending the system’s description to introduce a Markov chain is reffered to

the literature as the supplementary variable technique (see for example [44]).

In this way we deal with any discrete service time distribution, and time dependent

arrival rates. In other words we obtain the system’s state at time t+1, based only on

the system’s state description at t, and by taking into account all the events (arrivals

and departures) that might occur during (t, t + 1]. This first order Markov chain

enables us to derive a set of recurrence equations which, depending on the complexity

of the problem, can be solved analytically or numerically.

3.3 Early discrete-time modelling research

The idea of applying discrete-time modelling to queueing systems can be traced

to Galliher and Wheeler [45], who studied the M(t)/D/c system. Their service time

distribution is deterministic, which can also be seen as a single point discrete distri-

bution. They divide the time axis at intervals equal to the constant service time. For
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each time interval they calculate the probability of having n customers in the system,

by using the corresponding probabilities for the previous interval and the possible

arrivals. They calculate in this way the probabilities of having n customers at each

time t, where n can take any integer value.

The idea for using discrete-time approximations to deal with continuous time

queues, was introduced in a breakthrough paper by Dafermos and Neuts [46]. The

authors suggest that the service times are measured as multiples of an elementary

length of time, which could be the unit of time, and hence could be used to define

the epochs. They say that this is a reasonable assumption, since it applies in practice

in the way we conceive the time, which is in some units, that we name as hours or

minutes or seconds, and generally argue extensively for the advantages of analyzing

many queues in terms of a discrete-time parameter. The system under consideration

in their paper is a single server queue, with stationary arrival rate, and general service

time distribution. Using discrete-time modelling they write the recurrence relations,

which they say show clearly the dynamics of the system, unlike the other theoretical

treatments of this system, where the recurrence relations are hidden under multiple

Laplace transforms, and generating functions. These recurrence relations are then

solved theoretically.

In a pioneer paper, Neuts [26] suggests that numerical methods could be used

to solve the recurrence relations resulting from discrete-time modelling of queueing

systems. However the systems under consideration in this paper and in subsequent

papers (see Klimko and Neuts [47] and Neuts and Klimko [48]) are limited to single

server stationary systems with restricted small numbers of arrivals per time unit.

Minh [49] uses discrete-time modelling to study a single server queue with a time

dependent compound poisson arrival process. He uses three variables to define the

state of the system: the number of customers in the system, the residual service time,

and the number of customers who have arrived in the system. The author uses mainly

generating functions, and though he states that the form of the results is suitable for

computer applications, there is no evidence to suggest that these expressions can be

used to produce numerical results.
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3.4 Numerical discrete-time modelling

Dafermos and Neuts not only provided the breakthrough on discrete-time mod-

elling of queueing systems, but also declared that numerical computations is the way

to get results useful to practitioners. In [46] they say: ‘It is rarely indicated how well

suited the basic recurrence relations governing the classical queueing models are for

numerical computation. By emphasizing this aspect in the present paper we hope to

make a number of readers, with practical interest at heart, more aware of this.’

Their suggestions inspired a series of researchers in Lancaster University, where

considerable research in this direction, motivated by Dr. Dave Worthington, has

taken place. This includes three theses (Omosigho [50], Brahimi [51], and Wall [52]),

and subsequent publications as well as this research.

Omosigho and Worthington [27] motivated by the work of Neuts [26] study the

time dependent behaviour of single server queues, with time inhomogeneous arrival

rate, and discrete-time service time distribution. This work uses two variables to

represent the system’s state: the number of customers in the system, and the residual

service time. Thus, unlike Minh [49], who probably in an effort to study the departure

process, introduced unnecessary complexity to the problem, the resulting equations

are much simpler. These equations were then solved numerically to provide the

probability distribution of the number in the system. Omosigho and Worthington

[53] extend this method to provide an approximation for single-server systems with

continuous service time distributions.

Brahimi [51], and Brahimi and Worthington [28] extend this work to multi-server

queues. For the first time we have results for queueing systems with more than

one server. They provide an exact algorithm for multi-server queueing systems with

discrete service time distributions. Using a programming language (Brahimi used

Pascal) a computer programme was written to implement this algorithm and calcu-

late the time dependent probability distribution of the number in the system, at each

epoch. They also devised a method for approximating continuous service time distri-

butions with discrete ones based on matching moments. This method leads to more
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efficient computations and higher accuracy than the one proposed by Omosigho and

Worthington [53]. In the rest of this thesis we are going to refer to this discrete-time

modelling algorithm as the DTM.

Wall [52] developed DTM to apply for infinite capacity queues and for time de-

pendent number of servers. He also improved the software implementation of DTM

by introducing dynamic memory allocation, and by discarding the null elements of

the matrix used to store the system’s state probabilities, in order to reduce the com-

putational memory demands. Wall [52] and Wall and Worthington [54] also study

the time-dependent behaviour of virtual waiting time, i.e. the time that an imaginary

customer would have to wait before he receives service if he arrives at the moment

under consideration.

Summarizing, the research that has been undertaken in Lancaster, has devised a

numerical method, which was called DTM, in order to provide discrete-time modelling

of queueing systems with either discrete or continuous service time distributions.

DTM is an exact approach for M(t)/GD/s(t) systems, i.e. systems with discrete

service time distribution, providing the distribution of the number in the system at

each epoch, and can be used to approximate M(t)/G/s(t) systems, i.e. systems with

continuous service time distributions.

In conclusion the multi-server non-stationary M(t)/G/s system cannot be studied

using analytical models. However, the DTM algorithm provides a high accuracy

approximation for this system, and for the case where the service time distribution

is discrete it provides an exact method of modelling this system. Since call centres

have more than one server, in this research we will use the DTM method and try to

extend it in order to include more call centre characteristics. For this reason in the

next sections we describe attempts to solve these models analytically before providing

a more detailed description of the numerical DTM algorithm.
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3.5 Analytical solutions to discrete-time models

There are two major groups of systems where discrete-time modelling applies.

The first group is systems that are continuous in time, but are approximated with

discrete-time systems. The second group is systems that are discrete in time due

to their nature. These systems occur for example in the field of computers and

communications where the natural elementary unit of time can take discrete values

only, since it is the machine cycle time of a processor, the bit or byte duration of signals

on a channel or transmission line, or the pulse duration of any fixed-size data unit. A

recent example is the BISDN (Broadband Integrated Services Digital Network) which

is transported by means of discrete units of 53-octet ATM (Asynchronous Transfer

Mode) cells.

The increasing interest in the systems mentioned above has resulted in an in-

creasing number of publications on this subject including textbooks [55], [56], [57],

[43]. These works are focused on providing analytic solutions to the set of recur-

rence relations, which can be written at points of time where the embedded Markov

chain has been introduced, usually by using generating functions, and Laplace trans-

forms. These methods do not deal with time dependent arrival rates, and transient

behaviour, but are limited to steady state. Also most of the times they use dis-

crete arrival process. For example Woodward [43] studies single server queues with

geometrical and batch geometrical inter-arrival times, and geometrical service time

distributions. Hunter [55] studies Geo/G/1 and G/Geo/1 systems, while Takagi [56]

studies Geo/G/1 and Geo[X]/GD/1 with and without server vacations, and the finite

population Geo/G/1//N system. All these cases are limited to one server systems,

so that analytic calculations are made feasible. Also the results are presented as

transform equations, without indicating how they could be applied in practice. Gao,

Wittevrongel and Bruneel [58] study a Geo/Geo/s system in discrete-time, however

they apply z−transforms and thus they limit to steady-state results.

There is also a small number of papers on transient probabilities with balking in

discrete time. Again the success in acquiring any exact solutions is due to the fact
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that they use single server systems and assume special cases. The ideas appearing

in these works could not be extended for the multiple servers systems as they are

mainly based on mathematical functions that could only be applied in single server

systems. For example Parthasarathy and Selvaraju [59] study a single server system

with a specific form of balking and obtain the exact solution due to the use of the

confluent hypergeometric function. This function is used while applying transforms

to the system, and the solution is only feasible because of the use of this function. If

the form of balking changes or there is more than one server, they would not be able

to use this function and obtain a solution.

3.6 Approximating continuous service time distri-

butions

DTM deals with M(t)/G/s systems by approximating the continuous service time

distribution with a discrete one. Thus, a part of the DTM algorithm concerns this

approximation.

In the context of DTM two different methods have been applied for discretising the

continuous time service time distribution. Omosigho and Worthington [53] proposed

a shape matching of a finite continuous distribution. For this method increasing the

number of intervals that are used to represent the continuous distribution leads to

better accuracy.

The second method for approximating continuous time distributions is by moment

matching [60]. Brahimi and Worthington [28] used this method and have showed that

matching the first two moments results in acceptable accuracy for most practical

purposes. This second approach requires fewer points to represent the service time

distribution (or else number of stages of service) compared with the shape matching.

Usually 2, 3, 4, 5, or 6 points are needed depending on the relationship between the

variance and the mean of service time, instead of about 20 which are needed for the

shape matching approach.
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The number of points is important because the Markov chain introduced by DTM,

has a number of states that during busy times increases with a factor of (s+m−1)!
s!(m−1)!)

, where

s is the number of servers, and m is the number of points of the discrete service time

distribution [51], [54]. It is obvious that the number of states is an increasing function

of both m and s. As a result, m is a determinant factor for the computational require-

ments (computer memory and runtime) of the DTM implementation, and minimising

it is crucial, especially when modelling systems with large number of servers. For this

reason, moment matching is recommended for discretising the continuous service time

distribution. Wall and Worthington [54] showed that the minimum number of points

needed for matching the first two moments depends on the size of the discrete interval

relative to the mean and also on the squared coefficient of variation. If higher degrees

of accuracy are required, higher than the second moment matching should be used for

the approximation, since Brahimi [51] has showed that the residual errors of the two

moment approximation can mainly be attributed to the unmatched third moment.

In this research, two moment matching was used when dealing with continuous time

distributions.

3.7 The Markov chain

In the previous section we saw that in the context of DTM M(t)/G/s systems

are approximated by M(t)/GD/s systems. In this section we are concerned with an

M(t)/GD/s system, and we describe how we introduce an embedded Markov chain

in order to get a set of recurrence relations which describe this system.

In order to model the time dependent behaviour of a discrete-time system, we

need to know the probability distribution of the system’s state at each epoch. By

setting the time interval between two epochs (i.e. the slot) equal to the basic unit of

service, a first order Markov chain can be introduced, and as a result updating the

system can be based only on the the previous epoch. However, in order to achieve

this, an appropriate definition of the system’s state is required. This is because if we

describe the system at each epoch just by using a scalar quantity n, which represents
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the number of entities in the system, the system’s states do not form a Markov chain.

According to DTM, the system’s state description is extended to include the

remaining stages of service of each customer that receives service. This is done by

introducing a vector description, as shown in Figure 3.1, where the service time

distribution has m discrete stages, n is the number in the system, and xi is the

number of customers in service that need i units of service until they depart, where

residual service times are rounded up to the nearest integer values.

�
�

�
�n : x1, x2, . . . , xm

Figure 3.1: Vector state description

In this way we introduce the sequence [nt : xt], where nt is a random variable

describing the number in the system at time t, and xt = [x1, . . . , xm] is a vector

describing the unfinished service stages of the customers receiving service, at epoch

t. The elements of xt are random variables, with xi representing the number of

customers who still need i stages of service in order to complete service. The vector

[nt,xt] takes finite or countable infinite number of values, thus this description leads

to a Markov chain. This Markov chain is described by the following equations:

nt+1 = nt − x1 + rt

xt+1 = xt − [x1 − x2, x2 − x3, . . . , xm] + u

where rt is a random variable describing the number of arrivals during (t, t+ 1], and

u is a vector of random variables that describe the service demands of the customers

who start service during (t, t+ 1].

For this time inhomogeneous, discrete-time Markov chain, the Chapman-Kolmogorov

equations can be written down (for example see [26] for the single server model) and

give the state probabilities at time t+1, in terms of the state probabilities at time t.

In general these recursive relations take the following form:
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p
(0,t+1)
j,k =

∑

l

p
(0,t)
j,l p

(t,t+1)
l,k (3.1)

where p
(t1,t2)
j,k is defined to be the probability that at time t2 the system is at state k

given that at time t1 it was at state j.

The first term in the summation on the right hand side is known, if the system’s

state probability distribution at time t is known. The second term depends on the

number of arrivals and departures that occur during one slot, as well as on the service

demands of the customers who will start receiving service at epoch t + 1. However,

when we know the vector state of the system at time t, we know how many customers

will depart during (t, t + 1], since we know how many were in the their last service

phase. In this way this last probability is the probability that a certain number of

arrivals will occur during a slot, and a certain combination of new service times will

be requested.

In conclusion, the problem of finding the probability distribution of the number in

the system reduces from integration of the Kolmogorov differential equations, which

we would have if we were dealing with continuous time, to solution of state difference

equations, where numerical methods are straightforward to apply. The algorithm

devised by Brahimi [51] and improved by Wall [52] is introduced next.

3.8 Assumptions and notation

In this section we give the assumptions and notation used while applying DTM

for a multi-server queue with time dependent arrival rate and discrete service time

distribution.

The following general assumptions are made according to the DTM algorithm:

• The probability distribution of the number of arrivals in any interval can be

calculated, and is independent of arrivals in other intervals. This assumption

allows for a wide class of arrival processes such as homogeneous and inhomoge-

neous Poisson processes, and scheduled arrivals.
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• The service times of successive customers are independent and identically dis-

tributed random variables measured in terms of the elementary unit of time.

• The arrival and service processes are independent.

• When an arriving customer finds all servers busy, he joins a first in first out

(FIFO) queue.

• When an arriving customer finds more than one server idle, he is allocated to a

free server randomly.

The following notation is used for the description of the DTM algorithm:

nt : Number of customers in the system at time t

s : Number of servers in the system

m : Maximum number of stages for the service process

S(i) : Probability that a customer’s service demand is i units of time, i ∈ {1, . . . , m}

xi : Number of customers in service whose residual service time, when rounded up

to the nearest integer, is i units

r : Number of arrivals during a slot

Vr(t) : Probability of r arrivals during the interval (t, t+ 1]

3.9 Description of DTM algorithm

In this section we give a brief description of the DTM algorithm as introduced by

Brahimi [51].

Initially the general continuous service time distribution is discretised by rep-

resenting it by m equally spaced values: u, 2u, . . . , mu, and by assigning a proper

probability to each of these values. In this way the service procedure is split into m

stages. The time unit is set to be equal to the time interval of the basic service stage

(i.e. u = 1). If we know the number in the system, and the remaining number of
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service stages that each customer in service requires, we have a full description of the

current system’s state and due to the markovian arrivals all possible system’s states

which can be reached at the next epoch can be calculated.

This is done by first removing the service completions and updating the remaining

residual service times. The probabilities that we have 0, 1, 2, . . . , r arrivals in the unit

interval are then calculated (i.e. V0(t), V1(t), V2(t), . . .). The algorithm then expands

like a tree, having as a root the current state, and as branches the states that arise if

we take into account the different possible arrivals. However, the new states are not

specified completely. We also have to incorporate the new service times of customers

who start service by taking into account all the possible combinations of service time

demands that could occur. In this way we calculate iteratively the system’s state

probability distribution at successive time points.

We will now demonstrate how the DTM algorithm applies for each time step. Let

us assume that we are at time t and we are trying to calculate the state probabilities

at time t + 1. We consider one by one all the states at time t and we update them

as described above to calculate the probabilities of the resultant states that might

occur. We will show how the algorithm works for one of them. Suppose we consider

the state [nt : x1, x2, . . . , xm].

• First we need to remove from the system customers that complete their service

before time t+1. Since there were x1 customers at time t with one remaining unit

of service, at time t + 1 these customers will leave the system. Also customers

that were in service will now reduce their remaining service time by one unit.

For this reason the resultant state is [nt − x1 : x2, x3, . . . , xm, 0].

• Then the number r of possible arrivals during (t, t+1) needs to be added in the

system so the resultant state is [nt+1 = nt − x1 + r : x2, . . . , xm, 0], where r can

take any non-negative integer value.

• The number of free places in the service that can accept new customers is then

calculated as newc = min{c, nt+1} −
∑m

i=2 xi. Each of the newc customers

who start service will need i units of service, where i is a random variable,
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i ∈ {1, . . . , m}. In this way we create vectors of new service times (z1, . . . , zm),

where zi is the number of customers starting service who need i stages of service.

For this reason newc =
∑m

i=1 zi. Each of these vectors z = (z1, . . . , zm) has

an associated probability, which can be calculated by taking into account all

possible combinations of service requests. It is:

P (z) = prob(z1, . . . , zm) =
newc!

z1! . . . zm!
S(1)z1 . . . S(m)zm

where S(i) is the probability that the service time will last i units of time.

• The final states are now of the form [nt+1 : x2 + z1, . . . , xm + zm−1, zm] and the

probability of reaching each of these states is the probability of being initially

at state [nt : x1, . . . , xm], multiplied by the probability of r arrivals, multiplied

by the probability of having [z1, . . . , zm] new service demands. This is:

Pt+1[nt−x1+r : x2+z1, . . . , xm+zm−1, zm]=Pt[nt : x1, . . . , xm]×Vr(t)×P (z) (3.2)

According to this forward algorithm, starting from a specific state at time t,

Equation (3.2) gives its contribution to the probability of a resultant state at time

t + 1. We should repeat this calculation for all possible resultant states. Then, by

sweeping all possible states at time t we can find all possible states at time t + 1.

Each time a resulting state has an associated probability (i.e. was also resulting state

from a previous initial state), the latest probability contribution is accumulated to

the previous one. In this way at the end of this procedure we have the system’s state

probability distribution at time t+1. Having found the system’s state distribution at

time t+1 we use it as a starting point in order to find the system’s state distribution

at the next epoch, i.e. time t+ 2.
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3.10 Summary

In this chapter we have described the discrete-time modelling of queueing sys-

tems. According to this method the description of the systems under consideration is

expressed fully by a system of difference equations. We have reviewed the literature

of the two major categories used to solve these equations, i.e. the numerical and the

analytic methods. We have also described the DTM algorithm which we are going to

use in this research. We are next going to investigate whether the DTM theory that

up to now has been used successfully to model M(t)/G/s(t) systems, can be extended

to model systems with balking. We will see how this is achieved in the next chapter.
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Chapter 4

Extending the DTM theory to

include state-dependent balking

4.1 Introduction

The aim of this chapter is to develop the DTM theory described in chapter 3 in

order to include balking. The rate at which balking occurs depends on the state

of the system, i.e. on the number of customers in the system. In practical terms

this corresponds to informing incoming calls about their expected waiting time, or

their position in the queue, so depending on how long this is, they will either enter

the system, or hang up immediately which is called balking. In this way, from a

formulation point of view, balking is about introducing state-dependent entries in

DTM.

The entry process is assumed to be a state-dependent Poisson process, in which the

arrival rate changes when an arrival manages to join the system and when a departure

occurs. This chapter considers the entry process in two stages. In Sections 4.2-4.5

theory is developed for Poisson processes where arrival rates only change due to

arrivals, i.e. the effect of departures is ignored. Then in Section 4.6 two approximate

methods for introducing departures are described.

When events occur as a Poisson process at constant rate, it is well known that

the number of events during time T follows a Poisson distribution. However when
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the arrival rate changes when arrivals occur, the number of arrivals during time T

will depend on the starting state x, and will not follow a Poisson distribution. In

section 4.2 these state-dependent entries are described while in section 4.3 a theorem

is presented which allows their probabilities to be calculated. In section 4.4 another

way of calculating these state-dependent entries is presented. This is motivated by

the relevant literature and it leads to a different formula, however both formulae give

the same results as expected. Neither of these formulae can deal with a recurrent

arrival rate, thus section 4.5 extends the previous theorems to deal with this case.

Having calculated the state-dependent entry probabilities we want to incorpo-

rate them in the DTM algorithm. This is done in section 4.6 by introducing two

approximations.

4.2 State-dependent Poisson processes

A Poisson process is a stochastic process in which events occur at random at

some constant rate λ, i.e. prob(event in [t, t + δt]) = λδt + o(δt), where o(δt)

denotes any function that goes to zero with δt faster than δt itself. For such a

process it is well known that the number of events during time T follows a Poisson

distribution with mean λT . A state-dependent Poisson process is a stochastic process

in which events occur at random at a rate λx, where x is the current state, i.e.

prob(event in [t, t+ δt]/state x) = λxδt+ o(δt).

Our interest is a state-dependent Poisson process, in which the state x changes

after every event. For such processes the number of events during time T will depend

on the starting state x, and will not follow a Poisson distribution. This sort of process

is important in a wide range of applications in addition to the call centre problem

studied here. For example, state-dependence is important to include when dynamic

routing strategies are being considered [61]. Another queueing system, where state de-

pendent arrivals occur is the breakdowns from a limited population, i.e. the machine

interference problem (see for example [14]). Also state-dependent Poisson arrivals

occur while modelling a computing facility dedicated to batch-job processing, where
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job submissions are discouraged when the facility is heavily used [59]. Nevertheless,

the general framework of this situation is the state-dependent occurrences of random

events and is not limited to queueing systems. Examples include market penetration

in limited population, successful orders on depleting stock, epidemic models that de-

scribe the spread of a disease, and multi-cast calls in wavelength-routing networks

[62].

4.3 Calculation of state-dependent entry probabil-

ities

In this section we derive a formula for the probability distribution of number of

arrivals from a state-dependent Poisson process in time T . We therefore consider a

system in which the only events are state-dependent arrivals, and the state of the

system is the number of customers in the system.

Let us assume that at time t the system is in state x. The probability of finding

the system in state y after time T , is the probability that exactly y − x arrivals will

occur, during T . Each time an arrival occurs, the system’s state changes, and this

affects the probability of a new arrival. The following theorem is derived using the fact

that for the system to move from state x to state y, exactly k arrivals should occur,

where k = y − x, and the system’s successive states are x1(= x), x2, . . . , xk+1(= y).

Let z1 be the time after t at which the first arrival occurs, and zi the inter-arrival

time between arrival (i−1) and arrival i, for i > 1. The joint density function of these

variables f(z1, z2, . . . , zk) equals the product of the density function of each variable,

since they are independent. Because arrivals occur as a Poisson process with rate

λxi
, each random variable zi for i > 1 is exponentially distributed, and its proba-

bility density function is λxi
e−λxi

zi . The random variable z1 is not an inter-arrival

time, however, because of the memoryless property of the exponential distribution,

its density function will have the same form with others.We now prove the following

theorem:
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Theorem 4.1

P (xk+1|x1, during T ) = e−λxk+1
Tλx1λx2 · · ·λxk

Recx1(λxk+1
, λxk

), (4.1)

where in general Recx1(λxp
, λxq

) for p > q is a recursive function defined by:

Recx1(λxp
, λxq

)=











1
λxp−λx1

(e(λxp−λx1 )T − 1), for q=1

1
λxp−λxq

[

e(λxp−λxq )TRecx1(λxq
, λxq−1)−Recx1(λxp

, λxq−1)
]

, for q>1
(4.2)

Proof 4.1

P (xk+1|x1) =P(exactly k events during time T)

=P ({0 < z1 < T} ∩ {0 < z2 < T − z1} ∩ . . . ∩ {0 < zk < T − z1 − . . .− zk−1}∩

∩{T − z1 − . . .− zk < zk+1 <∞})

=

∫ T

0

∫ T−z1

0

. . .

∫ T−z1−...−zk−1

0

∫ ∞

T−z1−...−zk

f(z1, z2, . . . , zk, zk+1)dzk+1dzk · · ·dz2dz1

=

∫ T

0

∫ T−z1

0

. . .

∫ T−z1−...−zk−1

0

∫ ∞

T−z1−...−zk

f1(z1)f2(z2) . . . fk(zk)fk+1(zk+1)dzk+1dzk · · ·dz2dz1

=

∫ T

0

∫ T−z1

0

. . .

∫ T−z1−...−zk−1

0

∫ ∞

T−z1−...−zk

λx1e
−λx1z1λx2e

−λx2z2 · · ·λxk
e−λxk

zkλxk+1
e−λxk+1

zk+1

dzk+1dzk · · ·dz2dz1

{calculating the innermost integral}

=

∫ T

0

∫ T−z1

0

. . .

∫ T−z1−...−zk−1

0

λx1e
−λx1z1λx2e

−λx2z2 · · ·λxk
e−λxk

zke−λxk+1
(T−z1−...−zk)dzk · · ·dz2dz1

=e−λxk+1
T

∫ T

0

∫ T−z1

0

. . .

∫ T−z1−...−zk−1

0

λx1e
(λxk+1

−λx1)z1λx2e
(λxk+1

−λx2)z2 · · ·λxk
e(λxk+1

−λxk
)zkdzk· · ·dz2dz1

=e−λxk+1
T Ik(λxk+1

, λx1)

where we define:

Ik(λ, λx1) =

∫ T

0

∫ T−z1

0

· · ·
∫ T−z1−...−zk−1

0

λx1e
(λ−λx1 )z1λx2e

(λ−λx2 )z2 · · ·λxk
e(λ−λxk

)zkdzk· · ·dz2dz1
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To prove the theorem we will now prove by induction that

Ik(λ, λx1) = λx1λx2 · · ·λxk
Recx1(λ, λxk

), for k ≥ 1, (4.3)

For k = 1 we have:

I1(λ, λx1) =

∫ T

0

λx1e
(λ−λx1 )z1dz1 = λx1

1
λ−λx1

(e(λ−λx1 )T − 1)

{from Equation (4.2)} = λx1Recx1(λ, λx1)

which is what we require according to Equation (4.3) for k = 1.

Let us assume that Equation (4.3) is valid for k.We will prove that it is valid for k+1,

that is:

Ik+1(λ, λx1) = λx1λx2 · · ·λxk+1
Recx1(λ, λxk+1

) (4.4)

We start from the left side of Equation (4.4). From its definition:

Ik+1(λ, λx1) =

=

∫ T

0

∫ T−z1

0

. . .

∫ T−z1−...−zk

0

λx1e
(λ−λx1 )z1λx2e

(λ−λx2 )z2 · · ·λxk+1
e(λ−λxk+1

)zk+1dzk+1· · ·dz2dz1

{calculating the innermost integral}

=

∫ T

0

. . .

∫ T−...−zk−1

0

λx1e
(λ−λx1 )z1 · · ·λxk

e(λ−λxk
)zk

λxk+1

λ−λxk+1

(e(λ−λxk+1
)(T−...−zk)−1)dzk· · ·dz1

=
λxk+1

λ−λxk+1

[

e(λ−λxk+1
)T

∫ T

0

. . .

∫ T−z1−...−zk−1

0

λx1e
(λxk+1−λx1 )z1 · · ·λxk

e(λxk+1
−λxk

)zkdzk· · ·dz1

−
∫ T

0

. . .

∫ T−z1−...−zk−1

0

λx1e
(λ−λx1 )z1 · · ·λxk

e(λ−λxk
)zkdzk · · ·dz1

]

{

using the definition of Ik(λ, λx1) for λ = λxk+1
and λ = λ respectively

}

=
λxk+1

λ−λxk+1

[

e(λ−λxk+1
)T Ik(λxk+1

, λx1) − Ik(λ, λx1)
]

{applying Equation (4.3) for λ = λxk+1
and λ = λ respectively}

=
λxk+1

λ−λxk+1

[

e(λ−λxk+1
)Tλx1λx2 · · ·λxk

Recx1(λxk+1
,λxk

)−λx1λx2 · · ·λxk
Recx1(λ,λxk

)
]

=
λx1 · · ·λxk

λxk+1

λ−λxk+1

[

e(λ−λxk+1
)TRecx1(λxk+1

, λxk
) − Recx1(λ, λxk

)
]

{from the definition of Recx1(λxp
, λxq

) for λxp
= λ, q = k + 1}

= λx1 · · ·λxk+1
Recx1(λ, λxk+1

)
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which is the right hand side of Equation (4.4), as required. Q.E.D.

Theorem 4.1 thus gives the exact probability for going from state x1 to xk+1 during

time t. The values of the Recx function can be calculated quite easily, in terms of a

computer programme, using the recursive function.

In order to have an idea of the shape of the state dependent distributions, we

give in Figure 4.1 an example of these distributions. In this example we look at

a finite population system (N = 16) with arrival rate λ(n) = 0.2(16 − n). Four

probability distributions are presented depending on the initial state of the system.

These distributions represent the probabilities of going from an initial state which

in our example takes the values 0, 4, 8, or 12 to higher (resulting) states. We can

see that the distributions have different shapes depending on the initial state in the

system.

0
2

4
6

8
10

12
14resulting state

0

2

4

6

8

10

12

initial state

0

0.2

0.4

0.6

0.8

1

probability

Figure 4.1: The resulting distribution when the initial state is 0, 4, 8, 12 and λ(n) =
0.2(16 − n), T=1.
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4.4 Extending Pure Birth Processes

An alternative approach to this same problem is suggested (but not proved) by

Feller [63], as an extension to pure birth processes. We develop the alternative proof

next.

Theorem 4.2 Suppose that a system passes through a sequence of states E0 → E1 → · · · ,

staying at Ek for a sojourn time Xk. If Xj has a probability density function λje
−λjx

for j = 0, . . . , n where λj 6= λk unless j = k, then Sn = X0 + . . . + Xn (that is the

epoch of the transition En → En+1) has a probability density function given by

Pn(t) = λ0 · · ·λn[ψ0,ne
−λ0t + . . .+ ψn,ne

−λnt] (4.5)

where:

ψk,n = [(λ0 − λk) · · · (λk−1 − λk)(λk+1 − λk) · · · (λn − λk)]
−1 (4.6)

We prove this by induction.

Proof 4.2 For n=1 the pdf of X0 + X1, is the convolution of the individual pdfs

P1(t) = λ0e
−λ0x ? λ1e

−λ1x

{using Equation (A.2) from Appendix A }

=
λ0λ1

λ1 − λ0

(e−λ0x − e−λ1x)

= λ0λ1

(

1

λ1 − λ0

e−λ0x +
1

λ0 − λ1

e−λ1x

)

= λ0λ1

(

ψ0,1e
−λ0x + ψ1,1e

−λ1x
)

We now assume that Equation (4.5) is valid for n, that is the summation of

n random variables Xj, with pdf λje
−λjx, has a pdf that equals the product of

the coefficients λj times the summation of the products of the exponentials with

the corresponding coefficients ψ. Hence if we are interested in the summation of
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X0 + . . .+ Xn−1, the pdf will be given by:

Pn−1(t) = λ0 · · ·λn−1[ψ0,n−1e
−λ0t + . . .+ ψn−1,n−1e

−λn−1t] (4.7)

while if we are interested in the summation of X1 + . . .+ Xn, the pdf will be given

by:

P
′

n−1(t) = λ1 · · ·λn[ψ
′

1,ne
−λ1t + . . .+ ψ

′

n,ne
−λnt] (4.8)

where ψ
′

k,n is given by Equation (4.6) without the term (λ0 − λk) since X0 was not

included, i.e. ψ
′

k,n = (λ0 − λk)ψk,n.

We will now prove that the pdf for n+ 1 variables has the same form, that is the

pdf of X0 + . . .+ Xn is given by:

Pn(t) = λ0 · · ·λn[ψ0,ne
−λ0t + . . .+ ψn,ne

−λnt]

By definition:

Pn(t) = pdf(X0 + . . .+ Xn−1) ? pdf(Xn) = {using (4.7)}

=
[

λ0 · · ·λn−1(ψ0,n−1e
−λ0t + . . .+ ψn−1,n−1e

−λn−1t)
]

?
[

λne
−λnt

]

=
(

λ0· · ·λn−1ψ0,n−1e
−λ0t

)

?
(

λne
−λnt

)

+. . .+
(

λ0· · ·λn−1ψn−1,n−1e
−λn−1t

)

?
(

λne
−λnt

)

{using Equation (A.2) from Appendix A }

= λ0 · · ·λn−1λn

[

ψ0,n−1

λn − λ0

(e−λ0t − e−λnt) + . . .+
ψn−1,n−1

λn − λn−1

(e−λn−1t − e−λnt)

]

{

From the definition of ψk,n (4.6) ⇒ ψk,n =
ψk,n−1

λn − λk

}

= λ0 · · ·λn

[

ψ0,n(e−λ0t − e−λnt) + . . .+ ψn−1,n(e−λn−1t − e−λnt)
]

= λ0 · · ·λn

[

ψ0,ne
−λ0t + . . .+ ψn−1,ne

−λn−1t −
(

n−1
∑

k=0

ψk,n

)

e−λnt

]

(4.9)

However, addition is associative, so instead of calculating the summation (X0 + . . .+

Xn−1)+Xn we can calculate the summation X0 + (X1 + . . .+ Xn). While the group-

ing of the random variables is different, so the convolution includes different terms,
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the result should be the same, since nothing has actually changed. Thus we also have:

Pn(t) = pdf(X0) ? pdf(X1 + . . .+ Xn) = {using (4.8)}

= λ0e
−λ0t ?

(

λ1 · · ·λn[ψ
′

1,ne
−λ1t + . . .+ ψ

′

n,ne
−λnt]

)

=
(

λ0e
−λ0t

)

?
(

λ1 · · ·λnψ
′

1,ne
−λ1t

)

+ . . .+ (λ0e
−λ0t) ?

(

ψ
′

n,ne
−λnt

)

{using Equation (A.2) from Appendix A }

= λ0 · · ·λn

[

ψ
′

1,n

λ0 − λ1

(e−λ1t − e−λ0t) + . . .+
ψ

′

n,n

λ0 − λn

(e−λnt − e−λ0t)

]

{As before ψk,n =
ψ

′

k,n

λ0 − λk
}

= λ0 · · ·λn

[

ψ0,n(e−λ0t − e−λnt) + . . .+ ψn−1,n(e−λn−1t − e−λnt)
]

= λ0 · · ·λn

[

ψ1,ne
−λ1t + . . .+ ψn,ne

−λnt −
(

n
∑

k=1

ψk,n

)

e−λ0t

]

(4.10)

Comparing (4.9) and (4.10), since these two equations have to be the same for

any value of t, we have that ψ0,n = − (
∑n

k=1 ψk,n) and ψn,n = −
(
∑n−1

k=0 ψk,n

)

, both of

which imply
∑n

k=0 ψk,n = 0. Replacing this in either of the above formulae we have

(e.g. from (4.9)):

Pn(t) = λ0 · · ·λn

[

ψ0,ne
−λ0t + . . .+ ψn−1,ne

−λn−1t + ψn,ne
−λnt

]

which is what we wanted to prove.
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Using the above theorem we can now calculate the probability of having exactly n

arrivals during T . It is:

Prob[exactly n arrivals by T] =

= Prob[at least n arrivals by T] − Prob[at least n+1 arrivals by T]

= Prob[X0 + . . .+ Xn−1 ≤ T ] − Prob[X0 + . . .+ Xn ≤ T ]

=

∫ T

0

Pn−1(t)dt−
∫ T

0

Pn(t)dt

{using Theorem 4.2}

= λ0 · · ·λn−1

[

ψ0,n−1

∫ T

0

e−λ0tdt+ . . .+ ψn−1,n−1

∫ T

0

e−λn−1tdt

]

−

− λ0 · · ·λn

[

ψ0,n

∫ T

0

e−λ0tdt+ . . .+ ψn,n

∫ T

0

e−λntdt

]

= λ0 · · ·λn−1

[

(ψ0,n−1 − λnψ0,n)

∫ T

0

e−λ0tdt+ . . .+

+ (ψn−1,n−1 − λnψn−1,n)

∫ T

0

e−λn−1tdt− λnψn,n

∫ T

0

e−λntdt

]

{

From definition (4.6) ψk,n =
ψk,n−1

λn − λk

⇒ ψk,n−1 − λnψk,n = −λkψk,n

}

= λ0 · · ·λn−1

[

−λ0ψ0,n

∫ T

0

e−λ0tdt− . . .− λn−1ψn−1,n

∫ T

0

e−λn−1tdt− λnψn,n

∫ T

0

e−λntdt

]

= λ0 · · ·λn−1

[

ψ0,n(e−λ0T − 1) + . . .+ ψn,n(e−λnT − 1)
]

= λ0 · · ·λn−1

[

ψ0,ne
−λ0T + . . .+ ψn,ne

−λnT −
n
∑

i=0

ψi,n

]

{using that
∑n

i=0 ψi,n = 0 as showed before}

= λ0 · · ·λn−1

[

ψ0,ne
−λ0T + . . .+ ψn,ne

−λnT
]

As a result:

Prob[exactly n arrivals by T] = λ0 · · ·λn−1

[

ψ0,ne
−λ0T + . . .+ ψn,ne

−λnT
]

(4.11)

This is an alternative formula to Equation (4.1). We have tested the two formulae

numerically and they have given the same results. In this way we have managed to

check Equation (4.1) which we have used in our numerical programmes.
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However, neither formula can be applied when two or more arrival rates are the

same, since differences between arrival rates concerning different states, appear in

the denominator. While modelling state-dependent balking this occurs often because

arrival rates remain the same until a queue forms. We elaborate this issue in the next

section.

4.5 State-dependent probabilities with a recurrent

arrival rate

Equations (4.1) and (4.11) cannot be applied when two different states have

the same arrival rate. However, this case might occur in practice, as indicated in

Figure 4.2.
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Figure 4.2: (a) Arrival rate that is initially constant and then decreasing. (b) State
dependent arrival rate, where two or more different states are allowed to have the
same arrival rate.

We are first concerned with the case where the arrival rate is constant and then

state-dependent as for example in Figure 4.2(a). This can occur in systems with

balking, for example, when arrivals occur at a constant rate (i.e. no balking applies

until a queue forms). Each time an arrival occurs it increases the system’s state, thus,

when this state becomes equal to or exceeds the number of servers the arrival rates

will become state-dependent. Hence when calculating the probability of going from

state s − k → s + m, k arrivals occur at a constant rate and m at state-dependent
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rates.

We want to calculate the probability that we will have exactly k arrivals during

time T. This can be seen as the probability of k1 (where k1 is the number of arrivals

needed to cause the arrival rate to first change) arrivals to occur during T0, and

k2 = k − k1 arrivals to occur during T − T0. Hence the arrival rate for the first

k1 arrivals is constant and for the remaining k2 arrivals is state-dependent. The

probability density function which describes the time required to observe k1 arrivals,

when the arrival rate is constant, is given by (see for example [13]):

f(t) =
λ(λt)k1−1

(k1 − 1)!
e−λt

which belongs to the family of Erlang distributions. The probability density function

which describes the time required to observe k2 arrivals when the arrival rate is state-

dependent with λ0, λ1, . . . , λk2−1, is given by Equation (4.5) and takes the form:

g(t) = λ0 · · ·λk2−1

k2−1
∑

i=0

ψi,k2−1e
−λi(t)
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For this reason:

Pk(t) = Prob(exactly k arrivals by T )

=

∫ T

0

pdf(k arrivals at t)pdf(0 arrivals during T − t)dt

=

∫ T

0

[

∫ t

0

pdf(k1 arrivals at t0 with constant λ) ×

× pdf(k2 = k − k1 arrivals state dependent at t− t0)dt0]e
−λk(T−t)dt

=

∫ T

0

∫ t

0

(

λ(λt0)
k1−1

(k1 − 1)!
e−λt0

)

(

λ0 · · ·λk2−1

k2−1
∑

i=0

ψi,k2−1e
−λi(t−t0)

)

e−λk(T−t)dt0dt

=
λk1

(k1 − 1)!
λ0 · · ·λk2−1

k2−1
∑

i=0

ψi,k2−1e
−λkT

∫ T

0

e(λk−λi)t

(
∫ t

0

tk1−1
0 e(λi−λ)t0dt0

)

dt

{calculating the innermost integral using Equation (A.3) from Appendix A}

{with k = k1 − 1, T = t, and α = λi − λ }

=
λk1λ0 · · ·λk2−1

(k1 − 1)!

k2−1
∑

i=0

ψi,k2−1e
−λkT

∫ T

0

e(λk−λi)t

[(

k1−1
∑

j=0

(−1)

(λ−λi)j+1

(k1−1)!

(k1−1−j)!t
k1−1−j

)

×

× e(λi−λ)t +
(k1 − 1)!

(λ− λi)k1

]

dt

{eliminating (k1 − 1)! which appears both as a numerator and as a denominator}

= λk1λ0 · · ·λk2−1

k2−1
∑

i=0

ψi,k2−1e
−λkT

∫ T

0

e(λk−λi)t

[(

k1−1
∑

j=0

−1

(λ−λi)j+1

1

(k1−1−j)!t
k1−1−j

)

×

× e(λi−λ)t +
1

(λ−λi)k1

]

dt

{interchanging summation and integration order}

= λk1λ0 · · ·λk2−1

k2−1
∑

i=0

ψi,k2−1e
−λkT

[(

k1−1
∑

j=0

−1

(λ−λi)j+1

1

(k1−1−j)!

∫ T

0

tk1−1−je(λk−λ)tdt

)

+

+
1

(λ− λi)k1

∫ T

0

e(λk−λi)tdt

]
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









evaluating the integrals. For the first one we use Equation (A.3) from Appendix A,

with k = k1 − 1 − j, T = T , and α = λk − λ. The second one is straightforward.











= λk1λ0 · · ·λk2

k2
∑

i=0

ψi,k2e
−λkT

[(

k1−1
∑

j=0

−1

(λ− λi)j+1

1

(k1 − 1 − j)!
×

×
(

k1−1−j
∑

m=0

−(k1 − 1 − j)!

(λ− λk)m+1(k1 − 1 − j −m)!
T k1−1−j−me(λk−λ)T +

(k1 − 1 − j)!

(λ− λk)k1−j

)

)

+

+
1

(λk − λi)(λ− λi)k1
(e(λk−λi)T − 1)

]

{eliminating (k1 − 1 − j)! which appears both as a numerator and as a denominator}

= λk1λ0 · · ·λk2

k2
∑

i=0

ψi,k2e
−λkT

[(

k1−1
∑

j=0

1

(λ− λi)j+1
×

×
(

k1−1−j
∑

m=0

1

(λ− λk)m+1(k1 − 1 − j −m)!
T k1−1−j−me(λk−λ)T − 1

(λ− λk)k1−j

))

+

+
1

(λk − λi)(λ− λi)k1
(e(λk−λi)T − 1)

]

(4.12)

Thus, Equation (4.12) can be used to calculate state-dependent arrival proba-

bilities when a mixture of a constant and state-dependent arrival rates occur, as in

Figure 4.2(a).

Let us now look at the case where some arrivals have a recurrect rate as it is

illustrated in the example on Figure 4.2(b). This is less likely in the context of call

centre behaviour, however it is included for completeness. This can be reduced to

the previous case by appropriate rearrangement of the arrival rates. The probability

of exactly k arrivals to occur, with rate of occurrence for the i arrival equal to λi,

remains the same if we change the order in which the arrivals occur. For example,

instead of calculating the probability of exactly 3 arrivals to occur during t, with

corresponding arrival rates λ0, λ1, λ2, we can equivalently calculate the probability of

exactly 3 arrivals to occur during t, with corresponding arrival rates λ1, λ2, λ0 or any

other ordering. The only rule we need to apply is that we cannot change the order of

the arrival rate concerning the arrival which will not occur. This last arrival rate in

the previous example where the 3 arrivals occur at λ0, λ1, λ2 would be λ3 and refers to

the arrival that we want to happen beyond the time interval we are interested in. By

46



rearrangement of the arrival rates Figure 4.2(b) becomes equivalent to Figure 4.2(a),

and thus the relevant probabilities can also be calculated from Equation (4.12).

4.6 Approximations

The full DTM approach, as described in Chapter 3, involves state definition of

the form

n : x1, x2, . . . , xm

and forward recurrence equations:

Pt+1[nt+1 : x
′

1, . . . , x
′

m]=Pt[nt : x1, . . . , xm] × Vr(t) × P (z)

When balking is not present, departures and arrivals are independent events.

Departures in a slot are simply a consequence of the residual service times at the

start of the slot, and arrival probabilities just depend on the current arrival rate.

However when balking is present the arrival probabilities will not only depend

on the number in the system at the start of the slot (as assumed in theorem ??),

but also depend on the timing of departures during the slot. Because an exact for-

mulation of this situation would be very complex, two approximations are proposed

instead. These approximations are described in the remainder of this chapter, and

are evaluated in chapter 5 and 6.

The two different approximations are illustrated in Figure 4.3 and are referred to

as the ‘early departure’ and ‘late departure’ approximations. In the ‘early departure’

e
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e
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?

?

arrivals

departures

(a) ‘early departure’ system

e
t

e
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?

?

arrivals

departures

(b) ‘late departure’ system

Figure 4.3: The two approximations assume different order for the events which take
place between two epochs
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approximation, for the purpose of calculating arrival rates only, we assume that all

departures occur at the start of an interval. This approximation intuitively seems

likely to lead to an upper approximation in terms of the queue length. This is because

by first removing the departures, arriving customers see the system to be emptier

than it actually is, so extra arrivals are allowed to enter, thus leading to a system

that is more congested than an exact model would imply. On the other hand the ‘late

departure’ approximation, for calculating the arrival rate, assumes that all departures

occur at the end of the interval. Vice versa, this system now seems likely to lead to

a lower approximation, in terms of the queue length, since arrivals see a system that

is more congested than the actual system.

It is worth noting here that the exact time at which departures occur does not

affect any other aspect of system’s performance, since we look at the system only at

equally spaced intervals (epochs), and not between them.

We next give a simple example so that these concepts become clearer. Suppose

we have a system with one server, and that when someone is in the system receiving

service, no one else can join this system, i.e. very strong balking. In Figure 4.4 we

show a possible realisation of the actual system, and the two approximations. In the

exact model the first arrival occurs at time t1 = 0.2, finds the system empty and so

enters, has a service time of one unit, and so leaves at t2 = 1.2. The second arrival

occurs at t3 = 1.8, finds the system empty and so enters, has a service time of one

unit, and so leaves at t4 = 2.8. Beside each illustration of these systems we show the

sample path of the number in the system.

We can see from this example that in the ‘early departure’ approximation the

system is as busy as the actual system at the epochs, however in the ‘late departure’

system it is less busy than the actual one at the second epoch. This is because the

arrival at t = 1.8 will not be allowed to enter in the ‘late departure’ system, since

this arrival sees one customer in the system due to the late departures assumption.
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Figure 4.4: (a) ‘exact’ system, (b) ‘early departure’ system (c) ‘late departure’
system

4.7 Conclusions

This chapter describes the theoretical development of DTM to include state-

dependent balking.

The first step in this process involved calculation of state-dependent Poisson prob-

abilities. In Sections 4.2 and 4.3 a new formula (Theorem 4.1) is derived to calculate

these probabilities. Having come across another suggested formula for solving the

same problem, Section 4.4 provides a proof, for completeness. We have tested numer-

ically the two formulae and, as expected, they provide the same results.

However, neither formula can be applied when a recurrent arrival rate occurs.

Because our algorithms need to be able to deal with recurrent arrival rates we propose

an extension of the current formula in Section 4.5. As a result this first part of the

chapter provides an extended analysis of pure birth processes with non-homogeneous

Poisson arrival rates beyond what is currently available in the literature.

The next step was to introduce these probabilities in DTM, where we are inter-
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ested in arrivals during a slot. Due to their state-dependent nature, these arrivals

are affected by the number and the time of departures during the slot. This com-

plicates the problem analysed in Sections 4.2-4.5 extremely. A way to deal with this

problem is to consider departures as one event and make assumptions about when

they occur. For this reason in Section 4.6 we have introduced two approximations.

An ‘early departure’ approximation when departures are assumed to occur just after

the beginning of the slot, and a ‘late departure’ approximation when departures are

assumed to take place just prior to the end of the slot. These are similar concepts

to those of early and late arrivals that are sometimes used to model discrete-time

systems, see for example [56]. However, in our case we use late and early departures

and only use them to calculate the state-dependent arrival probabilities.

The approximations were introduced so that intuitively they lead to an upper and

a lower approximation. Indeed in our preliminary tests of the algorithms the two

approximations seem to behave as bounds of the actual solution. For this reason in

the next chapter we undertake a theoretical investigation of the bounding behaviour

of these two approximations.
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Chapter 5

Theoretical investigation of the

bounding behaviour of the two

approximations

5.1 Introduction

In the previous chapter we have provided equations for calculating state-dependent

entry probabilities and we have suggested two approximations in order to introduce

these probabilities in the DTM algorithm. While providing an approximation for the

actual solution is often useful, providing bounds is more helpful, as then the conditions

that bring these bounds close together can be investigated. In this way the actual

solution is estimated within a desired accuracy. Motivated by this, and by the fact

that early empirical results and intuition suggest that the two approximations may

behave as bounds for the actual solution, in this chapter we present the results from

a theoretical investigation of this bounding behaviour.

In Section 5.2 we briefly describe how we designed a comparison between two

different discrete-time scenarios. Due to the complexity of M(t, n)/GD/s systems, for

the rest of this chapter we focus on M(t, n)/D=1/s systems. In Section 5.3 we present

some basic inequalities which concern state-dependent arrival probabilities and which

are going to be used later in the proofs. In Section 5.4 we show that the ‘upper’
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approximation estimates higher levels of congestion than the ‘lower’ approximation.

This is the first time we implement a theoretical comparison between the two different

approximations, and this extends what we have outlined in Section 5.2. All the proofs

which we present in later sections follow a similar structure. In Section 5.5 we give the

formulation for the exact solution. Finally, we prove in Section 5.6 that the ‘upper’

approximation always overestimates the actual congestion, and in Section 5.7 that

the ‘lower’ approximation always underestimates the actual congestion.

5.2 Designing the proofs

In Section 5.4 we examine whether the upper approximation always provides a more

congested system than the lower one. To date this task has proved to be impossible

for the general case M(t, n)/GD/s for two main reasons. First the proof had to be

designed from scratch. This is because there are no similar cases in the bibliography of

discrete-time systems which are time variant and include state-dependent processes.

In our provisional results the performance measure was the mean queue length at

each epoch, although the probability distribution of the number in the system is also

available.

Because the proof for the M(t, n)/GD/s system seemed very complicated, we

have tried for simpler systems such as M(t, n)/D=1/1 and Geo/D=1/s. Working with

these simpler systems clarified some issues. We wanted to show that applying the

upper approximation to a more congested system, we end up in a more congested

system than applying the lower approximation to a less congested system. So by

using induction if at time t we are in the right ordering of congestion, we need to

show that at time t + 1, after applying the different approximation scenario the

ordering still holds. It was obvious that since even for these systems the proof was

difficult, defining this ordering based on the mean queue length was problematic.

The mean queue length did not contain enough information to let us proceed for

the next step. For this reason we decided to show that this ordering holds for the

cumulative probability distributions of the number in the system. Suppose we have
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two probability distributions {Pt(n)}, and {P ′

t (n)}. We assume that for each n ≥ 0

at epoch r the following ordering for the cumulative probabilities holds:

n
∑

k=0

Pr(k) ≥
n
∑

k=0

P
′

r(k)

We would like to show that these kind of relationships hold for the next epoch, that

is:
n
∑

k=0

Pr+1(k) ≥
n
∑

k=0

P
′

r+1(k)

When we have two cumulative probability distributions for the number in the

system, and one of them is larger than, or equal to the other, for every possible

value of the number in the system, then it is easy to show that an inverse ordering

relates the mean queue lengths. Indeed, let us assume that we have two probability

distributions {P (n)}, and {P ′

(n)}, so that:

n
∑

k=0

P (k) ≥
n
∑

k=0

P
′

(k), n ≥ 0 (5.1)

The mean value for {P (n)} is:

n
∑

k=0

kP (k) = P (1) + 2P (2) + 3P (3) + . . .

= P (1) + [P (2) + P (2)] + [P (3) + P (3) + P (3)] + . . .

= [P (1) + P (2) + P (3) + . . .] + [P (2) + P (3) + . . .] + [P (3) + . . .] + . . .

= [1 − P (0)] + [1 − P (0) − P (1)] + [1 − P (0) − P (1) − P (2)] + . . .

= [1 − P (0)] +

[

1 −
1
∑

k=0

P (k)

]

+

[

1 −
2
∑

k=0

P (k)

]

+ . . .

{ using Equation (5.1)}

≤ [1 − P
′

(0)] + [1 −
1
∑

k=0

P
′

(k)] + [1 −
2
∑

k=0

P
′

(k)] + . . .

= [P
′

(1) + P
′

(2) + P
′

(3) + . . .] + [P
′

(2) + P
′

(3) + . . .] + [P
′

(3) + . . .] + . . .

= P
′

(1) + 2P
′

(2) + 3P
′

(3) + . . . =
n
∑

k=0

kP
′

(k)

For this reason, if we manage to prove that an ordered relationship holds for the
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cumulative probability distributions, an inverse ordering will hold for the mean queue

lengths.

We have managed to show that the two approximations behave as bounds of the

actual solution for the system M(t, n)/D=1/s, and we give this proof in the next

section. The service time distribution of this system is deterministic so the unit slot

equals the service time. This system can also be seen as an approximation of the

M(t, n)/GD/s system, if we replace the service time distribution by its average.

5.3 Inequalities concerning the arrival probabili-

ties

In this section we derive some useful inequalities for the arrival probabilities which

we will use later in our proofs. Let us denote by Xk the sojourn time during which

the system stays in state Ek, where k is the number in the system. It is also assumed

in this section, unless stated differently, that the residual service time associated

with each state is ∞. Let ak(i) represent the probability that starting from state

Ek exactly i arrivals will occur during a pre-specified time interval. Again for ak(i),

when referring to the starting state we assume that the associated residual service

time is ∞, that is, no departures can occur, i.e. the corresponding arrival rates are

(λk, λk+1, . . . λk+i).

Lemma 5.1 The probability of at least n − r + 1 arrivals starting from state Er is

larger than the probability of at least n− (r−1)+1 = n− r+2 arrivals when starting

from state Er−1. That is:

P (Xr + . . .+ Xn ≤ T ) > P (Xr−1 + Xr + . . .+ Xn ≤ T )

Proof The above inequality is valid because the same sojourn times appear in each

side of the inequality, but the probability in the right hand side contains an extra
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sojourn time (Xr−1). This can also be written as:

∞
∑

i=n−r+1

ar(i) >
∞
∑

i=n−r+2

ar−1(i) ⇔

ar(n− r + 1) +

∞
∑

i=n−r+2

[ar(i) − ar−1(i)] > 0 (5.2)

where n− r + 1 ≥ 0 or else n ≥ r − 1. In other words the probability of going from

a state r to a state i or higher is larger than the probability of going from the state

r − 1 to state i or higher.

When we are at state r−1 the first arrival will occur at time t0 > 0 and will move

the system to state r. The probability of at least i ≥ 1 arrivals during t− t0 is smaller

than the probability of at least i arrivals during t, where t is the slot duration, when

the initial state is the same r.

Lemma 5.2 The probability of at least n arrivals starting from state Ek−m is larger

than the probability of at least n arrivals when starting from state Ek:

P (Xk−m + . . .+ Xk−m+n−1 ≤ T ) > P (Xk + . . .+ Xk+n−1 ≤ T )

Proof Each probability in the above inequality involves n sojourn times. However,

since λ0 > . . . > λk−m > . . . > λk, starting from a lower state includes higher arrival

rates, and thus shorter sojourn times. This can also be written as:

∞
∑

i=n

ak−m(i) ≥
∞
∑

i=n

ak(i) for n ≥ 0 (5.3)

and since
∑∞

i=0 aj(i) = 1 ⇒
∑∞

i=n aj(i) = 1−
∑n−1

i=0 aj(i) it takes also a dual form:

n
∑

i=0

ak−m(i) ≤
n
∑

i=0

ak(i) for n ≥ 0 (5.4)
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Lemma 5.3 Let us now define a
′

k(i/t) as the probability that starting from state Ek

with an associated residual service time t, exactly i arrivals will occur during a pre-

specified time interval. If ak(i) is defined as before, then:

∞
∑

i=n

a
′

k(i/t) ≥
∞
∑

i=n

ak(i) for n ≥ 0 (5.5)

Proof When considering residual service time (i.e. a
′

k(i/t) probabilities), departures

can occur during the interval thus the corresponding arrival rates λ
′

i are unknown.

However, departures will cause higher arrival rates to occur. The sojourn times will

be again shorter when the residual service time is t than when we assume residual

service time equal to ∞. For this reason Inequality (5.5) is valid.

Again since
∑∞

i=0 a
′

k(i/t) = 1 and
∑∞

i=0 ak(i) = 1 Inequality (5.5) takes the dual

form:
n
∑

i=0

a
′

k(i/t) ≤
n
∑

i=0

ak(i) for n ≥ 0 (5.6)

Lemma 5.4 Referring again to probabilities with associated residual service times,

assume that s is the maximum number of departures. Then the followin inequality is

valid:

∞
∑

i=n

a
′

k(i/t) ≤



































∞
∑

i=n

a0(i), n ≥ 0, k < s

∞
∑

i=n

ak−s(i), n ≥ 0, k ≥ s

(5.7)

Proof Starting from state k− s, when k ≥ s and having ∞ residual service time, or

from state 0, when k < s and having ∞ residual service time, includes higher arrival

rates than starting from state k and having any residual service time (i.e. allowing

for departures), since the maximum number of departures that can occur are s when

k ≥ s and k when k < s. As a result for the same reasoning as for Lemma 5.3,

Inequality (5.7) is valid.

56



The dual form of Inequality (5.7) is:

n
∑

i=0

a
′

k(i/t) ≥



































n
∑

i=0

a0(i), n ≥ 0, k < s

n
∑

i=0

ak−s(i), n ≥ 0, k ≥ s

(5.8)

In this way we have derived a set of useful inequalities which we are going to use in

the proofs presented in the next sections.

5.4 Comparing the upper approximation with the

lower approximation for an M(t, n)/D=1/s sys-

tem

We look at the M(t, n)/D=1/s system. This system has two main characteristics:

1. Arrivals occur as a time-dependent Poisson process with balking

2. The service time is deterministic and lasts one unit of time

We give the equations that relate the probabilities of having n in the system at the

r+ 1 epoch with the corresponding probabilities at the r epoch. Because all services

in process at time r will be completed at time r+ 1, for the lower approximation the

equations take the form:

PL
r+1(n) =



































s
∑

k=0

ak(0)PL
r (k), n = 0

s
∑

k=0

ak(n)PL
r (k) +

n
∑

k=1

as+k(n− k)PL
r (s+ k), n ≥ 1

(5.9)

57



and as a result:

m
∑

n=0

PL
r+1(n) =

m
∑

n=0

s
∑

k=0

ak(n)PL
r (k) +

m
∑

n=1

n
∑

k=1

as+k(n− k)PL
r (s+ k), n ≥ 1 (5.10)

where PL
r (k) is the probability that at epoch r there are k in the system in which

we apply the lower approximation, ak(i) is the probability that exactly i arrivals will

occur during a time unit (slot duration) when there are k in the system with ∞

residual service time, i.e. departures will not occur. The definition of ak(i) in this

section is exactly the same as in Section 5.3.

Writing them in a compact form we use the following ‘matrix notation’ (where n

can take any value):



















PL
r+1(0)

PL
r+1(1)

...

PL
r+1(n)



















=



















a0(0) . . . as(0) 0 . . . 0

a0(1) . . . as(1) as+1(0) . . . 0

...

a0(n) . . . as(n) as+1(n− 1) . . . as+n(0)





































PL
r (0)

PL
r (1)

...

PL
r (s+ n)



















(5.11)

which can be written as:

PL
r+1(n) = ALP

L
r (s+ n) (5.12)

with:

AL =



















a0(0) . . . as(0) 0 . . . 0

a0(1) . . . as(1) as+1(0) . . . 0

...

a0(n) . . . as(n) as+1(n− 1) . . . as+n(0)



















, and PL
r (k) =



















PL
r (0)

PL
r (1)

...

PL
r (k)



















AL is introduced in order to achieve a compact representation of P L
r+1(n), thus it does

not have necessarily square form. In this case AL has dimensions (n+1)×(s+n+1).

For the upper approximation we have:
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PU
r+1(n) =



































s
∑

k=0

a0(0)PU
r (k), n = 0

s
∑

k=0

a0(n)PU
r (k) +

n
∑

k=1

ak(n− k)PU
r (s+ k), n ≥ 1

(5.13)

and as a result:

m
∑

n=0

PU
r+1(n) =

m
∑

n=0

s
∑

k=0

a0(n)PU
r (k) +

m
∑

n=1

n
∑

k=1

ak(n− k)PU
r (s+ k), n ≥ 1 (5.14)

where PU
r (k) is the probability that at epoch r there are k in the system in which

we apply the upper approximation, and an(k)defined as before.

The difference between the equations for the lower approximation (Equation (5.9))

and the equations for the upper approximation (Equation (5.13)) is that in the upper

approximation arrivals see the actual number in the system reduced by the number of

departures which will occur during [r, r+1]. Hence for the upper approximation ak(n)

is replaced by a0(n) and as+k(n − k) is replaced by ak(n − k). In ‘matrix notation’

Equation (5.13) takes the form:



















PU
r+1(0)

PU
r+1(1)

...

PU
r+1(n)



















=



















a0(0) . . . a0(0) 0 . . . 0

a0(1) . . . a0(1) a1(0) . . . 0

...

a0(n) . . . a0(n) a1(n− 1) . . . an(0)





































PU
r (0)

PU
r (1)

...

PU
r (s+ n)



















(5.15)

which can also be written as

PU
r+1(n) = AUPU

r (s+ n) (5.16)

where:
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AU =



















a0(0) . . . a0(0) 0 . . . 0

a0(1) . . . a0(1) a1(0) . . . 0

...

a0(n) . . . a0(n) a1(n− 1) . . . an(0)



















, and PU
r+1(k) =



















PU
r+1(0)

PU
r+1(1)

...

PU
r+1(k)



















Theorem 5.1 Let us consider the two probability distributions {P L
r } and {P U

r } de-

fined by Equation (5.9) and Equation (5.13) respectively. Suppose that for each n ≥ 0

at epoch r the following ordering for their cumulative probability distributions holds:

n
∑

k=0

PL
r (k) ≥

n
∑

k=0

PU
r (k) (5.17)

i.e. 1PL
r (n) ≥ 1PU

r (n), where 1 = [ 1 . . . 1 ], i.e. (n+ 1)-dimensional unit vector.

Then same ordering is valid at epoch r + 1:

n
∑

k=0

PL
r+1(k) ≥

n
∑

k=0

PU
r+1(k) i.e. 1PL

r+1(n) ≥ 1PU
r+1(n) (5.18)

Proof 5.1 The first stage of this proof is to relate P L
r (i) to PU

r (i).

Since we assume that Equation (5.17) is valid for any value of n, it will also be

valid for n− 1. For this reason:

Let βn =

n
∑

k=0

PL
r (k) −

n
∑

k=0

PU
r (k)

and βn−1 =

n−1
∑

k=0

PL
r (k) −

n−1
∑

k=0

PU
r (k)

then PU
r (n) = PL

r (n) − βn + βn−1

where Equation (5.17) implies that βn ≥ 0 and βn−1 ≥ 0. Also applying Equation

(5.17) for n = 0 gives:

PL
r (0) − PU

r (0) = β0 ≥ 0
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In this way P U
r (i) is given by:

PU
r (i) =











PL
r (0) − β0, for i = 0

PL
r (i) − βi + βi−1, for i > 0

(5.19)

which we can write in vector form as:



















PU
r (0)

PU
r (1)

...

PU
r (s+ n)



















=



















PL
r (0) − β0

PL
r (1) − β0 + β1

...

PL
r (s+ n) − βs+n + βs+n−1



















=



















PL
r (0)

PL
r (1)

...

PL
r (s+ n)



















−



















β0

β1

...

βs+n



















+



















0

β0

...

βs+n−1



















which can be written as

PU
r (s+ n) = PL

r (s+ n) − β(s+ n) + β(s+ n− 1) (5.20)

where

β(s+ n) =



















β0

β1

...

βs+n



















, β(s+ n− 1) =



















0

β0

...

βs+n−1



















However, β(s+ n− 1) can be written as a function of β(s+ n). It is:

β(s+ n− 1) =

























0

β0

β1

...

βs+n−1

























=

























0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...

0 0 . . . 1 0

















































β0

β1

β2

...

βs+n
























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i.e. β(s+ n− 1) =

























0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...

0 0 . . . 1 0

























β(s+ n) (5.21)

We are now in a position to show that Equation (5.18) is true. Because:

1PL
r+1(n) ≥ 1PU

r+1(n) ⇔

1PL
r+1(n) − 1PU

r+1(n) ≥ 0 ⇔ ( from (5.12) and (5.16))

1ALP
L
r (s+ n) − 1AUPU

r (s+ n) ⇔ ( from (5.20))

1ALP
L
r (s+ n) − 1AUPL

r (s+ n) + 1AUβ(s+ n) − 1AUβ(s+ n− 1) ≥ 0 ⇔

1(AL − AU)PL
r (s+ n) + 1AUβ(s+ n) − 1AUβ(s+ n− 1) ≥ 0 (5.22)

we need to show that Equation (5.22) is true. The first term of Equation (5.22) is:

1(AL − AU)PL
r (s+ n) =

= [ 1 . . . 1 ]





































a0(0) . . . as(0) 0 . . . 0

a0(1) . . . as(1) as+1(0) . . . 0

...

a0(n) . . . as(n) as+1(n− 1) . . . as+n(0)



















−

−



















a0(0) . . . a0(0) 0 . . . 0

a0(1) . . . a0(1) a1(0) . . . 0

...

a0(n) . . . a0(n) a1(n− 1) . . . an(0)





































PL
r (s+ n)

=



















[1 . . . 1 ]



















a0(0)−a0(0) . . . 0 . . . 0

a0(1)−a0(1) . . . as+1(0)−a1(0) . . . 0

...

a0(n)−a0(n) . . . as+1(n−1) − a1(n−1) . . . as+n(0)−an(0)





































PL
r (s+ n)
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=

[

0
n
∑

i=0

[a1(i) − a0(i)] . . .
n−1
∑

i=0

[as+1(i)−a1(i)] . . . as+n(0) − an(0)

]

PL
r (s+ n)

=
s
∑

k=1

n
∑

i=0

[ak(i) − a0(i)]P
L
r (k) +

s+n
∑

k=s+1

n+s−k
∑

i=0

[ak(i) − ak−s(i)]P
L
r (k)

{

since {ak} is a probability distribution
n
∑

i=0

ak(i) = 1 −
∞
∑

i=n+1

ak(i)

}

=
s
∑

k=1

[

1 −
∞
∑

i=n+1

ak(i) −1+
∞
∑

i=n+1

a0(i)

]

PL
r (k)+

s+n
∑

k=s+1

[

1 −
∞
∑

i=n+s−k+1

ak(i) − 1+
∞
∑

i=n+s−k+1

ak−s(i)]

]

PL
r (k)

=
s
∑

k=1

∞
∑

i=n+1

[a0(i) − ak(i)]P
L
r (k) +

s+n
∑

k=s+1

∞
∑

i=n+s−k+1

[ak−s(i) − ak(i)]P
L
r (k)

and if we change the index in the last term by setting j = k − s− 1, we have:

1(AL−AU)PL
r (s+ n) =

=

s
∑

k=1

∞
∑

i=n+1

[a0(i)−ak(i)]P
L
r (k)+

n−1
∑

j=0

∞
∑

i=n−j

[aj+1(i)−aj+s+1(i)]P
L
r (j + s+ 1) (5.23)

The summation of the second and the third terms of Equation (5.22) is:

1AUβ(s+ n) − 1AUβ(s + n− 1) =

{ using Equation (5.21)}

= 1

























AU−

























a0(0) . . . 0 0 . . . 0

a0(1) . . . a1(0) 0 . . . 0

a0(2) . . . a1(1) a2(0) . . . 0

...

a0(n) . . . a1(n− 1) a2(n− 2) . . . an(0)











































0 0 . . . 0 0

1 0 . . . 0 0

...

0 0 . . . 1 0











































β(s+ n)

column: {s+ 1} {s+ 2}
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= 1



















AU −



















a0(0) a0(0) . . . 0 0 . . . 0

a0(1) a0(1) . . . a1(0) 0 . . . 0

...

a0(n) a0(n) . . . a1(n− 1) a2(n− 2) . . . 0





































β(s+ n) (5.24)

column: {s} {s+ 1} (5.25)

(5.26)

= 1



















0 . . . 0 0 . . . 0

0 . . . a0(1) − a1(0) 0 . . . 0

...

0 . . . a0(n) − a1(n− 1) a1(n− 1) − a2(n− 2) . . . an(0)



















β(s+ n) (5.27)

column: {s} {s+ 1} (5.28)

=



















[

1 . . . 1

]



















0 . . . a0(0) 0 . . . 0

0 . . . a0(1) − a1(0) 0 . . . 0

...

0 . . . a0(n) − a1(n− 1) a1(n− 1) − a2(n− 2) . . . an(0)





































β(s+n)

column: {s} {s+ 1}

=

[

0 0 . . .
∑n

i=0a0(i)−
∑n−1

i=0 a1(i) . . .
∑n−k

i=0 ak(i)−
∑n−k−1

i=0 ak+1(i) . . . an(0)

]

β(s+n)

column: {s} {s+ k}

=

s+n−1
∑

k=s

[

n−k+s
∑

i=0

ak−s(i) −
n−k+s−1
∑

i=0

ak−s+1(i)

]

βk + an(0)βs+n

=

s+n−1
∑

k=s

[

n−k+s
∑

i=0

ak−s(i) + ak−s+1(n− k + s) −
n−k+s
∑

i=0

ak−s+1(i)

]

βk + an(0)βs+n

=
s+n−1
∑

k=s

{

ak−s+1(n− k + s) +
n−k+s
∑

i=0

[ak−s(i) − ak−s+1(i)]

}

βk + an(0)βs+n

=
s+n
∑

k=s

{

ak−s+1(n− k + s) +
n−k+s
∑

i=0

[ak−s(i) − ak−s+1(i)]

}

βk
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i.e. 1AUβ(s+ n) − 1AUβ(s+ n− 1) =

=
s+n
∑

k=s

{

ak−s+1(n− k + s) +
∞
∑

i=n−k+s+1

[ak−s+1(i) − ak−s(i)]

}

βk (5.29)

Substituting (5.23) and (5.29) into Equation (5.22) we finally need to show that:

s
∑

k=0

∞
∑

i=n+1

[a0(i) − ak(i)]P
L
r (k) +

n−1
∑

j=0

∞
∑

i=n−j

[aj+1(i) − aj+s+1(i)]P
L
r (j + s+ 1) +

+

s+n
∑

k=s

{

ak−s+1(n− k + s) +

∞
∑

i=n−k+s+1

[ak−s+1(i) − ak−s(i)]

}

βk ≥ 0 (5.30)

By applying Equation (5.3) for m = k, since n + 1 ≥ 1, and since P L
r (k) ≥ 0

we conclude that the first term is non-negative. Along the same lines, by applying

Equation (5.3) for m = s, k = l + s + 1, since n − l ≥ 1, and since P L
r (k) ≥ 0 we

conclude that the second term is non-negative. Finally, by applying Equation (5.2)

for l = k − s+ 1, since n− l + 1 = n+ s− k ≥ 0, and since βk ≥ 0 we conclude that

the third term is also non-negative, thus the above inequality is valid.

5.5 Formulation for the exact solution in anM(t, n)/D=1/s

system

Similar formulation to the ones done for the lower and the upper approximations

can be done for the exact solution. However we now need to take into account the

residual service time in order to introduce the Markov chain. Integrating and summing

over all the possible combinations of k and t at time r, in each case multiplied by the

appropriate transition probabilities, we have:

PE
r+1(m)=



































s
∑

k=0

∫

a
′

k(0/t)P
E
r (k, t)dt, m = 0

s
∑

k=0

∫

a
′

k(m/t)P
E
r (k, t)dt+

m
∑

k=1

∫

a
′

s+k(m− k/t)PE
r (s+ k, t)dt, m ≥ 1

(5.31)
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where PE
r (k) is the probability that at epoch r there are k in the exact system, and

a
′

k(m/t) is the probability that exactly i arrivals will occur during a time unit (slot

duration) when there are k in the system with t residual service time, i.e. departures

will occur. Note that t is a vector of residual service times and therefore the integral

with respect to t indicates integration over the full vector space. Also the definition

of a
′

k(m/t) in this section is exactly the same as in Section 5.3.

Lemma 5.5 Let us consider the probability distribution {P E
r+1} defined by Equation (5.31).

The following inequalities are valid for the cumulative distribution of P E
r+1:

n
∑

m=0

PE
r+1(m)







































≤
s
∑

k=0

n
∑

m=0

ak(m)PE
r (k) +

s+n
∑

k=s+1

n−k+s
∑

m=0

ak(m)PE
r (k)

≥
s
∑

k=0

n
∑

m=0

a0(m)PE
r (k) +

s+n
∑

k=s+1

n−k+s
∑

m=0

ak−s(m)PE
r (k)

where ak(i) as defined in Section 5.4.

Proof From Equation (5.31) we have:

n
∑

m=0

PE
r+1(m) =

s
∑

k=0

∫

a
′

k(0/t)P
E
r (k, t)dt+

n
∑

m=1

s
∑

k=0

∫

a
′

k(m/t)P
E
r (k, t)dt+

+

n
∑

m=1

m
∑

k=1

∫

a
′

s+k(m− k/t)PE
r (s+ k, t)dt

=
n
∑

m=0

s
∑

k=0

∫

a
′

k(m/t)P
E
r (k, t)dt+

n
∑

m=1

m
∑

k=1

∫

a
′

s+k(m− k/t)PE
r (s+ k, t)dt

{ swapping the order of the summation in the second term}

=

n
∑

m=0

s
∑

k=0

∫

a
′

k(m/t)P
E
r (k, t)dt+

n
∑

k=1

n
∑

m=k

∫

a
′

s+k(m− k/t)PE
r (s+ k, t)dt

{ setting s+ k in the second summation as a new variable k }

=
n
∑

m=0

s
∑

k=0

∫

a
′

k(m/t)P
E
r (k, t)dt+

s+n
∑

k=s+1

n
∑

m=k−s

∫

a
′

k(m− k + s/t)PE
r (k, t)dt

{ setting m− k + s in the second summation as a new variable m}

=
n
∑

m=0

s
∑

k=0

∫

a
′

k(m/t)P
E
r (k, t)dt+

s+n
∑

k=s+1

n−k+s
∑

m=0

∫

a
′

k(m/t)P
E
r (k, t)dt

{ changing the order of summations and integration in both terms}
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i.e.
n
∑

m=0

PE
r+1(m)=

s
∑

k=0

∫

[

n
∑

m=0

a
′

k(m/t)

]

PE
r (k, t)dt+

s+n
∑

k=s+1

∫

[

n−k+s
∑

m=0

a
′

k(m/t)

]

PE
r (k, t)dt (5.32)

Applying Inequality (5.6) in relationship (5.32) we get:

n
∑

m=0

PE
r+1(m) ≤

s
∑

k=0

∫

[

n
∑

m=0

ak(m)

]

PE
r (k, t)dt+

s+n
∑

k=s+1

∫ n−k+s
∑

m=0

ak(m)PE
r (k, t)dt

{ the integrations now refers only to PE
r (k, t)}

=

s
∑

k=0

n
∑

m=0

ak(m)

∫

PE
r (k, t)dt+

s+n
∑

k=s+1

n−k+s
∑

m=0

ak(m)

∫

PE
r (k, t)dt

=
s
∑

k=0

n
∑

m=0

ak(m)PE
r (k) +

s+n
∑

k=s+1

n−k+s
∑

m=0

ak(m)PE
r (k)

which proves the first part of this Lemma.

Along the same lines, using Inequality (5.8) in relationship (5.32) we have:

n
∑

m=0

PE
r+1(m) ≥

s
∑

k=0

∫

[

n
∑

m=0

a0(m)

]

PE
r (k, t)dt+

s+n
∑

k=s+1

∫ n−k+s
∑

m=0

ak−s(m)PE
r (k, t)dt

{ the integration now refers only to PE
r (k, t)}

=

s
∑

k=0

n
∑

m=0

a0(m)

∫

PE
r (k, t)dt+

s+n
∑

k=s+1

n−k+s
∑

m=0

ak−s(m)

∫

PE
r (k, t)dt

=

s
∑

k=0

n
∑

m=0

a0(m)PE
r (k) +

s+n
∑

k=s+1

n−k+s
∑

m=0

ak−s(m)PE
r (k)

which proves the second part of this Lemma.

In the next sections we apply Lemma 5.5 in order to compare the cumulative

probabilities of the exact solution with those of the approximations.
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5.6 Comparing the exact solution with the upper

approximation in an M(t, n)/D=1/s system

In this section we compare the exact solution with the upper approximation.

Theorem 5.2 Let us consider the two probability distributions {P U
r } and {PE

r } de-

fined by Equation (5.13) and Equation (5.31) respectively. Suppose that for each

n ≥ 0 at epoch r the following ordering for their cumulative probability distributions

holds:

n
∑

k=0

PE
r (k) ≥

n
∑

k=0

PU
r (k) (5.33)

We will show that the same ordering is valid at epoch r + 1, that is:

n
∑

k=0

PE
r+1(k) ≥

n
∑

k=0

PU
r+1(k) (5.34)

Proof 5.2 This theorem is similar to Theorem 5.1 if {P L} is replaced by {PE}.

However {P L} is defined by Equation (5.9) and is not similar to Equation (5.31)

which defines {PE}. As a result this proof cannot be reduced to the previous one.

Nevertheless, some relations that involved only P L
r , PU

r , βk and AU are still valid if

we replace P L
r by PE

r . We give two such relationships which are going to be used later

on this proof. It is noted that, having made the previous correspondence, proving

them again would be a repetition. In particular if β̂n =
∑n

k=0 P
E
r (k) −

∑n
k=0 P

U
r (k)

then, as in Equation (5.20) of Theorem 5.1:

PU
r (s+ n) = PE

r (s+ n) − β̂(s+ n) + β̂(s+ n− 1) (5.35)

where:

PE
r (s+ n) =



















PE
r (0)

PE
r (1)

...

PE
r (s+ n)


















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Also, as in Equation (5.29) in Theorem 5.1:

1AU β̂(s+ n) − 1AU β̂(s+ n− 1) ≥ 0 (5.36)

We will show now that Equation (5.34) holds. Starting from the left hand side of

Equation (5.34) and applying Lemma 5.5:

n
∑

m=0

PE
r+1(m) ≥

s
∑

k=0

n
∑

m=0

a0(m)PE
r (k) +

s+n
∑

k=s+1

n−k+s
∑

m=0

ak−s(m)PE
r (k)

{ setting k − s in the second summation as a new variable k }

=

s
∑

k=0

n
∑

m=0

a0(m)PE
r (k) +

n
∑

k=1

n−k
∑

m=0

ak(m)PE
r (s+ k)

{ setting m + k in the second summation as a new variable m }

=
s
∑

k=0

n
∑

m=0

a0(m)PE
r (k) +

n
∑

k=1

n
∑

m=k

ak(m− k)PE
r (s+ k)

{ swapping the order of the summation in the second term}

=

s
∑

k=0

n
∑

m=0

a0(m)PE
r (k) +

n
∑

m=1

m
∑

k=1

ak(m− k)PE
r (s+ k)

{ from the definition of 1,AU ,P
E
r (s+ n), we can write the above summation in matrix form}



































[ 1 . . . 1 ]



















a0(0) . . . a0(0) 0 . . . 0

a0(1) . . . a0(1) a1(0) . . . 0

...

a0(n) . . . a0(n) a1(n− 1) . . . an(0)





































PE
r (0)

PE
r (1)

...

PE
r (s+ n)





















































= 1AUPE
r (s+ n) { using (5.35) }

= 1AU [PU
r (s+ n) + β̂(s+ n) − β̂(s+ n− 1)]

= 1AUPU
r (s+ n) + 1AU [β̂(s+ n) − β̂(s+ n− 1)]

{ as the second term is positive from (5.36) }

≥ 1AUPU
r (s+ n)
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{ from the definition of 1,AU ,P
U
r (s+ n), we can write this in a summation form}



































[ 1 . . . 1 ]



















a0(0) . . . a0(0) 0 . . . 0

a0(1) . . . a0(1) a1(0) . . . 0

...

a0(n) . . . a0(n) a1(n− 1) . . . an(0)





































PU
r (0)

PU
r (1)

...

PU
r (s+ n)





















































=

s
∑

k=0

n
∑

m=0

a0(m)PU
r (k) +

n
∑

m=1

m
∑

k=1

ak(m− k)PU
r (s+ k)

{ from Equation (5.14) }

=
n
∑

m=0

PU
r+1(m)

In this way we have showed the desired ordering between the cumulative prob-

abilities of the exact solution and the upper approximation. As a result the upper

approximation, i.e. the ‘early departure’ approximation, provides an upper bound of

the actual congestion for M(t, n)/D=1/s systems. In the next section we compare the

exact solution with the lower approximation.

5.7 Comparing the exact solution with the lower

approximation in an M(t, n)/D=1/s system

In this section we show that for an M(t, n)/D=1/s system the lower approximation

provides a lower bound of the actual congestion. For this proof we are going to use

the following lemma.

Lemma 5.6 If AL is defined as in Section 5.4 and b̄(s + n− 1) is a column vector

with positive elements defined analogous to b̄(s+ n− 1) in Section 5.4 then:

1AL[β̄(s+ n) − β̄(s+ n− 1)] ≥
s−1
∑

k=0

n
∑

m=0

[ak(m) − ak+1(m)] β̄k
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Proof

1ALβ̄(s+ n) − 1ALβ̄(s+ n− 1) =














































However, β̄(s+n−1)=

























0

β̄0

β̄1

...

β̄s+n−1

























=

























0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...

0 0 . . . 1 0

















































β̄0

β̄1

β̄2

...

β̄s+n

























=

























0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...

0 0 . . . 1 0

























β̄(n+s)















































=1ALβ̄(s+n)−1

















































a0(0) . . . 0 0 . . . 0

a0(1) . . . as+1(0) 0 . . . 0

a0(2) . . . as+1(1) as+2(0) . . . 0

...

a0(n) . . . as+1(n−1) as+2(n−2) . . . as+n(0)

















































0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...

0 0 . . . 1 0

















































β̄(n+s)

{s+ 1} {s+ 2}

=1ALβ̄(s+ n) − 1



















a1(0) a2(0) . . . 0 0 . . . 0

a1(1) a2(1) . . . as+1(0) 0 . . . 0

...

a1(n) a2(n) . . . as+1(n− 1) as+2(n− 2) . . . 0



















β̄(s+ n)

{s} {s+ 1}

=1



















a0(0)−a1(0) . . . as(0) 0 . . . 0

a0(1)−a1(1) . . . as(1)−as+1(0) 0 . . . 0

...

a0(n)−a1(n) . . . as(n)−as+1(n− 1) as+1(n− 1)−as+2(n− 2) . . . as+n(0)



















β̄(s+n)

{s} {s+ 1}

71



=



















1



















a0(0)−a1(0) . . . as(0) 0 . . . 0

a0(1)−a1(1) . . . as(1)−as+1(0) 0 . . . 0

...

a0(n)−a1(n) . . . as(n)−as+1(n−1) as+1(n−1)−as+2(n−2) . . . as+n(0)





































β̄(s+n)

{s} {s+ 1}

=

[

n
∑

i=0

[a0(i)−a1(i)] . . .

n
∑

i=0

as(i)−
n−1
∑

i=0

as+1(i) . . .

n−k
∑

i=0

as+k(i)−
n−k−1
∑

i=0

as+k+1(i) . . . as+n(0)

]

β̄(s+n)

{s} {s+ k}

=
s−1
∑

k=0

n
∑

i=0

[ak(i) − ak+1(i)] β̄k +
s+n−1
∑

k=s

[

n−k+s
∑

i=0

ak(i) −
n−k+s−1
∑

i=0

ak+1(i)

]

β̄k + as+n(0)β̄s+n

=
s−1
∑

k=0

∞
∑

i=n+1

[ak+1(i)−ak(i)] β̄k+
s+n−1
∑

k=s

[

n−k+s
∑

i=0

ak(i)+ak+1(n−k+s)−
n−k+s
∑

i=0

ak+1(i)

]

β̄k+as+n(0)β̄s+n

=

s−1
∑

k=0

∞
∑

i=n+1

[ak+1(i)−ak(i)] β̄k+

s+n−1
∑

k=s

{

ak+1(n−k+s)+

n−k+s
∑

i=0

[ak(i)−ak+1(i)]

}

β̄k+ae
s+n(0)β̄s+n

=

s−1
∑

k=0

∞
∑

i=n+1

[ak+1(i) − ak(i)]β̄k +

s+n
∑

k=s

{

ak+1(n− k + s) +

n−k+s
∑

i=0

[ak(i) − ak+1(i)]

}

β̄k

=
s−1
∑

k=0

∞
∑

i=n+1

[ak+1(i) − ak(i)]β̄k +
s+n
∑

k=s

{

ak+1(n− k + s) +
∞
∑

i=n−k+s+1

[ak+1(i) − ak(i)]

}

β̄k

{the second summation is positive since it is summation of positive terms. Indeed β̄k ≥ 0}

{is multiplied by the term in the brackets. This term is positive }

{ by applying Inequality 5.2 for r = k + 1 and n replaced by n+ s}

≥
s−1
∑

k=0

∞
∑

i=n+1

[ak+1(i) − ak(i)]β̄k =
s−1
∑

k=0

{[

∞
∑

i=n+1

ak+1(i)

]

−
[

∞
∑

i=n+1

ak(i)]

]}

β̄k

=

s−1
∑

k=0

{

1 −
[

n
∑

i=0

ak+1(i)

]

− 1 +

[

n
∑

0

ak(i)]

]}

β̄k =

s−1
∑

k=0

n
∑

i=0

[ak(i) − ak+1(i)]β̄k
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Theorem 5.3 Let us consider the two probability distributions {P E
r } and {P L

r } de-

fined by Equation (5.31) and Equation (5.9) respectively. Suppose that for each n ≥ 0

at epoch r the following ordering for their cumulative probability distributions holds:

n
∑

k=0

PL
r (k) ≥

n
∑

k=0

PE
r (k) (5.37)

We will show that the same ordering is valid at epoch r + 1, that is:

n
∑

k=0

PL
r+1(k) ≥

n
∑

k=0

PE
r+1(k) (5.38)

Proof 5.3 What we want to prove here is again similar to Theorem 5.1 if {P U} is

replaced by {PE}. However, {P U} has a different formulation than {PE} and as a

result a new proof is provided.

Nevertheless, some relations that involved only P L
r , PU

r , βk and AU are still valid if

we replace P U
r by PE

r . We give two such relationships which are going to be used later

on this proof. It is noted that, having made the previous correspondence, proving

them again would be a repetition. In particular if β̄n =
∑n

k=0 P
L
r (k) −

∑n
k=0 P

E
r (k)

then, as in Equation (5.20) of Theorem 5.1:

PE
r (s+ n) = PL

r (s + n) − β̄(s+ n) + β̄(s+ n− 1) (5.39)

i.e. PE
r (k) =











PL
r (0) − β̄0, k = 0

PL
r (k) − β̄k + β̄k−1, k ≥ 1

(5.40)

Starting from the left hand side of Equation (5.38) and according to Lemma 5.5 we
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have:

n
∑

m=0

PE
r+1(m) ≤

s
∑

k=0

n
∑

m=0

ak(m)PE
r (k) +

s+n
∑

k=s+1

n−k+s
∑

m=0

ak(m)PE
r (k)

{ applying Inequality (5.4) to the first term for m = k − s }

≤
s
∑

k=0

[

n
∑

m=0

as(m)

]

PE
r (k) +

s+n
∑

k=s+1

n−k+s
∑

m=0

ak(m)PE
r (k)

{ adding and subtracting the term ak(m) in the first term and setting in the second term k − s as k}

=

s
∑

k=0

n
∑

m=0

[as(m) + ak(m) − ak(m)]PE
r (k) +

n
∑

k=1

n−k
∑

m=0

as+k(m)PE
r (s + k)

{ splitting the first term and setting m + k in the second summation as a new variable m }

=
s
∑

k=0

n
∑

m=0

ak(m)PE
r (k) +

s
∑

k=0

n
∑

m=0

[as(m) − ak(m)]PE
r (k) +

n
∑

k=1

n
∑

m=k

as+k(m−k)PE
r (s+k)

{swapping the order of the summation in the third term}

=

s
∑

k=0

n
∑

m=0

ak(m)PE
r (k) +

s
∑

k=0

n
∑

m=0

[as(m) − ak(m)]PE
r (k) +

n
∑

m=1

m
∑

k=1

as+k(m−k)PE
r (s+k)

{combining the first and the third terms and using the definition of AL,P
E
r (s+ n)}



































[ 1 . . . 1 ]



















a0(0) . . . as(0) 0 . . . 0

a0(1) . . . as(1) as+1(0) . . . 0

...

a0(n) . . . as(n) as+1(n− 1) . . . as+n(0)





































PE
r (0)

PE
r (1)

...

PE
r (s+ n)





















































i.e.

n
∑

m=0

PE
r+1(m) ≤ 1ALP

E
r (s+ n) +

s
∑

k=0

n
∑

m=0

[as(m) − ak(m)]PE
r (k) (5.41)

The second term in the (5.41) is:

s
∑

k=0

n
∑

m=0

[as(m) − ak(m)]PE
r (k) = { using Equation (5.40}

=
s
∑

k=1

n
∑

m=0

[as(m) − ak(m)] [PL
r (k) − β̄k + β̄k−1] +

n
∑

m=0

[as(m) − a0(m)] [PL
r (0) − β̄0]

=
s
∑

k=0

n
∑

m=0

[as(m) − ak(m)]PL
r (k) −

s
∑

k=0

n
∑

m=0

[as(m) − ak(m)] β̄k +
s
∑

k=1

n
∑

m=0

[as(m) − ak(m)] β̄k−1
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{ setting k − 1 in the last term as a new variable k }

=

s
∑

k=0

n
∑

m=0

[as(m) − ak(m)]PL
r (k) −

s
∑

k=0

n
∑

m=0

[as(m) − ak(m)] β̄k +

s−1
∑

k=0

n
∑

m=0

[as(m) − ak+1(m)] β̄k

{ noting that for k = s the second term is zero }

=

s
∑

k=0

n
∑

m=0

[as(m) − ak(m)]PL
r (k) −

s−1
∑

k=0

n
∑

m=0

[as(m) − ak(m)] β̄k +

s−1
∑

k=0

n
∑

m=0

[as(m) − ak+1(m)] β̄k

=

s
∑

k=0

n
∑

m=0

[as(m) − ak(m)]PL
r (k) +

s−1
∑

k=0

n
∑

m=0

[ak(m) − ak+1(m)] β̄k

{ as Inequality (5.4) for m = k − s, implies that the first term is positive }

≤
s−1
∑

k=0

n
∑

m=0

[ak(m) − ak+1(m)] β̄k

Substituting this result into (5.41):

n
∑

m=0

PE
r+1(m) ≤ 1ALP

E
r (s + n) +

s−1
∑

k=0

n
∑

m=0

[ak(m) − ak+1(m)] β̄k

{ using Equation (5.39}

= 1AL[PL
r (s+ n) − β̄(s+ n) + β̄(s+ n− 1)] +

s−1
∑

k=0

n
∑

m=0

[ak(m) − ak+1(m)] β̄k

= 1ALP
L
r (s+ n)−

[

1AL[β̄(s+ n) − β̄(s+ n− 1)]−
s−1
∑

k=0

n
∑

m=0

[ak(m) − ak+1(m)] β̄k

]

{ as the second term is always negative according to Lemma 5.6 }

≤ 1ALP
L
r (s+ n)

{ from the definition of 1,AL,P
L
r (s+ n), we can write the above summation in matrix notation}



































[ 1 . . . 1 ]



















a0(0) . . . as(0) 0 . . . 0

a0(1) . . . as(1) as+1(0) . . . 0

...

a0(n) . . . as(n) as+1(n− 1) . . . as+n(0)





































PL
r (0)

PL
r (1)

...

PLr(s+ n)





















































=
s
∑

k=0

n
∑

m=0

ak(m)PL
r (k) +

n
∑

m=1

m
∑

k=1

as+k(m− k)PL
r (s+ k)

{from Equation (5.13)}

=

n
∑

m=0

PL
r+1(m)
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We have showed that the lower approximation, i.e. the ‘late departure’ approxi-

mation, provides a lower bound of the actual congestion for M(t, n)/D=1/s systems.

As a result for this category of systems our approximations bound the actual solution.

More empirical results are provided in the next chapter where we develop a simulation

model the output of which we compare with the approximations.

5.8 Summary

In this chapter we undertook a theoretical investigation of the bounding behaviour

of the two approximations via a series of lemmas and proofs. Due to the complexity

of the problem we have limited our investigation to an M(t, n)/D/s system, i.e. a

system with a deterministic service time distribution.

The formulation of the two approximations is given in Section 5.4 and we have

shown (Theorem 5.1) that an M(t, n)/D/s discrete-time system with ‘early depar-

tures’ (upper approximation) has at each epoch a smaller cumulative distribution of

the number in the system compared to a discrete-time system with ‘late departures’

(lower approximation).

We have shown in Section 5.6 (Theorem 5.2) that an M(t, n)/D/s discrete-time

system with ‘early departures’ has at each epoch a smaller cumulative distribution

of the number in the system than the actual system, and as a result is always more

congested than the actual one. In Section 5.7 (Theorem 5.3) that an M(t, n)/D/s

discrete-time system with ‘late departures’ has at each epoch a larger cumulative

distribution of the number in the system than the actual system, and as a result is

always less congested than the actual one. Thus for an M(t, n)/D/s system we have

proved that the two approximations behave as bounds.

Note that it was shown early in the chapter that ordering of cumulative distribu-

tions implied inverse ordering of distribution means. Hence the more powerful results

above also imply results for mean numbers in the system.

In the next chapter we develop a simulation model in order to provide a broader

investigation of this bounding behaviour.
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Chapter 6

Empirical investigation of the

bounding behaviour of the two

approximations vs a simulation

model

6.1 Introduction

In the previous chapter we introduced two approximations in order to include

balking in the DTM approach, and showed theoretically that for some limited cases

they behave as bounds. To achieve a broader investigation for a wider set of cases, and

due to the lack of analytical models, a simulation model was developed and employed.

This chapter describes this simulation model, validates it by comparison with

known analytical models (e.g. negative exponential inter-arrival and service times),

and proceeds to use it to evaluate the two approximations. In particular this is done

in order to investigate first whether the two approximations behave as bounds, and

second the nature of the ‘bounds’.
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6.2 Simulation characteristics

In order to implement this simulation model, we chose not to use a simulation

package, or a simulation language. Instead the model was developed in a programming

language (C++). The reason for this is that the performance measures of interest

(e.g. mean queue length) can be calculated by a procedural programme, and that

nowadays every programming language has in its library a function for generating

random numbers that is the ‘heart’ of simulation. Also, a computational model

provides more flexibility than a simulation package for using and altering functional

parameters of the systems which we are trying to model. Another advantage of the

simulation model versus a simulation package is the full control and transparency

of the random number generator. On the other hand, these systems do not possess

sophisticated characteristics that would require us to use a simulation language.

The parameters of the simulation model are the number of servers and the pre-

specified probability distributions for the arrivals, services and balking. Representa-

tive observations for these random variables are produced using a random number

generator, a method described in the literature (for example see [14]) as Monte Carlo

simulation.

One run of a Monte Carlo simulation represents a single sample path of the input

process of the queueing system under consideration. As a result, we get a single

sample path of the output, which can be viewed as one of many possible realisations

of the system’s performance. Hence the behaviour of the system can only be properly

described in terms of the probability distribution of the full set of realisations. At any

point of time this distribution will have mean, standard deviation, percentage points

etc, all of which can be estimated from the simulated sample.

The number of runs needed for the simulation model to give accurate results, is

unknown and usually case driven. This is a disadvantage of simulation methods since

a lot of trials are needed to specify the appropriate number of runs to achieve the

desired accuracy. Some other disadvantages of simulation methods were mentioned

in Section 2.5. However, it is well known that the larger the number of different runs
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the larger the accuracy of the results. For this reason our simulation results stem

from a large number of runs, and for this model the values used were of order 105 or

higher.

This simulation is mainly event oriented although in parallel a time oriented pro-

cess takes place. This is because updating the system’s structural parameters (i.e.

time-dependent arrival rate and number of servers) and recording the system’s state

takes place at the equally spaced epochs (for comparison with the DTM model). Each

time an event occurs (arrival or departure) the system is updated, however the times

of interest are the epochs and it is then that we record the system’s state. We will

see how this is achieved in the next section, where we describe the simulation model.

6.3 Simulation model

In this section we give a description of the implementation of the simulation

model. The simulation structure is fairly simple and is described briefly. When using

simulation to produce accurate results, the random number generator is crucial, and

is described next. Finally the method of incorporating balking into the model is

outlined.

6.3.1 Simulation structure

The simulation is event-based and starts with an empty system at time t = 0. The

time counter is moved to the time that the next event occurs, unless an epoch is met

during the inter-event time, in which case the system’s state needs to be recorded and

the system’s parameters (i.e. arrival rate and number of servers) are updated. By

moving the time counter we mean that the inter-event elapsed time is subtracted from

each of the residual service times and the inter-arrival time. To decide on whether

the next event is an arrival or a departure we compare the inter-arrival time with the

minimum residual time.

If the next event is a departure, one of the updated residual service times will be

zero, indicating a free server. When a queue exists, one call from the queue is moved
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to this server by reducing the queue size by one and by calculating a new residual

time by sampling from the service time distribution. The time of the next event is

then calculated by comparing the updated inter-arrival time with the updated and

the new residual service times.

If the next event is an arrival we use a balking function to decide whether or not

it joins the system. In the case that it joins the system, the queue size is increased

by one unless there is a null residual service time in which case a new residual service

time is calculated by sampling from the service time distribution. If more than one

servers are free the first null residual service time is used as for this simulation it is

not important how we allocate jobs to servers. Whether or not the arrival balks the

next step is to calculate a new inter-arrival time. The time of the next event is now

calculated by comparing the new inter-arrival time with the updated residual service

times.

From the above we conclude that a careful consideration of all possible events and

actions which occur in systems with balking was enough to structure this simulation.

We have found more challenging dealing with the generation of random numbers

which is described next. Also, in Section 6.3.3 we describe in more detail how we

have implemented the state-dependent balking procedure. Finally, for the interested

reader the programme is available in Appendix B.

6.3.2 Random number generator

As mentioned in section 6.2 the crux of every simulation model is the random

number generator. C++ has a function named rand() which returns a random integer

number between 0 and RAND MAX − 1. The rand() function generates a sequence

of integers I1, I2, I3, . . ., by using the recurrence relation

Ij+1 = aIj + b (mod m)

where m = RAND MAX, and is called the modulus, and a, b are positive integers.

The period of this recurrence relationship cannot be greater than m. A problem that
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arises is that RAND MAX is often not very large, and ANSI C standard requires

only that it be at least 32767. In our case it was actually 32767. This means that there

are at most 32768 different values to use, so running the simulation more than 32768

times will produce repetitions of previous runs. For this reason rand() has raised a

lot of criticisms, and is no longer considered a good random number generator.

Park and Miller [64] propose a ‘Minimal Standard’ random number generator,

that has accumulated a large amount of successful use. The generator is not claimed

to be perfect, however it has a period of 231 − 2 = 2.1× 109 which is sufficient for our

runs. This random generator was implemented as a function and was included in all

our simulation programmes.

Another subtle point that concerns the random number generator is that one

has to be careful on using ‘seeds’. C++ programmers are encouraged to use as

a seed the time(NULL) function, that returns an integer, which is the number of

seconds that elapsed since a specific date in the past. Following this advice, each

time a simulation run was executed the random number was invoked with this seed.

However, the execution time of each run was much shorter than a second, hence

consecutive runs would often be exactly the same. For example if the runtime of 105

simulation runs was 103 seconds, the number of different runs would be 103. This

problem was identified while analysing early outputs, and was overcome by using the

‘Park and Miller’ random number generator. This changes the seed in a different way,

has been extensively tested, and did not seem to produce any surprising effects in our

investigations.

6.3.3 Simulation and balking

There are two possible ways to achieve sampling from a non-homogeneous Pois-

son processes. Either sample from different distributions each time the arrival rate

changes (either because of its time-dependent nature, or because an event occurs) or

sample from a fixed distribution that corresponds to the maximum arrival rate, and

only allow some of the arrivals (based on the balking rate) to enter the system. This
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latter method is mentioned in the literature as thinning and is strongly suggested

compared to the first method which can give misleading results when a low arrival

rate precedes a high arrival rate [41]. We agree that this statement is valid for event

oriented simulations, however this issue does not arise in time oriented simulations.

For this implementation a mixture of these methods were used. This is be-

cause the inhomogeneity in the post-balking arrival rate stems from two sources, i.e.

time-dependence in the pre-balking arrival rate (which is time oriented) and state-

dependence in the post-balking arrival rate (which is simulated event oriented). In

the DTM algorithm the time dependent pre-balking arrival rate is assumed constant

during the time between two epochs. The same assumption is made for the simula-

tion model. Hence at epochs where there is a change in the pre-balking arrival rate

function we need to sample from a different distribution. In between two successive

epochs, each time an arrival or departure occurs the post-balking arrival rate changes

(due to an increase/decrease in balking probability). Because this procedure is event

based, the thinning method had to be used. The maximum pre-balking arrival rate

during any slot is the arrival rate at the beginning of the slot as calculated from the

arrival rate function. Note that we have chosen to use a mixture of these methods

instead of an overall thinning method as the latter method is computationally slower.

The equivalence between the two sampling methods stems from the Poisson pro-

cess definition. When post-balking arrivals occur at random at a rate λn, where n

depends on the number of customers in the system, the probability that someone will

enter the system during (t, t+ δt) equals the probability that someone arrives during

this time interval with rate λn, and from the Poisson definition this equals λnδt.

Alternatively, if we assume that the arrivals occur at a maximum possible rate

λmax, and that the probability of a successful entry is λn/λmax (it is noted here that

since λmax is the pre-balking arrival rate, the quantity λn/λmax takes values in [0, 1],

and therefore can represent probability),then the probability of having an entry during

(t, t + δt) is given by the product of the probability of having an arrival during this
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interval and the probability of having a successful entry. In other words:

Prob[entry in (t, t+ δt)] = Prob[arrival in (t, t+ δt)] × Prob[successful entry]

= λmaxδt×
λn

λmax
= λnδt

as required.

6.4 Validation of the simulation model

In this section we validate the simulation model. This is done by comparing

systems where exact results are available with the simulation output. Figure 6.1

shows through an example how (as would be expected) the average queue lengths

become less variable as the number of simulation runs increases. It is obvious that

the results remain almost unchanged when the number of runs is 105 or higher.
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Figure 6.1: Simulation results of different number of runs for an M/M/5 system.
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6.4.1 M/D/s and M/M/s steady state

We start the validation of the simulation model with the M/D/s steady-state

results for which results are tabulated, and the M/M/s steady state for which an an-

alytical result exists. Figure 6.2 shows the simulation results for M/D/s and M/M/s

systems compared with the exact results for these systems. In each case 106/2 simu-

lation runs were performed.
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Figure 6.2: The mean queue length behaviour for constant and markovian service
time distribution, starting from empty.

Figure 6.2 implies that the simulation model provides a very good estimation of

the mean queue length, for these systems. To see how accurate this estimation is

we provide a statistical analysis of the output. We select one of these systems, for
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example the M/D/5 with ρ = 0.8, and we look at the confidence intervals of the mean

queue length for the epochs after the steady state has been achieved (since there we

know the exact mean queue length, which for this case is 1.1562).

Let us assume that we run the simulation n times. At each epoch i, each time

we run the simulation a different possible sample queue length is observed, leading

to a distribution of the queue length for this point of time. The programme (in

Appendix B) is designed to keep a track of these queue lengths (by using a cumulative

vector) in order to give as output the average queue length (
∑n

i=1 Li)/n, it was easily

modified to cumulate the L2
i , so the quantity (

∑n
i=1 L

2
i )/n is also calculated. The

sample standard deviation can now be calculated from the usual formula:
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Due to the central limit theorem, which is valid due to the large number of simu-

lations (here n = 106/2), we know that the average queue length will follow a normal

distribution with mean equal to the actual mean and standard deviation estimated by

the sample standard deviation divided by the square root of the sample size. Based

on this, 95% confidence intervals at the epochs i = 100, . . . , 300 were calculated and

our interest was on whether the actual mean queue length (1.1562) was located in

these intervals for 95% of the cases. This was the case, as only in 12 out of 200 cases

the estimated value was outside the CI. Some example cases can be seen in Table

6.1. The narrowness of the CI indicates the high accuracy of the simulation model.

6.4.2 M(n)/M/s at steady state

We now test the simulation model against cases where the arrival rate depends

on the number in the system. More specifically we look at the machine interference
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Epoch Estimated Mean Confidence * indicates
Queue Length Interval (CI) values 6∈ CI

215 1.1542 ( 1.148482655 , 1.159917345 )
216 1.14985 ( 1.144144700 , 1.155555300 ) *
217 1.15145 ( 1.145746398 , 1.157153602 )
218 1.1544 ( 1.148684020 , 1.160115980 )
219 1.15586 ( 1.150142799 , 1.161577201 )
220 1.15607 ( 1.150351136 , 1.161788864 )
221 1.15553 ( 1.149811554 , 1.161248446 )
222 1.1554 ( 1.149668087 , 1.161131913 )
223 1.15538 ( 1.149656339 , 1.161103661 )
224 1.15481 ( 1.149082651 , 1.160537349 )
225 1.15649 ( 1.150762887 , 1.162217113 )
226 1.15396 ( 1.148241207 , 1.159678793 )
227 1.15272 ( 1.146997782 , 1.158442218 )
228 1.15645 ( 1.150721967 , 1.162178033 )
229 1.15528 ( 1.149550951 , 1.161009049 )
230 1.15605 ( 1.150319328 , 1.161780672 )

Table 6.1: Estimated mean queue lengths and confidence intervals

problem. For this problem exact steady-state results exist when the service times

follow a negative exponential distribution. These results can be looked up either

in tables (see for example [65]), or can be obtained by solving the finite number of

balance equations for the steady state probabilities.

Figure 6.3 presents two examples of this comparison. In the first example we

have N = 16 machines, s = 8 servers, mean time to breakdown 0.5 units, and mean

repair time = 2 units. For this reason when there are n machines in the system

the arrival rate is 2(16 − n) breakdowns per unit of time, and can be rewritten as

32(1 − n/16), thus the balking factor is introduced with the term (1 − n/16). For

population N = 16, service factor X = 1/µ
1/µ+1/λ

= 0.8, and 8 servers, the tables give

an efficiency factor F = 0.625. Using this result the average number of units waiting

for service is N × (1 − F ) = 6.

In the second example N = 30, s = 10, and both mean time to breakdown and

repair time is 1 unit. The arrival rate now is (30−n) = 30(1−n/30) breakdowns per

unit of time, which implies that the balking function is (1 − n/30). From the tables

for N = 30, service factor X = 1/µ
1/µ+1/λ

= 0.5, and 10 servers, we get the efficiency

factor F = 0.667. Thus, the average number in the queue is N × (1 − F ) = 9.99.
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The simulation model gave very accurate estimations for the steady state mean

queue length, when the arrival rate is state dependent. Figure 6.3 illustrates this

accuracy for the two examples described above. We can also note that in these

systems the time to reach the steady state is short.
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Figure 6.3: Mean queue length behaviour for two machine interference systems.
(a) arrival rate 2(16 − n) per unit and service rate 0.5 per unit; (b) arrival rate
(30 − n) per unit and service rate 1 per unit

6.5 Bounding behaviour of the approximations

We have now developed a simulation model which as we have shown estimates

accurately the actual solution. In the rest of this chapter we compare the two ap-

proximations with the actual solution, as it is estimated by the simulation model, in

order to see whether they provide bounds, and how the bounds behave. This task

was undertaken in chapter 4 for some limited cases in which theoretical comparison

was feasible. However, there is need to examine a wider set of cases in order to be

confident about the bounding behaviour of the two approximations. We also investi-

gate the factors which affect the size of the gap between the two bounds. Our interest

is to see how these factors can be altered in order to bring these bounds closer to-

gether. This will help us to establish rules on how to control the accuracy of our

approximations.

For this investigation we start from an arbitrary system with parameters that

could occur in practice. We then change one of these parameters keeping the others
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constant, and observe the effect on the behaviour of the bounds. We use anM(n)/D/8

system that has s = 8 servers, deterministic service time distribution equal to one unit

of time, arrival rate = 20 customers per unit of time, and state-dependent balking

when n ≥ s introduced by the term 0.91+q (where n is the number in the system, and

q is the number in the queue).

As we have seen in chapter 4 the difference between the two approximations is that

at each point of time arriving customers in the ‘upper’ approximation assume early

departures (i.e. see a quieter system than the actual one), while arriving customers in

the ‘lower’ approximation assume late departures (i.e. see a more busy system than

the actual one). For this reason the average number of departures during a step is

expected to be a determinant of the gap between the approximations.

Let us assume busy systems with average service time equal to one unit of time.

In comparison to the ‘lower’ approximation, arrivals in the ‘upper’ approximation

will find an additional number of empty places to occupy, either in the queue or in

service, equal to the number of departures during this step. When these systems are

busy the number of departures per step is:

[

departures

step

]

= s× µ× step (6.1)

where s is the number of servers, µ is the service rate (departures per server per unit

of time), and step is the number of units of time between two epochs (moments of

time at which the system state is updated).

We note that because µ refers to departures per unit of time, any change in µ can

also be seen as a change in the unit of time and hence the step size. For example

doubling the service rate is the same as keeping the same service rate but doubling

the unit of time and hence the step size. As a result we only need to study systems

with different step sizes and there is no need to study systems with different service

rates. can be used in order to control the accuracy of the approximations.

We next present results for a range of numbers of servers, step sizes and variances

of service time. A summary of the characteristics of the systems modelled and the
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figures containing the results is given in Table 6.2 for quick reference. In the following

sections we comment on the effect of each parameter, and then use the results to

recommend how formula (6.1) can be used in order to control the accuracy of the

approximations.

6.5.1 Bounding behaviour of the approximations

First and foremost in all the systems studied the two approximations behave as

bounds to the actual solution. This can be seen in Figures 6.4-6.13, which present

results for different number of servers, different step sizes, and different variances of

the service time distribution.

For this reason for the remainder of this chapter we are able to focus on how the

system’s parameters affect the size of the gap between the two approximations and

as a result an upper limit on the errors involved in using the approximations.

6.5.2 Changing the number of servers

Figure 6.4 shows the effect of changing the number of servers. We notice from

the graphs in this figure that the gaps between the approximations change consid-

erably when the number of servers is changed. This is expected since, according

to Equation (6.1) the difference between the two approximations for busy systems

should scale with the number of servers. Since µ = 1 and step = 1 in all cases we

expect the gap between the two approximations to be proportional to the number of

servers for busy systems. Indeed, in Figure 6.4(a) 4 servers were used and the gap

equals 4, in Figure 6.4(b) 5 servers were used and the gap equals 5, and in Figure

6.4(c) 6 servers were used and the gap equals 6. However, when the system becomes

less busy the differences do not continue to increase in proportion to the number of

servers. For example in Figure 6.4(d) 8 servers were used and the gap is just less than

8, while in the last two graphs (Figure 6.4(e), Figure 6.4(f)) the systems are much
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Figure step number of maximum Balking variance of
number size servers (s) rho (ρ) coefficient service time

Figure 6.4(a) 1 4 4 0.9 0
Figure 6.4(b) 1 5 3.2 0.9 0
Figure 6.4(c) 1 6 2.66 0.9 0
Figure 6.4(d) 1 8 2 0.9 0
Figure 6.4(e) 1 10 1.6 0.9 0
Figure 6.4(f) 1 12 1.33 0.9 0

Figure 6.5(a) 1 8 2 0.9 0
Figure 6.5(b) 0.5 8 2 0.9 0
Figure 6.5(c) 0.25 8 2 0.9 0
Figure 6.5(d) 0.125 8 2 0.9 0

Figure 6.6(a) 1 8 1 0.9 0
Figure 6.6(b) 0.5 8 1 0.9 0
Figure 6.6(c) 0.25 8 1 0.9 0
Figure 6.6(d) 0.125 8 1 0.9 0

Figure 6.7(a) 1 8 0.75 0.9 0
Figure 6.7(b) 0.5 8 0.75 0.9 0
Figure 6.7(c) 0.25 8 0.75 0.9 0
Figure 6.7(d) 0.125 8 0.75 0.9 0

Figure 6.8 0.5 8 2 0.9 0
Figure 6.8 0.5 8 2 0.9 0.2
Figure 6.8 0.5 8 2 0.9 0.4
Figure 6.8 0.5 8 2 0.9 0.6
Figure 6.9 0.5 8 2 0.9 0.6
Figure 6.9 0.5 8 2 0.9 0.8
Figure 6.9 0.5 8 2 0.9 1
Figure 6.9 0.5 8 2 0.9 2

Figure 6.10 0.5 8 1 0.9 0
Figure 6.10 0.5 8 1 0.9 0.2
Figure 6.10 0.5 8 1 0.9 0.4
Figure 6.10 0.5 8 1 0.9 0.6
Figure 6.11 0.5 8 1 0.9 0.6
Figure 6.11 0.5 8 1 0.9 0.8
Figure 6.11 0.5 8 1 0.9 1
Figure 6.11 0.5 8 1 0.9 2

Figure 6.12 0.5 8 0.75 0.9 0
Figure 6.12 0.5 8 0.75 0.9 0.2
Figure 6.12 0.5 8 0.75 0.9 0.4
Figure 6.12 0.5 8 0.75 0.9 0.6
Figure 6.13 0.5 8 0.75 0.9 0.6
Figure 6.13 0.5 8 0.75 0.9 0.8
Figure 6.13 0.5 8 0.75 0.9 1
Figure 6.13 0.5 8 0.75 0.9 2

Table 6.2: Summary of the queueing system characteristics associated with results in
Figures 6.4-6.13.
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less busy, since we have 10 and 12 servers, and the gap is much smaller than the one

predicted by the above formula.

6.5.3 Changing the step size

We now change the step size, i.e. the duration of time between two sequential

epochs. In general systems with different step sizes have different epochs. However,

if one step can be written as a rational multiple of the other we will have some time

moments appearing as epochs to both systems. If we assume that the rational number

expressing the ratio between the larger and the smaller step is p/q, the frequency with

which the epochs of the system with the larger step appear in the system with the

smaller step is 1/p. For this reason if we select steps that are integer multiples of

the smallest step size (so q = 1), we will have all the epochs of the systems with the

larger steps appearing as epochs in the systems with smaller steps.

In this set of experiments, see Figures 6.5-6.7, the step sizes are changed while

keeping the other parameters constant. According to Equation (6.1) we expect the

gap between the approximations to scale with the step size. Since s = 8 and µ = 1

we expect this gap, for busy systems, to be proportional to 8 times the step size.

This pattern can be clearly seen in Figures 6.5-6.7. In all these figures graphs (b)

are produced by using half the step used for graphs (a). We observe that the distance

between the approximations reduces by half. Along the same lines, graphs (c) use

step = 0.25 so compared with graphs (b) which use step = 0.5 we can again see the

distance between the two approximations reduces by a factor 0.5. Finally, graphs

(d) use step = 0.125 and as a result have half of the gap that appears in graphs (c)

which use step = 0.25. We therefore conclude that by controlling the step size we

can control the size of the gap between the approximations. This is an important

finding, since by controlling the step size we can actually control the accuracy of the

approximations.
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6.5.4 The effect of the variance of the service time distribu-

tion

In this section we are interested in the effect that the variance of the service

time has on the approximations. We allow the variance to take a range of values

(0, 0.2, 0.4, 0.6, 0.8, 1, 2). These values correspond to a coefficient of variation between

[0,
√

2], which covers a wide range of distributions. This set of experiments is done for

‘busy’ systems (Figures 6.8-6.9), ‘quiet’ systems (Figures 6.10-6.11), and ‘very quiet’

systems (Figures 6.12-6.13). We note that for the ‘quiet’ and ‘very quiet’ systems we

present the number in the system instead of the number in the queue.

It is clear for all these cases that changing the variance of the service time distri-

bution has no discernible impact on the difference between the two approximations,

i.e. the accuracy is unaffected by the variance of the service time distribution.

In fact we also note that the variance of the service time distribution also seems

to have very little impact on the actual level of congestion in these systems. This is

most probably caused by the balking procedure, since for systems without balking

increasing the variance would tend to increase the number in the system, and the

number in the queue. However, we will not attempt to explain at this point why this

might happen, as we undertake this task in chapter 6.

6.6 Conclusions

Our major findings from this chapter are the following:

• The two approximations bound the actual mean queue length.

• For busy systems the difference between the two approximations is proportional

to the number of departures per step, which for these systems is given by the

formula:
[

departures
step

]

= s× µ× step, where s is the number of servers, µ is the

service rate (departures per server per unit of time), and step is the number of

units of time between two epochs.
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• For this reason by controlling the step size we can actually control the difference

between the two bounds, and as a consequence the accuracy of the approxima-

tions.

Thus, in terms of practical use of the approximate models, we suggest use of the

models can start with an arbitrary step size. If ‘k’ times better accuracy is needed (i.e.

the gap between the approximations needs to be reduced ‘k’ times) we recommend

the user to re-run the models with new step size ‘k’ times smaller than the initial one.
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Figure 6.4: Mean queue length using approximations and simulation model for
M(λt(n)/D/8 with λn(t) = 2(0.9)1+n
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(c) step=0.25 (d) step=0.125

Figure 6.5: System with s=8 servers, maximum rho=2 (when no balking), and ge-
ometrical balking function 0.91+n, where n is the number in the queue, for different
step sizes.
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Figure 6.6: System with s=8 servers, maximum rho=1 (when no balking), and ge-
ometrical balking function 0.91+n, where n is the number in the queue, for different
step sizes.
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Figure 6.7: System with s=8 servers, maximum rho=0.75 (when no balking), and
geometrical balking function 0.91+n, where n is the number in the queue, for different
step sizes.
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(c) v=0.4 (d) v=0.6

Figure 6.8: System with s=8 servers, step=0.5, maximum rho=2 (when no balking),
and geometrical balking function 0.91+n, where n is the number in the queue, for
different variances.
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(c) v=1 (d) v=2

Figure 6.9: System with s=8 servers, step=0.5, maximum rho=2 (when no balking),
and geometrical balking function 0.91+n, where n is the number in the queue, for
different variances.
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Figure 6.10: System with s=8 servers, step=0.5, maximum rho=1 (when no balking),
and geometrical balking function 0.91+n, where n is the number in the queue, for
different variances.

99



 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25

m
ea

n 
nu

m
be

r 
in

 th
e 

sy
st

em

time

M(n)/GD/8

simulation
upper approx.
lower approx.

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25

m
ea

n 
nu

m
be

r 
in

 th
e 

sy
st

em

time

M(n)/GD/8

simulation
upper approx.
lower approx.
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Figure 6.11: System with s=8 servers, step=0.5, maximum rho=1 (when no balking),
and geometrical balking function 0.91+n, where n is the number in the queue, for
different variances.

100



 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25

m
ea

n 
nu

m
be

r 
in

 th
e 

sy
st

em

time

M(n)/GD/8

simulation
upper approx.
lower approx.

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25

m
ea

n 
nu

m
be

r 
in

 th
e 

sy
st

em

time

M(n)/GD/8

simulation
upper approx.
lower approx.

(a) v=0 (b) v=0.2

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25

m
ea

n 
nu

m
be

r 
in

 th
e 

sy
st

em

time

M(n)/GD/8

simulation
upper approx.
lower approx.

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25

m
ea

n 
nu

m
be

r 
in

 th
e 

sy
st

em

time

M(n)/GD/8

simulation
upper approx.
lower approx.
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Figure 6.12: System with s=8 servers, step=0.5, maximum rho=0.75 (when no balk-
ing), and geometrical balking function 0.91+n, where n is the number in the queue,
for different variances.
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Figure 6.13: System with s=8 servers, step=0.5, maximum rho=0.75 (when no balk-
ing), and geometrical balking function 0.91+n, where n is the number in the queue,
for different variances.
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Chapter 7

Systems with state-dependent

balking

7.1 Introduction

Up to now we have developed the theoretical and algorithmic framework to incor-

porate balking in the DTM algorithm, and we have ended up with two approximations

of controllable accuracy. This enables us to use these approximate models to study

systems with balking, and see how they perform. We start with an example system,

and change the key parameters there in order to see how balking affects the perfor-

mance of different systems. In this way a set of empirical results are obtained which

are used to identify potentially interesting findings.

In particular these results are used to comment on: the lag between the arrival

peak and the peak in congestion, the mean and percentiles of the number in the

system, the distribution of the number in the system, and the effect of the service

time distribution.

These insights are then used to establish two important findings for the practi-

cal application of the pointwise stationary approximation approach to systems with

balking.
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7.2 Test cases

In order to study systems with balking we set an example case and change key

parameters, so that a wide range of systems are included in our investigations. The

arrivals are assumed Poisson, and when facing a busy system balking occurs in a

geometrical form.

The basic system under consideration has s = 8 servers and mean service time

t̄ = 6 minutes. The arrival rate is non-homogeneous and varies sinusoidally with time.

The overall average arrival rate takes 3 different values so that quiet, busy, and very

busy systems are studied. The amplitude of the sine wave is also changed in order

to include systems with mild variation (±20% of the average value), and with larger

variation (±40% of the average value).

Figure 7.1 shows the basic form of the arrival rate used for our results. The system

starts empty and receives an increasing arrival rate, which very soon, after 45 minutes

reaches a peak value. The sine wave starts when this first peak appears. Thus the

period of the sine wave was selected so that 2 peaks appear during our observation

time, in this case corresponding to morning and evening rush hours. This arrival rate

could describe a call centre which operates from 7 : 30 in the morning till 9 : 30 in

the evening, having a peak arrival rate at about 8 : 00 (8 : 15) in the morning, and

another one at 5 : 00 (5 : 15) in the evening. The period of the sinusoidal arrival rate

is 9 hours and the system is observed during the 14 operating hours.

In order to make the time reference easier we set the unit of time equal to the

mean service time. For this reason the unit of time is 6 minutes and thus the mean

service rate is now 1 customer per unit of time. For the rest of this chapter we are

going to measure time in these new units instead of referring to the actual time. For

example the system is observed for 140 units of time, which corresponds to the 14

operating hours.

The step size used in the approximate algorithms is one eighth of the basic time

unit, that is 0.75 minutes (or 45 seconds), so that the approximations are quite close.

The first peak is achieved much faster than the second one. This will enable us to
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Figure 7.1: Arrival rate used for our set of results.

study 2 different types of peaks, however we have in mind that starting conditions

also affect the first one.

The set of results produced is included at the end of this chapter (Figures 7.7 - 7.24).

The input characteristics of each figure are summarised in Table 7.1 for quick refer-

ence. As can be seen from this table our results include various arrival rates and

strengths of balking, as well variation to the amplitude of the sine wave. The pur-

pose of this is to have a reasonably general set of empirical results in order to be as

objective as possible when drawing conclusions based on them.

In the following paragraphs we describe the layout of each of Figures 7.7 - 7.24.

Each figure consists of five graphs. Graph (a) shows the arrival rate used, the re-

sulting upper approximation (red line), and lower approximation (green line) of the

mean number in the system produced by our approximate models. The large dots

indicate values of mean number in the system estimated by the pointwise stationary

approximation, and will be discussed later. In graph (b) we wanted to show the

lower and upper approximation together with the 95% and 5% percentile curves. To

avoid confusion caused by the representation of many lines, as each approximation
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has two associated percentile curves, we show one upper 95% (i.e. the 95% percentile

curve that corresponds to the upper approximation) and one lower 5% (i.e. the 5%

percentile curve that corresponds to the lower approximation).

Figure Balking Average Amplitude
number coefficient arrival rate of the sine

Figure 7.7 0.8 (strong) 8 (quiet) ±20% (mild)
Figure 7.8 0.8 (strong) 8 (quiet) ±40% (large)
Figure 7.9 0.8 (strong) 10 (busy) ±20% (mild)
Figure 7.10 0.8 (strong) 10 (busy) ±40% (large)
Figure 7.11 0.8 (strong) 18 (very busy) ±20% (mild)
Figure 7.12 0.8 (strong) 18 (very busy) ±40% (large)
Figure 7.13 0.9 (medium) 8 (quiet) ±20% (mild)
Figure 7.14 0.9 (medium) 8 (quiet) ±40% (large)
Figure 7.15 0.9 (medium) 10 (busy) ±20% (mild)
Figure 7.16 0.9 (medium) 10 (busy) ±40% (large)
Figure 7.17 0.9 (medium) 18 (very busy) ±20% (mild)
Figure 7.18 0.9 (medium) 18 (very busy) ±40% (large)
Figure 7.19 0.95 (weak) 8 (quiet) ±20% (mild)
Figure 7.20 0.95 (weak) 8 (quiet) ±40% (large)
Figure 7.21 0.95 (weak) 10 (busy) ±20% (mild)
Figure 7.22 0.95 (weak) 10 (busy) ±40% (large)
Figure 7.23 0.95 (weak) 18 (very busy) ±20% (mild)
Figure 7.24 0.95 (weak) 18 (very busy) ±40% (large)

Table 7.1: Summary of the queueing system characteristics associated with results in
Figures 7.7-7.24.

Graphs (c), (d), and (e) show snapshots of the distribution of the number in the

system taken at different points of time. These are indicated by the vertical lines.

(The fitted Poisson and Normal curves will be explained later.) At any time point the

distributions of the number in the system were very similar for both approximations.

For this reason we show only the distributions associated with one of the approxi-

mations, and here we select the upper one. Graph (c) shows the distribution of the

number in the system after t = 30 units of time, where the arrival rate has a medium

value. On the same lines graph (d) shows this distribution at t = 52.5 units, where

the arrival rate takes its minimum value, and graph (e) at t = 97.5 units, where the

arrival rate takes its maximum value.
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7.3 Performance of systems with balking

In this section we comment on those findings from our empirical results that we con-

sider interesting. The way which we are going to describe our results is via contrasting

balking systems with non-balking systems, which can be associated with the relevant

literature.

In subsection 7.3.1 we are interested in how the congestion peak lags behind

the arrival rate peak in non-stationary queueing systems with balking. This lag is

important in practice as it can imply that the indicators of inadequate staffing levels

often do not fully materialise until too late. It is also important in modelling terms

as it is one of the main factors that affects the performance of PSA. Indeed, as we

have seen in chapter 2, PSA models the behaviour of the system at each point of

time using a stationary model with arrival rate equal to the value of the arrival rate

function at that moment. As a consequence it fails to model this lag, and this adds to

its imprecision, as seen in Figure 7.2. For this reason a lagged PSA has been proposed

by Green and Kolesar [66], although the size of the lag can only be estimated.
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Figure 7.2: Lag between the peak of the actual solution and the peak in the PSA
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In subsection 7.3.2 we then look at how balking affects the systems’ performance,

by looking the effect on the mean and the percentile curves for the number in the

system. In subsection 7.3.3 we observe that the distribution of the number in the

system is very close to normal, and give explanations why this happens. Finally

subsection 7.3.4 investigates the effect of the service time distribution.

7.3.1 Lag between arrival peak and peak in congestion

It has been noted by many researchers that non-stationary queueing systems

reflect a peak in the arrival rate in terms of a lagged peak in congestion, see for

example [24], [67], [36], [35]. One obvious reason for this phenomenon, is the delay

introduced by the service queueing process. However, the way in which the service

process, or other factors, affect the magnitude of this lag, does not appear to have

been studied systematically. We are interested in identifying these factors, as this

should help us predict how the lag behaves in systems with balking. We mention

below some findings from the relevant literature.

Eick et al. [36, 35] studied M(t)/G/∞ queues. For these queues the number in

the system has a Poisson distribution, and an exact expression of its mean exists due

to Palm [68], and Khintchine [69]. Using this result the authors derive an expression

for the lag for M(t)/G/∞ queues with sinusoidal arrival rates. The sinusoidal arrival

rate affects the lag only by its frequency. The other factor that determines the lag

is the service time distribution. For example if the sinusoidal arrival rate is given by

λ(t) = λ̄+ βsin(γt), and the service time follows a negative exponential distribution

with mean equal to µ, the lag is l = cot−1(µ/γ)/γ, which is a decreasing function of

γ. This means that sinusoidal arrival rates with high frequencies result in shorter lags

than sinusoidal arrival rates with lower frequencies. On similar lines, if the service

is deterministic with mean rate equal to µ then the lag equals µ/2, and thus in this

case it is independent of all the characteristics of the sinusoidal arrival rate.

The relatively simple results obtained for these systems are due to the fact that

in infinite servers systems different customers do not interfere with each other. The
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results obtained for infinite server systems have also been used to estimate the lags in

the finite server systems. Green and Kolesar [66] propose a lagged PSA for estimating

the peak congestion in M(t)/M/s systems with periodic arrival rates. They first

estimate the size of the time lag using an infinite server system, and then assume

that the arrival rate in the finite server system is displaced by this amount along the

time axis. The authors suggest that the lag predicted by the infinite server model

underestimates the actual lag in the finite server system. Green and Kolesar [66], also

report that in finite server systems, the lag increases as the peak probability of delay

increases, and as the event frequency i.e. the average number of arrivals and service

completions per period, decreases.

Up to now we have summarised the factors which affect the lag in systems without

balking. In the rest of this section we focus on systems with balking. Looking at our

full set of results we notice that systems which are subject to balking do not suffer

from major lags. Moreover, systems with stronger balking seem to have shorter lags,

and lags virtually vanish when very strong balking is present. For example if we

compare the lag for the peak which occurs at time t = 97.5, in Figure 7.21(a) and

in Figure 7.15(a) we have Lag0.95 = 2.375 units (≈ 14 minutes) for the weak balking

system, and Lag0.9 = 1 unit (= 6 minutes) for the one with medium balking. If

we continue this comparison with the corresponding system with strong balking, i.e.

Figure 7.9(a), the lag is Lag0.8 = 0.5 units (= 3 minutes). This kind of comparison

can be done among all systems with different balking levels, and the pattern that the

stronger the balking the smaller the lag is confirmed by all cases. We also note that

in each figure, see for example Figure 7.21, the lag associated with the first peak, at

time t = 7.5 units, is larger than the one associated with the second peak, at time

97.5 units. The difference between these two peaks is that the arrival rate curve which

leads to the first peak is much steeper than the one that leads to the second peak.

However, because starting conditions might still have an effect at t = 7.5 units, we

focused on the peak at time t = 97.5 units.

We can see from Figures 7.7-7.12(a) that for b = 0.8 (strong balking) there is no

obvious visible difference between the time at which the peak arrival rate occurs, and
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the time at which the peak number in the system occurs. In an effort to explain why

systems with stronger balking have smaller lags, we notice that the peak probability

of delay decreases for systems with stronger balking. As we have seen in the previous

paragraphs, according to [66] the lag should decrease as well. This is because the

probability of delay increases with the traffic intensity and with the average arrival

rate [24]. These quantities decrease as balking increases. In systems with stronger

balking less people will join when encountering the same congestion, and thus, these

systems appear to have smaller average arrival rate and traffic intensity. As a result

the probability of delay decreases leading to smaller lags as balking increases.

The above finding, that the stronger the balking the smaller the delay between

the traffic intensity peak and the the number in the system peak could be used as

an indication of balking occurrence. For example, in a call centre where management

does not keep records of the people that abandon the system when encountering a

busy line, observing how the peaks in congestion reflect the corresponding peaks in

traffic intensity, would provide an indication on whether strong balking is present.

7.3.2 Mean and percentiles curves

When there is low or no balking (because the system is quiet, or because the

strength of balking is weak) the curve of the mean number in the system has a

similar shape to the arrival rate curve, though a time lag might be present as we

have seen in the previous section. When balking is present, it tends to eliminate the

increasing parts, resulting in smoother curves. For example in Figure 7.3 we contrast

the different levels in congestion that we get due to different strengths of balking,

for systems with ‘busy’ arrival rates (results taken from Figures 7.9, 7.15, and 7.21)

and for systems with ‘very busy’ arrival rates (results taken from Figures 7.11, 7.17,

and 7.23). As expected systems with higher arrival rates are more affected by the

different levels of balking.

In graphs noted as (b) in Figures 7.7-7.24 we present the mean number in the

system together with two percentile curves. By showing these percentiles we want to
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Figure 7.3: Effect of balking on mean number in the system

give a fuller idea of how the system performs. The mean indicates what will be the

average number in the system, however a call centre manager (for example) might also

be interested in possible states in which the system can be found, e.g. customers facing

too long queues, or servers being idle. Since our algorithm is able to calculate not

only the mean number in the system, but also its distribution, it is easy to calculate

any percentiles of interest. We can see by looking at any of the (b) graphs that the

shape of the 5% and 95% percentile curves follows the shape of the mean curves.

This can be expected since, as we discuss later, the number in the system follows a

normal distribution approximately. In order to make this comparison easier we give

an example in Figure 7.10(b) and in Figure 7.19(b). There, at some random points,

we have highlighted these differences. We notice that in each graph aU ≈ bU ≈ cU
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and aL ≈ bL ≈ cL.

Also, for each approximation, the distance between the percentile curve and the

corresponding mean, seems to be more or less the same. For example in Figure 7.10(b)

and in Figure 7.19(b) aU ≈ aL, bU ≈ bL and cU ≈ cL. This indicates that the distri-

butions of the number in the system for the two approximations are fairly similar and

symmetric. This is again consistent with their approximately Normal distributions

which we will see later.

Finally, we can also notice that the distance between the percentile curve and the

corresponding mean becomes smaller as the strength of balking increases, which indi-

cates that the standard deviation of the number in the system decreases for systems

with stronger balking. For example the highlighted distances in Figure 7.10(b), which

refers to strong balking, are smaller than the highlighted distances in Figure 7.7(b)

that refers to weak balking.

7.3.3 Distribution of the number in the system

In this section we are concerned with the probability distribution of the number

in the system. Since we are dealing with non-stationary systems this distribution is

time dependent. We initially remind the reader of available results concerning the

distribution of the number in the system, when arrival rates are not state dependent,

which we then combine with balking ideas, in order to conjecture what to expect for

the probability distributions of non-stationary systems with balking.

(a) Approximately Normal distribution

If we temporarily ignore balking, the systems of interest fall in the general cate-

gory of multi-server non-stationary M(t)/G/s systems. However, there is very little

information about the distribution of the number in the system for these systems.

This is because exact or approximate analysis is difficult for non-stationary systems.

Even in studies about M(t)/M/s systems with sinusoidal arrival rates, the above

issue is not addressed [24]. Most of the times the main concern is the mean number
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in the system and estimations even for the variance are not available, see for example

[24]. The only time-dependent system for which the distribution of the number in

the system is known, is the M(t)/G/∞, see for example [36].

In our attempt to investigate the time-dependent distribution of the number in

the system, we consider the congestion level at the point of time of interest as a key

factor. This is motivated by the relevant literature, where distributions of the number

in the system can be approximated or estimated for extreme levels of congestion. For

this reason we consider 3 categories of congestion: very busy, busy, and quiet systems.

We are first concerned with times at which the system is very busy. Worthington

[70] suggested that for a stationary finite population system, M(n)/G/s//N , with

high traffic intensity, the distribution of the number in the system can be approxi-

mated by an appropriate normal distribution. (We remind the reader here that finite

population systems can be also seen as systems with balking which decreases linearly

with the number in the system, while in the systems we consider, balking appears only

when a queue is formed, and the strength of this balking depends geometrically on

the number in the queue.) The explanation proposed in [70] for the normal approxi-

mation for M(n)/G/s//N busy systems, is achieved in two steps. First, the system

is approximated with s independent single-server queues (M(n)/G/1//N
s
), since the

servers are (almost) always busy. Then, the random variable which represents the

number in the overall system, is calculated as the summation of s random variables,

each of which represents the number in one of the s subsystems. Due to the central

limit theorem a summation of s independent identically distributed (i.i.d.) random

variables follows a Normal distribution when s is large. In fact the approximation

gave small errors even when s was not large. The mean and the variance of this

distribution were then estimated empirically.

There is no reason why a similar argument should not hold for any busy system

with balking and with many servers, although different calculations would be needed

to estimate the mean and the variance. As a result, under heavy traffic assumptions,

we conjecture that the number in the system follows a normal distribution. In order

to see whether this is consistent with our results, we focus on our results for systems
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and times where the congestion is very high. This selection is based on the mean

number in the system and is assisted by comparing the lower percentile curve with

the number of servers. Results for systems and times of high congestion are presented

in Figures 7.17(e), 7.18(e), 7.21(e), 7.22(e), 7.23(c, d, e), 7.24(c, e). From these graphs

it is obvious that the normal distribution closely matches the probability distribution

of the number in the system. We also note that in all cases the Poisson distribution

which matches the mean has larger variance than the actual distribution, thus, the

mean is an upper bound for the variance for busy systems.

Moving on the antipode side, which is very quiet systems, we expect them to

behave as M(t)/G/∞ systems. This is because in very quiet systems the queue is

negligible, and thus we can assume that an arrival always finds a free server. More-

over, very quiet systems with balking will behave in the same way, as balking only

happens in our case when the number in the system exceeds the number of servers.

In M(t)/G/∞ systems the number in the system follows a Poisson distribution. The

mean for the stationary M/G/∞ systems is m = λ
µ

[13], and for the non-stationary

M(t)/G/∞ systems is m(t) = E[λ(t−Se)]
µ

[36], that is a weighted average of arrival

rates before time t. Hence we expect that when the mean number in the system is

substantially smaller than the number of servers, the number in the system will match

a Poisson distribution.

We remind the reader here that Poisson distributions with large means can be

approximated by normal distributions. We refer again to our set of results, and

concentrate on systems and times when they are very quiet. The selection of very

quiet systems is based on the mean number in the system and is assisted by comparing

the upper percentile curve with the number of servers. Such systems can be found

in Figures 7.7(d), 7.8(d), 7.10(d), 7.13(d), 7.14(d), 7.16(d), 7.19(d), 7.20(d), 7.22(d).

In all these cases both a Poisson and a normal distribution can be used in order to

describe the number in the system.

The last category is systems which are neither very busy nor very quiet. There

were no relevant results in the literature for these systems, and as a result we have

no theoretical grounds to conjecture on the distribution of the number in the sys-
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Figure 7.4: Discrete distribution obtained by taking integer samples from a normal
distribution.

tem. However, the graphs from our results that correspond to this situation are Fig-

ures 7.7(c, e), 7.8(c, e), 7.9(c, d, e), 7.10(c, e), 7.11(c, d, e), 7.12(c, d, e), 7.13(c, e),

7.14(c, e), 7.15(c, d, e), 7.16(c, e), 7.17(c, d), 7.18(c, d), 7.19(c, e), 7.20(c, e), 7.21(c, d),

7.22(c), and as can be seen the normal distribution again provides a good approxi-

mation for the distribution of the number in the system.

In conclusion, the probability distribution of the number in the system closely

matches a normal density function at integer values. All our empirical results have

showed this matching. In other words we can form the discrete distribution of the

number in the system by allocating the values of a continuous normal function at

integer values, as in Figure 7.4. Hence if Pt(n) denotes the probability that there are

n customers in the system at time t,

Pt(n) ≈ 1

σ
√

2π
e−

(n−m)2

2σ2

where m is the mean and σ the standard deviation of the number in the system.

Note that strictly we need to prove that
∑∞

0 Pt(n) = 1, for {Pt(n)} to represent a

probability distribution. This is done in Appendix C for distributions with mean

values that are not close to zero.
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(b) Standard deviation

As noted in Section 7.3.2, and by further comparison of Figures 7.7-7.12 with

Figures 7.13-7.18 and Figures 7.19-7.24 we can also observe that systems with stronger

balking have smaller standard deviations of number in the system. We give an ex-

planation of this phenomenon by referring again to the nature of balking systems.

This nature is an example of systems with negative feedback. Indeed the fact that in-

creased congestion discourages new arrivals to enter the system, indicates presence of

a negative feedback mechanism. In general negative feedback systems act to maintain

their homeostasis, that is, to keep themselves in a constant state. For systems with

balking the negative feedback appears only when the system’s state is relatively high.

However, this is still homeostatic behaviour for upward trends. In this way balking

limits the possible states in which the system can be found. As a result systems with

balking have smaller standard deviations, and the stronger the balking, the smaller

the standard deviation of the number in the system.

7.3.4 The effect of the distribution of service time

In this section we remind the reader about the known effects of the service time

distribution for general queueing systems, and then focus on systems with balking.

For general queueing systems knowing only the mean of the service time distribution is

not enough to have an accurate description of how the system performs. For example

for an M/G/1 system the mean number in the system is given by the Pollaczek-

Khinchin mean-value formula [13]:

m =
λ

µ
+ λ2

1
µ2 + σ2

2(1 − λ
µ
)

This relationship indicates that the mean number in the system depends not only

on the mean service rate µ, but also on the standard deviation σ of the service time

distribution. Moreover, the mean number in the system increases as the variation in

the service time distribution increases.
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For more than one server an analytic expression for the mean number in the sys-

tem, or in the queue does not exist, unless the service time distribution is negative

exponential. However, there are tabulated values for the steady state mean queue

length for M/D/s systems, see for example [15]. In Table 7.2 we compare these val-

ues with the corresponding results for M/M/s systems, for different traffic intensities.

We again note that the systems with the higher variance of service time (i.e. neg-

ative exponential service time has variance = mean2) have higher congestion levels

than those with the lower variance of service time (i.e. deterministic service time

has 0 variance). Indeed, the steady state mean queue lengths of the systems with

markovian service time distributions are almost twice the mean queue lengths of the

corresponding systems with deterministic service time distributions.

traffic M/M/1 M/D/1 M/M/8 M/D/8 M/M/15 M/D/15
intensity (rho)

0.5 0.5 0.25 0.059 0.03728 0.01129 0.00801
0.8 3.2 1.6 1.8306 0.9725 1.2768 0.70123
0.9 8.1 4.05 6.313 3.2398 5.4237 2.8198
0.95 18.05 9.025 16.039 8.1163 14.952 7.6099
0.99 98.01 49.005 95.812 48.014 94.556 47.433

Table 7.2: Comparison of steady state mean queue length for systems that differ in
the service time distribution.

When dealing with non-stationary systems we do not know whether the service

time distribution has such a distinctive effect as for the steady state of stationary

systems. While modelling a call centre without balking, Chassioti and Worthington

[71] gave an example of the effect of the service time distribution in non-stationary

systems. Their results suggested that accurate representation of higher than first

moment of the service time distribution is not so important as other factors, although

changing the variance of the service time distribution still had a noticeable effect on

congestion. This effect seemed to be smaller than for stationary systems.

We now focus on systems with balking. Balking constrains the range of possible

states, since the higher the number in the system the more difficult it becomes for new

arrivals to join this system, and thus, high states which would occur if balking was
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not present, will not occur as often. This reduces the mean number in the system,

and also the standard deviation of the number in the system, since the range of low

states does not increase.

Let us now consider two systems with the same arrival process and with service

time distributions with the same mean but different higher moments. Due to the

variability in service times the servers in the system with the more variable service

time distribution will be idle for more time than the ones in the less variable system.

However, both systems are subject to the same workload. As a result, at time t,

the number in the system, which is the number arrived minus the number that have

been served, will be larger for the more variable system. Hence for systems without

balking variability in service time tends to increase the mean number in the system.

However, in balking systems, increased congestion increases balking, and hence

tends to reduce the mean number in the system. Thus, we conclude that we have

two competing mechanisms, variability versus balking. As a result, we expect that

the increased variability in the service time distribution will have smaller effect for

systems with balking.

This can be seen clearly from Figure 7.5 in which the effect of the service time

distribution is presented for one of the approximations (here we show the upper

approximation) for systems with different balking coefficients. In all cases two outputs

were obtained, one for a deterministic service time distribution and one for a discrete

analogue of a negative exponential one. From these graphs we observe the close

proximity of the mean number in the system for systems with different service time

distributions. This reinforces our previous results presented in Chapter 6 in Figures

6.8-6.13, which concerned systems with balking coefficient equal to 0.9 and different

service time distributions, to support our conjecture that systems with balking are

insensitive to the service time distribution.
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Figure 7.5: Systems with deterministic and negative exponential service time distri-
butions for different balking coefficients and sine variations.
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7.4 The PSA for systems with balking

The basis of the pointwise stationary approximation (PSA) is that it assumes that

at each moment steady-state is achieved, and it uses the instantaneous arrival rate in

order to estimate the system’s performance at that instant. As a result PSA tends

to perform poorly for systems that achieve steady state slowly (e.g. where peaks and

troughs in congestion lag significantly behind peaks and troughs in arrival rates), and

cannot be applied at all in cases where the system does not settle to steady state. In

this section we are interested in how successfully the PSA approach can be applied

for systems with balking.

Our results to date enable us to make two quite strong statements about the

likely usefulness of the PSA approach in time-dependent systems with balking. In

particular:

1. Although the instantaneous offered load in a balking system may be greater

than 1, the system will settle to steady state due to the negative feedback that

balking imposes on it. Hence PSA can always be applied for systems with

balking.

2. Because lags between arrival rates and congestion levels reduce as balking in-

creases, there is reason to hope that PSA may be particularly applicable in

systems with strong balking.

This second conjecture is well supported by our empirical results. In all of Figures

7.7(a) to 7.24(a) the large dots indicate the PSA result for the mean number in the

system using both the upper and lower approximations are indicated at t = 30,

t = 52.5, t = 75, t = 97.5 (i.e. two symmetric points a minimum and a maximum).

We can notice that for strong balking (i.e. b=0.8, Figures 7.7(a) to 7.12(a)) the PSA

estimations coincide with the values that are calculated from our approximations,

while when balking is weak (i.e. b=0.8, Figures 7.19(a) to 7.24(a)) the PSA values

are not as accurate, however they are still very close to the ones produced by the

approximations.
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7.5 Calculation of steady-state measures for very

busy systems

In the previous section we saw that PSA generally performs well for systems with

strong balking. This indicates that at each point of time these systems behave more

or less as if at steady state. For this reason we can assume that at each point of time

steady state has been achieved, and hence that the mean arrival rate should match

the mean departure rate.

If we now restrict ourselves to busy systems, i.e. systems in which the servers are

(almost) always very busy, then the above steady state finding implies that at each

point of time

E{λt(n)} = sµ (7.1)

where s is the number of servers, and µ is the service rate. The arrival rate, at time

t, when there are n customers in the system, is:

λt(n) =











λt, n < s,

λtb
n−s+1, n ≥ s

We have seen from our results in section 7.3.3 that the distribution of the number

in the system could be approximated by a normal density function at integer values.

Since here we are considering very busy systems, Pt(n) (probability that we have n

customers in the system at time t) can also be written as:

Pt(n) =
1

σ
√

2π
e−

(n−m)2

2σ2 (7.2)

The mean arrival rate at time t is:

E{λt(n)} =

∞
∑

n=0

λt(n)Pt(n)
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Hence, from Equation (7.2) we have:

E{λt(n)} =

s−1
∑

n=0

λt
1

σ
√

2π
e−

(n−m)2

2σ2 +

∞
∑

n=s

λtb
n−s+1 1

σ
√

2π
e−

(n−m)2

2σ2

=

s−1
∑

n=0

λt(1 − bn−s+1)
1

σ
√

2π
e−

(n−m)2

2σ2 +

∞
∑

n=0

λtb
n−s+1 1

σ
√

2π
e−

(n−m)2

2σ2

The first term takes very small values since the probabilities for n < s can be

considered negligible for very busy systems. Thus:

E{λt(n)} ≈ λtb
−s+1 1

σ
√

2π

∞
∑

n=0

bne−
(n−m)2

2σ2

=
λtb

−s+1

σ
√

2π

∞
∑

n=0

eln(b)n

e−
(n−m)2

2σ2

=
λtb

−s+1

σ
√

2π

∞
∑

n=0

enln(b)e−
n2

−2nm+m2

2σ2

=
λtb

−s+1

σ
√

2π

∞
∑

n=0

e−
n2

−2n(m+σ2ln(b))+m2

2σ2

=
λtb

−s+1

σ
√

2π

∞
∑

n=0

e−
n2

−2n(m+σ2ln(b))+(m+σ2ln(b))2−σ4ln2(b)−2mσ2ln(b)

2σ2

=
λtb

−s+1e
ln(b)(σ2ln(b)+2m)

2

σ
√

2π

∞
∑

n=0

e−
[n−(m+σ2ln(b))]2

2σ2

However 1
σ
√

2π

∑∞
n=0 e

− [n−(m+σ2ln(b))]2

2σ2 is the summation of the normal probabilities

at integer values, with mean= m+ σ2ln(b) and variance= σ2. As established earlier,

these probabilities sum to 1. As a result from the above equation we have :

E{λt(n)} ≈ λtb
−s+1e

ln(b)(σ2ln(b)+2m)
2

We substitute this expression in Equation (7.1) in order to find an estimation for
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the mean :

λtb
−s+1e

ln(b)(σ2ln(b)+2m)
2 = sµ⇒

e
ln(b)(σ2ln(b)+2m)

2 =
sµbs−1

λt
⇒

ln(b)(σ2ln(b) + 2m)

2
= ln(

sµ

λt

) + ln(b)s−1 ⇒

1

2
σ2ln(b) +m =

1

ln(b)

[

ln(
sµ

λt

) + (s− 1)ln(b)

]

⇒

1

2
σ2ln(b) +m =

1

ln(b)
ln(

sµ

λt
) + (s− 1) ⇒

m = (s− 1) +
1

ln(b)
ln(

sµ

λt
) − 1

2
σ2ln(b) (7.3)

The above relationship, though it assumes very busy systems and existence of

non-trivial balking, is very useful since it provides an analytical formula that can be

easily applied in order to calculate the mean number of customers in the system at

any point of time. It can also be seen to contain a self validation property, since in

cases that the estimated m is not large enough (compared to the number of servers)

the estimation should be discarded as misleading as it does not refer to a very busy

system.

The practitioner who wants to apply PSA could use the above formula for very

busy systems with balking. The only dilemma is what value of σ to use as a standard

deviation of the number in the system. Indeed the standard deviation is unknown,

however extreme values can be used to get a range of possible levels of congestion.

This is because we have seen from our empirical results that the Poisson distribution

was more variant than the actual distribution for busy systems, so σ2 ≤ m; and

obviously σ2 ≥ 0.

If we assume σ2 = m in Equation (7.3) we have an upper bound for m:

mU = (s− 1) +
ln(sµ) − ln(λt)

ln(b)
− mU ln(b)

2

⇒ mU =
1

1 + ln(b)
2

[

(s− 1) +
ln(sµ) − ln(λt)

ln(b)

]

(7.4)
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If we assume σ2 = 0 in Equation (7.3), we get a lower bound for m:

mL = (s− 1) +
1

ln(b)
ln(

sµ

λt

)

However the derivation of Equation (7.3) required σ to be ‘big’. Hence it is safer

to deal with σ2 = 0 directly, by noting that it implies a deterministic distribution of

number in the system. In this case Equation (7.1) gives:

sµ = λtb
mL−s+1

which also leads to:

mL = (s− 1) +
1

ln(b)
ln(

sµ

λt
) (7.5)

Formulae (7.4) and (7.5) are clearly very easy to evaluate, and only require the

number of servers, the mean service rate, the balking coefficient and the arrival rate

function. We therefore look briefly at the quality of results these formulae might

produce in practice.

In Table 7.3 we compare the mean value of the number in the system as calcu-

lated from above formulae (mL, mU), with the mean values calculated by our DTM

approximations for different strengths of balking. The systems under consideration

are the same as in Figures 7.11, 7.17, 7.23, i.e. very busy, with mild variation of the

amplitude of the arrival rates. We select time t = 30 units, for this comparison.

Balking Estimates of Mean Lower & Upper bounds for Mean
coefficient (b) (using formulae (7.4) & (7.5) ) (using DTM approximations)
0.8 (strong) (10.634, 11.969) ( 10.5874 , 11.5491 )
0.9 (medium) (14.696, 15.514) ( 14.718 , 15.7147 )
0.95 (weak) (22.81, 23.41) ( 23.2764 , 24.2764 )

Table 7.3: Mean queue lengths estimated by the formulae and by the DTM approxi-
mations.

We can observe that the formulae give values very close to the ones calculated by

our algorithms. Note that we already know from our empirical work that the true

values of mean number in the system lie in the DTM ranges. Whilst the lower and
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upper values from the formulae do not necessarily bound the true value, they clearly

give potentially useful approximations.

A further comparison between the actual values and the values from the above

formulae are presented in Figure 7.6. The results are for the same system as in

Figure 7.23: a very busy system which experiences weak balking (b = 0.95) with mild

variation of the amplitude of the sine. According to our earlier results the actual

solution will be between the upper and the lower approximations. From Figure 7.6

we see that the curves for the two formulae intertwine with the two approximations

and give generally very close values to them.
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Figure 7.6: Comparison between exact results and formula (7.3).

In conclusion this method clearly has the potential to provide a good quality indi-

cation of the system’s performance for busy call centres which experience sufficiently

high levels of balking. The two formulae are very simple to evaluate, and the infor-

mation requirements are minimal, i.e. the instantaneous arrival rate, mean service

time, number of servers and balking factor.
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7.6 Summary

In this chapter we have studied the performance of systems with balking by

using the DTM approximations proposed in previous chapters. The systems under

consideration included a range of realistic arrival rates and strengths of balking.

Based on this set of empirical results a number of conjectures have been generated,

investigated and discussed:

(i) stronger balking leads to smaller lags between peaks in arrival rates and the

corresponding peaks in congestion levels (see Section 7.3.1);

(ii) other things being equal, balking has a more marked effect for systems with

higher arrival rates (see Section 7.3.2);

(iii) the probability distribution of number in the system for systems with balking

closely matches a Normal density function at integer values (see Section 7.3.3, 7.3.2);

(iv) systems with balking are insensitive to second and higher moments of the dis-

tribution of service time (see Section 7.3.4).

(v) the PSA performs better for systems with balking than for systems without

balking (see Section 7.4);

(vi) for very busy balking systems the PSA can be reduced to a pair of simple formu-

lae of reasonably accuracy for the mean number in the system (see Section 7.5).

Initially the lag between a peak in the arrival rate and a peak in congestion was

studied. Unlike systems that do not experience balking, systems with balking have

insignificant lags. In Section 7.3.1 we conjectured that the stronger the balking the

smaller the lag between the arrival rate peak and the congestion peak, and we have

given reasons on why this happens.
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Figure 7.7: A quiet system that has a sinusoidal arrival rate with mean λ = 8, mild
variation defined by the amplitude which is 20% of the mean, service rate µ = 1,
s = 8 servers, and strong balking defined by the balking coefficient b = 0.8.
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Figure 7.8: A quiet system that has a sinusoidal arrival rate with mean λ = 8,
variation defined by the amplitude which is 40% of the mean, service rate µ = 1,
s = 8 servers, and strong balking defined by the balking coefficient b = 0.8.

128



 0

 5

 10

 15

 20

 25

  0  20  40  60  80 100 120 140

n
u
m

b
e
r 

in
 t
h
e
 s

y
s
te

m

time

M(t)/GD/8

(b)

upper approx.
lower approx.

upper 95%
lower 5%

 0

 5

 10

 15

 20

 25

  0  20  40  60  80 100 120 140

 

time 

M(t)/GD/8

(a) lag

upper approx.
lower approx.

arrival rate
lower PSA
upper PSA

 0

 0.05

 0.1

 0.15

 0.2

 0  5 10 15 20 25 30 35 40

p
ro

b
a
b
il
it
y
 

number in the system

pdf at time t=30

(c)

lag

Poisson distribution
Normal distribution

 0

 0.05

 0.1

 0.15

 0.2

 0  5 10 15 20 25 30 35 40

p
ro

b
a
b
il
it
y
 

number in the system

pdf at time t=55

(d)

lag

Poisson distribution
Normal distribution

 0

 0.05

 0.1

 0.15

 0.2

 0  5 10 15 20 25 30 35 40

p
ro

b
a
b
il
it
y
 

number in the system

pdf at time t=100

(e)

lag

Poisson distribution
Normal distribution

Figure 7.9: A medium busy system that has a sinusoidal arrival rate with mean
λ = 10, mild variation defined by the amplitude which is 20% of the mean, service
rate µ = 1, s = 8 servers, and strong balking defined by the balking coefficient b = 0.8.
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Figure 7.10: A medium busy system that has a sinusoidal arrival rate with mean
λ = 10, variation defined by the amplitude which is 40% of the mean, service rate
µ = 1, s = 8 servers, and strong balking defined by the balking coefficient b = 0.8.
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Figure 7.11: A very busy system that has a sinusoidal arrival rate with mean λ = 18,
mild variation defined by the amplitude which is 20% of the mean, service rate µ = 1,
s = 8 servers, and strong balking defined by the balking coefficient b = 0.8.
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Figure 7.12: A very busy system that has a sinusoidal arrival rate with mean λ = 18,
variation defined by the amplitude which is 40% of the mean, service rate µ = 1,
s = 8 servers, and strong balking defined by the balking coefficient b = 0.8.
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Figure 7.13: A quiet system that has a sinusoidal arrival rate with mean λ = 8, mild
variation defined by the amplitude which is 20% of the mean, service rate µ = 1,
s = 8 servers, and balking defined by the balking coefficient b = 0.9.
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Figure 7.14: A quiet system that has a sinusoidal arrival rate with mean λ = 8,
variation defined by the amplitude which is 40% of the mean, service rate µ = 1,
s = 8 servers, and balking defined by the balking coefficient b = 0.9.
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Figure 7.15: A medium busy system that has a sinusoidal arrival rate with mean
λ = 10, mild variation defined by the amplitude which is 20% of the mean, service
rate µ = 1, s = 8 servers, and balking defined by the balking coefficient b = 0.9.
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Figure 7.16: A medium busy system that has a sinusoidal arrival rate with mean
λ = 10, variation defined by the amplitude which is 40% of the mean, service rate
µ = 1, s = 8 servers, and balking defined by the balking coefficient b = 0.9.
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Figure 7.17: A very busy system that has a sinusoidal arrival rate with mean λ = 18,
mild variation defined by the amplitude which is 20% of the mean, service rate µ = 1,
s = 8 servers, and balking defined by the balking coefficient b = 0.9.
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Figure 7.18: A very busy system that has a sinusoidal arrival rate with mean λ = 18,
variation defined by the amplitude which is 40% of the mean, service rate µ = 1,
s = 8 servers, and balking defined by the balking coefficient b = 0.9.
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Figure 7.19: A quiet system that has a sinusoidal arrival rate with mean λ = 8, mild
variation defined by the amplitude which is 20% of the mean, service rate µ = 1,
s = 8 servers, and weak balking defined by the balking coefficient b = 0.95.
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Figure 7.20: A quiet system that has a sinusoidal arrival rate with mean λ = 8,
variation defined by the amplitude which is 40% of the mean, service rate µ = 1,
s = 8 servers, and weak balking defined by the balking coefficient b = 0.95.
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Figure 7.21: A medium busy system that has a sinusoidal arrival rate with mean
λ = 10, mild variation defined by the amplitude which is 20% of the mean, service
rate µ = 1, s = 8 servers, and weak balking defined by the balking coefficient b = 0.95.
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Figure 7.22: A medium busy system that has a sinusoidal arrival rate with mean
λ = 10, variation defined by the amplitude which is 40% of the mean, service rate
µ = 1, s = 8 servers, and weak balking defined by the balking coefficient b = 0.95.
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Figure 7.23: A very busy system that has a sinusoidal arrival rate with mean λ = 18,
mild variation defined by the amplitude which is 20% of the mean, service rate µ = 1,
s = 8 servers, and weak balking defined by the balking coefficient b = 0.95.
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Figure 7.24: A very busy system that has a sinusoidal arrival rate with mean λ = 18,
variation defined by the amplitude which is 40% of the mean, service rate µ = 1,
s = 8 servers, and weak balking defined by the balking coefficient b = 0.95.
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Chapter 8

Conclusions and further research

8.1 Introduction

This research is concerned with developing queueing theory models for call centres

and demonstrating the potential value of these models to provide understanding and

insights to call centre queues. For this reason Chapter 1 describes call centres and

their basic characteristics, explains how call centres can be modelled as queueing

systems, and points out that methods currently used make restrictive assumptions

and as a result provide very crude approximations.

A review of the relevant literature for important call centre characteristics, which

include multi-server systems with time-dependent and state-dependent arrival rates

and general service time distributions, was undertaken in Chapter 2. From this re-

view it was concluded that, based on queueing theory, discrete-time modelling is the

most appropriate analytic technique to model basic call centres. This is because this

approach has been used previously to provide very accurate approximations for multi-

server queueing systems with time-dependent arrival rates and general service time

distributions. Moreover the explicit description of DTM in Chapter 3 indicates that

this method has the potential to be developed to include the other main characteristic,

of call centres, i.e. state-dependent arrival rates.

Having set the background for this research we proceed in Chapters 4-7 to develop

and apply DTM for systems with state-dependent balking. This chapter summarises
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the main conclusions from this work and indicates issues for which further research

would be useful.

Our conclusions can be grouped in two main categories. The first category,

described in Section 8.2, are conclusions derived from the procedure of modelling

discrete-time systems with state-dependent arrivals. This category is more addressed

to queueing theorists. The second category, described in Section 8.3, includes in-

sights related to the performance of call centres. This category could be useful to

practitioners interested in call centre queue management problems.

After reporting these conclusions we discuss in Section 8.4 issues subject to further

research.

8.2 Conclusions about modelling state-dependent

discrete-time systems

Chapter 4 provides the theoretical contribution to incorporate balking into the

DTM approach. In order to introduce balking we need to introduce state-dependent

arrivals to the DTM algorithm. Our first step is to formulate state-dependent arrivals

as a pure birth process, i.e. departures are ignored. The convolution of two, then

three and so on, negative exponential distributions with different arrival rates was

calculated and was given different forms so that a pattern could be identified. This

has led to a recursive formula for calculating the state-dependent arrival probabilities,

which was proved by induction in Section 4.3 (Theorem 4.1). An alternative formula

for calculating these arrival probabilities is also proved in Section 4.4 (Theorem 4.2).

It is noted that both these theorems require all arrival rates to be distinct, whereas in

balking systems this will not necessarily be the case. Hence in Section 4.5 the formulae

are extended to state-dependent arrival probabilities with a recurrent arrival rate.

In systems without balking, departures and arrivals are independent events. How-

ever since departures reduce the system’s state, in systems with balking they will

affect the arrival rates. During a slot, arrivals and departures can occur at any
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point. However, DTM tracks the system under consideration only at epochs, and

thus residual service times are rounded up to the next integer in order to introduce

the Markov chain. For this reason no information is available about the exact time

at which departures will occur during the slot. This makes impossible to introduce

state-dependent balking in the DTM without making assumptions about the time at

which departures will occur.

Therefore we have introduced two approximations: an ‘early departure’ one and a

‘late departure’ one. In the ‘early departure’ approximation departures are assumed

to occur before arrivals (i.e. departures occur at the beginning of the slot) and as a

result arrivals ‘see’ a less congested system than the actual one. Arrivals seeing a less

congested system face weaker balking and thus this approximation seems likely to

overestimate the actual congestion. In the ‘late departure’ approximation departures

are assumed to occur after arrivals (i.e. departures occur at the end of the slot) and as

a result arrivals ‘see’ a more congested system than the actual one. Arrivals seeing a

more congested system face stronger balking and thus this approximation seems likely

to underestimate the actual congestion. The reason for defining the approximations

as above is because intuitively they seem to bound the actual system’s congestion.

We could for example introduce an alternative approximation that assumes half of the

departures occur at the beginning of the slot and the other half at the end. Intuitively

this would seem likely to lead to a more accurate approximation than the early and

late departure approximations. However, bounds of the actual solution for which the

accuracy can be controlled are more useful than approximations of unknown precision.

In Chapter 5 we undertake a theoretical investigation of the bounding behaviour

of the two approximations. To make a general statement on whether the two approx-

imations bound the actual solution we need to consider an M(t, n)/GD/s system.

However the formulation for this system proved to be very complicated and so we

limited our investigation to an M(t, n)/D/s system, i.e. a system with a deterministic

service time distribution. Even for this system the theoretical proof proved to be a

challenging task.

The general framework of this task is the performance comparison between two
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time-dependent queueing systems in discrete time. This issue is not addressed in the

relevant literature. The proofs presented in Chapter 5 are all based on induction,

i.e. they assume that the desired relationship for the selected performance measure

is valid at an arbitrary epoch and use induction to prove that it is also valid for

the next epoch. One crucial step in the proofs was the selection of the performance

measure. For example, in our preliminary attempts we used the mean number in the

system as performance measure since it was thought that this would involve easier

calculations. Indeed this simplified some parts of the formulation, however it was

impossible to get the desired result. In the end the required result was obtained by

using the cumulative distribution of the number in the system, having shown that if

the cumulative probabilities are ordered, their mean values are also ordered.

The proofs start by writing the Chapman-Kolmogorov equations for two successive

epochs. It is common after this stage in much queueing theory to use transforms to

ease the calculations. Indeed difference equations reduce to algebraic equations by

applying for example the z-transform, however getting the inverse transform is often

very difficult. Thus most queueing theory results are limited to steady state. Our

analysis takes place in the time domain.

We have shown in Section 5.6 (Theorem 5.2) that an M(t, n)/D/s discrete-time

system with ‘early departures’ has at each epoch a smaller cumulative distribution

of the number in the system than the actual system, and as a result is always more

congested than the actual one. We have also shown in Section 5.7 (Theorem 5.3)

that an M(t, n)/D/s discrete-time system with ‘late departures’ has at each epoch a

larger cumulative distribution of the number in the system than the actual system,

and as a result is always less congested than the actual one. Thus for an M(t, n)/D/s

system, at each epoch, the approximations introduced in Chapter 4 provide bounds

of the actual congestion levels. The proofs in this chapter demanded extensive al-

gebraic calculations and caution in the allowable increments/decrements each time

an inequality is formed. From this viewpoint, the comparison between the exact

and the lower approximation was more difficult to accomplish, as it demanded more

subtle formation of inequalities. In conclusion, both the development of the proofs
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and the successful results of this chapter contribute to the time-dependent analysis

of state-dependent systems in discrete time.

Having seen that even forM(t, n)/D/s systems results were arduously established,

the complexity of M(t, n)/GD/s systems was thought to be prohibitive, in the context

of this research. For this reason, in order to provide a broader investigation of the

bounding behaviour of the two approximations, a simulation model was developed and

employed. Chapter 6 describes and validates this simulation model. It also compares

results produced by this model with results produced by the two approximations for

various systems. We conclude that the two approximations always bound the actual

solution and that the difference between the bounds can be controlled by controlling

the duration between two successive epochs. As a result the approximations provide

bounds of controllable accuracy.

Chapter 7 studies the performance of systems with state-dependent balking using

the new approximate models. The form of balking for these tests is assumed to be

geometrical. One of the issues addressed is the effect of the service time distribution.

It is concluded, based on empirical results, that in systems with balking the mean

number in the system is in fact insensitive to higher than the first moment of the

service time distribution. This implies that, at any point of time, the mean number

in the system in an M(t, n)/GD/s system will be very similar to the mean number in

the system in an M(t, n)/D/s system. As a result the theory developed in Chapter 5

will also hold for M(t, n)/GD/s systems, i.e. the approximations provide bounds for

the general case.

8.3 Conclusions related to the performance of sys-

tems with state-dependent balking and call cen-

tres

Having developed DTM to model basic characteristics of call centres, Chapter 7

applies the DTM approximations to study the performance of systems with state-
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dependent balking. Our empirical results indicate that:

• In call centres with balking, higher than the first moments of the service time

distribution are insignificant for the mean number in the system. In other

words systems with balking are insensitive to the service time distribution.

As a result when modelling systems with balking and we are interest in the

mean number in the system, the distribution which is most convenient for this

particular modelling can be used. For example if the modelling method is DTM,

a deterministic service time distribution, which requires only one point for its

description, might be used, decreasing significantly memory and speed demands.

• It is no surprise that balking reduces the mean number in the system. Further-

more, balking affects the standard deviation of the number in the system. The

stronger the balking the smaller the standard deviation of the number in the

system. As a result in call centres with balking the mean number in the system

becomes a strong indication about the congestion levels.

• The distribution of the number in the system fits closely to a normal distribution

for any congestion level and strength of balking. The distribution of the number

in the system is useful to indicate the range of delays to expect.

• The degree of balking affects lags between arrival peaks and peaks in congestion.

Moreover, the stronger the balking the smaller the delay between the traffic

intensity peak and the congestion peak. This indicates that in call centres with

balking arrival rate peaks will be converted into congestion peaks faster than in

call centres without balking.

• The PSA generally provides a good approximation for systems with balking.

The stronger the balking the better PSA performs. This is mainly a consequence

of the shorter lags mentioned above, and the fact that balking guarantees that

steady-state results are meaningful.

Finally, motivated by the fact that PSA performs well for systems with balking, in

Section 7.5 we provide a simple formula to calculate the approximate mean number
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in the system for busy systems. This formula is straightforward to apply, and only

requires the number of servers, the mean service rate, the balking coefficient and the

arrival rate function. In this way practitioners are equipped with a simple formula

that can be used to obtain reasonably accurate time-dependent behaviour of systems

with balking, without the need to resort to numerical methods or simulation.

Overall we advise call centre modellers to use the simple PSA formula to get quick

estimations of congestion levels and to identify likely problematic times of the day.

In cases in which a more accurate representation of the system is needed we suggest

use of the two DTM approximations to get bounds of the actual congestion levels.

An arbitrary step size, for example equal to one unit of time, could be used in the

an initial run of the DTM programmes. If the accuracy is not satisfactory and ‘k’

times better accuracy is needed (i.e. the gap between the approximations needs to

be reduced ‘k’ times) we recommend the user to re-run the models with new step size

‘k’ times smaller than the initial one. If the call centre under consideration has more

sophisticated characteristics that affect its performance, for example priority calls, or

multi-skilled agents, simulation may be required.

8.4 Further research

There is a number of possible directions in which this research could be extended

in future work.

A possible way involves the use of geometric distributions. Our empirical results

in Chapter 7 have indicated that systems with balking are insensitive to higher than

the first moment of the service time distribution. This is an important finding that

has serious implications in modelling these systems, as mentioned in the previous

sections. This finding is particularly important for the DTM applicability since use of

a geometric service time distribution reduces considerably the memory and runtime

demands. The geometric distribution is the discrete-time version of the negative

exponential one, and as such is memoryless. Hence the state space only needs to

record the number in the system and not the remaining service stages. For these
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reasons it would be interesting to pursue a further and more systematic investigation

on this issue. Moreover, as we have already mentioned in Chapter 3 current studies

of discrete-time Geo/Geo/s systems are limited to steady-state results. Our work

could be extended to study the time-dependent behaviour of Geo/Geo/s systems in

the light of the formulation that was used in Chapter 5.

Another issue that could be investigated is extending DTM using parallel pro-

gramming. Though this research was not concerned with the borders that limit the

feasibility of DTM we are aware and concern of its limitations. The number of pos-

sible states in which the system can be found increases drastically with the number

of points that are used to describe the discrete time distribution and the number of

servers. To go beyond these limits we would need to use parallel programming. Run-

ning DTM in parallel processors is a challenging task, as the aim is to reduce both

memory and runtime. A brief investigation on this issue showed that the processes

in the DTM algorithm can be rearranged to take a parallel formation. In order to

implement this parallel task the message passing interface (MPI) should be consid-

ered as it is positively reviewed and its library is supported by C++ in which the

programmes are currently written.

Other areas of application of this work could also be sought. As we have seen

in Chapter 3 discrete-time queueing models have recently received a lot of attention

in computer communications. It would be interesting to investigate this sector for

possible areas of application of theory similar to the one developed in Chapter 5. This

theory could be modified for example for single-server systems with a general discrete

distribution, or for multi-server systems with a geometrical instead of a deterministic

service time distribution. State-dependent routing seems to have direct connection

with the systems we have studied. This case could be of special interest as the

balking function is prespecified and known by the routing policy. In state-dependent

routing if the state of a node is high, arrivals are directed in other nodes while if it

is low, arrivals are brought from other nodes, i.e. based on a threshold the arrival

rate function increases when the queue is ‘low’ and decreases when the queue is

‘high’. In this case we would adjust our approximations so that arrivals in the ‘upper’
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approximation will see departures to occur at the beginning of the interval when

queue is above the threshold and at the end of the interval when the queue is below

the threshold, and vice versa for the ‘lower’ approximation. Our theory could be used

to evaluate the performance of nodes with different routing policies.

Finally, the work in Chapter 7 could be extended for different forms of balking in

order to provide more robust results.

8.5 Final Conclusions

This work aimed to develop queueing theory models to model basic call centre

characteristics. These included time-dependent arrival rates in multi-server systems

with general service time distributions and state-dependent balking. The discrete-

time approach was selected as the most appropriate technique. In order to include all

the characteristics mentioned above, this research successfully extended the discrete-

time approach to model state-dependent balking. This was done by introducing two

approximations that bound the actual solution within controllable accuracy. The-

oretical and empirical work was undertaken successfully to support this bounding

behaviour. We have proved that these two approximations bound the actual solution

for M(t, n)/D/s systems. A simulation model was developed and used to show this

bounding behaviour for more general systems.

Systems with state-dependent balking have then been studied using the approx-

imations and some interesting findings have been obtained, providing important in-

sights into the behaviour of call centre queues, and providing practical ways for mod-

elling them.

Finally, there is clearly scope for developing the DTM approach further, and

applying it in other related problem areas.

153



Appendix A

We give here some simple proofs of results that we have used in chapter 4 and in

chapter 5.

It is well known, that the pdf of a random variable, that consists of the summation

of two other random variables, is given by the convolution of their pdfs (see for

example [72]), thus for continuous random variables we have:

Z = X + Y ⇒ fZ(t) =

∫ ∞

−∞
fX(t− y)fY (y)dy ⇒

( for nonegative random variables )

fZ(t) =

∫ t

0

fX(t− y)fY (y)dy (A.1)

In the case where X and Y have exponential pdfs e.g. fX(x) = λXe
−λXx, fY (y) =

λY e
−λY y by applying (A.1) we have :

fZ(t) = fX(x) ? fY (y) = λXe
−λXx ? λY e

−λY y =

∫ t

0

λXe
−λX(t−y)λY e

−λY ydy

= λXλY e
−λX t

∫ t

0

e(λX−λY )ydy =
λXλY e

−λX t

λX − λY
e(λX−λY )y

/

t
0

=
λXλY

λX − λY
e−λX t(e(λX−λY )t − 1)

=
λXλY

λX − λY
(e−λY t − e−λX t) (A.2)

The calculation of
∫

tkeαtdt is straightforward and can also be found in any math-
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ematical handbook of formulas e.g. Spiegel [73]. It is:

∫

tkeαtdt = eαt

[

k
∑

j=0

(−1)j

αj+1

k!

(k − j)!
tk−j

]

Using this we also give the expression for the definite integration from [0, T ]. It

is:

∫ T

0

tkeαtdt = eαT
k
∑

j=0

(−1)j

αj+1

k!

(k − j)!
T k−j −

k
∑

j=0

−1

(−α)j+1

k!

(k − j)!
0k−j ⇔

{

0k−j is always zero unless j = k
}

∫ T

0

tkeαtdt = eαT

k
∑

j=0

(−1)j

αj+1

k!

(k − j)!
T k−j +

k!

(−α)k+1
⇔

∫ T

0

tkeαtdt = eαT
k
∑

j=0

(−1)

(−α)j+1

k!

(k − j)!
T k−j +

k!

(−α)k+1
(A.3)
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Appendix B

//Simulation programme

//Function balking defines the form of balking.

//Balking can have a form of discouraged arrivals,

// or finite population system (machine interference problem).

//MM is the finite population

// lambda*(MM-n) the breakdown rate were n is the number in the system

//(programme needs minor adjustments when we want n to represent

// the number in the queue)

#include <fstream.h>

#include <cmath>

#include <iostream>

#include <stdlib.h>

#include <algorithm>

#include <string.h>

#include <time.h>

#define MM 10

void vectori(int *& v,int nl,int nh);

void vectord(double *& v,int nl,int nh);

void free_vectori(int * v,int nl);

void free_vectord(double * v,int nl);

double arrival(double LA, int &randomseed);

int service(double *Ser,int &randomseed);

int balking(int qu, int &randomseed);

double ran0(int &idum);

double min(double a, double b);

int main(void){

int k, r, i, sb, place, q, minpl, flag, NN, MAXSIM,

arrch, sch, maxss, randomseed, count;

char fname[20], otp[20], ch, title[80], blurb[80];

ofstream outp;

char mess[40],sername[80];

double servar,sermean, calccut;

int **T;
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int arrchange=0,

cchange=0,

*n,

*C,

ta,

tc,

td,

tb,

ts;

double *Ta,

*Tc,

*Av,

*Ba,

*Tb,

*per,

arrmean,

*Ser,

rt, maxarr, rate, endtime;

time_t t1;

char name[80];

double *s, minsi, initime, IA, temp, v;

//The programme uses as input and service files

//identical files with the ones used for the DTM programmes

//Service distribution file

cout << "\n\nEnter the name of the service distribution file ";

cin.get(name,20);

ifstream inn(name);

if (!inn) {

strcat(mess,name);

cout<< "\nProgram Runtime Error\n\n"

<< "\n\n Press the key ENTER to exit program";

cin.get(ch);

cin.get(ch);

exit(0);

}

inn.getline(blurb,80);

inn.getline(blurb,80);

inn.getline(blurb,80);

inn >> v >> ws; //v is the step size

inn.getline(blurb,80);

inn >> ts >> ws;

vectord(Ser,1,ts);

inn.getline(blurb,80);

for (i=1;i<=ts;i++)

inn >> Ser[i] >> ws;

inn.close();

//Input file (contains information about arrival rates, number of servers etc)
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cout << "\n\nEnter the name of the input file ";

cin >> fname; //cin.get(fname,20);

strcpy(otp,fname);

strcat(otp,".sim");

outp.open(otp);

ifstream in(fname);

if (!in) {

strcat(mess,fname);

cout<< "\nProgram Runtime Error\n\n"

<< "\n\n Press the key ENTER to exit program";

cin.get(ch);

cin.get(ch);

exit(0);

}

in.getline(blurb,80);

in.getline(blurb,80);

in.getline(blurb,80);

in.getline(blurb,80);

in >> td >> ws;

in.getline(blurb,80);

for(i=1;i<=td;i++) in.getline(blurb,80);

in.getline(blurb,80);

in >> endtime >> ws;

in.getline(blurb,80);

in >> rt >> ws;

in.getline(blurb,80); // Read in balking data

in >> tb >> ws;

in.getline(blurb,80);

for (i=1;i<=tb;i++) in.getline(blurb,80);

in.getline(blurb,80); // Read in arrival data

in >> ta >> ws;

in.getline(blurb,80);

vectord(Av,1,ta);

vectord(Ta,1,ta+1);

for (i=1;i<=ta;i++) {

in >> Ta[i] >> rate >> ws;

Av[i]=rate;

// if (maxarr<Av[i]) maxarr = Av[i];

}

Ta[i]=endtime;

in.getline(blurb,80); // Read in server data

in >> tc >> ws;

in.getline(blurb,80);

maxss=0;

vectori(C,1,tc);

vectord(Tc,1,tc+1);

for (i=1;i<=tc;i++) {

in >> Tc[i] >> C[i] >> ws;

if ( C[i] > maxss ) maxss=C[i];
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// maxc= max(maxc,C[i]);

}

Tc[i]=endtime;

in.close();

//-------------------------------------------------------MAIN ALGORITHM

NN=(int)(endtime/v);

// Number of epochs :Length of time to run the model in units of service time

cout << "\n\n How many times would you like to run the simulation? ";

cin >> MAXSIM;

vectori(n,0,NN-1);

vectord(s,0,maxss);

for (r=0; r<NN; r++)

n[r]=0;

time(&t1);

randomseed=rand();

for (k=1; k<=MAXSIM; k++){

for (i=0; i<maxss; i++)

s[i]=0;

arrch=1;

sch=1;

IA=arrival(Av[arrch],randomseed);

initime=0;

q=0;

place=0;

sb=0;

flag=1;

r=0;

minpl=0;

while (r<NN){

minsi=1000;

flag=1;

//we know that the system is empty

for (i=C[sch]-1; i>-1; i--)

if ( s[i] < minsi && s[i]>0) {

minsi=s[i];

minpl=i;

//we store here the place of the server with the minimum remaining service time

}

else if (s[i]==0) place=i;

//we store here the place of a free server

temp=(minsi!=1000?min(IA,minsi):IA);

if (r*v < initime+temp) {

// an epoch occurs before the next event, so we need to store the system’s state

for (i=0; i<C[sch]; i++)

if (s[i]>0) s[i]-=r*v-initime;

IA-=r*v-initime;
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initime=r*v;

n[r]+=q;

r++;

if (Ta[arrch+1] < r*v) {

//check whether the arrival rate changes

arrch++;

IA=arrival(Av[arrch],randomseed);

}

if (Tc[sch+1] < r*v) {

//check whether the number of servers changes

sch++;

if (C[sch-1]>C[sch]){

//we count again the busy servers, when the number of servers is decreased

sb=0;

for (i=C[sch]-1; i>-1; i--)

if ( s[i] > 0) sb++;

}

else {

for (count=C[sch]-C[sch-1]-1; count>-1; count--){

//when the number of servers is increased

if (q>0){

//if the queue is not empty, move someone from there to the service

s[C[sch-1]+count]=v*service(Ser, randomseed)+(0.5-ran0(randomseed))/1000;

q--;

sb++;

}

else s[C[sch-1]+count]=0;

//if the queue is empty make the new server idle

}

}

}

}

//The check about change of servers and arrival rate is done only at epochs

else { //It is an event that occurs now

if (IA==temp) {

//Check whether an arrival is going to be the next event

flag=0;

for (i=0; i<C[sch]; i++) // maxss

if (s[i]>0) s[i]-=temp;

//The time counter (current time or time 0) is going to change

//so we need to update the service already done

initime+=IA;

IA=arrival(Av[arrch],randomseed);

if (sb==C[sch]) q+=balking(q,randomseed);

// When sb==number of servers and q=0 we can still have balking

else {

s[place]=balking(q,randomseed);

//temporary allocate in s[place] whether there is an entry

sb+=s[place];
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// when we have an entry the balking function returns 1 else 0

if (s[place]) s[place]=v*service(Ser,randomseed);

//Since an idle server exists allocate the arriving

}

//if the arrival will not entry the system,

//nothing changes, still the time was updated

}

if (minsi==temp){

//Check whether a departure is going to be the next event

if (flag){

if (minsi!=1000)

for (i=0; i<C[sch]; i++)

if (s[i]>0) s[i]-=temp;

initime+=temp;

IA-=temp;

}

sb--;

if ( q>0 ){

//If the queue is not empty move someone

//from the queue to the server that just became idle

s[minpl]=v*service(Ser,randomseed);

q--;

sb++;

}

}

} //else loop

}//r Loop

} //k Loop

//////////////////////////////////Output

// Initialise output files

cout <<"\n Output file is : " << fname << ".sim \n";

// outp << "Data file name " << fname << ", created " << ctime(&t1);

// outp << "from general Input file " << fname <<endl;

// for (i=1;i<=ta;i++)

// outp << Ta[i] << "\t" << Av[i] << endl;

// outp<<"Time"<<"\t"<<"No. in the system"<<endl;

for (i=0; i<NN; i++){

outp<<i*v<<"\t"<<(double)n[i]/MAXSIM<<endl;

i++;

}

// outp<<"Runtime was " << difftime(time(NULL),t1)<<" seconds"<<endl;

outp.close();

free_vectori(n,0);

free_vectori(C,1);

free_vectord(Ta,1);

free_vectord(Tc,1);

free_vectord(Av,1);

free_vectord(Ser,1);

free_vectord(s,0);
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return(1);

}

void vectori(int *& v,int nl,int nh){

// create vector of integers

char ch;

v=new int[nh-nl+1];

if (!v) {

cout<< "\nProgram Runtime Error\n\n"

<< "\n\n Press RETURN a couple of times to exit program";

cin.get(ch);

cin.get(ch);

exit(0);

}

v-= nl;

}

void vectord(double *& v,int nl,int nh){

// create vector of double

char ch;

v=new double[nh-nl+1];

if (!v) {

cout<< "\nProgram Runtime Error\n\n"

<< "\n\n Press Enter to exit program";

cin.get(ch);

cin.get(ch);

exit(0);

}

v-= nl;

}

void free_vectori(int *v,int nl)

// free vector of integers

{

delete(v+nl);

}

void free_vectord(double *v,int nl)

// free vector of double

{

delete(v+nl);

}

double arrival(double LA, int &randomseed){

double temp;

temp=0;
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while (temp==0 || temp==1)

temp=(double)ran0(randomseed);

return -log(temp)/LA;

}

int service(double *Ser, int &randomseed){

double temp, cum;

int flag2, i;

flag2=1;

i=1;

cum=Ser[i];

temp=(double)ran0(randomseed);

while (flag2)

if (temp <= cum) {

flag2=0;

return i;

}

else {

i++;

cum+=Ser[i];

}

}

int balking(int qu, int &randomseed){

double temp, coef=0.9;

temp=(double)ran0(randomseed);

if (temp < pow(coef,1+qu) ) return 1;

//if (temp < (1.0-(qu / double (MM))) ) return 1;

else return 0;

}

double ran0(int &idum){

const int IA = 16807, IM=2147483647, IQ=127773, IR=2836, MA=123459876;

const double AM=1.0/double (IM);

int k;

double ans;

idum ^= MA;

k=idum/IQ;

idum=IA*(idum-k*IQ)-IR*k;

if (idum <0) idum+=IM;

ans=AM*idum;

idum^=MA;

return ans;
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}

double min(double a, double b){

if ( a > b ) return b;

else return a;

}
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Appendix C

In order to prove that
∑

Pt(n) = 1, where Pt(n) is given by Equation (7.2) we apply

the following trapezoidal rule or else 2-point Newton-Cotes formula [73]:

∫ x2

x1

f(x)dx =
1

2
(x2 − x1)(f(x1) + f(x2)) −

1

12
(x2 − x1)

3f ′′(ξ)

which for x2 − x1 = 1 gives:

∫ x2

x1

f(x)dx =
1

2
(f(x1) + f(x2)) −

1

12
f ′′(ξ) (C.1)

The final term gives the amount of error (which, since x1 < ξ < x2, is no worse

than the maximum value of 1
12
f ′′(ξ) in this range). Since our aim is to use the above

formula for f(n) = Pt(n) from Equation (7.2), f(x) has the form of a normal function

so we can find an analytical expression for f ′′(x). It is:

f ′′(x) =











0, x� s or x� s

−1
σ3

√
2π

[1 − (x−m)2

σ2 ]e
−(x−m)2

2σ2 , elsewhere
(C.2)

Having in mind that the second derivative of a function is the rate of change

of the first derivative, f ′′(x) becomes negligible for smooth functions. In order to

have a smooth normal curve, we need a large variance (σ2), so in this case we can

approximate the integral by:

∫ x2

x1

f(x)dx =
1

2
(f(x1) + f(x2))
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Expanding the above equation for more than one intervals gives:

∫ xn

x1

f(x)dx =

∫ x2

x1

f(x)dx +

∫ x3

x2

f(x)dx + . . .+

∫ xn

xn−1

f(x)dx

=
1

2
(f(x1) + f(x2)) +

1

2
(f(x2) + f(x3)) + . . .+

1

2
(f(xn−1) + f(xn))

=
1

2
(f(x1) + f(xn)) +

xn−1
∑

x2

f(xk)

We use the above equation for f(n) = Pt(n) defined by Equation (7.2) and x1 = 0,

xn = ∞ in order to prove that
∑∞

k=0 Pt(k) = 1. We have:

∞
∑

k=0

Pt(k) =

∫ ∞

0

Pt(x)dx +
1

2
[Pt(0) + Pt(∞)]

=

∫ ∞

0

Pt(x)dx = 1
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