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Abstract This paper considers the Fredholm determinant det(I − Γx) of a Hankel integral

operator on L2(0,∞) with kernel φ(s+ t+ 2x), where φ is a matrix scattering function. The

original contribution of the paper is a related operator Rx such that det(I−Rx) = det(I−Γx)

and −dRx/dx = ARx + RxA and an associated differential ring. The paper introduces two

main classes of linear systems (−A,B,C) for Schrödinger’s equation −ψ′′ + uψ = λψ, namely

(i) (2, 2)-admissible linear linear systems which give scattering class potentials, with scat-

tering function φ(x) = Ce−xAB;

(ii) periodic linear systems, which give periodic potentials as in Hill’s equation.

The paper introduces the state ring S for linear systems as in (i) and (ii), and the tau

function is τ(x) = det(I +Rx).

(i) A Gelfand–Levitan equation relates φ and u(x) = −2 d2

dx2 log det(I − Rx), which is

solved with linear systems as in inverse scattering. Any system of rational matrix differential

equations gives rise to an integrable operator K as in Tracy and Widom’s theory of matrix

models. The Fredholm determinant det(I+λK) equals det(I+λΓΦΓΨ), where ΓΦ and ΓΨ are

Hankel operators with matrix symbols. The paper derives differential equations for τ in terms

of the singular points of the differential equation. This paper also introduces an admissible

linear system with tau function which gives a solution of Painlevé’s equation PII .

(ii) Consider Hill’s equation with elliptic potential u. Then u is expressed as a quotient of

tau functions from periodic linear systems. If the general solution is a quotient of tau functions

from periodic linear systems for all but finitely many complex eigenvalues, then u is finite gap

and has a hyperelliptic spectral curve.

The isospectral flows of Schrödinger’s equation are given by potentials u(t, x) that evolve

according to the Korteweg de Vries equation ut + uxxx − 6uux = 0. Every hyperelliptic curve

E gives a solution for KdV which corresponds to rectilinear motion in the Jacobi variety of

E . Extending Pöppe’s results, the paper develops a functional calculus for linear systems thus

producing solutions of the KdV equations. If Γx has finite rank, or if A is invertible and e−xA

is a uniformly continuous periodic group, then the solutions are explicitly given in terms of

matrices.
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1. Introduction

The motivation for this paper is from the theory of random matrices, and the scattering theory

of differential equations with rational matrix coefficients. In Tracy and Widom’s theory of

matrix models [46], the basic data are a 2× 2 rational differential equation and a curve. One

starts with a system of differential equations

J
d

dx

[
f
g

]
=

[
γ α
α β

] [
f
g

]
, J =

[
0 −1
1 0

]
, (1.1)

with α, β and γ rational functions, then one introduces a kernel

K(x, y) =
f(x)g(y)− f(y)g(x)

x− y
, (1.2)

which due to its special shape is known as an integrable operator. The other essential ingredient

of the theory is a prescribed curve γ = ∪mj=0[a2j−1, a2j ], so that K defines a trace class operator

on L2(γ); hence the Fredholm determinant det(I − K) is defined, and one considers this as

a function of the parameters aj . In particular, one can consider K : L2(0,∞) → L2(0,∞)

that is trace class and such that 0 ≤ K ≤ I, so there exists a determinantal random point

field on (0,∞), and det(I −KI(s,∞)) is the probability that all random points are in (0, s). In

applications to random matrix theory, the random points are eigenvalues of Hermitian matrices

with random entries.

Given an L2(0,∞) function φ, the Hankel integral operator Γφ with symbol φ can be

defined on a suitable domain in L2(0,∞) by

Γφf(x) =

∫ ∞
0

φ(x+ y)f(y) dy. (1.3)

When Γφ belongs to the ideal c1 of trace class operators on L2(0,∞), one can form the

determinants det(I+µΓφ) and the eigenvalues of Γφ ∈ c1 satisfy multiplicity conditions which

are stated in [35, 38]. More generally, one can introduce φ(x)(y) = φ(x+ 2y) and consider

τ(x;µ) = det(I + µΓφ(x)
) (1.4)

as a function of x > 0 and µ ∈ C. In this paper, we analyse τ(x, µ) by the methods of linear

systems. In significant cases of (1.2), such as the Airy kernel or Bessel kernel [46, 47], there

exists a Hankel integral operator Γφ such that Γ2
φ = K; hence one can describe det(I −K) in

terms of τ(x, µ). In [8] we showed how one can realise Γφ by means of linear systems. In the

present paper, we take linear systems as the starting point and show how general properties

of the linear system are reflected in the τ functions and systems of differential equations so

produced.

Definition (Linear system) Let H be a complex Hilbert space, known as the state space,

and B(H) the space of bounded linear operators on H. Let (e−tA)t≥0 be a C0 semigroup

of operators on H such that ‖e−tA‖ ≤ M for all t ≥ 0 and some M < ∞. Let D(A) be

the domain of the generator −A so that D(A) is itself a Hilbert space for the graph norm
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‖ξ‖2D(A) = ‖ξ‖2H + ‖Aξ‖2H , and let A† be the adjoint of A. Let H0 be a complex separable

Hilbert space which serves as the input and output spaces; let B : H0 → H and C : H → H0

be bounded linear operators. The linear system (−A,B,C) is

dX

dt
= −AX +BU

Y = CX, X(0) = 0; (1.5)

so φ(x) = Ce−xAB is a bounded operator function on H0, and the corresponding Hankel

operator is Γφ on L2((0,∞);H0), where Γφf(x) =
∫∞

0
φ(x+ y)f(y) dy.

Definition (Admissible linear system). Let (−A,B,C) be a linear system as above; suppose

that the observability operator Θ0 : L2((0,∞);H0)→ H is bounded, where

Θ0f =

∫ ∞
0

e−sA
†
C†f(s) ds; (1.6)

suppose that the controllability operator Ξ0 : L2((0,∞);H0)→ H is also bounded, where

Ξ0f =

∫ ∞
0

e−sABf(s) ds. (1.7)

(i) Then (−A,B,C) is an admissible linear system and φ(x) = Ce−xAB is an admissible

scattering function.

(ii) Suppose furthermore that Θ0 and Ξ0 belong to the ideal c2 of Hilbert–Schmidt oper-

ators. Then we say that (−A,B,C) is (2, 2)-admissible.

In [8, Proposition 2.4] we showed that for any (2, 2) admissible linear system, the operator

Rx =

∫ ∞
x

e−tABCe−tA dt (1.8)

is trace class, and the Fredholm determinant satisfies

det(I + λRx) = det(I + λΓφ(x)) (x > 0, λ ∈ C). (1.9)

Whereas Rx does not have a direct interpretation in control theory, the notation suggests that

Rx has many of the properties of a resolvent operator, as we justify in Lemma 2.1 below. In

examples of interest in scattering theory, one can calculate det(I + λRx) more easily than the

Hankel determinant directly [26, 27]. The operator Rx has additional properties which make

it easier to deal with than Γφ(x)
.

Definition (Lyapunov equation). Let −A be the generator of a C0 semigroup on H and let

R : (0,∞)→ B(H) be a function. The Lyapunov equation is

−dRz
dz

= ARz +RzA (1.10)
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with initial condition on the derivative

AR0 +R0A = BC. (1.11)

The definition slightly differs from the equations from [35, 38]. In this paper we take (1.10)

as the starting point and in section 2 we solve (1.10) for some (2, 2) admissible linear system.

Then we use Rx to construct solutions to the associated Gelfand–Levitan equation which

involves φ. The following definition of u is motivated by scattering theory for Schrödinger’s

equation −ψ′′ + uψ = λψ in L2(R). See [19]

Definition (Potential). For each (2, 2) admissible system with H0 = C, the potential is

u(x) = −2
d2

dx2
log det(I + Γφ(x)

). (1.12)

Theorem 1.1 (i) Suppose that (−A,B,C) is a (2, 2) admissible linear system with A bounded.

Then there exists a solution Rx to (1.10) and (1.11) such that τ(x) = det(I +Rx) is entire.

(ii) Alternatively, suppose that (−A,B,C) is a linear system with input and output space

H, and (eixA) is a uniformly continuous and π-periodic group on H. Suppose that there exists

a trace class operator E on H such that AE+EA = BC. Then there exists a solution to (1.10)

and (1.11) such that τ(x) = det(I +Rx) is entire and π-periodic.

(iii) In either case u is meromorphic on C.

Part (i) is proved in section 2, while (ii) is proved in section 8. In [9] we introduced

examples of periodic linear systems as in (ii), and here develop a systematic theory which

shares some common elements of scattering theory from case (i).

The fundamental idea of [35] is to realise Hankel operators with balanced linear systems;

we refine this idea by working with admissible linear systems, so that we can define deter-

minants and hence the tau function. In section 2, we solve the Gelfand–Levitan equation by

means of the operator Rx and recover u from φ. The Lyapunov equation (1.10) is equivalent

to the identity

[[
0 1
1 0

]
d

dx
−
[

0 A
A 0

]
,

[
R 0
0 −R

]]
=

[
R 0
0 −R

] [
0 1
1 0

]
d

dx
, (1.13)

which turns out to be important when one considers det(I −R2).

In section 3 we show how to realise kernels of the form (1.2) from linear systems by means

of products of Hankel operators with matricial symbols. The system of differential equations

(1.1) depends upon the poles of α, β and γ, hence these are natural parameters for the solution

space. Ee recall how Schlesinger’s equations [41, 22] arises in this context, and compare various

notions of tau functions by the partial differential equations that they satisfy.

Krichever and Novikov considered

[ ∂
∂tj
− Uj , L

]
= BjL (1.14)
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where Uj are matrix functions and Bj are differential operators, a relation which is similar

to (1.13). They formulated the notion of an algebo-geometric system. In particular, this

applies to finite gap Schrödinger equations, where the spectral parameter may be chosen to be

a meromorphic function on a hyperelliptic Riemann surface.

In section 4, we introduce the family of linear systems Σλ = (−A, (λI+A)(λI−A)−1B,C)

for λ in the resolvent set of A, and the corresponding tau function τλ(x); then we introduce

the Baker–Akhiezer function ψBA(x, λ) = eλxτλ(x)/τ(x); here x is the state variable and

λ a spectral parameter. We say that (Σλ)λ is a Picard family of linear systems if x 7→
ψBA(x, λ) is meromorphic for all but finitely many λ. This term is introduced by analogy

with the terminology of Gesztesy and Weikard [25, Theorem 1.1], who define a meromorphic

potential u to be Picard if −f ′′ + uf = λf has a meromorphic general solution for all but

finitely many λ ∈ C. We obtain significant examples of scattering functions which we use in

subsequent sections,and mention the linear partial differential equations for scattering functions

that correspond to the nonlinear KP equations for the potentials. In subsequent examples,

we introduce a compact Riemann surface E and a meromorphic function λ : E → P1 such

that λ 7→ ψBA(x, λ) is meromorphic, except possibly at finitely many points. We recall that a

compact Riemann surface X is hyperelliptic if and only if there exists a meromorphic function

u on X that has precisely two poles. In this case, there is a two-sheeted cover X → P1 with

2g + 2 branch points, where g is the genus of X. The elliptic case has g = 1.

To realise integrable operators as in (1.2), we need to work with products of Hankel

operators. Pöppe [32, 39, 40] proved some remarkable product formulas involving products

and traces of Hankel integral operators and applied them to scattering theory, and his work

motivated some of the results of this paper. In section 5, we introduce a functional calculus

which encompasses Pöppe’s ideas, but uses Rx and operators on the state space of a linear

system. We suppose that (e−tA) defines a holomorphic semigroup and we can introduce a

domain Ω on which det(I + Rz) is holomorphic and nowhere zero, so I + Rz has a bounded

inverse Fz. We introduce a differential ring S of holomorphic functions from Ω to the space

of bounded linear operators on H, which contains A,BC,Rz and Fz, so that we can solve

(1.10) and (1.11) inside S. If we can choose S to be a right Noetherian ring, then we say that

(−A,B,C) is finitely generated. Given S, we introduce a space of functions B and the linear

map b . c : S→ B such that

bP c =
d

dx
trace

(
P (Fx − I)

)
. (1.15)

We identify a subring A of S such that the range of b . c restricted to A is a differential ring

bAc of functions which contains u(x). In these terms, the scattering transform is

φ(x) = Ce−xAB ←→ u(x) = −4bAc. (1.16)

Thus b . c linearizes the determinant.

Gelfand and Dikii [23] considered the ring A0 = C[u, u′, u′′, . . .] of complex polynomials

in u and its derivatives. They showed that if u satisfies the stationary higher order KdV

equations (8.1), then −f ′′ + uf = λf is integrable by quadratures on a spectral curve, which

is a hyperelliptic Riemann surface E of finite genus. Such u are known as finite gap or algebro
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geometric potentials since − d2

dx2 + u has a spectrum in L2(R) that consists of intervals known

as bands, separated by finitely many gaps. Then A0 is a Noetherian ring; see [14, 43]. The

ring bAc is analogous to A0 in the particular examples that we analyse in subsequent sections.

In section 6 we show that if A is a finite matrix with eigenvalues λj such that <λj > 0,

then (−A,B,C) is finitely generated. We also recover some determinant formulas from the

theory of solitons.

Our next major application is in section 7, concerning the Airy kernel. With φ(x) = Ai(x),

the integral operator Γ2
φx

on L2(0,∞) has a kernel known as the Airy kernel, which is a universal

example in random matrix theory [43]. There F2(x) = det(I − Γ2
φx
/4) is the cumulative

distribution function of the Tracy–Widom distribution associated with the soft spectral edge of

the Gaussian unitary ensemble. We recover Ablowitz and Segur’s result of [1] that −2(logF2)′′

satisfies the Painlevé’s second transcendental differential equation PII .

A significant advantage of the Rx operator is that it enables us to analyse periodic linear

systems, which seem to lie outside the scope of [32, 39]. In section 8, we introduce linear

systems (−A,B,C) such that A is an invertible operator that commutes with BC, and exA

is a uniformly continuous periodic group and the A,B,C are block diagonal matrices. Thus

we introduce periodic linear systems with potentials that are either rational trigonometric

functions on the complex cylinder C/πZ or elliptic functions on the complex torus C/πZ+iπZ

as in section 10, and show that these have analogous properties.

The table below summarizes the functions that we produce from explicit linear systems

in sections 6,7 and 10. Here g is the genus of the spectral curve, ℘ is Weierstrass’s elliptic

function, θ1 is Jacobi’s theta function [33], u in the fifth column satisfies PII from [20].

equation u ∈ bAc τ ∈ L E
Schrödinger scattering R→ [0,∞)

Painlevé PII Tracy–Widom F2

Hill finite gap θ hyperelliptic
Lamé −g(g + 1)℘ θ1(x)g(g+1)/2 Y` → T
soliton −g(g + 1)cosech2x (sinhx)g(g+1)/2 {−g, . . . ,−1} ∪ [0,∞)

Our most complete results are for elliptic potentials, as in section 10. We obtain a charac-

terization of the elliptic potentials that are finite gap in terms of the general solution of Hill’s

equation. All elliptic potentials can be realised as quotients of tau functions from periodic

linear systems, however, the general solution of Hill’s equation can be expressed as a quotient

of tau functions from periodic or Gaussian linear systems only if the potential is finite gap.

This complements results of Gesztesy and Weikard from [25].

In discussing Hill’s equation, Ercolani and McKean [19] observe that the notions of Jacobi

variety and theta functions can be extended to the case of infinitely many spectral gaps,

whereas the notion of a multiplier curve is somewhat tenuous. Likewise we can introduce tau

functions via determinants of linear systems in cases where there is no related algebraic curve.

The spectral class of a potential is invariant under flows associated with the Korteweg de Vries

equation ut + uxxx − 6uux = 0 , which belongs to a hierarchy of partial differential equations

which are themselves associated with flows u(0, x) 7→ u(t, x) on the space of potentials. Indeed,
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u is finite gap if it satisfies the stationary KdV equations as in [23, 24, 34]. We therefore consider

a family of linear systems Σλ(t), with common A : H → H, and constant input and output

spaces, where t = (t1, t2, . . .) is a sequence of real parameters and λ is a spectral parameter.

Then Σλ(y) has a potential uλ(x; t) with poles depending upon (λ, t); thus the dynamics of

the system is reflected in the pole divisor of the potentials, as we describe in section 9.

If u is a finite gap potential for Hill’s equation, then the spectral curve is hyperelliptic

and has a finite-dimensional complex torus X as its Jacobi variety, thus the corresponding tau

function can be expressed as the restriction of a theta function to a straight line in the tangent

space of X by results of Its and Matveev. In section 9 we formulate a sufficient condition

for the tau function of a peridic linear system to be algebraic, in this sense, in terms of the

Kadomstev–Petviashvili equations. Soliton solutions of KP occur for spectral curves that are

rational curves in the plane that have only regular double points. The term elliptic solitons

refers to functions of rational character on the torus, namely elliptic functions.

Some of the linear systems are associated with classical or quantum Hamiltonian systems.

Let H(q, p;x) be a Hamiltonian system in canonical coordinates q = (q1, . . . , qn) and p =

(p1, . . . , pn) with time x, and let S(q, α, x) a complete solution of the Hamiltonian–Jacobi

equation
∂S

∂x
+H

(
q1, . . . , qn,

∂S

∂q1
, . . . ,

∂S

∂qn
, x
)

= 0 (1.17)

depending upon parameters α = (α1, . . . , αn), and that det[ ∂2S
∂αj∂qk

] 6= 0 and (qj) 7→ ( ∂S∂αk ) is the

Jacobian map. Suppose further that the system is separable and integrable, so that S(q, α;x) =∑n
j=1 Sj(qj , α;x) where Sj(qj , α;x) arises by successive processes of Liouville integration, and

let τα(x) = expS(q(x), α;x). A family of admissible linear systems Σα = (−Aα, Bα, Cα) is

integrable if τ(x, α) = eS(q(x),α,x) for an integrable Hamiltonian system. In this context, we

are concerned with generic values of α, and not with exceptional values. Gelfand and Dikii [23]

showed that a finite gap Schrödinger equation is associated with an integrable Hamiltonian

system.

When U is a family of unitary operators on H, the tau function of (−A,UB,CU) is

generally different to that of (−A,B,C); thus we can make tau functions and potentials evolve.

In section 11, we allow B and C to evolve under a unitary group U(t) , so that φ, u and b . c
itself evolve with respect to time as in the KdV flow. Thus we are able to linearize the the

KdV flow on functions of rational character, and produce solutions of the higher order KdV

equations.

2 Solving Lyapunov’s equation and the Gelfand–Levitan equation

We begin with simple existence result, showing how linear systems in continuous time give

rise to Hankel matrices. Subsequent results will introduce stronger hypotheses to ensure the

existence of Fredholm determinants.

Proposition 2.1 Suppose that H is a separable Hilbert space, and that

(i) C : H → C and B : C→ H are bounded linear operators;

(ii) A is a densely defined linear operator in H;

(iii) A is accretive, so <〈Af, f〉 ≥ 0 for all f ∈ D(A);

(iv) λI +A is invertible for some λ > 0.
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Then (e−tA)t>0 is a C0 contraction semigroup on H, so φ(x) = Ce−xAB is bounded and

continuous on (0,∞); the cogenerator V = (A− I)(A+ I)−1 satisfies ‖V ‖ ≤ 1 as an operator

on H, and there is a unitary equivalence between Γφ on L2(0,∞) and the Hankel matrix on

`2(N ∪ {0}) that is given by

Γφ ↔
[√

2CV n+m(I +A)−1B
]∞
n,m=0

. (2.1)

Proof. By the Lumer–Phillips theorem [18], −A generates a C0 contraction semigroup. Di-

rectly from the definition (iii) of an accretive operator and hypothesis (iv), one proves that

‖V ‖ ≤ 1.

We introduce the Laguerre polynomials of order zero L
(0)
n (x) = (n!)−1ex(d/dx)nxne−x

and then the functions hn(x) =
√

2e−xL
(0)
n (2x), so that (hn)∞n=0 gives a complete orthonormal

basis of L2(0,∞). By integrating by parts, one can verify that∫ ∞
0

φ(x)hn(x) dx =
1√
2n!

∫ ∞
0

Ce−(A−I)x/2B
dn

dxn

(
xne−x

)
dx

=
√

2C(A− I)n(A+ I)−n−1B. (2.2)

Peller [38, p.233] shows that Γφ is unitarily equivalent to the Hankel matrix under the unitary

correspondence (hn)∞n=0 ↔ (ej)
∞
j=0, where (ej) is the standard orthonormal basis of `2.

We introduce Lyapunov’s equation, and the existence of solutions for suitable (−A,B,C). The

solution Rx is defined by a formula suggested by Heinz’s theorem [7, Theorem 9.2] and has

properties analogous to the resolvent operator of a semigroup.

Lemma 2.2 Let (−A,B,C) be a linear system such that ‖e−t0A‖ < 1 for some t0 > 0, and that

B and C are Hilbert–Schmidt operators on H0 such that ‖B‖HS‖C‖HS ≤ 1. Then (−A,B,C)

is (2, 2)-admissible, so the following hold.

(i) The trace class operators

Rx =

∫ ∞
x

e−tABCe−tA dt (x > 0) (2.3)

give the solution to (1.8) for x > 0 that satisfies (1.9), and the solution to (1.9) is unique.

(ii) The Laplace transform R̂(s) of Rx is holomorphic on {s : <s > 0} and satisfies

sR̂(s) +AR̂(s) + R̂(s)A = R0. (<s > 0) (2.4)

Proof. (i) Since BC ∈ c1, the integrand of (2.3) takes values in c1 and is weakly continuous,

hence strongly measurable, by Pettis’s theorem. By considering the spectral radius, the authors

of [15] show that there exist δ > 0 and Mδ > 0 such that ‖e−tA‖ ≤Mδe
−δt for all t ≥ 0; hence

(2.3) converges as a Bochner–Lebesgue integral with

‖Rx‖c1 ≤
∫ ∞
x

M2
δ ‖BC‖c1e−2δt dt

≤ M2
δ

2δ
‖B‖HS‖C‖HSe−2δx. (2.5)
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Furthermore, A is a closed operator and satisfies

A

∫ T

x

e−tABCe−tA dt+

∫ T

x

e−tABCe−tA dtA =

∫ T

x

− d

dt
e−tABCe−tA dt

= e−xABCe−xA − e−TABCe−TA

→ e−xABCe−xA (2.6)

as T → ∞; so ARx + RxA = e−xABCe−xA for all x ≥ 0. We deduce that x 7→ Rx is a

differentiable function from (0,∞) to c1 and that the modified Lyapunov equation (1.8) holds.

Now suppose that AR0 +R0A = BC and AW0 +W0A = BC, and consider V0 = R0−W0.

Then for ξ, η ∈ H, we have

d

dt
〈V0e

−tAξ, e−tA
†
η〉H = 〈(V0A+AV0)e−tAξ, e−tA

†
η〉H = 0; (2.7)

hence 〈V0e
−tAξ, e−tA

†
η〉H is constant, and by the hypothesis on A, we have

〈V0e
−tAξ, e−tA

†
η〉H → 0 as t → ∞. Hence 〈V0ξ, η〉H = 0, and so V0 = 0, and R0 is unique.

See [31, p. 261] for a similar argument.

(ii) Since e−tA is of exponential decay, R′x = −e−xABCe−xA has a convergent Laplace

transform (̂R′)(s) for all s such that <s > −2δ. By integrating by parts, one obtains∫ ∞
0

e−sxRx dx =
1

s
R0 +

1

s

∫ ∞
0

e−sxR′x dx (<s > −2δ, s 6= 0) (2.8)

so Rx also has a Laplace transform, and from Lyapunov’s equation, we obtain ().

Definition (Gelfand–Levitan equation) The Gelfand–Levitan integral equation is

T (x, y) + Φ(x+ y) +

∫ ∞
x

T (x, z)Φ(z + y) dz = 0 (0 < x < y) (2.9)

where T (x, y) and Φ(x+ y) are 2× 2 matrices with operator entries.

Proposition 2.3 (i) In the notation of Lemma 2.2, there exists x0 > 0 such that Tµ(x, y) =

−Ce−xA(I + µRx)−1e−yAB satisfies the integral equation () for x0 < x < y and |µ| < 1).

(ii) The determinant satisfies det(I + µRx) = det(I + µΓφ(x)
) and

µtraceTµ(x, x) =
d

dx
log det(I + µRx). (2.10)

Proof. (i) We choose x0 so large that eδx0 ≥ Mδ/2δ, then by (2.4), we have |µ|‖Rx‖ < 1 for

x > x0, so I + µRx is invertible. Substituting into the integral equation, we obtain

Ce−(x+y)AB − Ce−xA(I + µRx)−1e−yAB

− µCe−xA(I + µRx)−1

∫ ∞
x

e−zABCe−zA dze−yAB

= Ce−(x+y)AB − Ce−xA(I + µRx)−1e−yAB − µCe−xA(I + µRx)−1Rxe
−yAB

= 0. (2.11)
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(ii) As in (2.?), the operator Θx : L2(0,∞) → H is Hilbert–Schmidt; likewise Ξx :

L2(0,∞) → H is Hilbert–Schmidt; so (−A,B,C) is (2, 2)-admissible. Hence Γφ(x)
= Θ†xΞx

and Rx = ΞxΘ†x are trace class and

det(I + µRx) = det(I + µΞxΘ†x) = det(I + µΘ†xΞx) = det(I + µΓφ(x)
). (2.12)

Correcting a typographic error in [8, p. 324], we rearrange terms and calculate the derivative

µTµ(x, x) = −µtrace
(
Ce−xA(I + µRx)−1e−xAB

)
= −µtrace(I + µRx)−1e−xABCe−xA

= µtrace
(

(I + µRx)−1 dRx
dx

)
=

d

dx
trace log(I + µRx). (2.13)

This identity is proved for |µ| < 1 and extends by analytic continuation to the maximal domain

of Tµ(x, x).

Proposition 2.4 (i) Let T be the set of τ functions that arise from linear systems as in Lemma

2.2. Then T is closed under multiplication.

(ii) Let u±(x) be the potentials that correspond thereby to (−A,B,±C) with scattering

functions ±φ(x). Then u(x) = u+(x) + u−(x) satisfies

u(x) = −2
d2

dx2
log det(I − Γ2

φ(x)
), (2.14)

where the Hankel square Γ2
φ(x)

is the integral operator on L2(0,∞) that has kernel

Ψ(x)(y, z) =

∫ ∞
0

φ(2x+ y + s)φ(2x+ z + s) ds. (2.15)

Proof. (i) Let (−Aj , Bj , Cj) be a linear system with state space Hj and input and out

put spaces H0 for j = 1, 2, let φj be the corresponding scattering function and let τ be the

corresponding tau function. Then the linear system(
−
[
A1 0
0 A2

] [
B1 0
0 B2

]
,

[
C1 0
0 C2

])
(2.16)

has state space H1 ⊕ H2 and input and output space H0 ⊕ H0, it has scattering function[
φ1 0
0 φ2

]
and hence has tau function

τ(x) = det
([
I 0
0 I

]
−
[

Γφ1,(x)
0

0 Γφ2,(x)

])
= det(I − Γφ1,(x)

) det(I − Γφ2,(x)
). (2.17)

(ii) The Hankel square appears give u since det(I −Γ2
φ(x)

) = det(I −Γφ(x)) det(I + Γφ(x)
).

We observe that

Ψ(x)(y, z) = Ce−2xAe−yAR0e
−2xAe−yAB. (2.18)
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3 Tracy–Widom kernels and Schlesinger’s differential equations

In random matrix theory, one often encounters kernels that are the products of Hankel

integral operators on L2(0,∞); see [46, 47] and (3.1) below for examples. In contrast to the

previous section, purposefully introduce Hankel operators that have matrix symbols corre-

sponding to vectorial input and output spaces, so that we can introduce admissible linear

systems associated with Hankel products.

Definition (Integrable operators) [17] An integrable kernel has the form

K(x, y) =

∑n
j=1 fj(x)gj(y)

x− y
, (3.1)

where fj , gj are continuous and bounded functions on (0,∞), and we suppose further that∑n
j=1 fj(x)gj(x) = 0, so K is nonsingular on x = y.

In particular, consider the system of differential equations

J
d

dx

[
f
g

]
= Ω(x)

[
f
g

]
, Ω(x) =

[
γ α
α β

]
, J =

[
0 −1
1 0

]
, (3.2)

with α, β and γ rational functions. Then, as in Tracy and Widom’s theory of matrix models

[46,47], we introduce the kernel

K(z)(x, y) =
f(x+ 2z)g(y + 2z)− f(y + 2z)g(x+ 2z)

x− y
, (3.3)

and L(z) by (I − L(z))(I +K(z)) = I.

Theorem 3.1 Suppose that α, β and γ are proper rational functions with n poles of order less

than or equal to p, and all poles are in C \ [0,∞); suppose that f, g ∈ L2(0,∞) are solutions

of (3.3) and that f(x), g(x)→ 0 as x→∞.

(i) Then there exist Hilbert–Schmidt Hankel operators ΓΦ and ΓΨ with 2np2×2np2 matrix

symbols Φ and Ψ such that

det(I + λK(z)) = det(I + λΓΦ(z)
ΓΨ(z)

). (3.4)

(ii) There exists x0 such that L(z) is a bounded integrable operator for all z ≥ x0.

(iii) Suppose further that e2εxf(x)→ 0 and e2εxg(x)→ 0 as x→∞ for some ε > 0. Then

Φ and Ψ are realised by (2, 2) admissible linear systems.

Proof. (i) We can write

Ω(x) = E0 +
n∑
k=1

pk∑
`=1

Ek,`
(x− ak)`

, (3.5)
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where the E0 and Ek,` for ` = 1, . . . , pk and k = 1, . . . , n are symmetric 2× 2 matrices and the

poles aj lie in C \ [0,∞). From the differential equation, we have

( ∂
∂x

+
∂

∂y

)f(x)g(y)− f(y)g(x)

x− y
=
〈Ω(x)− Ω(y)

x− y

[
f(x)
g(x)

]
,

[
f(y)
g(y)

]〉
(3.6)

= −
n∑
k=1

pk∑
`=1

∑̀
ν=0

〈 Ek,`
(x− ak)`−ν

[
f(x)
g(x)

]
,

1

(y − ak)ν+1

[
f(y)
g(y)

]〉
,

where we have used the real inner product. Noting that Ek,` has rank less than or equal

to two, let N = 2np2 and introduce scalar-valued functions φj(x) and ψj(y) such that the

previous sum equals −
∑N
j=1 φj(x)ψj(y), and since the poles are off (0,∞), we can ensure that∫∞

0
x(|φj(x)|2 + |ψj(x)|2)dx is finite, so φj and ψj give the symbols of Hilbert–Schmidt Hankel

operators on L2(0,∞). Then one verifies the identity

f(x)g(y)− f(y)g(x)

x− y
=

∫ ∞
0

N∑
j=1

φj(x+ s)ψj(s+ y) ds; (3.7)

indeed by the preceding calculation, the difference between the two sides of (3.7) is a function

of x+ y, which goes to zero as x→∞ or y →∞. Finally, we build the N ×N matrices

Φ(x) =


φ1(x) φ2(x) . . . φN (x)

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,Ψ(y) =


ψ1(y) 0 . . . 0
ψ2(y) 0 . . . 0

...
...

. . .
...

ψN (y) 0 . . . 0

 (3.8)

so that ΓΦ and ΓΨ are Hilbert–Schmidt matrix operators, and with φj,(z)(x) = φj(x+ 2z) etc

we have

det(I + λK(z)) = det
(
I + λ

N∑
j=1

Γφj,(z)Γψj,(z)

)
= det(I + λΓΦ(z)

ΓΨ(z)
). (3.9)

(ii) We can define L(z) = K(z)(I + K(z))
−1 for all z such that ‖K(z)‖ < 1. Now let δ be any

derivation on the bounded linear operators on L2(0,∞), and observe that

δL = (I +K)−1(δK)(I +K)−1. (3.10)

In particular, with Mh(x) = xh(x) for h ∈ L2(0,∞), the derivation δK = MK − KM

is represented by the finite rank kernel f(x)g(y) − f(y)g(x) which vanishes on the diagonal

x = y; hence ML− LM is also a finite rank kernel which vanishes on the diagonal. In short,

we obtain L from the kernel

F (x)G(y)− F (y)G(x)

x− y
,

[
F
G

]
=

[
(I +K)−1f
(I +K)−1g

]
. (3.11)
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Moreover, δK = [d/dx,K] is the finite rank integral operator that is represented by the kernel

(3.5), so δL is also finite rank.

(iii) Given that f and g are of exponential decay, the integral
∫∞

0
xe2εx|φj(x)|2dx con-

verges, and hence the Hankel operator Γj with symbol eεxφj(x) is bounded. We decompose

φj = <φj + i=φj so that we can work with the self-adjoint Hankel operators Γ<φj and Γ=φj ;

so by theorem 2.1 of [35, p.257], there exist linear systems (−A′j , B′j , C ′j) and (−A′′j , B′′j , C ′′j )

with input and output spaces C, and state space H, and all operators bounded, such that

eεx<φj(x) = C ′je
−xA′

jB′j and eεx=φj(x) = C ′′j e
−xA′′

j B′′j ; then we let

(−Aj , Bj , Cj) =
(
−
[
A′j 0
0 A′′j

]
,

[
B′j
B′′j

]
, [C ′j iC ′′j ]

)
, (3.12)

so that eεxφj(x) = Cje
−xAjBj . Hence we can introduce

(−A,B,C) =
(
−

 εI +A1 . . . 0

0
. . .

...
0 . . . εI +AN

 ,
B1 . . . 0

0
. . .

...
0 . . . BN

 ,
C1 . . . CN

0
. . .

...
0 . . . 0

) (3.13)

where A : H2N → H2N , B : CN → H2N and C : H2N → CN are bounded linear operators.

Since <〈Aξ, ξ〉HN ≥ ε〈ξ, ξ〉HN for all ξ ∈ HN , Lemma 2.2 shows that (−A,B,C) is a (2, 2)

admissible linear system. Evidently (−A,B,C) realises Φ, and we can likewise realise Ψ by a

(2, 2) admissible linear system.

By taking α = 0, γ to be a negative proper rational function and 1/β to be a positive

polynomial on (0,∞), one can produce solutions of (3.2) that satisfy the hypotheses of Theorem

3.1(ii).

Now we show how to calculate the determinant in terms of the Gelfand–Levitan equation.

Changing to a more symmetrical notation, we suppose that (−A1, B1, C1) and (−A2, B2, C2)

are (2, 2) admissible systems with state spaces H1 and H2 and output space CN that realise

φ1 and φ2. First, let Rjk : Hk → Hj for j, k = 1, 2 be the operators

Rjk(x) =

∫ ∞
x

e−tAjBjCke
−tAk dt, (3.14)

For the first result, we introduce that state space H =

[
H1

H2

]
and the output space

H0 = C2×N and A : H → H, B : H0 → H and C : H → H0 by

A =

[
A1 0
0 A2

]
, B =

[
B1 0
0 B2

]
, C =

[
0 C2

C1 0

]
; (3.15)

so that

Φ(x) =

[
0 φ2(x)

φ1(x) 0

]
. (3.16)
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Proposition 3.2 (i) For all µ ∈ C such that |µ| is sufficiently small I − µ2R21(x)R12(x) has

an inverse Gx and

T (x, y) =

[
µC2e

−xA1GxR21(x)e−yA1B1 −C2e
−xA2Gxe

−yA2B2

−C1e
−xA1(I + µ2R12(x)GxR21(x))e−yA1B1 µC1e

−xA1R12(x)Gxe
−yA2B2

]
(3.17)

satisfies (2.9) for all x > x0 from some x0 > 0.

(ii) The determinants satisfy

det(I − µ2R12(x)R21(x)) = det(I − µ2Γφ2,(x)
Γφ1,(x)

). (3.18)

and
d

dx
log det(I − µ2Γφ2,(x)

Γφ1,(x)
) = µtraceT (x, x). (3.19)

(iii) In particular, with A2 = A†1, B2 = εC†1 and C2 = B†1 and ε = ±1, the identities hold

with φ2(x) = εφ1(x)
†

so ΓΦ is self-adjoint with ε = 1 and skew with ε = −1.

Proof. (i) It is easy to check that Φ(x) = Ce−xAB. Likewise, we can compute

Rx =

∫ ∞
x

e−tABCe−tA dt =

[
0 R12(x)

R21(x) 0

]
, (3.20)

which is a trace class operator on H since both (−A1, B1, C1) and (−A2, B2, C2) are (2, 2)-

admissible. For x such that |µ|2‖R12(x)‖‖R21(x)‖ < 1, we can form the operator Gx =

(I − µ2R21R12)−1 and hence compute

Fx =

[
I µR12(x)

µR21(x) I

]−1

=

[
I + µ2R12(x)GxR21(x) −µR12(x)Gx

−µGxR21(x) Gx

]
. (3.21)

Then we compute T (x, y) = −Ce−xAFxe−yAB and obtain the matrix from (). One then

checks, as in Lemma 2.2, that T satisfies the integral equation (2.9).

(ii) We introduce the observability operators Θx : L2((0,∞); C2×N )→ H by

Θx

[
f
g

]
=

[
0 Θ2

Θ1 0

] [
f
g

]
=

[ ∫∞
x
e−tA

†
2C2g(t) dt∫∞

x
e−tA

†
1C†1f(t) dt

]
(3.22)

and the controllability operators Ξx : L2((0,∞); C2×N )→ H by

Ξx

[
f
g

]
=

[
Ξ2 0
0 Ξ1

] [
f
g

]
=

[ ∫∞
x
e−tA2B2f(t) dt∫∞

x
e−tA1B1g(t) dt

]
(3.23)

such that

ΞxΘ†x =

[
0 Ξ2Θ†1

Ξ1Θ†2 0

]
=

[
0 R21

R12 0

]
(3.24)

as operators on H, and

Θ†xΞx =

[
0 Θ†1Ξ1

Θ†2Ξ2 0

]
=

[
0 Γφ1,(x)

Γφ2,(x)
0

]
(3.25)
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as operators on L2((0,∞); C2×N ). Now from the determinant identity

det(I + µΘ†xΞx) = det(I + µΞxΘ†x) (3.26)

we deduce

det
(
I − µ2Γφ2,(x)

Γφ2,(x)

)
= det

(
I − µ2R12(x)R21(x)

)
. (3.27)

The function Rx is differentiable with respect to x, so by Lemma 2.1, we can compute

d

dx
log det(I − µ2Γφ2,(x)

Γφ1,(x)
) =

d

dx
log det(I + µRx)

= µtraceT (x, x). (3.28)

(iii) We have φ1(x) = C1e
−xA1B1 and φ2(x) = C2e

−xA2B2 = εB†1e
−xA†

1C†1 .

Remarks 3.3 (i) Whereas Theorem 3.1 does not give an explicit form for the admissible linear

system (−A,B,C), we can produce one explicitly in several important cases; see () and [9,10].

(ii) In section 5, we introduce a differential ring S, which is directly related to the spe-

cific choice of admissible linear system (−A,B,C), so that we can multiply and differentiate

potentials. In subsequent sections, we will introduce determinants from linear systems via Rx,

thus bypassing the Hankel operators. This enables us to deal with linear systems that are not

admissible, such as periodic systems. The first step is to widen the discussion from rational

functions on C to meromorphic functions on algebraic curves, as we consider in section 3.

Krichever and Novikov introduced the notion of a spectral curve for a family of commuting

differential operators [30].

Definition Let P be a Riemann surface and let uj(t,p) be differentiable functions of t =

(t1, t2, . . . , tn) with values in MN , which are meromorphic functions of p, and let Lj = ∂
∂tj
−

uj(t,p).

(i) Say that Lj form a commutative ensemble if [Lj , Lk] = 0 for all j, k.

(ii) Given a cummutative ensemble, suppose that there exists a function W (t,p) with

values in MN which is differentiable with respect to t and algebraic in p on P. Then the

ensemble is said to be algebraic if [Lj ,W ] = 0 for all j. In this case the spectral curve is

E =
{

(µ, λ) : det(µIN −W (t,p)) = 0;λ = λ(p)
}

(3.29)

which is actually independent of t.

Suppose that the poles of (3.2) are simple and that the residue matrices are differentiable

functions of deformation parameters t = (t1, . . . , tn), so that

−JΩ(λ, t) =
n∑
j=1

Uj(t)

λ− aj
(3.30)
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where trace(Uj) = 0, and consider a family of meromorphic solutions Y = Y (λ; t1, . . . , tn) of

the differential equation JdY/dλ = Ω(λ)Y for λ complex that also satisfy the conditions of

Theorem 3.1, and as in (3.2) introduce the kernels

K
(t)
(z)(x, y) =

〈JY (x+ 2z, t), Y (y + 2z, t)〉
x− y

, Y =

[
f
g

]
(3.31)

Proposition 3.4 Let τ(z, t) = det(I + K
(t)
(z)), suppose that ‖K(z)‖ < 1 for all <z > x0, and

suppose that the differential equations

∂Y

∂tj
=
−Uj
λ− aj

Y (j = 1, . . . , n) (3.32)

are mutually compatible.

(i) Then ∂
∂z log τ(z, t) is given by Proposition 3.2(ii) and

1

2

∂

∂z
log τ(z, t) =

n∑
j=1

∂

∂tj
log τ(z, t) (<z > x0). (3.33)

(ii) Let j be an index such that <aj is largest, suppose that <aj > 2x0 and that

〈JUjY (aj , t), Y (aj , t)〉 6= 0. Then ∂
∂z log τ(z, t) has a pole at z = aj/2.

(iii) There exists a hyperelliptic curve E and a commutative Lie algebra T such that τ(λ, t)

extends to E ×T.

Proof. (i) By a calculation as in [9, Theorem 3.3], we have

∂

∂tj

〈JY (x+ 2z, t), Y (y + 2z, t)〉
x− y

= −
〈
JUj

Y (x+ 2z, t)

x+ 2z − aj
,
Y (y + 2z, t)

y + 2z − aj

〉
(3.34)

which decomposes the kernel into a finite sum of rank one integral operators, and likewise

1

2

∂

∂z

〈JY (x+ 2z, t), Y (y + 2z, t)〉
x− y

= −
n∑
j=1

〈
JUj

Y (x+ 2z, t)

x+ 2z − aj
,
Y (y + 2z, t)

y + 2z − aj

〉
, (3.35)

which gives the identity of finite rank operators

1

2

∂

∂z
K

(t)
(z)(x, y) =

n∑
j=1

∂

∂tj
K

(t)
(z)(x, y). (3.36)

The operator (d/dz)K(z) is of finite rank, and hence is trace class if and only if the constituent

functions belong to (L2(0,∞)dx). Now as in Theorem 3.1(ii), we choose x0 so large that

I + K
(t)
(z) is an invertible operator for all z > x0 and then compute ∂

∂z log τ(z, t) = trace((I +

K
(t)
(z))
−1 ∂

∂zK
(t)
(z)); so we deduce the stated result. The identity () asserts that infinitesimally

translating z is equivalent to the added effect of infinitesimally moving all the tj .
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In Theorem 3.1, we showed that τ(z, t) is given by the Fredholm determinant of a product

of Hankel operators, and in Proposition 3.2, we expressed ∂
∂ log det(I+Γφ1,(z)

Γφ2,(z)
) in terms of

the solution of a Gelfand–Levitan equation; thus ∂
∂z log τ(z, t) is given in terms of the solution

of a Gelfand–Levitan equation.

Note that when aj−2z lies on (0,∞) and Y (aj) 6= 0, the function Y (x+2z)/(x+2z−aj)
does not belong to L2((0,∞); dx), so there is a possible pole for τ ′(z, t)/τ(z, t).

(ii) We take 2z − aj ∈ C \ (−∞, 0] and compute

1

2
trace

d

dz
K(z) = −

n∑
k=1

∫ ∞
0

〈JUjY (x+ 2z, t), Y (x+ 2z, t)〉
(x+ 2z − aj)2

dx

= −〈JUjY (aj , t), Y (aj , t)〉
2z − aj

+O(1) (z → aj/2), (3.37)

so (d/dz)K(z) has a simple pole at aj/2. By (), (d/dz) log det(I +Kz) has a pole at aj/2.

(iii) Schlesinger observed that the system (3.29) is consistent if and only if the family

of solutions satisfies an isomonodromy condition with respect to infinitesimal deformation, or

equivalently that a certain family of differential operators commutes.

Let D1 be the space of first order differential operators in time parameters t = (t1, . . . , tn)

with coefficients in M2(C(λ, t)), and let

L0 =
∂

∂λ
, Lj =

∂

∂tj
+

Uj(t)

λ− aj
(j = 1, . . . , n), (3.38)

Garnier observed that [
Lj ,

n∑
k=1

Uk
λ− ak

]
= 0 (j = 1, . . . , n) (3.39)

hence {Lj ; j = 1, . . . , n} gives an algebraic ensemble for the 2× 2 matrix

W (λ, t) = JΩ(λ, t)
n∏
j=1

(λ− aj) (3.40)

which is a polynomial in λ. Consequently,

T =
{ n∑
j=1

sjLj : sj ∈ C
}

(3.41)

defines a commutative complex Lie subalgebra of D1. Any solution Y of () and () belongs to

H = {Y = Y (λ, t) ∈ C2 : [Lj , L0]Y = 0;LjY = 0; j = 1, . . . , n}, (3.42)

and T acts on H. The operation of translation on H is described by a flow on a curve. Since

trace(W ) = 0, we observe that

det(ηI2 +W (λ, t)) = η2 + detW (λ, t) (3.43)

17



which is independent of t by (3.34). Hence E = {(λ, η) : η2 + detW (λ, t) = 0} defines a

hyperelliptic curve independent of t. Thus we can extend the tau function to

τ(λ, t) = det(I +K
(t)
(λ)) (t ∈ T,p = (λ, η) ∈ E). (3.44)

Remark. To recover the usual form of Schlesinger’s equations [20, 22, 26, 41] one substitutes

tj = aj after differentiating, and considers the residues at each of the poles.By Schlesinger’s

results, as interpreted in [26], there exists a multi-valued and locally analytic complex function

τS(a1, . . . , an) on

{(a1, . . . , an) : aj 6= ak; j, k = 1, . . . , n} (3.45)

such that

d log τS =
∑

j,k:j<k

trace(UjUk)d log(aj − ak) (3.46)

as an identity of differential one forms, so that

n∑
j=1

∂

∂aj
log τS(a1, . . . , an) =

∑
j,k:j 6=k

trace(UjUk)

aj − ak
= 0. (3.47)

This contrasts with (), and indicates that translation has a different role for the two versions

of the tau function.

Remark 3.5 There is another case in which Schlesinger’s equations give a hyperelliptic spectral

curve. Suppose that W (λ; t) is a m × m matrix, a differentiable function in t1, t2, t3 and a

quadratic polynomial in λ such that

∂W

∂tj
=
[ Uj(t)
λ− αj

,W
]

(j = 1, 2, 3), (3.48)

and that

det(ηIm +W (λ, t)) = pm−2(η)λ2 + pm−1(η)λ+ pm(η) (3.49)

where pm(η), pm−1(η) and pm−2(η) have degrees m,m−1 and m−2 respectively. Garnier [22]

reduced the system () to

ξ′′j = ξj

(
αj +

m∑
k=2

ξkηk

)
(j = 2, . . . ,m)

η′′j = ηj

(
αj +

m∑
k=2

ξkηk

)
. (3.50)

with ′ = d/dt1, which he integrated directly in terms of hyperelliptic functions of m − 1

arguments, m − 2 of which have received constant values. On the invariant hyperplanes

ηj = bjξj with bk constant, this has the form of coupled anharmonic oscillators constrained
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to lie on the sphere
∑m
j=2 ξ

2
j = 1 under the influence of a quadratic potential. Neumann

integrated this system by changing to elliptic spheroidal coordinates.

4. Scattering functions

Thus tau functions have a multiplication rule which is analogous to the addition rule for

positive divisors divisors on an algebraic curve. The multiplication B 7→ (λI−A)(λI+A)−1B

is associated with adding a the divisor associated with a pole on the spectral curve. There is

a consequent formula for addition of divisors, which the authors of [19] credit to Darboux, as

in Proposition 2.5.

Definition (Baker–Akhiezer function) Given an admissible linear system Σ∞ = (−A,B,C)

with tau function τ∞(x) = det(I + Γφ(x)
) as in Proposition 2.2, we introduce

Σλ =
(
−A, (λI +A)(λI −A)−1B,C

)
(<λ > 0) (4.1)

with tau function τλ(x), and the Baker–Akhiezer function

ψBA(x;λ) = exp
(
λx
) τλ(x)

τ∞(x)
. (4.2)

Let C∞0 (R; R) denote the space of infinitely differentiable functions f : R→ R such that

|x|jf (k)(x)→ 0 as x→ ±∞, and suppose that u ∈ C∞0 (R; R). Then with λ = k2, let s(k) be

the scattering matrix, which depends analytically upon k, and let s21(k) be the bottom left

entry, which satisfies s21 ∈ C∞0 (R; R) and s21(k) = s21(−k), so that

φ(x) =
1

2π

∫ ∞
−∞

eikxs21(k) dk (4.3)

gives a real function. Dyson inverted the scattering map q 7→ s21 by the formula (1.10).

Subsequently [27], Kamvissis recovered the determinant formula (1.10) as a limiting case

of the Its–Matveev formula for periodic finite-gap potentials as the period tends to infinity. In

this paper, we show that finite gap and localized potentials can be treated similarly via linear

systems.

Example 4.1 As in [8, Theorem 4.2] and [19, p. 486] we can introduce a linear system and

Hankel determinant to realise scattering functions. The following formulas are similar, but

slightly different from those in [19]. Let H = L2(R; C) and let b1, b2 : R → C be smooth

functions of compact support such that b1(−k) = b1(k), b2(−k) = b2(k) and |b1(k)| = |b2(k)|
for all k ∈ R, and let

B : C→ H :α 7→ b1(k)α;

e−xA : H → H : f(k) 7→ eixkf(k);

C : H → C : f(k) 7→ 1

2π

∫ ∞
−∞

f(k)b2(k) dk. (4.4)

19



The potential u is in C∞0 (R; R), and we assume that there are no bound states, so we are

in the scattering case of Schrödinger’s equation. Then (−A,B,C) has scattering function

φ(x) =
∫∞
−∞ eixkb(k)dk/2π, while Σiκ = (−A, (iκI−A)(iκI+A)−1B,C) has scattering function

φiκ(x) =
∫∞
−∞ eixkb(k)(κ+k)(κ−k)−1dk/2π, which is unambiguously defined for real κ since the

Hilbert transform is bounded on H; the corresponding potential is uiκ(x) = −2 d2

dx2 log τiκ(x).

The Bloch spectrum is a double cover of [0,∞) given by ±k 7→ k2, where ±k is associ-

ated with the unique fiκ(x,±k) such that −f ′′iκ(x,±k) + uiκ(x)fiκ(x,±k) = k2fiκ(x,±k) and

fiκ(x,±k)−e±ikx → 0 as x→ ±∞. The point κ is associated with the function (k+κ)/(k−κ)

which has a simple pole at κ.

Proposition 4.2 (i) Suppose that the operator G : L2(0,∞)→ L2(0,∞) defined by Gf(x) =

f(x) +
∫∞
x
T (x, y)f(y)dy is invertible. Then there is a gauge transformation

G−1(−d2/dx2 + u)G = −d2/dx2. (4.5)

(ii) The multiplication rule

s21(k) 7→ κ+ k

κ− k
s21(k) (4.6)

is equivalent to the addition rule u(x) 7→ uiκ(x) for potentials as in

−2
d2

dx2
logψBA(x, iκ) = u∞(x)− uiκ(x). (4.7)

(iii) The Baker–Akhiezer function is given as a series of Fredholm determinants and sat-

isfies ψBA(x, ik)− eikx → 0 as x→∞ and

−ψ′′BA(x, ik) + u(x)ψBA(x, ik) = k2ψBA(x, ik) (x ∈ R). (4.8)

Proof. (i) The operators −d2/dx2 and −d2/dx2+u are essentially self-adjoint on C∞c (0,∞), so

the identity f∞(x, k) = G(eixk) for the eigenfunctions shows that G gives a similarity between

operators on L2(0,∞).

(ii) We can express the difference of the potentials for the systems as

u∞(x)− uiκ(x) = −2
d2

dx2
log

τ∞(x)

τiκ(x)
, (4.9)

and then simplify the expressions.

(iii) With Tiκ and the corresponding potential uiκ(x) = −2 d2

dx2 log τiκ(x) defined for the

linear system Σiκ, we introduce

fiκ(x, k) = eikx +

∫ ∞
x

Tiκ(x, y)eiky dy. (4.10)
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By repeated integration by parts, one verifies that−f ′′iκ(x,±k)+uiκ(x)fiκ(x,±k) = k2fiκ(x,±k)

and fiκ(x,±k)− e±ikx → 0 as x→ ±∞. In particular, with iκ =∞ we can express

f∞(x, k) = eikx − Ce−xA(I +Rx)−1

∫ ∞
x

e−yABeikydy

= eikx
(
(1 + Ce−xA(I +Rx)−1(ikI −A)−1e−xAB)

= eikx det
(
I + (ikI −A)−1e−xABCe−xA(I +Rx)−1

)
(4.11)

where we have used a simple identity for rank-one operators, hence

f∞(x, k) = eikx
det(I +Rx + (ikI −A)−1e−xABCe−xA)

det(I +Rx)
, (4.12)

and we can finish by using Lyapunov’s equation

f∞(x, k) = eikx
det(I +Rx − (ikI −A)−1R′x)

det(I +Rx)
, (4.13)

where the determinant on the numerator is

det
(
I +Rx + (ikI −A)−1(ARx +RxA)

)
= det

(
I +Rx(ikI +A)(ikI −A)−1

)
. (4.14)

As in Fredholm theory, we let

Dx = Rx(I +Rx)−1τ∞(x), (4.15)

and temporarily write D̃x = Dx(ikI +A)(ikI −A)−1. We can proceed to compute the kernel

of Dx as an integral operator on L2(0,∞). The operator Rx on L2(0,∞) is represented by the

kernel

Rx(s, t) =
e−ixsb1(s)b2(t)e−ixt

i(s+ t)
, (4.16)

so we have a Cauchy determinant

Rx

(
s1 . . . sn
t1 . . . tn

)
= det

[e−ixsj b1(sj)b2(t`)e
−ixt`

i(sj + t`)

]n
j,`=1

(4.17)

= e
−
∑n

j=1
ixsje−

∑n

`=1
ixt`

n∏
j=1

b1(sj)
n∏
`=1

b2(t`)

∏
1≤j<`≤n(sj − s`)

∏
1≤j<`≤n(tj − t`)

in
∏n
j,`=1(sj + t`)

In the usual notation of Fredholm theory, we express the kernel of Dx(λ) as the series

Dx(s, t;λ) =

∞∑
n=0

Dn,x(s, t)λn (4.18)

where D0,x(s, t) = Rx(s, t) and

Dn,x(s, t) =
(−1)n

n!

∫ ∞
0

. . .

∫ ∞
0

Rx

(
s s1 . . . sn
t s1 . . . sn

)
ds1 . . . dsn. (4.19)
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To obtain the kernel for D̃x we simply multiply by (k + t)/(k − t). Then

f∞(x, k) = eikx
(

1 +
φ(x) + φik(2x)

2ikτ∞(x)
+
Ce−xA(Dx + D̃x)e−xAB

2ikτ∞(x)

)
. (4.20)

where Dx is given by the determinant series ().

Lemma 4.4 Any Gaussian function on RN can be realised as the scattering function of a

linear system.

Proof. Given any N < ∞ and a positive definite real symmetric matrix Q with inverse

Q−1, we introduce a linear system with state space L2(RN ), with state variables (x, t) =

(x, t1, . . . , tN−1) and ξ = (ξ0, . . . , ξN−1), by

B : C→ H : α 7→ α(2NπN detQ)−1/4 exp
(
−Q−1(ξ, ξ)/4

)
U(t)e−xAU(t) : H → H : f(ξ) 7→ exp

(
−ixξ0 − i

N−1∑
j=1

ξjtj

)
f(ξ) (4.21)

C : H → C : f 7→
∫
RN

f(ξ) exp
(
−Q−1(ξ, ξ)/4

) dξ0 . . . dξN−1

(2NπN detQ)1/4
. (4.22)

For consistency with the theory of this section, we define this the tau function of the Gaussian

linear system to be

τ0(x, t) = CU(t)e−xAU(t)B = exp(−Q((x, t), (x, t))/2), (4.23)

and u(x, t) = −2 ∂2

∂x2 log φ(x, t) = q0, where q0 is the coefficient of x2 in Q((x, t), (x, t)).

We recall the definition of the tau function in terms of Riemann’s theta function for an

Abelian variety.

Definition (Theta functions) Let Λ be a lattice in Cg such that Cg/Λ is a complex torus,

which is compact for the quotient topology. A quotient Θ of nonzero entire functions on Cg

is said to be a theta function if there exists a family of linear maps Cg → C : z 7→ Lγ(z) for

γ ∈ Λ and a map J : Λ → C such that Θ(z + γ) = e2πi(Lγ(z)+J(γ))Θ(z) for all γ ∈ Λ and

z ∈ Cg. If Q is a quadratic form on Cg, ψ : Cg → C is a linear functional and c ∈ C], then

e2πi(Q(z,z)+ψ(z)+c) gives a trivial theta function. Evidently the product of theta functions is

again a theta function.

Definition (Riemann’s theta function) Suppose that Ω0 and Ω1 are real symmetric g × g

matrices with Ω1 positive definite, and let Ω = Ω0 + iΩ1; then let Λ = Zg + ΩZg be a lattice

in Cg. Then

θ(x | Ω) =
∑
m∈Zg

e2πimt+πimtΩm (4.24)
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is Riemann’s theta function for the Abelian variety X = Cg/Λ. Let ω ∈ C have =ω > 0; then

Jacobi’s elliptic theta function for the torus C/(Z + ωZ) is

θ1(x | ω) = i

∞∑
n=−∞

(−1)ne(2n−1)πix+(n+1/2)2πiω. (4.25)

By Lemma 4.4, one can realise these functions as scattering functions of linear sytems.

More importantly, in section 10 we realise θ1 as the tau function of a linear system.

Zhakharov and Shabat [50] considered the Kadomtsev–Petviashvili equation

∂

∂x

(∂3u

∂x3
+ 6u

∂u

∂x
− 4

∂u

∂t

)
+ 3

∂2u

∂y2
= 0; (4.26)

and the associated scattering function Ψ, which satisfies

α
∂Ψ

∂t
+
∂3Ψ

∂x3
+
∂3Ψ

∂z3
+ λ
(∂Ψ

∂x
+
∂Ψ

∂z

)
= 0 (4.27)

and

β
∂Ψ

∂y
+
∂2Ψ

∂x2
− ∂2Ψ

∂z2
= 0. (4.28)

We will use these differential equations to guide us towards significant examples of linear

systems with computable tau functions.

Proposition 4.5 (i) Let (−A,B,C) be a linear system as in Lemma 2.2 with A bounded and

H0 = C. Then

Ψ(x, z; t) = Cet(A
3+λA)/αe−xAR0e

−zAet(A
3+λA)/αB (4.29)

is the kernel of a Hankel square and gives a solution to (4.26).

(ii) Let U(x, z; t) be the solution of the integral equation

U(x, z; t)−Ψ(2x, z + x; t) +

∫ ∞
x

U(x, s; t)Ψ(s+ x, z + x; t)ds = 0, (4.30)

and let Ψ(x) be the integral operator with kernel Ψ(x+ y, y + x; t). Then

U(x, x; t) =
−1

2

d

dx
log det(I + Ψ(x)). (4.31)

Proof. (i) This follows by a direct computation.

(ii) As in Proposition 3.2, the kernel Ψ(x, z; t) corresponds to the square of the Hankel operator

with symbol φ(x; t) = Cet(A
3+λA)/αe−xAB which corresponds to the admissible linear system

(−A,B0, C0e
t(A3+λA)/α). We then consider the matrix linear system

([−A 0
0 −A

]
,

[
B 0
0 B

]
,

[
0 Cet(A

3+λA)/α

−Cet(A3+λA)/α 0

])
(4.32)
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and obtain a solution to the integral equation () as in Proposition 3.2, which gives an explicit

formula for U(x, y; t). The determinant identity follows from Proposition 3.2.

Definition Given a solution U(x, z; t) of (4.11) then define u(x; t) = −2 d
dxU(x, x; t), so that

u↔ Ψ is the scattering transform.

In Proposition 8.2, we give an important example in which u also satisfies (4.7). However,

we do not have general conditions which ensure that u satisfies (4.7).

In section 5 we show to how produce differential rings of functions from the linear systems,

so we can deal with the derivatives and the nonlinear term in KdV . In sections 9 and 10 we

produce explicit examples of linear systems such that u satisfies KdV and thereby produce tau

functions which are associated with hyperelliptic curves of arbitrary genus; the tau functions in

such cases can be expressed in term of determinants, and in terms of Riemann theta functions.

We also produce, by similar methods, tau functions which are not associated algebraic curves of

finite genus; such examples are already familiar from the theory of Hill’s equation. A significant

advantage of our approach is that we can deal with periodic potentials, as in Hill’s equation,

by methods which are formally similar to those used for solitons or scattering potentials. Our

results are most complete when u is either trigonometric or elliptic.

5 The state ring associated with an admissible linear system

A linear system with one dimensional input and output that is composed of taps, summing

junctions, amplifiers, differentiators and integrators has a transfer function that is real and

rational. In [21], the authors consider factorization of transfer functions in rings such as

Mn(R(λ)). In this paper, we prefer to work with differential rings of operators on the state

space so as to integrate various differential equations related to Schrödinger’s equation. We

introduce these state rings in this section.

Definition (Differential rings) Let H and K be separable complex Hilbert spaces, let B(H) be

the ring of bounded linear operators onH. For x0, x1 ∈ R let S be a subring of C∞((x0, x1); B(H));

that is we suppose that each T ∈ S is a differentiable function of x ∈ (x0, x1) and in-

dicate this by writing Tx; we suppose further that dTx/dx ∈ S, and that (d/dx)(ST ) =

(dS/dx)T + S(dT/dx). Then S is a differential ring with the subring {S ∈ S : dS/dx = 0} of

constants. When I ∈ S, we identify θI with θ to simplify notation.

Definition (State ring of a linear system) Let (−A,B,C) be a linear system such that A is a

bounded linear operator on the state space H. Suppose that:

(i) S is a differential subring of C∞((x0, x1); B(H));

(ii) I, A and BC are constant elements of S;

(iii) e−xA, Rx and Fx = (I +Rx)−1 belong to S.

Then S is a state ring for (−A,B,C) on (x0, x1).

(iv) Moreover, if S is left Noetherian as a ring, then we say that (−A,B,C) is finitely

generated.

Remarks. (i) By working with BC in (ii), we suppress the input and output spaces of

(−A,B,C) and deal with operators on H.
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(ii) When A is algebraic, we can use simple functional calculus to help construct the

differential ring. We use this technique in sections 6 and 7.

(iii) We do not assume that detFx belongs to S; indeed, the aim is to express this in terms

of simpler functions.

Lemma 5.1 Suppose that (−A,B,C) is a linear system with bounded A and that Rx gives

a solution of Lyapunov’s equation (1.8) such that I + Rx is invertible for x > 0 with inverse

Fx. Then the free algebra S generated by I,R0, A, F0, e
−xA, Rx and Fx is a state ring for

(−A,B,C) on (0,∞).

Proof. First we note that BC = AR0 + R0A belongs toS, as required. We also note that

(d/dx)e−xA = −Ae−xA and that Lyapunov’s equation (1.8) gives

d

dx
(I +Rx)−1 = (I +Rx)−1(ARx +RxA)(I +Rx)−1, (5.1)

which implies
dFx
dx

= AFx + FxA− 2FxAFx. (5.2)

with the initial condition

AF0 + F0A− 2F0AF0 = F0BCF0. (5.3)

Hence S is a differential ring.

Definition (Complex differential rings and state rings) Let Ω be a domain in C and MΩ(X)

the meromorphic functions from Ω to some complex Banach algebra X. If S as above is also

a subring of MΩ(X), then we use the standard complex derivative d/dx and say that S is a

complex state ring for (−A,B,C) on Ω. (In section 8, we work with periodic meromorphic

functions and replace Ω by the complex cylinder C/πZ. In section 9, we work with double

periodic and meromorphic functions, so we replace Ω by T = C/Λ, where Λ is a lattice.)

Definition (Brackets) Given a state ring for (−A,B,C), let [X,Y ] = XY − Y X and

bY c = Ce−xAFxY Fxe
−xAB. (5.4)

The following result is our counterpart of Pöppe’s identities [34, 39] from Remark 3.3(ii).

Let S be a state ring for (−A,B,C) on (x0, x1), and let B be any differential ring of

functions on (x0, x1) to the bounded linear operators on K. Let

A = spanC{An1 , An1FxA
n2 . . . FxA

nr : nj ∈ N}. (5.5)

Now we introduce a special functional. Let b . c : S→ B be a complex linear map such that⌊
P
⌋⌊
Q
⌋

=
⌊
P (AFx + FxA− 2FxAFx)Q

⌋
(5.6)

d

dx

⌊
P
⌋

=
⌊
A(I − 2Fx)P +

dP

dx
+ P (I − 2Fx)A

⌋
. (5.7)
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Lemma 5.2 (i) Then A defines a differential subring of S.

(ii) The range bSc is a differential ring with derivative d/dx, and has bAc as a differential

subring.

(iii) Suppose that the input and output spaces are C. Then bXc = trace(X(dFx/dx)).

Proof. (i) We can multiply elements in S by concatenating words and taking linear combina-

tions. Since all words in A begin and end with A, we obtain words of the required form, hence

A is a subring. To differentiate a word in A we add words in which we successively replace

each Fx by AFx + FxA− 2FxAFx, giving a linear combination of words of the required form.

(ii) As in (i), the operations are well defined in the sense that bP cbQc and (d/dx)bP c are

images of elements of A for all P,Q ∈ A. Evidently the proposed multiplication is associative

and distributive over addition. Using (), one checks that Leibniz’s rule holds in the form

d

dx

(⌊
P
⌋⌊
Q
⌋)

=
( d
dx

⌊
P
⌋)⌊

Q
⌋

+
⌊
P
⌋( d
dx

⌊
Q
⌋)
. (5.8)

(iii) To see that these definition are consistent, observe that when C has range in the

scalars, we can remove the trace and write

trace
(
Y
d

dx
Fx

)
= traceY Fxe

−xABCe−xAFx

= Ce−xAFxY Fxe
−xAB. (5.9)

Let K be a field of complex functions with differential ∂, and adjoin an element h to K where

either:

(L1) h =
∫
g for some g ∈ K, so that ∂h = g;

(L2) h = exp
∫
g for some g ∈ K;

(L3) h is algebraic over K.

Then K(h) is a Liouvillian extension of K as in [12, 48]. More generally, a field L is a Liouvillian

extension of K if there exist differential fields Fj such that K = F0 ⊂ F1 ⊂ . . . ⊂ Fn = L,

and each Fj arises from Fj−1 by applying (L1), (L2), or (L3).

Theorem 5.3 Let (−A,B,C) be a linear system as in Lemma 2.2, and suppose furthermore

that A is bounded and H0 = C.

(i) Then (−A,B,C) has a complex state ring S on C on which Rz is unique.

(ii) The map b . c : S→MC(C) satisfies φ(2x) =
⌊
F−2
x

⌋
and u(x) = −4

⌊
A
⌋
.

(iii) The ranges bSc and bAc are differential rings. The field of fractions K of bAc is a

differential field, and τ(x) = 1/ detFx is entire and belongs to a Liouvillian extension L of K.

(iv) C(u, u′, . . . , u(k−1)) is a differential subfield of K, if and only if u(k) = r(u, . . . , u(k−1))

for some rational function r.

Proof. (i) Mainly this follows from Lemma 2.1 and Proposition 2.4. By Riesz’s theory of

compact operators, the Fx = (I + Rx)−1 defines a meromorphic operator valued function on

C. Hence we can select S to be the subring of meromorphic functions from Ω to B(H) generated
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by I, A,BC,Rx, e
−xA and Fx. On {x : Rx + R†x > −2I}, the function Fx is holomorphic and

satisfies F ′x = FA+AF − 2FAF .

(ii) Evidently ⌊
F−2

⌋
= Ce−2xAB = φ(2x),

while we can write (2.3) as (d/dx) log det(I +Rx) =
⌊
F−1

⌋
and differentiate using (2.8).

(iii) From the definition of Rx, we have ARx +RxA = e−xABCe−xA, and hence

Fxe
−xABCe−xAFx = AFx + FxA− 2FxAFx, (5.10)

which implies ⌊
P
⌋⌊
Q
⌋

= Ce−xAFxPFxe
−xABCe−xAFxQFxe

−xAB

= Ce−xAFxP (AFx + FxA− 2FxAFx)QFxe
−xAB

=
⌊
P (AFx + FxA− 2FxAFx)Q

⌋
. (5.11)

Moreover, the first and last terms in bP c have derivatives

d

dx
Ce−xAFx = Ce−xAFxA(I − 2Fx),

d

dx
Fxe

−xAB = (I − 2Fx)AFxe
−xAB, (5.12)

which implies (5.8). Hence by Lemma 5.3(ii), the image of b . c is a differential ring.

Now bAc is a subring of MC(C) and hence is an integral domain with a field of fractions

K. We have 2(d/dx)2 log detFx = u(x) ∈ K, so we can recover detFx by integration and

exponential integration. By (2.3) and Morera’s theorem, Rx is an entire c1-valued function,

hence det(I +Rx) is entire.

(iv) By (ii), u and all its derivatives belong to K. Evidently C(u, . . . u(k−1)) is a differential

field if and only if such a differential equation holds.

Remarks 5.4 (i) Airault, McKean and Moser [2] consider the cases of Theorem 5.3(iv) given

by u′′′ = 12uu′ for u rational, trigonometric and elliptic.

(ii) Pöppe [39, 40] introduced a linear functional d . e on Fredholm kernels K(x, y) on

L2(0,∞) by dKe = K(0, 0). In particular, let K,G,H,L be integral operators on L2(0,∞)

that have smooth kernels of compact support, let Γ = Γφ(x)
have kernel φ(s + t + 2x), let

Γ′ = d
dxΓ and G = Γψ(x)

be another Hankel operator; then the trace satisfies

dΓe = − d

dx
trace Γ (5.13)

dΓKGe = −1

2

d

dx
trace ΓKG (5.14)

d(I + Γ)−1Γe = −trace
(
(I + Γ)−1Γ′

)
, (5.15)

dKΓedGLe = −1

2
dK(Γ′G+ ΓG′)Le, (5.16)
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where (4) is known as the product formula. The easiest way to prove these is to observe that

Γ′G+ΓG′ is the integral operator with kernel −2φ(x)(s)ψ(x)(t), which has rank one, as in (3.8)

below. These ideas were subsequently revived by McKean [32].

(iii) Mulase [36] considers differential rings over C that are also closed under (L1) and

(L2); an important example is the Noetherian ring C[[x]] of formal complex power series.

However, C[[x]] does not contain functions with poles. Krichever [29] considered an algebraic

curve with a preferred point P0, and functions that are holomorphic except for poles at P0.

Note that {f(z) =
∑∞
k=−n akz

k;n ∈ N; ak ∈ C} is a Noetherian differential ring, but it is

not closed under (L1) or (L2). So we prefer to start in a smaller ring and then control the

extensions that are formed by making quadratures.

6. Finite dimensional state spaces

In this section, we are concerned with complex differential rings for linear systems (−A,B,C)

that have finite dimensional state spaces. While we seek to realise S by the approach of Remark

5.3, we do not assume commutativity of A and BC, and we do not assume that e−xA is stable.

Hypotheses. Throughout this section, we let A be a n×n complex matrix with eigenvalues λj
with geometric multiplicity nj such that λj+λk 6= 0 for all j and k; if all the eigenvalues are geo-

metrically simple, then let K = C(e−λ1t, . . . , e−λnt); otherwise, let K = C(e−λ1t, . . . , e−λnt, t).

Also, let B = (bj) ∈ Cn×1 and C = (cj) ∈ C1×n.

The following result extends a special case of the Sylvester–Rosenblum theorem [7].

Lemma 6.1 Let S = C[I, A,BC]. Then there exists R0 ∈ S0 such that R0A+AR0 = −BC,

and the equations (1.9) and (1.8) have a unique solution.

Proof. Let Σ be a chain of circles that go once round each λj in the positive sense and have

all the points −λk in their exterior. Then by [7], the matrix

R0 =
1

2πi

∫
Σ

(A+ λI)−1BC(A− λI)−1dλ (6.1)

gives the unique solution to the equation (1.8). Furthermore, by the Cayley–Hamilton theorem,

(A ∓ λI)−1 is a polynomial in λ, A, I and det(A ∓ λI)−1 for all λ on γ; hence R0 belongs to

the algebra S0.

The function Rx = e−xAR0e
−xA is entire and of exponential growth, and gives a solution

of (1.9) and (1.8). Since Rx is of exponential growth, it has a Laplace transform which satisfies

sR̂(s)+AR̂(s)+R(s)A = R0, and for all s > 2‖A‖ the solution is unique and may be expressed

as

R̂(s) =

∫ i∞

−i∞

(
(λ+ s/2)I +A

)−1
R0

(
(−λ+ s/2)I +A

)−1 dλ

2πi
. (6.2)

Hence Rx is the unique solution of (1.8) and (1.9).

Theorem 6.2 Let Rx = e−xAR0e
−xA; then let S = K[I, A,BC].

(i) Then (−A,B,C) is finitely generated since S is a left Noetherian ring with respect to

the standard multiplications.
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(ii) The linear map b . c : S → HC :
⌊
P
⌋

= Ce−xAFxPFxe
−xAB satisfies φ(2x) =

⌊
F−2
x

⌋
and u(x) = −4

⌊
A
⌋
. Also, τ, τ/τλ ∈ K.

Proof (i) The complex algebra generated by I,BC and A is finite-dimensional and hence left

Noetherian; so by Hilbert’s basis theorem, S as a subalgebra of Mn(K) is also Noetherian; see

[14, p. 106]. Observe that (λI −A)(λI +A)−1 ∈ S for all −λ in the resolvent set of A.

By the Riesz functional calculus, we can introduce a sum of cycles going round each λj
once in the positive sense, so that

e−tA =
1

2πi

∫
Σ

(
λI −A

)−1
e−tλdλ; (6.3)

hence there exist complex polynomials pj and qj , and integers mj ≥ 0 such that

e−tA =
n∑
j=1

qj(t)e
−tλjpj(A), (6.4)

where qj(t) is constant if the corresponding eigenvalue is simple. Hence Rx ∈ S, and likewise

all the entries of Rx belong to S. Moreover, for any B ∈ Cn×1 and C ∈ C1×n, there exist

constants αj and polynomials qj such that

φ(x) = Ce−xAB =
n∑
j=1

αjqj(x)e−λjx. (6.5)

Now introduce the minors σj ∈ K of I +Rx such that

det(µI − (I +Rx)) = µn + σn−1(x)µn−1 + . . .+ σ1(x)µ+ (−1)nθ(x), (6.6)

and recall that by the Cayley–Hamilton theorem

(I +Rx)
(

(I +Rx)n−1 + σn−1(x)(I +Rx)n−2 + . . .+ σ1(x)I
)

+ (−1)nθ(x)I = 0 (6.7)

so Fx belongs to S. Hence S is a complex differential ring for (−A,B,C). By the usual

expansion of the determinant, τ ∈ K.

(ii) This follows as in Theorem 2.5. Observe also that φ and u belong to K, and all

elements of K are meromorphic on C.

Lemma 6.3 (The Cauchy determinant formula) Let xr and ys be complex numbers such that

xrys 6= 1. Then

det
[ 1

1− xjyk

]n
j,k=1

=

∏
1≤j<k≤n(xj − xk)

∏
1≤m<p≤n(ym − yp)∏

1≤r,s≤n(1− xrys)
. (6.8)

Proposition 6.4 Suppose that B = (bj)
n
j=1 ∈ Cn×1, C = (cj)

n
j=1 ∈ C1×n and A is the n× n

diagonal matrix with simple eigenvalues λj such that λj + λk 6= 0 for all j = 1, . . . , n.
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(i) Then Rx gives rise to the determinant

det(I + µRx) =1 + µ
n∑
j=1

bjcje
−2λjx

2λj

+ µ2
∑

(j,k),(m,p):j 6=m;k 6=p

(−1)j+k+m+p bjbmckcpe
−(λj+λk+λm+λp)x

(λj + λm)(λk + λp)
+ . . .

+ µn
n∏
j=1

bjcj
∏

1≤j<k≤n

(λj − λk)2

(λj + λk)2
e
−2
∑n

j=1
λjx. (6.9)

Proof. (i) The proof is by induction on n. There is an expansion

det
[
δjk +

µbjcke
−(λj+λk)x

λj + λk

]n
j,k=1

=
∑

σ⊆{1,...,n}

µ]σ det
[bjcke−λjx−λkx

λj + λk

]
j,k∈σ

(6.10)

in which each subset σ of {1, . . . , n} of order ]σ, contributes a minor indexed by j, k ∈ σ.

Letting xr = λr and yr = −1/λr in the Cauchy determinant formula, we obtain the identity

det
[bjcke−λjx−λkx

λj + λk

]
j,k∈σ

=
∏
j∈σ

bjcje
−2λjx

2λj

∏
j,k∈σ:j 6=k

λj − λk
λj + λk

. (6.11)

Remarks 6.5 (1) The results of this section apply in particular when A is a finite matrix such

that all the eigenvalues have <λj > 0.

(2) Kronecker’s theorem asserts that a bounded Hankel integral operator has finite rank if

and only if the transfer function φ̂ is a rational function with all its poles in {z ∈ C : <z < 0}.
Such rational functions are known as stable. In [19], the authors consider factorization of the

transfer function in Mn×n(C(λ)) and the subring of stable matrix rational functions. Their

results describe the properties of Ŝ rather than S itself.

7. The differential ring associated with the Painlevé II equation

In this section we consider a linear system which is important in random matrix theory.

Whereas the state ring S is finitely generated, the linear system is not integrable in the sense

that τ does not emerge from C(x) by successive Liouville integrations. Let H(p, q;x) be a

Hamiltonian which is rational in the canonical variables (p, q) and a meromorphic function

of time x, and let (p(s), q(s)) be solutions of the canonical equations of motion, and suppose

momentarily that these are meromorphic functions of s. Then the corresponding tau function

is

τ(x) = exp

∫ x

0

H(p(s), q(s); s) ds, (7.1)

where the integral is taken along an orbit in phase space; so the value of τ is locally independent

of the path of integration, provided the path avoids poles.
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The Hamiltonians which arise on random matrix theory have additional properties which

are described in the following result, which is a variant of Theorem 1 in Okamoto’s paper [37].

Proposition 7.1 Suppose that the Hamiltonian H(p, q;x) is rational in x, a polynomial in

q, and a quadratic polynomial in p, let u be the potential that corresponds to τ , and let

K = C(x, q). Then there exist E,F,G ∈ K such that

K(u)
[√

F 2 − 4E(u−G)
]

(7.2)

gives a differential field with respect to d/dx under the canonical equations of motion.

Proof. We write H = A(q, x)p2 + B(q, x)p + C(q, x). Then the canonical equations are
dq
dx = ∂H

∂p and dp
dx = −∂H∂q . Hence C(x)[p, q] is a commutative and Noetherian differential ring

for the derivative d
dt = ∂

∂x + ∂H
∂p

∂
∂q −

∂H
∂q

∂
∂p . Using the special form of the Hamiltonian, we

have

q′′ = −2A
{∂A
∂q

(q′ −B
2A

)2

+
∂B

∂q

(q′ −B
2A

)
+
∂C

∂q

}
+
q′ −B
A

(∂A
∂q

q′+
∂A

∂x

)
+
(∂B
∂q

q′+
∂B

∂x

)
. (7.3)

so q′′ = f(x, q, q′) where f is rational in x and q and quadratic in q′, so K[q′] is a differential

ring for d/dx. Likewise, the potential that corresponds to τ is

u(x) = −2
∂H

∂x
= −2

∂A

∂x

(q′ −B
2A

)2

− 2
∂B

∂x

(q′ −B
2A

)
− 2

∂C

∂x
, (7.4)

hence there exist nonzero E,F,G ∈ K such that Eq′2+Fq′+G = u, so K(u)[q′] is a differential

field, and which we can identify with a quadratic extension of K(u).

Okamoto [37] has shown that each of the Painlevé transcendental differential equations

PI , . . . , PV I arises from a Hamiltonian as in Lemma 7.1, and τ is meromorphic on a suitable

covering surface. Conversely, let v′′ = F (v, v′;x) be a differential equation such that F (v, v′;x)

is meromorphic in x and rational in v and v′ and such that the general solution has no movable

singularities other than poles. Then the equation may be reduced by change of variables to a

Painlevé equation.

For x ∈ C and a complex constant α, let

HII(p, q;x) =
1

2

(
p− x

2

)2

+
(
q2 +

x

2

)(
p− x

2

)
− αq +

x2

8
. (7.5)

Proposition 7.2 Under the canonical equations of motion with Hamiltonian HII ,

(i) q satisfies PII : q′′ = xq + 2q3 + α and the corresponding τ function is

τ(x) = exp
(
−1

2

∫ ∞
x

(s− x)q(s)2 ds
)

; (7.6)

(ii) p satisfies p′′′ + 6pp′ − (2p+ xp′) = 0 and U(x, t) = (3t)−2/3p(3−1t−1/3x) satisfies

∂3U

∂x3
+

2U

31/3

∂U

∂x
− 1

9

∂U

∂t
= 0. (7.7)
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Proof. (i) The canonical equations of motion are satisfied in the polynomial ring Sα =

C[x, q, p] with the derivatives

dq

dx
= −p− q2 and

dp

dx
= (2p− x)q − α. (7.8)

Hence K = C(x, q, p) is a differential field, and by Lemma 7.1 the potential is u = q2, which

belongs to K. We deduce that q satisfies PII .

(ii) Now p satisfies

K2 : p′′ + 2p2 − xp+
α(α+ 1) + p′ − (p′)2

2p− x
= 0. (7.9)

One can then verify that U satisfies KdV; see [1] for further discussion.

Now we show how to solve PII by means of determinants associated with integrable

kernels. We introduce Airy’s function Ai(x) =
∫∞
−∞ eiξx+iξ3/3dξ/(2π), which satisfies Ai′′(x) =

xAi(x). Let φ(x) = Ai(x) and let ζ = φ′/φ; then S = C[x, φ(x), ζ(x)] is a differential ring with

respect to d/dx. In the context of Theorem 7.3(iii) below the integrable kernel

R2
0(x, y) =

Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
(7.10)

is known as Airy’s kernel, which is associated with soft edges of eigenvalue distributions.

The Fredholm determinants of R2
0 lead to a solution of the Painlevé II nonlinear differential

equation. Ablowitz and Segur solved PII by a slightly different method, Borodin and Deift

[11] obtained a solution by considering a matrix Riemann–Hilbert problem involving (7.5) and

we include the proof of (iii) to illustrate the general theory of linear systems.

In previous sections we started from an admissible linear system and produced a Hankel

integral operator Γφ. In this section we begin with a technical result which realises a typical

Hilbert–Schmidt Hankel operator Γφ from an explicit linear system (−A,B,C) chosen for

φ. Here A is defined on D(A) = {f ∈ L2(0,∞); f ′ ∈ L2(0,∞)} and C is bounded on D(A).

Suppose that φ and ψ are continuous functions on R such that
∫∞

0
(1+t)(|φ(t)|2 + |ψ(t)|2) dt <

∞. Then we let H = L2(0,∞) and introduce the operators

A : f(x) 7→ −f ′(x) f ∈ D(A);

B : β 7→ φ(x)β;

E : β 7→ ψ(x)β;

C : g(x) 7→ g(0) (g ∈ D(A)), (7.11)

so that φ(x) = Ce−xAB and ψ(x) = Ce−xAE. We introduce the operators on H given by

Rx =
∫∞
x
e−tABCe−tA dt and Sx =

∫∞
x
e−tAECe−tA dt. In terms of Proposition 2.1, the
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cogenerator V is unitarily equivalent via the Fourier transform to the coisometry on the Hardy

space H2 on the upper half plane

V : f(z) 7→ (1− iz)f(z)− 2f(i)

1 + iz
(f ∈ H2), (7.12)

so V † is the shift. This is consistent with Beurling’s canonical model of a linear system in [7].

We also introduce the observability Gramian Qx =
∫∞
x
e−tA

†
C†Ce−tA dt and we observe that

Qx is the orthogonal projection Qx : L2(0,∞) → L2(0, x). We consider the Gelfand–Levitan

integral equation (2.7) where T (x, y) and Φ(x+ y) are 2× 2 matrices, and

Φ(x) =

[
0 ψ(x)

φ(x) 0

]
. (7.13)

Lemma 7.3 (i) For |µ| sufficiently small, the operator I − µ2RxSx has inverse Gx ∈ B(H)

and the matrix function

T̂ (x, y) =

[
µCe−xAGxSxe

−yAB −Ce−xAGxe−yAE
−Ce−xA−yAB − µ2Ce−xARxGxSxe

−yAB µCe−xARxGxe
−yAE

]
(7.14)

satisfies the Gelfand–Levitan equation (2.7).

(ii) The determinants satisfy

det(I − µ2RxSx) = det(I − µ2Γψ(x)
Γφ(x)

). (7.15)

and

trace T̂ (x, x) =
d

dx
log det(I − µ2Γφ(x)

Γψ(x)
). (7.16)

Proof. (i) We introduce

Â =

[
A 0
0 A

]
, B̂ =

[
B 0
0 E

]
, Ĉ =

[
0 C
C 0

]
(7.17)

and follow the computations of Proposition 2.3(i) to find T .

(ii) We observe that Rxf(z) =
∫∞
x
φ(z + u)f(u) du, so Rx is a Hilbert–Schmidt operator,

and R0 is the Hankel operator Γφ; likewise Sx is Hilbert–Schmidt; hence RxSx is trace class.

The identity (7.9) follows from Proposition 2.3.

Whereas RxSx is not a differentiable function of x, and we cannot adopt the direct ap-

proach of Proposition 2.3(iii), we can differentiate the Hankel product

d

dx

∫ ∞
0

φ(2x+ s+ u)ψ(2x+ t+ u) du = −2φ(2x+ s)ψ(2x+ t), (7.18)

so
d

dx
Γφ(x)

Γψ(x)
= −2e−2xABCe−2xAS0, (7.19)
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where the right-hand side is a rank one and bounded linear operator. We recall from [38] the

following identities regarding the shift and Hankel operators

e−xA
†
e−xA = Qx, e−xAe−xA

†
= I, e−xA

†
R0e

−xA†
= R0 (7.20)

and the following special identities which may be checked by looking at the kernels

Rx = R0Qx, e−xAR0 = Rxe
−xA†

, Γφ(x)
= e−xAR0e

−xA†
. (7.21)

Hence we can differentiate using (7.12), obtaining

d

dx
log det

(
I − µ2Γφ(x)

Γψ(x)

)
= 2µ2trace

((
I − µ2Γφ(x)

Γψ(x)

)−1
e−2xABCe−2xAS0

)
= 2µ2Ce−2xAS0

(
I − µ2e−xAR0e

−xA†
e−xAS0e

−xA†)−1
e−2xAB

= 2µ2Ce−xASxe
−xA†(

I − µ2e−xAR0e
−xA†

e−xAS0e
−xA†)−1

e−2xAB. (7.22)

We now use the identity K(I + LK)−1 = (I +KL)−1K to shuffle terms around, and obtain

= 2µ2Ce−xASx(I − µ2e−xA
†
e−xAR0e

−xA†
e−xAS0e

−xA†
)−1e−xA

†
e−xAe−xAB

= 2µ2Ce−xASx(I − µ2QxR0QxS0e
−xA†

)−1Qxe
−xAB

= 2µ2Ce−xASx(I − µ2RxSx)−1e−xAB

= 2µ2Ce−xA(I − µ2SxRx)−1Sxe
−xAB; (7.23)

which is a multiple of the top left entry of T (x, x), and likewise

2µ2Ce−xARx(I − µ2SxRx)−1e−xAE = 2µ2Ce−xARxGxe
−yAE; (7.24)

as in the bottom left entry of T (x, x) so we obtain the expected result

d

dx
log det(I − µ2R2

x) = µtraceT (x, x). (7.25)

We consider the Gelfand–Levitan integral equation (2.7) where T (x, y) and Φ(x+ y) are

2× 2 matrices, and

T (x, y) =

[
U(x, y) V (x, y)
−V (x, y) U(x, y)

]
, Φ(x) =

[
0 φ(x)

−φ(x) 0

]
. (7.26)

Theorem 7.4 Let (−A,B,C) be as in Lemma 7.3.

(i) For |µ| sufficiently small, I + µ2R2
x is invertible with inverse Zx and matrix function

T̂ (x, y) =

[
−µCe−xAZxRxe−yAB −Ce−xAZxe−yAB

Ce−xAZxe
−yAB −µCe−xARxZxe−yAB

]
(7.27)
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satisfies the Gelfand–Levitan equation (2.7).

(ii) The determinant satisfies

µtrace T̂ (x, x) =
d

dx
log det(I + µ2Γ2

φ(x)
). (7.28)

(iii) In particular, let φ(x) = Ai(x/2). Then V (x, x) satisfies Painlevé’s equation

PII 1
d2

dx2
V (x, x) = xV (x, x)− 8µ2V (x, x)3 (7.29)

and V (x, x) � −Ai(x) as x→∞.

Proof. We introduce the 2× 2 matrices with entries that are operators given by

Â =

[
A 0
0 A

]
, B̂ =

[
−B 0
0 B

]
, Ĉ =

[
0 C
C 0

]
, (7.30)

so that Φ(x) = Ĉe−xÂB̂ and

R̂x =

∫ ∞
x

e−tÂB̂Ĉe−tÂ dt =

[
0 −Rx
Rx 0

]
. (7.31)

Here R2
x is trace class, and when |µ|

∫∞
0
t|φ(t)|2dt < 1, the operator I +µ2R2

x is invertible

for all x > 0, so I + µR̂x has an inverse

F̂x =

[
I −µRx

µRx I

]−1

=

[
I − µR2

xZx µRxZx
−µRxZx Zx

]
. (7.32)

Hence we can solve the integral equation (2.7) using T̂ (x, y) = −Ĉe−xÂF̂xe−yÂB̂, and we

obtain (7.18).

(ii) This follows from Proposition 7.1(ii).

(iii) First, note that V (x, x) = −Ce−xA(I + µ2R2
x)−1e−xAB where Ai(x/2) = Ce−xAB,

so V (x, x) is asymptotic to −Ai(x) as x→∞.

It follows from the Gelfand–Levitan equation that

V (x, y) + φ(x+ y) + µ2

∫ ∞
x

∫ ∞
x

V (x, z)φ(z + s)φ(s+ y) dzds = 0. (7.33)

Let L = ( ∂
∂x + ∂

∂y )2 − x+y
2 and φ(x) = Ai(x/2), so that Lφ(x + y) = 0. Also from Airy’s

equation, we obtain

y − z
2

∫ ∞
x

φ(z + t)φ(t+ y) dt = 4
(
φ′(z + x)φ(x+ y)− φ(z + x)φ′(x+ y)

)
, (7.34)

and by repeatedly integrating by parts, we can reduce (7.27) to the expression

LV (x, y)−4µ2
( d
dx

∫ ∞
x

V (x, z)φ(z, x) dz
)
φ(x+ y)

+ µ2

∫ ∞
x

∫ ∞
x

LV (x, z)φ(z + s)φ(s+ y) dzds = 0, (7.35)
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which is a multiple of the original equation (7.24) by

−4µ2 d

dx

∫ ∞
x

V (x, z)φ(z + x) dz = −8µ2V (x, x)2. (7.36)

To see (7.29), we use the definition of V to compute

−4µ2

∫ ∞
x

V (x, z)φ(z + x) dz = 4µ2

∫ ∞
x

Ce−xAZxe
−zABCe−zAe−xABdz

= 4µ2Ce−xAZxRxe
−xAB, (7.37)

and then we use the basic identity (1.8) to calculate

d

dx

(
4µ2Ce−xAZxRxe

−xAB
)

= 4µ2Ce−xA
(
−AZxRx + µ2Zx(AR2

x +R2
xA+ 2RxARx)ZxRx

− Zx(ARx +RxA)− ZxRxA
)
e−xAB

= −8µ2Ce−xAZx(ARx +RxA)Zxe
−xAB, (7.38)

where we have repeatedly used the rule µ2ZxR
2
x = I−Zx to simplify. Meanwhile, the product

rule gives

V (x, x)2 = Ce−xAZxe
−xABCe−xAZxe

−xAB = Ce−xAZx(ARx +RxA)Zxe
−xAB, (7.39)

and hence we obtain (7.26). On multiplying (7.26) by −8µ2V (x, x)2 and using uniqueness, we

deduce that

LV (x, y) = −8µ2V (x, x)2V (x, y), (7.40)

and on the diagonal we have

PII
d2

dx2
V (x, x)− xV (x, x) = −8µ2V (x, x)3. (7.41)

Corollary 7.5 (i) The entries of T (x, x) all lie in S0, and the potential is

u(x) = −8µ2V (x, x)2. (7.42)

(ii) The cumulative distribution function of the Tracy–Widom distribution [47] satisfies

F2(x) = det((I − Γ2
φ(x)

/4). (7.43)

Proof. (i) All the terms vanish as x → ∞, so α = 0. By the identities (8.20) and (8.21), we

have

u(x) = −2µ
d

dx
trace T̂ (x, x)

= 4µ2 d

dx
Ce−xARxZxe

−xAB

= −8µ2V (x, x)2. (7.44)
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Hence we can write, with v(x) = V (x, x)

−2µ
d

dx
T̂ (x, x) =

[
−4µ2v(x)2 −2µv′(x)

2µv′(x) −4µ2v(x)2

]
, (7.45)

so the trace is −8µ2v(x)4. Moreover, the differential equation gives∫ ∞
x

v(t)2 dt = −xv(x)2 + v′(x)2 − v(x)2, (7.46)

which are all elements of S0, so the entries of T̂ (x, x) are all in S0.

(ii) With µ = i/2, the potential gives rise to the Tracy Widom distribution function

F2(x) = exp
(
−2−1

∫ ∞
x

(s− x)u(s) ds
)

(7.47)

that is associated with the soft spectral edge of the Gaussian unitary ensemble; see [46, 47

(1.17)].

8. The differential ring of a periodic linear system

In this section we obtain analogues of Theorem 6.2 for periodic groups. For periodic

and meromorphic u, the differential equation −ψ′′ + uψ = λψ is known as the complex Hill’s

equation. We consider special periodic linear systems such that u is a function of rational

character on the cylinder or u is doubly periodic and of rational character on some elliptic

curve T .

For periodic linear systems, the defining integral for Rx in Lemma 2.1 does not converge,

and the contour integral for R0 in Lemma 6.1 is inapplicable; nevertheless, we can adapt a

result of Bhatia, Dacis and McIntosh discussed in [7] and otherwise construct Rx satisfying

(1.8).

Lemma 8.1 Let B be a trace class operator and C be a bounded operator on H, and let

(e−tA)t∈R be a bounded C0 group of operators on H such that the spectrum of A does

not intersect the spectrum of −A. Then there exists a solution to the Lyapunov equation

− d
dxRx = ARx +RxA such that AR0 +R0A = BC and Rx is trace class for all x ∈ R.

Proof. The main problem is to find E such that EA+AE = BC. By a theorem of Sz.-Nagy,

the group (e−tA) is similar to a group of unitaries, so there exists an invertible operator S and

a unitary group (Ut)t∈R such that e−tA = SUtS
−1. Hence the spectrum of A lies on iR and

is a closed subset. By hypothesis, there exists δ > 0 such that the spectra of A and −A are

separated by δ and σ(A)∪ σ(−A) does not intersect (−δ, δ). By Plancherel’s theorem, we can

construct an integrable function f such that f̂(ξ) = 1/ξ for all ξ ∈ R such that |ξ| ≥ δ. Then

the integral

E =

∫ ∞
−∞

e−xABCe−xAf(x)dx (8.1)
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has a weakly continuous integrand in the trace class operators, and is absolutely convergent

with

‖E‖c1 ≤
∫ ∞
−∞
‖B‖c1‖C‖B(H)M

2|f(x)| dx (8.2)

hence E is trace class. Using the spectral representation of Ut, one can show that AE+EA =

BC. Next we introduce Rx = e−xAEe−xA which gives a one parameter family of trace class

operators such that −dRxdx = ARx +RxA.

Definition (Periodic linear system) Let (e−xA)x∈R be a uniformly continuous group of opera-

tors on H such that e2πA = I and A is invertible. Suppose further that B and E are trace class

operators on H, and that C is a bounded linear operator on H, such that AE + EA = BC.

Then Σ∞ = (−A,B,C;E) is a periodic linear system with input, output and state spaces all

equal to H. Whenever we define a parametrized family Σt of periodic linear systems, the input,

output and state spaces are taken to be fixed; furthermore, A is taken fixed in the family.

We let C = C/πZ be the complex cylinder formed by identifying w ∼ z if z − w ∈ πZ;

we can choose equivalence class representatives in the strip {z : −π/2 < <z ≤ π/2}; then we

identify each π-periodic f : C→ X with a function f : C → X. Let CC = C[sin 2z, cos 2z] and

let KC = C(sin 2z, cos 2z) be the field of trigonometric functions, which consists of functions

of rational character on C in the sense that the elements are rational functions of t = tan z.

The space of entire π periodic functions on C may be identified with the space of holomorphic

functions HC on C, which is differential subring of the meromorphic functions MC on C.

Definition (Operators) Adjusting the definitions of section 5 in a natural way, we let Φ(x) =

Ce−xAB be the operator scattering function so that φ(x) = trace Φ(x) is the scattering function

and let Rx = e−xAEe−xA, then we introduce Fx = (I+e−xAEe−xA)−1, and τ∞(x) = −detFx,

then let u(x) = −2 d2

dx2 log τ∞(x) be the potential. Let Spec(A) be the spectrum of A as an

operator, and introduce the periodic linear system

Σλ = (−A, (λI+A)(λI−A)−1B,C; (λI+A)(λI−A)−1E) (λ ∈ (C∪{∞})\Spec (A)) (8.3)

and its accompanying tau function τλ. We also introduce the (noncommutative) algebra S =

KC{I, A,BC, Fx}, and then let A be the subring of S spanned by An1 and An1FAn2 . . . FAnr

for nj ∈ N. We also introduce b . c : S → MC(c
1) : bP c = Ce−xAFPFe−xAB. Let A0 =

{tracebP c : P ∈ A}, which is analogous to the differential ring generated by the potential u.

The family {Σλ : λ ∈ (C ∪ {∞}) \ Spec (A))} is an operator model for the spectral curve

in the sense that it serves as the domain of τλ. In Proposition 8.5, we show how to define τλ
on the spectral curve of −f ′′ + uf = λf .

Theorem 8.2 Let (−A,B,C;E) be a periodic linear system.

(i) Then φ(2x) ∈ CC , and S is a complex differential ring for (−A,B,C;E) and for Σλ;

(ii) bAc is a complex differential ring on C;
(iii) the derivatives u(j) of the potential belong to MC and to A0.
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(iv) If e−Aπ/2Ee−Aπ/2 = −E then T (x, y) = −Ce−xAFxe−yAB satisfies

Φ(x+ y) + T (x, y) +
1

2

∫ x+π/2

x

T (x, z)Φ(z + y) dz = 0. (8.4)

Proof. (i) First we show that A is an algebraic operator. By periodicity, the group (e−xA)x∈R
is bounded and hence by Sz.-Nagy’s theorem, exA is similar to a unitary group on H, so A is

similar to a skew symmetric operator. By uniform continuity, A is bounded, and hence has

spectrum contained in {−iN, . . . , iN} for some integer N ; see [18]. Consequently, there exists

a monic polynomial p such that p(A) = 0.

Hence A is an invertible algebraic operator, so as in (6.5), A−1 is a polynomial in A and

(λI + A)(λI − A)−1 ∈ S for all λ in the resolvent set of A. We also introduce polynomials pj
for each point in the spectrum of A such that pj(ik) = δjk, and since A is similar to a skew

operator, we deduce that

e−xA =

N∑
j=−N ;j 6=0

pj(A)e−ijx, (8.5)

so Φ(x) = Ce−xAB is a trigonometric polynomial with coefficients in c1 and of degree less

than or equal to N . Hence φ(2x) is π-periodic.

By (8.5) and (8.1), the operator E belongs to S and hence Rx = e−xAEe−xA also belongs

to S. Hence we have

d

dx
Rx = −e−xAAEe−xA − e−xAEAe−xA = −e−xABCe−xA (8.6)

and so AF + FA− 2FAF = Fe−xABCe−xAF , hence

dF

dx
= AF + FA− 2FAF ; (8.7)

so S is a differential ring for (−A,B,C).

(ii) From (8.7), we have the product rule⌊
P
⌋⌊
Q
⌋

= bP (AF + FA− 2FAF )Q
⌋
, (8.8)

and just as in Theorem 2.4

d

dx

⌊
P
⌋

=
⌊
A(I − 2F )P +

dP

dx
+ P (I − 2F )A

⌋
. (8.9)

As in Lemma 3.2,

bAc = spanC

{
Ce−xAFAn1Fe−xAB,Ce−xAFAn1FAn2 . . . FAnrFe−xAB;nj ∈ N

}
(8.10)

is a differential ring.
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(iii) Since e−xA is an entire operator function, we deduce that θ is entire, and π periodic

since τ∞(x) = det(I + e2xAE) and e2πA = I. When τ∞(x) 6= 0, we have

d

dx
log det(I + e−xAEe−xA) = −trace

(
(I + e−xAEe−xA)−1e−xA(AE + EA)e−xA

)
= −trace

(
(I + e−xAEe−xA)−1e−xABCe−xA

)
= −trace

(
Ce−xA(I + e−xAEe−xA)−1e−xAB

)
= −trace

(
Ce−xAFe−xAB

)
, (8.11)

and hence

u = −2
d2

dx2
log det(I + e−xAEe−xA)

= −4traceCe−xAFAFe−xAB

= −4trace bAc; (8.12)

so u belongs to A0 = {tracebP c : P ∈ A}. Likewise, the derivatives u(j) belong to A0 since

bAc is a differential ring.

(iv) One can verify this by direct computation, and the crucial identity is∫ x+π/2

x

e−zABCe−zA dz =
[
−e−zAEe−zA

]x+π/2

x
= 2e−xAEe−xA. (8.13)

Remarks (i) If (π/4)‖Φ‖∞ < 1 in Theorem 8.2(iv), then

∂2

∂x2
T (x, y)− ∂2

∂y2
T (x, y) = −2

( d
dx
T (x, x)

)
T (x, y), (8.14)

as one can prove by substituting in the integral equation. This motivates the definition of u

as the scalar potential, since u(x) = −2 d
dx traceT (x, x) by (8.10).

If we assume more commutativity, the proofs simplify and the results become stronger.

Corollary 8.3 Suppose further that ABC = BCA, and let E = 2−1A−1BC.

(i) Then Rx satisfies (1.8) and (1.9);

(ii) (−A,B,C) is finitely generated, since the algebra S is commutative and Noetherian,

and a complex state ring for (−A,B,C) on C.
Proof. (i) Since A−1 and C are bounded and B is trace class, E is also trace class. Now

Rx = e−xAEe−xA is an entire and trace class valued function, and using commutativity, one

checks that Lyapunov’s equation (1.8) holds. Unlike in Lemmas 2.1 and 6.1, we do not assert

that the solution is unique.

(ii) Here e−xA is a polynomial in A, eix and e−ix, hence e−xA and likewise Rx belong to

KC [I, E,A]. Observe that the set S = {(I + e−xAEe−xA)n : n = 0, 1, . . .} is multiplicatively

closed and does not contain 0 since I+ e−xAEe−xA is invertible in the Calkin algebra of B(H)
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modulo the compact operators on H. Hence we can identify S with the ring of fractions of

KC [A,BC] modulo S. There is a natural surjective ring homomorphism KC [X1, X2, X3]→ S

given by X1 7→ A, X2 7→ BC, X3 → Fx, so by Hilbert’s basis theorem, S is Noetherian as a

commutative ring.

(iii) An ideal p of S is maximal, if and only if {p} is closed in the prime spectrum Spec(S),

with the Zariski topology, in which case the field S/p is isomorphic to a finite algebraic

extension of KC , by the weak form of Nullstellensatz as in [4].

Now for each α ∈ S/p there exist aj ∈ KC , with an 6= 0, such that
∑j
j=0 ajα

j = 0.

By changing variables to t = tanx/2, and multiplying by a suitable polynomial in t, we can

introduce qj(z) ∈ C[z] such that
∑n
j=0 qj(t)α

j = 0; thus (α, t) is associated with the curve

{(w, t) :
∑n
j=0 qj(t)w

j = 0}, which determines a Riemann surface Y which covers P1 finitely.

We now consider the tau functions of periodic linear systems (−A,B,C;D). By taking

traces or forming determinants, we carry out limiting processes which generally take us from

KC to MC . The scattering function conveys information about the spectrum of A, while the

zeros of τ∞ determine the poles of u. This is made precise in the following result.

Proposition 8.4 Let (−A,B,C;E) be a periodic linear system as in Theorem 8.2, and let τλ
be the tau function of Σλ.

(i) The function x 7→ τλ(x) is entire, while λ 7→ τλ(x) is holomorphic on C \ Spec(A).

(ii) τ∞ ∈ HC satisfies log+ log+ |τ∞(z)| ≤ 2N |z|+ c1 for some c1 > 0 and all z, where N

is the spectral radius of A.

(iii) Let (τλ) = {z ∈ C : τλ(z) = 0} for all λ ∈ (−∞,∞) ∪ {±∞}, which is either empty

or countably infinite. Every zero of τλ gives rise to a double pole of uλ = −2(log τλ)′′.

(iv) If E has finite rank, then τ∞ is of exponential type and in CC . Conversely, if τ∞ is

of exponential type, then there exist αj ∈ C, α ∈ Z and β ∈ C such that

τ∞(z) = e2iαz+β
m∏
j=1

sin 2(z − αj) (8.15)

and

u(z) =
m∑
j=1

8

sin2 2(z − αj)
. (8.16)

Proof. (i) Observe that (λI + A)(λI − A)−1 is a polynomial in A with coefficients that are

rational functions of λ, and holomorphic except when λ is in the spectrum of A; in particular

it is holomorphic on {λ : |λ| < 1} ∪ {λ : |λ| > ‖A‖}. Hence τλ is a holomorphic function of λ,

except at the points where λ is in the spectrum of A, which is a finite set.

(ii) The approximation numbers aj satisfy an(e−zAEe−zA) ≤ ‖e−zA‖2an(E) and hence

by a standard bound on the determinant

log |det(I + e−zAEe−zA)| ≤ c0e2N |z|
∞∑
j=1

aj(E). (8.17)
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(iii) If τλ(z) = 0, then τλ(z + kπ) = 0 for all k ∈ Z.

(iv) There exists a projection P of finite rank ρ such that PEP = E and hence τ∞(z) =

det(I + PEPe−2zAP ), where Pe−2zAP is a finite matrix with entries that are in CC ; in

particular, the entries are functions of exponential growth. Hence from the expansion of this

determinant, we deduce that there exist c1, c2 > 0 such that |τ∞(z)| ≤ c1e2ρN |z|+c2 for all z.

Suppose conversely that τ is of exponential type. Then by Jensen’s formula, the number

of zeros of τ∞ inside a circle of radius r grows like c3r + c4 for some c3, c4 > 0, and since

τ∞ is also π-periodic, we deduce that there exists m < ∞ such that the only zeros of τ∞ in

{z : −π/2 < <z ≤ π/2} are α1, . . . , αm; there there exists an entire function g such that

τ∞(z) = eg(z)
m∏
j=1

sin 2(z − αj), (8.18)

where g is an entire function such that g(z + π)− g(z) = 2πi` for some ` ∈ Z. Since | sin(x+

iy)| → ∞ as y → ∞, we deduce that |g(z)| ≤ c5|z| + c6 for some c5, c6 > 0, and we finally

obtain g(z) = 2iαz + β where α ∈ Z.

By computing u = −2(log τ∞)′′, we obtain a potential as in (8.10), which is a rational

function of eix and e−ix. In particular, when m = 1 we have u(z) = 8/ sin2 2(z − α1), so we

can rescale this to the familiar case of Csech2z for some C.

Remark 8.4 The potential (8.16) can be interpreted in terms of a simple model in electrody-

namics, considered by Sutherland [45]. Consider m fixed unit charges placed at points eiαj on

a circular ring, and a further unit charge which has variable position eix on the ring. Then the

electrostatic energy of the moving charge is u. In section 10, we show how this can otherwise

be realised as a limiting case of periodic linear systems with elliptic potentials.

9. Tau functions and the Baker–Akhiezer function

Tau functions are intended to generalize Riemann’s theta function on an algebraic curve.

For any compact Riemann surface E of genus g, one can define a homology basis and a g-

dimensional space of Abelian differentials of the first kind. Then one defines a corresponding

lattice Λ of periods and a Jacobi variety J = Cg/Λ with a period matrix Ω, and hence

Riemann’s theta function θ(x | Ω) by (). Schottky [36, 44] asked how one can characterize

the θ functions that arise from compact Riemann surfaces amongst all the possible functions

θ(x | Ω) on Abelian varieties as in (4.1). In this section consider the Kadomtsev–Petviashvili

system of differential equations [50] that characterize those τ functions that arise from complete

algebraic curves. The KP differential equations reduce to KdV equations in specific cases,

and the KdV hierarchy is specifically associated with hyperelliptic curves. By considering the

specific form of Hankel operators, we deduce that hyperelliptic curves give the theta functions

that are most naturally associated with Hankel determinants as in Proposition 2.3. In this

section, we restrict attention to the case in which the input and output space are both C.

Given a tau function from a periodic linear system (−A,B,C;E), we consider the conditions

under which τ arises from the theta functions on a compact algebraic curve. First we consider

families of linear systems as in Theorem 8.2, with common A, which are parametrized by
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λ ∈ P1 \Spec(A) and time parameters (t1, t2, . . .), giving tau functions τλ(x, t). Initially x and

tj are real, and τλ(x, t) is π periodic in each variable, hence τλ(x, t) gives a periodic function

on the infinite real torus R∞/πZ∞; then we extend to complex x and tj , so that τλ(x, t) is

entire. By forming quotients of such functions, we aim to realise typical tau functions.

To introduce the required linear systems, we let

T = {(x, t1, t2, . . .) ∈ R∞ : lim sup
j→∞

|tj |1/j = 0} (9.1)

which gives an abelian group under addition, and for (x, t) ∈ T, let U(t) = exp(−
∑∞
j=1 tjA

2j+1),

which gives a multi parameter group of operators such that U(s + t) = U(s)U(t). Then we

replace Σ∞(0) = (−A,B,C;E) of Theorem 8.2 by

Σλ(t) =
(
−A, (λI +A)(λI −A)−1U(t)B,CU(t), (λI +A)(λI −A)−1U(t)EU(t)

)
(9.2)

for λ ∈ P1 \ Spec(A). Each Σλ(t) gives a space A0(t, λ) of potentials as in Theorem 8.2(iii),

while λ is a spectral parameter as in Proposition 8.5. Let (A0, d/dx) be the differential

ring generated by Σ as in Theorem 8.3(ii), and let (A∞, ∂/∂x, ∂/∂tj) be the differential ring

generated by all the Σλ(t); then A0 ⊆ A∞, and the inclusion splits by mapping tj 7→ 0 for all

j = 1, 2, . . . .

Definition (Baker–Akhiezer function) We define the quotient

ψBA(x, t;λ) = exp
(
xλ+

∞∑
j=1

tjλ
2j+1

)τ∞(x− 1
λ , t1 −

1
3λ3 , t2 − 1

5λ5 , . . .
)

τ∞(x, t1, t2, . . .)
(9.3)

to be the Baker–Akhiezer function of the periodic linear system (−A,B,C;E) under U(t).

This definition is consistent with section 2, but we cannot expect a precise analogue of

Proposition 2.5(iii), which expresses eigenfunctions in terms of ψBA. The term Baker–Akhiezer

function is used in various senses in the literature, as we briefly review.

Krichever [29] defines Baker–Akhiezer functions ψ(x, λ) for λ in a nonsingular algebraic

curve E , except at a distinguished finite set of points pj ∈ E which are independent of x, so

that λ 7→ ψ(x, λ) is meromorphic, and ψ(x, λ) has an exponential asymptotic expansion near

pj in terms of local coordinates; see [25]. One can construct such a function from quotients of

Riemann’s theta function. To deal with commuting families of differential operators of rank

greater than one, he introduces matricial ψ(x, λ) in [30].

Given a nonsingular algebraic curve E with distinguished point p, Shiota [44] introduces

Baker–Akhiezer functions as quotients of Riemann’s theta functions, so they are meromorphic

on E \ {p} by construction. In contrast, our ψBA ius defined for linear systems, irrespective of

whether there exists a suitable E .

Lemma 9.2 (i) The scattering function Φλ(x, y) = CU(t)e−xA(λI + A)(λI − A)−1U(t)B for

Σλ(t) satisfies
∂2j+1

∂x2j+1
Φλ(x, t) +

∂

∂tj
Φλ(x, t) = 0. (9.4)
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(ii) τλ(x, t) is holomorphic for (x, t, λ) ∈ C ×C∞× (P1 \Spec(A)), where C = C/πZ is the

complex cylinder.

(iii) λ 7→ ψBA(x, t, λ) is holomorphic on C \ Spec(A), while (x, t) 7→ ψBA(x, t, λ) is mero-

morphic and quasiperiodic with respect to the lattice πZ∞ in C∞.

Proof. (i) Since U(t) is actually analytic in each tj this is a straightforward computation.

(ii) First we observe that

τλ(x, t) = τ∞

(
x− 1

λ
, t1 −

1

3λ3
, t2 −

1

5λ5
, . . .

)
, (9.5)

which shows that our definition is consistent with Shiota’s [44]. To see this, we start with the

numerator and use the elementary identity,

(λI +A)(λI −A)−1 = exp
(

2

∞∑
j=1

A2j+1

(2j + 1)λ2j+1

)
, (9.6)

where the series
∑∞
j=1A

2j+1/(2j + 1)λ2j+1 converges for |λ > ‖A‖, so we can use this as a

definition of the right-hand side for all λ outside the spectrum of A. Hence we rearrange the

factors in the determinant

τλ(x, t) = det
(
I + (λI +A)(λI −A)−1U(2t)e−2xAE

)
. (9.7)

to obtain (9.4). Hence λ 7→ τλ(x, t) is holomorphic on P1 \Spec(A), and (x, t) 7→ τλ(x, t) is en-

tire in each variable sinceA is bounded. The spectrum ofA2j+1 is contained in {−iN2j+1,−i(N−
1)2j+1, . . . , iN2j+1}, so e2πA2j+1

= I, and by Theorem 8.2 τλ(x + π, t) = τλ(x, t); likewise

τλ(x, t) is unchanged by adding π to tj ; so τλ(x, t) is periodic with respect to πZ∞ in C∞.

(iii) The function
∑∞
j=1 tjλ

2j+1 is entire by the choice of (x, t) ∈ T, so λ 7→ ψBA(x, t, λ)

is holomorphic on C \ Spec(A). With (ej)
∞
j=0 the standard unit vector basis in T∞, we

deduce from (ii) that ψBA(x, t + πej , λ) = e2πλ2j+1

ψBA(x, t, λ), and (x, t) 7→ ψBA(x, t, λ) is

meromorphic.

In particular, suppose that τ(t) is the tau function that arises from a periodic linear system

as in Theorem 8.2. Given a linear map α : Cg → C∞ of rank g such that α(ej) ∈ Z∞ has

only finitely many non-zero entries with resepct to the standard bases, then αt : C∞ → Cg

satisfies αt(Z∞) ⊆ Zg. Then τ ◦ α : Cg → C is entire and periodic with respect to Zg.

Proposition 9.3 (Shiota and Mulase) Suppose that τ ◦α(t) = θ(t | Ω), where θ is Riemann’s

theta function for an Abelian variety X = Cg/Λ of dimension g; let Q(x, y, s) be a quadratic

form, let β, γ, δ, ζ ∈ Cg with β 6= 0, and for

σ(x, y, s; ζ) = eQ(x,y,s)θ(βx+ γy + δs+ ζ | Ω), (9.8)

let u(x, y, s; ζ) = −2 ∂2

∂x2 log σ(x, y, s; ζ). Then the following two conditions are equivalent:
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(i) the θ divisor is irreducible, and u satisfies the KP equation

∂

∂x

(∂3u

∂x3
+ 6u

∂u

∂x
− 4

∂u

∂s

)
+ 3

∂2u

∂y2
= 0, (9.9)

for all ζ ∈ Cg;

(ii) X is isomorphic to the Jacobian variety of a complete algebraic curve.

Proof. See [36, 44].

The solution u to KP is associated with a scattering function Ψ(x, z; s) as in (4.23). We

impose the extra condition Ψ(x, z; s) = φ(x+z; s), so that we can realise τ from the determinant

of a linear system. This in turn imposes additional conditions on the algebraic curve, as in the

following result. Following Krichever and Novikov [30], we consider the operators

L1 =
∂

∂x
−
[

0 1
u− k 0

]
, L2 =

∂

∂y
−
[
−k 0
0 −k

]
,

L3 =
∂

∂t
−
[ 1

4
∂u
∂x −k − u

2

k2 − ku
2 −

u2

2 + 1
4
∂2u
∂x2 − 1

4
∂u
∂x

]
(9.10)

note that k 7→ Lj is a polynomial for j = 1, 2, 3, and that trace(Lj) = 0.

Lemma 4.5 Suppose that φ(x; t) = CeλAt+2A3t/αe−xAB

(i) Then Ψ(x, z; t) = φ(x+ z; t) satisfies the scattering equations () for the KP equation.

(ii) Suppose that u(x, t) satisfies KdV

∂u

∂t
=

1

4

∂3u

∂x2
− 3

2
u
∂u

∂x
. (9.11)

Then u gives a solution to KP , and L1, L2 and L3 commute.

Proof. Then (3.6) implies that ∂Φ/∂y = 0, and hence reduces (4.13) to

α

2

∂φ

∂t
+
∂3φ

∂x3
+ λ

∂φ

∂x
= 0 (9.12)

which is the linear version of KdV . Further the KP equation degenerates to an equation of

KdV type, hence u gives a solution to KP. One checks by direct computation that the Lj
commute.

By Lemma 4.5, solutions of KdV give solutions of KP , and the corresponding scattering

functions give Hankel integral operators.

Consider Hill’s equation

d

dx

[
f
v

]
=

[
0 1

u− λ 0

] [
f
v

]
(−∞ < x <∞) (9.13)
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where u is continuous, complex-valued and π-periodic on R. Invoking Floquet’s theorem, we

let f±(x) = e±iαxp±(x) be solutions, where p±(x) are π-periodic. Suppose momentarily that

e2πiα 6= 1. Now let

Fλ(x) =

[
f+(x) f−(x)
f ′+(x) f ′−(x)

]
(9.14)

and note that detFλ(0) 6= 0; then let Uλ(x) = Fλ(x)Fλ(0)−1, which gives a fundamental

solution matrix with Uλ(0) = I. Now let Mλ = Uλ(0)−1Uλ(π) be the monodromy matrix,

which has the same eigenvalues eiαπ and e−iαπ as Fλ(0)−1Fλ(π); then let ∆(λ) = traceMλ be

the discriminant of Hill’s equation. Observe that when α is real, or equivalently eiαπ+e−iαπ ∈
[−2, 2], the matrix Fλ gives bounded solutions f±(x) to Hill’s equation on the real line. Hence

the Bloch spectrum {λ ∈ R : ∆(λ)2 ≤ 4} consists of those points such that Hill’s equation has

a pair of independent bounded solutions. Each oval On is associated with a gap in the Bloch

spectrum [19].

Definition The multiplier curve is {(λ, z) : z2 − ∆(λ)z + 1 = 0}, and potentials are said to

belong to the same spectral equivalence class if their multiplier curves are equal.

We now consider how the results of section 7 relate to the notions of Liouville integrability

and finite gap integration. The results of this section are essentially corollaries of some subtle

results proved elsewhere, and the most interesting relate to elliptic potentials.

Definition (Stationary KdV hierarchy) (i) Let g1 = −(1/4)u. Then the KdV recursion formula

is

4
d

dx
gm+1(x) = 8g1(x)

d

dx
gm(x) + 8

d

dx

(
g1(x)gm(x)

)
+

d3

dx3
gm(x). (9.15)

The solutions may depend upon constants of integration; if the constants of integration are

chosen all to be zero, so that g2 = (3/16)u2 − (1/16)u′′ etc, then the gm give the homoge-

neous KdV hierarchy. In this case, the differential equations gm = 0 are known as Novikov’s

equations; see [23, 24].

(ii) If u satisfies gm = 0 for all m greater than or equal to some m0, then u satisfies the

KdV hierarchy and is said to be an algebro-geometric (finite gap) potential.

The solutions of (8.1) turn out to be complicated polynomials in u and its derivatives, as

one can prove by induction. Nevertheless, we can express a solution gm simply in terms of bAc.
The following proposition is a compilation of known results, and included for completeness.

Proposition 8.8 Let (−A,B,C;E) be as in Theorem 8.2.

(i) Then the functions gm(x) = bA2m−1c for m = 1, 2, . . . satisfy the KdV recurrence

relation (8.1).

(ii) The complex vector space spanned by the gm is finite-dimensional.

(iii) If bA2m−1c = 0 for some m, then u is finite gap and there exists a hyperelliptic curve

E such that u ∈ KE and −ψ′′ + uψ = λψ is Liouville integrable over KE .

Proof. (i) By repeatedly using (8.1), one can prove that

d3

dx3
bA2m+1c = −96bA2m+4(I − 2F )(F − F 2)c+ 8bA2m+4(I − 2F )c, (9.16)
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and by (8.5) and (8.6)

d

dx

(
bAcbA2m+1c

)
= 8bA2m+4(I − 2F )(F − F 2)c; (9.17)

and the recurrence relation follows from such identities.

(ii) Let m be the minimal polynomial of degree N for the algebraic operator A. Then

for each entire function f , either f(A) = 0 or there exists a polynomial r of degree less than

or equal to N such that f(A) = r(A). Hence the span of the A2m−1 for m = 1, 2, . . . is

finite-dimensional, and hence its image under b . c is also finite-dimensional.

(iii) By Lemma 8.3, gm = 0, and so from the recurrence relation we deduce that gn = 0 for

all n ≥ m, so u is finite gap and C[λ, u, u′, u′′, . . .] = C[λ, u, u′, u′′, . . . , u(m+1)] is a differential

ring. Any solution of the stationary KdV equations is meromorphic on C [42, 6.10]. Let

λ0 < λ1 < . . . < λ2g be the simple zeros of 4−∆(λ)2 = 0, and introduce the spectral curve

E =
{

(z, w) : w2 =

2g∏
j=0

(z − λj)} ∪ {(∞,∞)
}
, (9.18)

Now there exists a solution ρ(x, λ) to Drach’s equation (8.2)

µ2 = −1

2
ρ(x, λ)ρ′′(x, λ) +

1

4
ρ′(x, λ)2 + (u(x) + λ)ρ(x, λ)2 (9.19)

such that µ(λ) is independent of x and λ 7→ ρ(x, λ) is a polynomial, which we factor as

ρ(x, λ) =
∏g
j=1(λ− γj(x)). Brezhnev [12] gives the solution

ψ±(x) = exp
( g∑
j=1

∫ γj(x) (w ± µ)dz

(z − λ)w

)
, (9.20)

where the integral is taken along E . Here u and its derivatives are rational functions on E ; see

[29, 43]. For such a potential u, the functions ψ± of () give locally meromorphic solutions to

Schrödinger’s equation.

Definition (Torus) Let (τ∞) = {pn : n = 1, 2, . . .} and On be the real oval in ∪λ∈(−∞,∞](τλ)

that is based upon pn. Then let T ∞R =
∏∞
n=1On and consider zλ = {zn : n = 1, 2, . . .} = (τλ)

with zn ∈ On. Then zλ ∈ T ∞R is the pole divisor of ψBA(x, λ) in the infinite real torus T ∞R .

Proposition 9.2 (i) The Baker–Akhiezer function ψBA(x;λ) belongs to a Liouvillian extension

of the field of fractions of A0 and satisfies, in the notation of Theorem 8.2,

ψBA(x, λ) = eλx det
(
I −

∫ ∞
x

T (x, y)eλ(y−x)dy
)

(<λ < 0). (9.21)

(ii) Suppose that Σ is a block diagonal direct sum ⊕∞j=1Σj , where Σj is a periodic linear

system with Tj as in Theorem 8.2. Then

ψBA(x, λ) = eλx
∞∏
j=1

det
(
I −

∫ ∞
x

Tj(x, y)eλ(y−x)dy
)

(<λ < 0). (9.22)
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(iii) Suppose that B and C have rank one. Then

−ψ′′BA(x, λ) + u(x)ψBA(x, λ) = −λ2ψBA(x, λ). (9.23)

(iv) If τλ has only simple zeros, then each zero of ψBA(z, λ) in (τλ) processes in a real

oval based at a pole of ψBA(z, λ) in (τ∞) as λ describes (−∞,∞). The pole divisor defines a

map Σλ 7→ zλ from the periodic linear system to the real torus T ∞R .

(v) If E has finite rank, then λ 7→ ψλ is meromorphic on C with the only possible poles

being on the spectrum of A.

(vi) Suppose that u has finite gap, so that its spectral curve E is hyperelliptic, and let p0

be a branch point. Then there exists a meromorphic function λ on E , and a pair of distinct

points pj , qj ∈ E for each point ij ∈ Spec(A), all independent of x, such that λ 7→ ψBA(x, λ)

is holomorphic on E \ {pj , qj : j = 0; ij ∈ Spec(A)}.

Proof. (i) We have u(x, λ) = −2(log τλ)′′ in A0 by Theorem 8.2, hence ψ′′BA(x, λ) belongs to

A0; we integrate this to obtain ψBA in some Liouville extension. By some simple manipula-

tions, we have

det
(
I +Rx(λI +A)(λI −A)−1

)
= det(I +Rx) det

(
I + (λI −A)−1(ARxx+RxA)(I +Rx)−1

)
(9.24)

where ARx +RxA = e−xABCe−xA, and hence

det
(
I +Rx(λI +A)(λI −A)−1

)
det(I +Rx)

= det
(
I + Ce−xA(I +Rx)−1(λI −A)−1e−xAB

)
, (9.25)

and
∫∞
x
eλ(y−x)e−yA = −(λI − A)−1e−xA, which leads to the stated identity. Moreover, the

right-hand side is analytic in λ when |λ| > ‖A‖, and ψBA(x, λ) = eλx(1+O(λ−1)) as |λ| → ∞.

By the proof of Theorem 8.2, d2

dx2 logψBA(x;λ) belongs to A0.

(ii) This follows immediately from (i).

(iii) We reduce to the case of the admissible linear system (−A − εI,B,C), which has

input and output space C, as in Proposition 2.5. For ε > 0, let R
(ε)
x = e−2εxe−xAEe−xA, so

that R
(ε)
x → 0 exponentially fast as x→∞, and R

(ε)
x satisfies the Lyapunov equations

− d

dx
R(ε)
x = (A+ εI)R(ε)

x +R(ε)
x (A+ εI), (9.26)

with

− d

dx
R(ε)
x |x=0 = BC + 2εE. (9.27)

Since BC and E are trace class, we can introduce τ
(ε)
∞ (x) = det(I +R

(ε)
x ) and

τ
(ε)
λ (x) = det(I +R(ε)

x (λI + εI +A)(λI − εI −A)−1), (9.28)
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whenever λ−ε is in the resolvent set of A; likewise we can introduce u(ε)(x) = −2 d2

dx2 log τ
(ε)
∞ (x).

Now the Baker–Akhiezer function

f (ε)(x, k) = eikx
τεik(x)

τ
(ε)
∞ (x)

(9.29)

satisfies

− d2

dx2
f (ε)(x) + u(ε)(x)f (ε)(x, k) = k2f (ε)(x, k); (9.30)

letting ε→ 0, we obtain

− d2

dx2
f(x) + u(x)f(x, k) = k2f(x, k); (9.31)

as required.

(iv) Clearly the poles of ψBA(z, λ) occur at the zeros of τ∞(z), and hence form the set

(τ∞), for all λ. The zeros of ψBA(z, λ) form the set (τλ), which does vary with λ. The subset

{(λI − A)(λI + A)−1 : λ ∈ R} of B(H) is compact in the norm topology since the spectrum

of A is separated from R; hence τλ gives a compact family of holomorphic functions for the

topology of uniform convergence on compact sets, with τ−∞(z) = τ∞(z). For each bounded

open subset Ω of C, the set {z ∈ Ω : τλ(z) = 0} has a uniformly bounded number of terms

for −∞ ≤ λ ≤ ∞, by Jensen’s formula and the Lemma 8.4. Each zero depends continuously

upon λ by the inverse function theorem, and describes an oval for −∞ ≤ λ ≤ ∞.

(v) Suppose that E has finite rank, and note that (λI + A)(λI − A)−1E is a rational

function with values in the space of operators on a finite-dimensional Hilbert space. Hence the

determinant τλ is meromorphic as a function of λ on P1.

(vi) Suppose that E has genus g ≥ 2, and choose p0 to be one of the 2g+2 branch points of

the holomorphic two sheeted cover E → P, and then observe that there exists a meromorphic

function λ on E such has precisely one pole, namely a double pole at p0, and hence has degree

two (When g = 1, we can use λ(p) = ℘(p− p0)).

The exponential exλ gives an essential singularity in the variable λ for p close to p0. As

in (iv), λ 7→ (λI +A)(λI −A)−1E is a rational function, with trace class values, and the only

possible poles are on the spectrum of A; hence p 7→ τλ gives a holomorphic function, except at

finitely many points of E , which we list as pj , qj for ij in the spectrum of A.

Definition Say that a periodic linear system (−A,B,C;E) is a Picard system if−ψ′′+uψ(x) =

λ2ψ has a meromorphic general solution ψ for all but finitely many λ ∈ C. See [25].

Suppose that (−A,B,C;E) is a Picard system. Then by elementary Floquet theory, there

exists a nontrivial solution ψ such that ψ(x+ π) = ρψ(x) for all x.

In section 11, we will produce linear flows on T ∞R from group actions on the linear system.

Given u ∈ KC , one can ask whether u is finite gap, and seek to find the spectral curve.

Gesztesy and Weikard found a conceptually simple characterization of elliptic potentials that

are finite gap, namely those that are Picard potentials. In the next section, we realise some

elliptic potentials u that are finite gap in terms of linear systems.
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10. Linear systems with elliptic potentials

In this section we produce explicit examples of periodic linear systems such that u is finite

gap, and the corresponding spectral curve E is of arbitrary genus.

Definition (Elliptic functions) Suppose that Λ = Z2ω1 +Z2w2 with =(ω2/ω1) > 0 is a lattice,

and let T = C/Λ is the torus, and C = Z/2πZ the cylinder. A meromorphic function on C is

elliptic (of the first kind) if it is doubly periodic with respect to Λ; let K1
T be the differential

field of elliptic functions. A meromorphic function is elliptic of the second kind if there exist

multipliers ρj ∈ C such that f(z + 2ωj) = ρjf(z); so that f is quasi-periodic with respect to

the lattice; let K2
T be the field of elliptic functions of the second kind. Also let K3

T be the

set of elliptic functions of the third kind, namely the meromorphic functions on C that satisfy

f(z + 2ωj) = eajz+bjf(z) for j = 1, 2 and some aj , bj ∈ C. Let MC be the differential field of

2π-periodic meromorphic functions; then KT ⊂ K2
T ⊂ K3

T ⊂MC , where all there spaces are

closed under multiplication. See [33].

First we shall obtain a representation for the coordinate ring CT of regular functions on

elliptic curve

T = {(X,Z) : Z2 = 4(X − e1)(X − e2)(X − e3)} ∪ {(∞,∞)}. (10.1)

Let θ1 be Jacobi’s elliptic theta function, θ∗1(z) be the entire function θ∗1(z) = θ1(z̄) and

let ℘ be Weierstrass’s elliptic function with real constants e3 < e2 < e1. Then (℘′)2 =

4(℘− e1)(℘− e2)(℘− e3) so a typical point on T is (X,Z) = (℘, ℘′); moreover K1
T = C(℘)[℘′].

Definition (Realising elliptic theta functions) (i) We refine the basic construction from [10]

so as to ensure that the various matrices commute. Let H = ⊕∞n=0C
2 be expressed as a space

of column vectors and let

J =

[
0 −1
1 0

]
, I =

[
1 0
0 1

]
; (10.2)

then for an elliptic nome 0 < q < 1, we introduce the block diagonal matrices on H with 2× 2

blocks, in which each top left corner is exceptional:

A0 =


(1/2)J 0 0 0 . . .

0 J 0 0 . . .
0 0 J 0 . . .
0 0 0 J . . .
...

...
...

...
. . .

 B0 = −


iI 0 0 0 . . .
0 2q2I 0 0 . . .
0 0 2q4I 0 . . .
0 0 0 2q8I . . .
...

...
...

...
. . .



C0 =


I 0 0 0 . . .
0 J 0 0 . . .
0 0 J 0 . . .
0 0 0 J . . .
...

...
...

...
. . .

 E0 = −


−iJ 0 0 0 . . .

0 q2I 0 0 . . .
0 0 q4I 0 . . .
0 0 0 q8I . . .
...

...
...

...
. . .

 (10.3)
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Then, with A† standing for the Hermitian conjugate of A, we introduce

A =

[
A0 0
0 A†0

]
, B =

[
B0 0
0 B†0

]
C =

[
C0 0
0 C†0

]
, E =

[
E0 0
0 E†0

]
(10.4)

Given λ ∈ C \ {±i}, we introduce α by (λI − J)(λI + J)−1 = I cos 2α − J sin 2α; so the

effect of multiplying B by (λI −A)(λI +A)−1 is equivalent to x 7→ x+ α.

Proposition 10.1. (i) The hypotheses of Theorem 8.4 are satisfied, so e−xAEe−xA defines a

trace class operator on H, and det(I + e−xAEe−xA) is an elliptic function of the third kind

which satisfies

θ1(x)θ∗1(x) = det
(
I + e−xAEe−xA

)
|q|1/2

∞∏
n=1

(1− q2n)2, (10.5)

where θ1(x)θ∗1(x) is entire and nonzero on C \ {jπ + ik log q : j, k ∈ Z}.
(ii) Let S = KC [I, A,B,C, F ]. Then S is a commutative and Noetherian ring of block

diagonal matrices with entries from KC ; furthermore, S is a complex differential ring for

(−A,B,C) on C/4πZ.

(iii) The potential u(x) = −4trace
⌊
A
⌋

is the elliptic function

u(x) = 4℘(x)− 4e1 − 2
(
log θ1θ

∗
1

)′′
(1/2). (10.6)

(iv) Then u(x, t) = u(x−ct) gives the general travelling wave solution of the Korteweg–de

Vries equation
∂3u

∂x3
= 3u

∂u

∂x
+
∂u

∂t
(10.7)

that has speed c = 4(e1 + e2 + e3)− 3e1 − (3/2)
(
log θ1θ

∗
1

)′′
(1/2).

(v) Let A0 = spanC{1, ℘(j)(x) : j = 0, 1, 2, . . .} and A be as in Lemma 3.2. Then

A0 = C[T ], and every element of A0 with zero constant term is the trace of some element of

A.

(vi) The scattering function satisfies

φ(x) =
−8q2

1− q2
sinx. (x ∈ R) (10.8)

Proof. (i) The matrix J satisfies the identities e−xJ = I cosx−J sinx and det(I−q2ne−2xJ) =

(1− 2q2n cos 2x+ q4n). We deduce that e−xA belongs to S and defines a unitary operator on

Hilbert space `2; evidently E is trace class. One can calculate

det(I + e−xA0E0e
−xA0) = 2i sinx

∞∏
n=1

(1− 2q2n cos 2x+ q4n)

=
iθ1(x)

q1/4
∏∞
n=1(1− q2n)

. (10.9)
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which reduces to a multiple of Jacobi’s function as in [33].

Let q = eiπω. Then θ1(x + π) = −θ1(x) and θ1(x + 2πω) = e−4ix−4iπωθ1(x), so θ1θ
∗
1

is periodic with period π, and θ1(x + 2πω)θ∗1(x + 2πω) = e−8i(x+πω)θ1(x)θ∗1(x), hence θ1θ
∗
1

is elliptic of the third kind. Using (8.13), one can easily show that the zero set of θ1 is

{jπ + ik log q : j, k ∈ Z}, and this coincides with the zero set of θ∗1 .

(ii) First note that (A2 + I)(A2 + I/4) = 0, so E = 2−1A−1BC belongs to S. It follows

directly from Theorem 8.2 that S is a differential ring for (−A,B,C). In this case A is similar

to −A, so there exists an invertible S such that AS + SA = 0, so the solution to (1.9) is not

unique.

Note that the 2× 2 matrices satisfy (I + iJe−xJ)(I − iJexJ) = 2i sinxI and

(I − q2ne−2xJ)(I − q2ne2xJ) = (1− q2n cos 2x+ q4n)I, (10.10)

so F is a block diagonal matrix with entries from KC [I, J ]. In terms of t = tanx/2, the nth

block has determinant 1+q4n−2q4n(1+ t4−6t2)/(1+ t2)2, which has simple zeros and double

poles for all n.

(iii) Using the identity (8.1), one checks that

d2

dx2
log θ1θ

∗
1 = 2tracebAc, (10.11)

then a standard result from elliptic function theory [33, p. 132] gives

℘(x) = −
(
log θ1(x)

)′′
+ e1 +

(
log θ1

)′′
(1/2), (10.12)

hence the result follows from (8.7).

(iv) We have the basic differential equation

℘′′ = 6℘2 − 4(e1 + e2 + e3)℘+ 2(e1e2 + e1e3 + e2e3). (10.13)

One can show that u(x−ct) is a solution by differentiating (8.35) again and then adjusting

the constants. Conversely, the expression u′′′ = 3uu′ − cu′ reduces to

(u′/4)2 = 4
(
(u/4)3 − (c/4)(u/4)2 + β(u/4) + γ), (10.14)

where β and γ are constants. By integrating this ordinary differential equation, we obtain

Weierstrass’s function.

(v) By induction, one can prove that for each n = 0, 1, 2, . . . , there exists a polynomial

qn(X) of degree n + 1 such that ℘(2n)(x) = qn(X); likewise by induction one can prove that

there exists a polynomial pn(X) of degree n such that ℘(2n+1)(x) = pn(X)Z. Hence

span{1, ℘(j)(x) : j = 0, 1, . . . , 2N} ⊆ span{Xj , XkZ : j = 0, . . . , N + 1; k = 0, . . . , N − 1}
(10.15)

and both spaces have dimension 2N + 2, so we have equality. We deduce that A0 = {p(X)Z+

q(X) : p(X), q(X) ∈ C[X]}, which is isomorphic to the ring C[X,Z] modulo the ideal (Z2 −
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4(X − e1)(X − e2)(X − e3)), which is an integral domain since T is irreducible. Hence A0 =

C[T ].

By repeatedly differentiating and using (8.18), we obtain

℘(x) = −trace
⌊
A
⌋

+ e1 + (1/2)
(
log θ1θ

∗
1

)′′
(1/2),

℘′(x) = −2trace
⌊
A(I − 2F )A

⌋
(10.16)

and likewise ℘(j) is the trace of a bPjc for some Pj ∈ A for j = 2, 3, . . ..

(vi) By definition
⌊
F−2

⌋
= Ce−2xAB. We observe also that C0e

−xA0B0 equals
−iI cos(x/2) + iJ sin(x/2) 0 0 . . .

0 −q2J cosx− q2I sinx 0 . . .
0 0 −q4J cosx− q4I sinx . . .
...

...
...

. . .

 (10.17)

so when we take the trace, we get

traceC0e
−xA0B0 = −2i cos(x/2)− 4q2

1− q2
sinx, (10.18)

and we obtain the stated result when we add the complex conjugate to get traceCe−xAB.

On a compact Riemann surface E , the divisor group D(E) = {δ =
∑
j nj(zj) : nj ∈ Z, zj ∈

E} is the free abelian group generated by the points of E , and the degree of the divisor δ is

deg(δ) =
∑
j nj . We let K]

E be the multiplicative group of non zero meromorphic functions on

E , where we identify f ∼ g if f = λg for some λ ∈ C \ {0}. Then by Liouville’s theorem, each

f ∈ K]
E corresponds to the principal divisor δ(f) =

∑
j njδ(zj) −

∑
jmjδ(pj), where zj is a

zero of f of order nj and pj a pole of f of order mj ; moreover, deg(f) = 0. By extension, we

can consider the notion of a divisor for ψBA(z;λ) as in Proposition 8.4, with the understanding

that there are infinitely many zeros and poles on C in a periodic array. In particular, elliptic

functions of the third kind give rise to divisors on the torus. We now use the notations τ and

σ to defer to tau functions of periodic linear systems as in Theorem 8.2. See [43].

First consider the group GC = {τ/σ : τ, σ ∈ CC} generated by linear systems with E of

finite rank. Then each τ/σ ∈ K]
C may be transformed by the change of variable t = tan z to

τ/σ ∈ K]
P1 and hence gives a divisor δ(τ/σ) on the Riemann sphere. One can check that all

divisors of degree zero on the Riemann sphere arise in this way.

Next consider C/Λ. The torus T may be identified with the quotient group of divisors of

degree zero modulo the group of principal divisors, known as the Jacobi variety. We consider

τ(x) = eax
2+bx+c

∏n
j=1 θ1(x− aj)∏m
j=1 θ1(x− bj)

, (10.19)

which is meromorphic with divisor (τ) =
∑
j(aj)−

∑
k(bk) on some cell of the quotient space

C/Λ so deg(τ) = n−m. The following results are consequences of Abel’s theorem [29].
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(1) If deg(τ) = 0,
∑n
j=1(aj − bj) ∈ Λ and a = b = 0, then τ is elliptic of the first kind.

(2) If deg(τ) = 0 and a = 0, then τ is elliptic of the second kind.

(3) τ is elliptic of the third kind and u = −2(log τ)′′ is elliptic of the first kind. If m = 0,

then τ is entire, and u has poles at the aj for j = 1, . . . , n.

Lemma 10.2 (i) For each positive divisor (δ) on C/Λ, there exists a periodic linear system

with tau function τ as in Theorem 8.1 such that (δ) equals the divisor of the zeros of τ .

(ii) Any trivial theta function arises from the quotient of theta functions for Gaussian

linear systems on R. The effect of multiplying by a trivial theta function τ 7→ e−Q/2τ is to

take u 7→ u+ q0 for some constant q0.

Proof See above.

Consider elliptic functions for the curve T = {(x, y) : y2 = 4x3 − g2x − g3} ∪ {(∞,∞)}
with Klein’s invariant J = g3

2/(g
3
2 − 27g2

3). By forming the trace in u = −4tracebAc, we

are undergoing a limiting process which takes us from KC to MC , which includes the elliptic

functions. Thus we can obtain an analogue of Corollary 8.3 for the elements that appear in

finite algebraic extensions of the elliptic function field on T . If u is algebraic over the elliptic

function field, then u is realised via a periodic linear system.

Remark 10.3. (Integrable quantum systems) Having constructed the potential ℘ from a

periodic linear system, we can produce a family of Hankel kernels and potentials from standard

limiting arguments which are associated with exactly solvable problems in quantum mechanics.

Consider an interacting system of N identical particles at positions xj on the real line which

interact only pairwise, and where the strength of the mutual interaction of particles j and k

depends only upon their separation xj − xk via a potential u; then the Hamiltonian is

H = −1

2

N∑
j=1

∂2

∂x2
j

+
∑

1≤j<k≤N

u(xj − xk). (10.20)

In each of the following, γ and the potential u are meromorphic functions on a Riemann surface

E and ψ satisfies the addition rule

ψ(x+ y) =
ψ′(x)ψ(y)− ψ(x)ψ′(y)

γ(x)− γ(y)
. (10.21)

where u(x) = ψ(x)2 + γ(x) + c with c constant.

E u(x) ψ(x) γ(x) τ(x)
P1 g(g + 1)/x2 (g + 1)/x −(g + 1)/x2 xg(g+1)/2

C/πZ g(g + 1)cosec2x (g + 1) cotx −(g + 1)cosec2x (sinx)g(g+1)/2

C/πiZ g(g + 1)cosech2x (g + 1) cothx −(g + 1)cosech2x (sinhx)g(g+1)/2

C/Λ 2℘(x | Λ) ψ2(x, α) −℘(x | Λ) θ1(x | Λ)

(10.22)

In the last line of this array we have introduced

ψ2(x, α) = −2q1/4e(ζ(α)−2αη1/π)x
∞∏
n=1

(1− q2n)3 θ1(x− α)

θ1(α)θ1(x)
, (10.23)
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which satisfies Lamé’s equation − d2

dx2ψ2(x, α) + 2℘(x)ψ2(x, α) = −℘(α)ψ2(x, α), and is such

that α 7→ ψ2(x, α) is elliptic and x 7→ ψ2(x, α) is elliptic of the second kind; moreover

ψ2(x, α)ψ2(−x, α) = ℘(α)− ℘(x). By Lemma 10.2, ψ2(x, α) can be expressed as a quotient of

tau functions from periodic linear systems as in Lemma 8.1, and Gaussian linear systems as

in Lemma 4.4.

The example in the final line is fundamentally important since one can obtain the periodic

and rational potentials as limiting cases of the elliptic potential. We write Λ = Z2ω1 + Z2ω2

where ω1, ω2/i > 0. Then we have the thermodynamic limit

2℘(x | Z2ω1 + Z2ω2)→ 2(π/2ω2)2cosech2(πx/2ω2)− π2/6ω2
2 (ω1 →∞) (10.24)

and in contrast the high density limit

2℘(x | Z2ω1 + Z2ω2)→ 2(π/2ω2)2cosec2(πx/2ω1)− π2/6ω2
1 (ω2/i→∞); (10.25)

when one limit is applied after the other, we have the limiting potential u(x) = 2/x2. Krichever

shows that the system with u(x) = 2℘(x) is integrable in the sense that there exists a compact

Riemann surface YN which covers the elliptic curve N -fold, and the solution of the Hamiltonian

dynamical system can be expressed in action-angle variables with the angles in the Jacobi

variety of YN .

For any finite gap u ∈ MC , the solutions of −ψ′′ + uψ = λψ are parametrized by the

hyperelliptic spectral curve Y, punctured at infinity, and there is a meromorphic covering map

Y → P1. One can use Lam’́e’s equation to produce explicit covering maps Y → T of the

elliptic curve by hyperelliptic curves of arbitrary genus. To describe such elliptic covers in

terms of linear systems, one can use the following result.

Proposition 10.4 Let u be a nonconstant elliptic function on T .

(i) K = C(u)[u′] is a differential field, which is produced from a periodic linear system.

iii) Let A be a finitely generated algebra over K, let P be a maximal ideal in A and

z ∈ A/P. Then there exists an algebraic curve Y with a finite cover Y → T such that z may

be identified with a rational function on Y, and K[z] is a differential field.

(iii) For generic values of J and ` = 1, 2, . . ., there exists a hyperelliptic curve Y` of genus

` and a holomorphic covering map Y` → T of degree `(`+ 1)/2.

Proof. (i) By a classical theorem, there exists a polynomial P ∈ C[x, y] such that P (u, u′) = 0,

and hence u′ is algebraic over C(u), so K is a field, and closed under differentiation.

(ii) By the weak Nullstellensatz [4], A/P is a finite algebraic extension of K. Hence we let

u0, . . . , un−1 ∈ K be elliptic function, which may be realised as in Proposition 10.1 as quotients

of tau functions from periodic linear systems. By classical results on Riemann surfaces, the

characteristic equation

det


z −1 0 . . .
0 z −1 . . .
...

...
. . .

. . .

u0(x) u1(x) . . . z + un−1(x)

 = 0 (10.26)
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determines an algebraic function z(x). Thus we can produce a Riemann surface Y and an

n-sheeted holomorphic covering π : Y → T . Then K[z] is a finite algebraic extension of the

differential field K, and hence a differential field.

(iii) Whereas it is not known which curves Y give covers of typical T , one can produce

explicit examples by means of Lamé’s covers, as in [31]. Lamé’s equation −y′′+`(`+1)℘y = ν2y

is the prototypical example of an elliptic finite gap potential, and has solutions are thoroughly

described in [27]. By introducing new variables (X,Z) = (℘(x), ℘′(x)) for T and a fixed g ∈ N,

we can express Lamé’s equation as

−
(
Z

d

dX

)2

Ψ(X)− 2κ
(
Z

d

dX

)
+ `(`+ 1)XΨ(X) +BΨ(X) + κ2Ψ(X) = 0 (10.27)

and use d/dx = Zd/dX. Clearly, the elliptic function field is K0 = C(X)[Z].

For each integer `, let L` be Lamé’s spectral polynomial of degree 2` + 1, and Y` =

{(B, ν) : ν2 = L`(B)} the corresponding hyperelliptic curve. For generic values of Klein’s

invariant g3
2/(g

3
2 − 27g2

3), the curve Y` is nonsingular and has genus g = `; whereas for the

exceptional values Y` is singular and g may decline to ` − 1. The exceptional values of J are

given by the Cohn polynomials as listed in [31]. There is a covering map π` : Y` → T , and

the resulting values (x, y) on T are explicit rational functions of (B, ν) on Y` which are given

in terms of the Lamé and twisted Lamé polynomials in [31]. Thus one can produce specific

examples of hyperelliptic curves of genus g = 2, 3, . . . which give finite covers π` : Y` → T .

Then f 7→ f ◦ π` gives a field homomorphism KT → KY` , and for each nonconstant g, f ◦ π in

KY` there exists a non-zero polynomial P such that P (g, f ◦ π) = 0.

The differential equation is finite gap, in the sense that the Bloch spectrum is [E0, E1] ∪
[E2, E3] ∪ . . . ∪ [E2`,∞), where Ej are the zeros of L`(B) = 0. The spectral curve has points

of ramification Ej for j = 0, . . . , 2`, and (10.9) has solutions of the first kind

Ψ = (C(X) +D(X)Z) exp
(
κ

∫
dX

Z

)
(10.28)

or of the second kind

Ψ =
(
E(X)

√
X − ej +

F (X)Z√
X − ej

)
exp
(
κ

∫
dX

Z

)
(10.29)

where κ ∈ C is a spectral parameter and C(X), D(X), E(X) and F (X) are complex polynomi-

als, depending on `, ej , κ and B; see [27]. For B = Ej , with j = 0, . . . , 2`, one can take κ = 0,

and obtain Lamé’s polynomial solutions of the first or second kind for (10.9). However, for

typical spectral points, one requires κ 6= 0 and the solutions involve Lamé polynomials twisted

by the exponential factor. There exists a polynomial P` of degree `− 1 such that∫
P`(B)dB√
L`(B)

=

∫
dx√

4x3 − g2x− g3

(10.30)

reduces the hyperelliptic integral on the left-hand side to the elliptic integral on the right,

which is the inverse function of ℘.
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Definition (Differential Galois group [46]) Let U be a fundamental solution matrix of Hill’s

equation
d

dx

[
ψ
ξ

]
=

[
0 1

u− λ 0

] [
ψ
ξ

]
(10.31)

with detU(0) = 1 and let PV be the Picard–Vessiot ring over C that is generated by the entries

of U ; then let L be the field of fractions of PV. The differential Galois group DGal(L; C) is

the set of C-linear field automorphisms of L that commute with d/dx.

We now characterize finite gap elliptic potentials in terms of periodic linear systems.

Theorem 10.5 Consider (10.31), where u is elliptic.

(i) Then u may or may not be finite gap.

(ii) Suppose that (10.31) has a general solution ψλ(x) that is a quotient of τ functions

from periodic linear systems for all but finitely many λ ∈ C. Then u is finite gap.

(iii) Conversely, suppose that u is finite-gap. Then for all but finitely many λ ∈ C, (10.31)

has a solution ψλ(x) that is the quotient of tau functions arising from periodic linear systems

as in Theorem 8.2 and Gaussian linear systems. Also, deg[K1
T : K0] is finite.

(iv) Let M be a finite dimensional differentiable manifold of elliptic functions on the torus

that is invariant and differentiable with respect to the flow associated with KdV and that

some u ∈ M , where u is finite gap. Then there exists a family Σt = (−A,B(t), C;E(t)) of

periodic linear systems such that u(x, t) is the potential from Σt, and Σt evolves according to

a finite-dimensional Hamiltonian system.

Proof. (i) The Treibich–Verdier potentials of the form

u(z) = a0 +
4∑
j=1

cj℘(z − aj), (10.32)

are finite gap if and only if cj = dj(dj + 1) for some dj ∈ Z for j = 1, . . . , 4, a0 ∈ C and the

the poles satisfy a3 = a1 + a2 and a4 = 0. The corresponding tau function is

τ(z) =
4∏
j=1

θ1(z − aj)dj(dj+1)/2 ∈ K3
T , (10.33)

where the exponents are triangular numbers. Whereas one can realise such tau functions from

periodic linear systems by means of Proposition 10.1, one can likewise produce tau functions

corresponding to elliptic potentials that are not of the form (10.33).

(ii) Gesztesy and Weikard [25] considered −ψ′′ + uψ = λψ for u ∈ K1
T , and showed that

u is finite gap if and only if u is a Picard potential. If ψ is a quotient of τ functions, then ψ is

meromorphic and hence u is a Picard potential.

(iii) Suppose that (10.31) has a meromorphic solution. Then by a theorem of Picard [25],

there exists a solution ψ that is elliptic of the second kind, hence has the form (10.19) with

a = 0 and degree zero. By inspecting the differential equation, we see that the only possible

poles of u are contained in the set {a1, . . . , an; b1, . . . , bn}. By Proposition 10.7, each factor
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θ1(x − aj) or θ1(x − bj) arises from the tau function of a periodic linear system, while the

factor ebx is a quotient of Gaussian tau functions. By [29, p. 96], u′ is algebraic over C(u)

and we have K0 = C(u)[u′] and deg[K1
T : K0] < ∞. Let Vλ be the solution space of (10.15),

and observe that DGal(L; K0) operates on Vλ component-wise; in particular, the monodromy

operators Tj : Ψ(z) 7→ Ψ(z+ 2ωj) are commuting operators such that Tj(Vλ) ⊆ Vλ for j = 1, 2

since u is elliptic, so we can take Λ to be the group generated by T1 and T2. Let Ψ1 ∼ Ψ2

if Ψ1 = cΨ2 for some constant c ∈ C \ {0}; then let V ∗λ = (Vλ \ {0})/ ∼. Then with ψ

the solution that is elliptic of the second kind, Ψ = column [ψ ψ′ ] ∈ Vλ, gives a common

eigenvector T1Ψ = ρ1Ψ and T2Ψ = ρ2Ψ, so γΨ ∼ Ψ for all γ ∈ Λ; hence Ψ gives an element of

(V ∗λ : Λ). Furthermore, if T1 or T2 has distinct eigenvalues as an operator on Vλ, then there

exists a fundamental system of elliptic functions of the second kind, so (V ∗λ : Λ) is isomorphic

to P1.

(iv) Airault, McKean and Moser showed [2, Corollary 1] that any such flow of potentials

has the form

u(z, t) =
m∑
j=1

2℘(z − aj(t)) + c (10.34)

where the moving poles aj(t) lie on the manifold defined by the constraints

0 =
m∑

j=1;j 6=k

℘′(aj − ak) (k = 1, . . . ,m). (10.35)

and satisfy the system of nonlinear differential equations

dak
dt

= 6
m∑

j=1;j 6=k

p(aj − ak) (k = 1, . . . ,m) (10.36)

In an evident analogy with (10.16), the Hamiltonian

H =
1

2

m∑
j=1

p2
j +

12

2

n∑
j 6=k:j,k=1

℘(aj − ak)2 (10.37)

gives this system of differential equations for the aj ; see [15].

We can realise 2℘(x) as the potential of a periodic linear system (−A,B,C;E), and hence

we can realise u(z, t) as the potential of the periodic linear system

Σt =

m⊕
j=1

(
−A, eaj(t)AB,C; eaj(t)AE

)
. (10.38)

See [10] for more details of the construction and [15] for further information on the dynamics

of the poles under KdV flows.

Remark. We leave it as an open problem to characterize all finite gap cases of Hill’s equation

in terms of periodic linear systems.
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11. Differential rings related to the KdV hierarchy

Let (e−xA)x∈R be a bounded C0 group of operators on H, so A is similar to a skew

symmetric operator; then by the spectral theorem, (e−tA
3

)t∈R also forms a bounded C0 group

on H. We allow C : H → C and B : C → H to evolve through time so that C = C0e
−tA3

and B = e−tA
3

B0 for some initial C0 : H → C and B0 : C → H, and correspondingly

R(x, t) = e−tA
3

Rxe
−tA3

. The formulas involving C,B and R are symmetrical with respect to

time evolution, since B and C both evolve under the same group. In contrast to Theorem

8.2, we do not assume that A commutes with BC; that BC here will typically have rank one,

whereas A will have infinite rank. The operation of ∂
∂tj

on det(I − R2
x) is described by the

Lyapunov equation (1.10) in the form of the following commutator identity

[[
0 1
1 0

]
∂

∂tj
−
[

0 A2j+1

A2j+1 0

]
,

[
R 0
0 −R

]]
= −2

[
R 0
0 −R

] [
0 1
1 0

]
∂

∂tj
, (11.1)

which is analogous to (19) in [30] and contrasts with Proposition 3.4.

Proposition 11.1 Suppose that A is bounded and let Fx = (I +R)−1. Then

A = spanC

{
An1 , An1FxA

n2 . . . FxA
nr : n1, n2, . . . , nr ∈ N

}
(11.2)

is a differential subring of C∞((0,∞)2; B(H)), and the map b . c : A→ C∞((0,∞)2; C)⌊
P
⌋

= Ce−xAFxPFxe
−xAB (11.3)

has range bAc, where bAc is a differential ring with pointwise multiplication and derivatives

∂/∂x and ∂/∂t1.

Proof. As in Lemma 3.2, the basic relations are

∂

∂x

⌊
P
⌋

=
⌊
A(I − 2Fx)P +

∂

∂x
P + P (I − 2Fx)A

⌋
, (11.4)

∂

∂t1

⌊
P
⌋

=
⌊
A3(I − 2Fx)P +

∂

∂t
P + P (I − 2Fx)A3

⌋
,⌊

P
⌋⌊
Q
⌋

=
⌊
P (AFx + FxA− 2FxAFx)Q

⌋
. (11.5)

Indeed it follows from the Lyapunov equation (1.8) that Fx satisfies the differential equa-

tions
∂Fx
∂x

= AFx + FxA− 2FxAFx, (11.6)

∂Fx
∂t1

= A3Fx + FxA
3 − 2FxA

3Fx (11.7)

and hence the derivatives from the first and last factors in (11.10) satisfy

∂

∂x
Ce−xAFx = Ce−xAFxA(I − 2Fx),

∂

∂x
Fxe

−xAB = (I − 2Fx)AFxe
−xAB; (11.8)
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∂

∂t
Ce−xAFx = Ce−xAFxA

3(I − 2Fx);
∂

∂t
Fxe

−xAB = (I − 2Fx)A3Fxe
−xAB. (11.9)

By applying Leibniz’s rule, we deduce that bAc is closed under ∂/∂x and ∂/∂t1. Furthermore

Fxe
−xABCe−xAFx = AFx + FxA− 2FxAFx, (11.10)

so bAc is closed under multiplication, and the product rule (11.8) holds.

The pole divisor zλ(t) is determined by {zn(t) : ψBA(zn(t), t;λ) = 0} and is associated

with the potential uλ(x; t) = −2 d2

dx2 log τλ(x, t). In this section, we introduce dynamical sys-

tems on T ∞R such that uλ(x, t) undergoes the nonlinear evolution associated with the KdV

hierarchy. To obtain KdV (2n+ 1), we vary tn while fixing tj for j 6= n.

Lemma 11.2 Suppose that C0A
4 : H → C and A4B0 : C→ H are bounded.

(i) Then the scattering function φ(x; t1) = C0e
−2t1A

3−xAB0 satisfies the linearized Ko-

rteweg –de Vries equation
∂φ

∂t1
= 2

∂3φ

∂x3
. (11.11)

(ii) Let v(x, t1) be as in (2.2), so that

v(x, t) = −C0e
−xA−t1A3

(I +R)−1e−xA−t1A
3

B0; (11.12)

and let u(x, t1) = −2 ∂v∂x . Then

u(x, t) = −2
∂2

∂x2
log det(I +R) (11.13)

belongs to bAc and satisfies the KdV equation

4
∂u

∂t1
=
∂3u

∂x3
+ 12u

∂u

∂x
. (11.14)

Proof. (i) This follows from a simple computation.

(ii) We have the following table of derivatives

∂v

∂x
= 2bAc;

∂2v

∂x2
= 4bA2c − 8bAFxAc;

∂3v

∂x3
= 8bA3c − 24bA2FxA+AFxA

2c+ 48bAFxAFxAc; (11.15)

We shall prove that

4
∂v

∂t1
=
∂3v

∂x3
+ 6
(∂v
∂x

)2

, (11.16)
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which leads to the result for u. By (11.18)(∂v
∂x

)2

= b4A2FA+ 4AFA2 − 8AFAFAc. (11.17)

For comparison we have ∂v
∂t = 2bA3c; hence we obtain (11.16).

Moreover by Lemma 11.3, bAc contains u(x, t1) = 2Ce−xAFAFe−xAB and all its deriva-

tives. Observe that

−2
∂

∂x
v(x, t1) = −4bAc = u(x, t1) (11.18)

belongs to bAc and satisfies the identity (11.13); moreover, all the partial derivatives of u also

belong to the differential ring bAc.

We now point out some particular solutions which are realised via Lemma 11.3, some of

which were also noted by Pöppe [39]. Let λj be distinct complex numbers for j = 1, . . . ,m,

such that <λj > 0, and let H = span{xje−λ`x : j = 0, . . . , n` − 1; ` = 1, . . . ,m}, which we

view as a subspace of L2(0,∞), and let A = − d
dx on H.

Corollary 11.3 (Solitons) (i) Then (e−sA)s∈R defines a C0 group of operators on H such that

‖e−sA‖ < 1 for s > 0, and φ(x; t1) satisfies ∂φ
∂t1

= 2∂
3φ
∂x3 , and u(x; t1) ∈ C(x, t1, e

−λjx, e−2λ3
j t1)

satisfies KdV .

(ii) In particular, suppose that A has distinct and simple eigenvalues, and that B0 =

(bj) ∈ Cn×1 and C0 = (cj) ∈ C1×n. Then

det(I + µRx) =

N∑
m=0

µm
∑

σ⊆{1,...,N},]σ=m

∏
j∈σ

bjcje
−2λ3

j t1−2λjx
∏

j,k∈σ:j 6=k

λj − λk
λj + λk

(11.19)

Proof. (i) The group e−sA operates as translations e−sAf(x) = f(x + s), and hence e−sA

is a strict contraction on the finite dimensional space H = Cn for s > 0. In effect, we have

returned to the setting of Proposition 2.2. The generator is −A = d/dx, and can introduce

A3 = −d3/dx3 and the group e−t1A
3

which is associated with the linearized Korteweg de Vries

equation. By Lemma 11.3, u satisfies the KdV equation (11.23), and by Theorem 3.1, u is

rational in the basic variables.

(ii) Apply Proposition 2.4 and Lemma 11.3.

Let H = L2(−∞,∞) and as in section 5, we can take Af(x) = −f ′(x) and we note that e−tA
3

is the Airy group

e−tA
3

f(y) =
1

2π

∫ ∞
−∞

f̂(ξ)e−itξ
3+iyξ dξ. (11.20)

Then with g ∈ D(A4) we choose B0 : α 7→ g(y)α and C0 : f 7→ f(0), and let

γn = (−1)n
∫ ∞
−∞

ĝ(ξ)
(iξ + 1)n

(−iξ + 1)n+1

dξ

π
. (11.21)
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Corollary 11.4 (Non solitons) Let g ∈ D(A4) have
∑∞
n=0(1+n)|γn| < 1. Then φ(x; t) satisfies

(11.17) and u(x; t) satisfies ().

Proof. By Plancherel’s formula we identify D(A4) = {g ∈ L2 :
∫∞
−∞(1 + ξ8)|ĝ(ξ)|2dξ < ∞},

so the maps are well defined. By a simple calculation, have

Rxf(y) =

∫ ∞
x

g(y + s)f(s) ds, (f ∈ L2(0,∞)) (11.22)

so in particular R0 is the Hankel integral operator with kernel g(y + s). Hence R0 is unitarily

equivalent to [γj+k]∞j,k=0 on `2, which by the hypotheses is a trace class operator; likewise, Rx
is trace class. Furthermore, I + Rx is invertible, and the inverse F is given by a Neumann

series. Given these facts, we can apply Lemma 11.3.

For m ≥ 4, We can choose g(x) = I(0,∞)(x)xme−x in Corollary 11.6. Whereas the choice

of g(y) = δ0 is technically inadmissible, the resulting expression φ(x; t) = t−1/3Ai(−x/(6t)1/3)

does give a solution of (11.14).

Proposition 11.5 Suppose that C0A
6 : H → C and A5B0 : C→ H are bounded.

(i) Then the scattering function φ(x; t2) = C0e
−2t2A

5−xAB0 satisfies

∂φ

∂t2
= 2

∂5φ

∂x5
. (11.21)

(ii) Let v(x) = T (x, x), so that

v(x, t) = −C0e
−xA−tA5

(I +R)−1e−xA−t2A
5

B0. (11.22)

Then u(x, t2) = ∂v
∂x satisfies the KdV(5) equation

16
∂u

∂t2
=
∂5u

∂x5
+ 10u

∂3u

∂x3
+ 20

∂u

∂x

∂2u

∂x2
+ 30u2 ∂u

∂x
. (11.23)

Proof. We shall prove that

16
∂v

∂t2
=
∂5v

∂x5
+ 10

∂3v

∂x3

∂v

∂x
+ 5
(∂2v

∂x2

)2

+ 20
(∂v
∂x

)6

. (11.24)

The basic identities required follow from (), namely

∂4v

∂x4
= 16bA4c − 64bA3FxA+AFxA

3c − 96bA2FxA
2c

+ 112bA2FxAFxA+AFxA
2FxA+AFxAFxA

2c − 384bAFxAFxAFxAc; (11.25)

∂5v

∂x5
= 32bA5c − 160bA4FxA+AFxA

4c − 320bA3FxA
2 +A2FxA

3c

+ 640bA3FxAFxA+AFxA
3FxA+AFxAFxA

3c
+ 960bA2FxA

2FxA+A2FxAFxA
2 +AFxA

2FxA
2c

− 1920bA2FxAFxAFxA+AFxA
2FxAFxA+AFxAFxA

2FxA+AFxAFxAFxA
2c

+ 3840bAFxAFxAFxAFxAc. (11.26)
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Using these, one checks that () holds.

Suppose that bP c = CU(t)e−xAFxPFxe
−xAU(t)B and that Fx and A commute. Then

−4
∂

∂t
bAc+

∂3

∂x3
bAc − 8

(∂x
∂
bAc

)
bA2m+1c+ 16

∂

∂x

(
bAcbA2m+1c

)
= 0. (11.27)

Proof. We can obtain the following identities by repeatedly using the basic calculus rules

∂

∂t
bAc = b2A2m+4 − 2A2m+3FA− 2AFA2m+3c; (11.28)

bAc ∂
∂x
bA2m+1c = b2AFA2m+3 + 2A2FA2m+2 − 2AFA2m+2FA

− 4AFAFA2m+2 − 2A2FAFA2m+1 − 2AFA2FA2m+1

− 2A2FA2m+1FA+ 4AFAFAFA2m+1 + 4AFAFA2m+1FAc;(11.29)

( ∂
∂x
bAc

)
bA2m+1c = b2A3FA2m+1 + 2A2FA2m+2 − 4A2FAFA2m+1 − 4AFA2FA2m+1

− 4AFAFA2m+2 + 8AFAFAFA2m+1c; (11.30)

∂3

∂x3
bA2m+1c = b8A2m+4 − 24A2m+3FA− 24AFA2m+3 − 24A2m+2FA2 − 24A2FA2m+2

+ 48A2m+2FAFA+ 48AFA2m+2FA+ 48AFAFA2m+2 − 8A2m+1FA3 − 8A3FA2m+1

− 8A3FA2m+1 + 24A2m+1FA2FA+ 24A2m+1FAFA2 + 24A2FA2m+1FA

+ 24AFA2m+1FA2 + 24A2FAFA2m+1 + 24AFA2FA2m+1

− 48A2m+1FAFAFA− 48AFA2m+1FAFA− 48AFAFA2m+1FA

− 48AFAFAFA2m+1c (11.31)
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[31] R. S. Maier, Lamé polynomials, hyperelliptic reductions and Lamé band structure, Philos.
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[39] C. Pöppe, The Fredholm determinant method for the KdV equations, Physica 13 D (1984),

137–160.
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