Electrically tunable band gap in silicene

Drummond, Neil and Zolyomi, Viktor and Falko, Vladimir (2012) Electrically tunable band gap in silicene. Physical review B, 85 (7). ISSN 1550-235X

[img]
Preview
PDF
e075423.pdf - Published Version

Download (604kB)

Abstract

We report calculations of the electronic structure of silicene and the stability of its weakly buckled honeycomb lattice in an external electric field oriented perpendicular to the monolayer of Si atoms. The electric field produces a tunable band gap in the Dirac-type electronic spectrum, the gap being suppressed by a factor of about eight by the high polarizability of the system. At low electric fields, the interplay between this tunable band gap, which is specific to electrons on a honeycomb lattice, and the Kane-Mele spin-orbit coupling induces a transition from a topological to a band insulator, whereas at much higher electric fields silicene becomes a semimetal.

Item Type:
Journal Article
Journal or Publication Title:
Physical review B
Additional Information:
©2012 American Physical Society
Uncontrolled Keywords:
/dk/atira/pure/researchoutput/libraryofcongress/qc
Subjects:
ID Code:
53305
Deposited By:
Deposited On:
21 Mar 2012 09:25
Refereed?:
Yes
Published?:
Published
Last Modified:
23 Oct 2020 01:44