
PHYSICAL REVIEW A 85, 023423 (2012)

Causality and quantum interference in time-delayed laser-induced nonsequential double ionization
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We perform a detailed analysis of the importance of causality within the strong-field approximation and the
steepest-descent framework for the recollision-excitation with subsequent tunneling ionization (RESI) pathway
in laser-induced nonsequential double ionization (NSDI). In this time-delayed pathway, an electron returns to its
parent ion and, by recolliding with the core, gives part of its kinetic energy to excite a second electron at a time
t ′. The second electron then reaches the continuum at a later time t by tunneling ionization. We show that, if t ′

and t are complex, the condition that recollision of the first electron occurs before tunnel ionization of the second
electron translates into boundary conditions for the steepest-descent contours and thus puts constraints on the
saddles to be taken when computing the RESI transition amplitudes. We also show that this generalized causality
condition has a dramatic effect on the shapes of the RESI electron momentum distributions for few-cycle laser
pulses. Physically, causality determines how the dominant sets of orbits of an electron returning to its parent
ion can be combined with the dominant orbits of a second electron tunneling from an excited state. All features
encountered are analyzed in terms of such orbits and their quantum interference.
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I. INTRODUCTION

Phenomena occurring in the interaction of matter with in-
tense, low-frequency laser fields, such as high-order harmonic
generation (HHG), above-threshold ionization (ATI), and
laser-induced nonsequential double ionization (NSDI), owe
their existence to laser-induced recombination or rescattering
processes, in which a previously released electron interacts
with its parent ion [1]. The identification of their common
dynamical origin has been instrumental to exploit these effects
in a number of applications, such as for the generation of
attosecond pulses [2] and the dynamic imaging of matter
with subfemtosecond precision [3]. Since this mechanism is
intimately linked to specific dynamical pathways, it also leads
to efficient semianalytical approaches, such as the strong-field
approximation (SFA) (for seminal work on ionization and
laser induced rescattering see, e.g., [4,5], respectively). In
this approach, the quantum-mechanical transition amplitude is
associated with the orbits of an electron returning to its parent
ion. The transition amplitude corresponding to a particular
strong-field process takes the form of a multiple integral,
which, in many cases, can be solved by employing saddle-point
methods [6]. Apart from providing a clear spacetime picture of
the above-mentioned rescattering or recombination processes,
saddle-point methods considerably simplify the numerical
effort to be undertaken in order to compute SFA transition
amplitudes. This is due to the fact that the integrals involved are
highly oscillatory functions, whose numerical convergence is a
nontrivial task. For a concrete example, see Ref. [7], in which
these integrals have been computed for HHG in molecules
within the single-active-electron approximation.

It is also a well-known fact that the orbits along which the
active electron returns typically occur in pairs. In particular,
thresholds can often be associated with conditions where
the two orbits of a given pair become almost degenerate.
This violates the saddle-point assumption, which leads to
expressions in terms of individual orbits, but can be treated
successfully in a uniform approximation that describes the

two orbits collectively [8]. This approximation has been first
applied in strong-field physics to ATI [9] and, since then,
has been used in a wide range of phenomena, such as HHG
[10] and NSDI [11–13]. This latter phenomenon is a typical
example of a highly correlated two-electron process occurring
in strong laser fields. The physical mechanism behind it is a
three-step process in which the first electron is released in the
continuum by tunneling or multiphoton ionization and gains
kinetic energy from the field. Subsequently, it is driven back
by the field toward its parent ion, with which it rescatters. In
this recollision, part of its kinetic energy is transferred to the
core, so that a second electron is freed.

There are several pathways through which NSDI may occur.
Both electrons may, for instance, be released simultaneously
in a scattering process in which the first electron, upon
return, provides the second electron with enough energy for
it to overcome the second ionization potential. This process
is known as electron-impact ionization. This pathway has
been successfully used to explain a number of experimentally
observed features in the electron momentum distribution, such
as peaks at nonvanishing momenta [12,14,15], and the recently
observed V-shaped structure which can been associated with
the long-range electron-electron repulsion [11,16].

Apart from that, the second electron may be released in a
time-delayed pathway, in which the first electron promotes
the second electron to an excited bound state. Near the
subsequent field maximum, the second electron tunnels from
this excited state. These pathways are becoming increasingly
important for several reasons, which are directly related
to attosecond-imaging applications. First, the complexity of
studied NSDI targets is systematically increasing and, with
this, internal excitations become more important. Second,
delayed pathways govern the below-threshold regime, for
which the driving-field intensities are too low for the second
electron to leave by direct ionization [17]. Finally, excitation
and electron-electron correlations are important for other
strong-field phenomena. Concrete examples are attosecond
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hole dynamics in molecular HHG [18] and multielectron
effects in resonant HHG enhancements [19]. Hence, the
understanding and modeling of the RESI pathway in NSDI
will provide helpful insight in such effects as well.

These time-delayed pathways are far less understood
[20]. Besides an overall controversy relating to the physical
mechanisms behind them (see, e.g., [21] for a detailed
discussion of this topic), they can pose a fundamental problem
associated with causality, which we address in the present
work. A particularly relevant time-delayed pathway in NSDI
is “recollision with subsequent tunneling ionization” (RESI).
In previous work [22] it has been shown that this pathway
can be understood as a rescattered ATI-like process for the
first electron, followed by direct ATI for the second electron.1

RESI is a nonstandard case within strong-field physics, as
the uniform approximation mentioned above requires some
modifications. In fact, a rigorous treatment of RESI within
a saddle-point framework is a nontrivial problem as the
rescattering of the first electron must precede the ionization
time of the second electron. So far, this issue has been analyzed
mainly in a classical framework, for which both times are
real and thus can be ordered. In the SFA, however, if the
steepest-descent method is used, the associated orbits have
complex ionization times, which are required to account for
the nonclassical effect of tunneling.

In this context, it is worth stressing that the computation of
SFA transition amplitudes for a two-electron problem such
as NSDI without resorting to the steepest-descent method
is quite demanding from the numerical viewpoint, due to
the highly oscillatory integrals involved. This is particularly
true if the main quantities of interest are electron-momentum
distributions. For NSDI, SFA computations in which the
multiple integrals have been solved numerically have mostly
been performed for the electron-impact ionization mechanism,
which is far simpler to model [25]. For RESI, the only
existing SFA computations outside the scope of the steepest
descent have been performed in [26] for ion-momentum
distributions, which are far less cumbersome to calculate, and
for very specific choices of binding potential, driving field, and
electron-electron interaction.2

One should note, however, that causal time structures
are not always present in quantum mechanics. In one
of the second-order Feynman diagrams corresponding to
Bremsstrahlung, for instance, a photon is emitted before an
electron scatters with the core. Another noteworthy issue is
that the correlation introduced by the time ordering prevents
the RESI Feynman diagram from being factorizable, and hence

1In rescattered ATI, an electron collides with its parent ion and loses
part of its momentum before reaching the detector, while in direct ATI
an electron reaches the detector without recolliding. The momentum
constraints encountered in both cases, however, are very similar.

2In the specific case of a zero-range binding potential, contact-
type electron-electron interaction, and a monochromatic driving field,
one may employ Bessel-function expansions in order to simplify
the computations of SFA transition amplitudes. These expansions,
however, become extremely cumbersome for pulses such as those
addressed in this work and are not applicable to arbitrary binding
potentials and electron-electron interactions.

divergencies in the corresponding transition amplitudes are
avoided. This issue was raised in early studies of the RESI
mechanism [26].

In this work, we address this complication of causality for
complex times and investigate how it affects the momentum
distributions in the RESI pathway of NSDI. We approach
the problem from the perspective of asymptotic expansions
and resolve it by explicit construction of steepest-descent
integration contours. The consequences of causality become
apparent when one contrasts the case of a purely monochro-
matic (and hence infinitely long) driving field to the more
realistic scenario of few-cycle driving pulses.

This article is organized as follows: In Sec. II we briefly
recall the expression for the RESI transition amplitude and
discuss the saddle-point trajectories with complex rescattering
and ionization times. In Sec. III we calculate the individual
momentum distributions of the first and the second electron for
monochromatic driving or a few-cycle pulse, disregarding the
correlations imposed by causality. In Sec. IV we describe how
the causality requirement reflects itself in the complex-time
plane (additional technical details and examples are provided
in the Appendix). This description is then used in Sec. V
to compute correlated two-electron momentum distributions.
Section VI contains our conclusions.

II. BACKGROUND

A. RESI transition amplitude

The strong-field approximation (SFA) transition amplitude
for RESI with final electron momenta p1 and p2 reads [22,24,
26]

M(p1,p2) =
∫ ∫ ∫

t ′′<t ′<t

dt ′′dt ′dt

∫
d3kV (e)

p2
V

(eg)
p1,kV

(g)
k

× eiS(p1,p2,k,t ′′,t ′,t), (1)

with the action

S(p1,p2,k,t ′′,t ′,t)

= E
(g)
1 t ′′ + E

(g)
2 t ′ + E

(e)
2 (t − t ′) −

∫ t ′

t ′′

[k + A(τ )]2

2
dτ

−
∫ ∞

t ′

[p1 + A(τ )]2

2
dτ −

∫ ∞

t

[p2 + A(τ )]2

2
dτ (2)

and the form factors

V
(g)

k = 〈k̃(t ′′)|V ∣∣ψ (g)
1

〉
= 1

(2π )3/2

∫
d3r1V (r1)e−ik̃(t ′′)·r1ψ

(g)
1 (r1), (3)

V (e)
p2

= 〈p̃2(t)|Vion

∣∣ψ (e)
2

〉

= 1

(2π )3/2

∫
d3r2Vion(r2)e−ip̃2(t)·r2ψ

(e)
2 (r2), (4)

and

V
(eg)

p1,k = 〈
p̃1(t ′),ψ (e)

2

∣∣V12

∣∣k̃(t ′),ψ (g)
2

〉

= 1

(2π )3

∫ ∫
d3r2d

3r1 exp[−i(p1 − k) · r1]

×V12(r1,r2)
[
ψ

(e)
2 (r2)

]∗
ψ

(g)
2 (r2). (5)
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Physically, Eq. (1) is associated with a rescattering process
in which an electron, initially in a bound state |ψ (g)

1 〉 with
energy E

(g)
1 , tunnels at time t ′′ into a Volkov state |k̃(t ′′)〉. From

time t ′′ to time t ′, this electron propagates in the continuum,
until it is driven back to its parent ion. Upon return, the electron
scatters inelastically with the core at time t ′ and, through the
interaction V12, elevates the second electron from the ground
state |ψ (g)

2 〉 of the singly ionized species (with energy E
(g)
2 ) to

the excited state |ψ (e)
2 〉 (with energy E

(e)
2 ). Finally, at a later time

t , the second electron is released by tunneling ionization from
the excited state |ψ (2)

e 〉 into a Volkov state |p̃2(t)〉. Here, k̃(t ′′) =
k and p̃2(t) = p2 in the velocity gauge, and k̃(t ′′) = k + A(t ′′),
p̃2(t) = p + A(t) in the length gauge.3 All the information
about the binding potential V (r1) of the first electron and
Vion(r2) of the second electron and the interaction V12(r1,r2)
of the first electron with the core are embedded in the form
factors (3), (4), and (5), respectively, which we will assume to
be constant over the parameter range in question.

Throughout this work, we will consider both a monochro-
matic, linearly polarized field, for which

A(t) = 2
√

Up sin(ωt)êz, (6)

with ponderomotive potential Up, and a few-cycle pulse, for
which

A(t) = 2
√

Up sin2

(
ωt

2N

)
sin(φ + ωt)êz, (7)

where êz denotes the polarization vector, N is the number
of cycles in the pulse, and φ is the carrier-envelope phase.
The associated electric field is defined by E(t) = −∂tA(t). A
monochromatic wave is a reasonable approximation for long
pulses [13] or for few-cycle pulses when the carrier-envelope
phase is integrated over. Equations (6) and (7) imply that,
in this work, the ponderomotive energy is approximated by
the monochromatic value Up = E2

0/(4ω2), where E0 is the
electric-field amplitude. For a few-cycle pulse, obviously, this
is different from the temporal average of [A(t)]2 over the pulse,
which would be the rigorous definition of Up. It is, however, a
good approximation near the peak of the pulse; that is, for the
trajectories that play a dominant role in determining the RESI
distributions.

B. Saddle-point equations

For large driving-field intensities, Eq. (1) is a strongly
oscillatory integral which can be evaluated using steepest-
descent methods [23]. This requires obtaining the saddle points
where the action (2) is stationary,

∂t ′′S = ∂t ′S = ∂tS = 0, ∂kS = 0, (8)

and establishes a direct link to semiclassical orbits with
complex times and actions. These orbits can be obtained

3The length-to-velocity gauge transformation will introduce a shift
p → p − A(t), which will effectively cancel out with the field
dressing in the Volkov states for the velocity-gauge situation. This
issue will influence the ionization and excitation prefactors and is
discussed in detail in [22].

efficiently by recognizing that the action splits into two
independent parts,

S1(p1,k,t ′′,t ′) = E
(g)
1 t ′′ + (

E
(g)
2 − E

(e)
2

)
t ′

−
∫ ∞

t ′

[p1 + A(τ )]2

2
dτ −

∫ t ′

t ′′

[k + A(τ )]2

2
dτ

(9)

for the first electron, and

S2(p2,t) = −
∫ ∞

t

[p2 + A(τ )]2

2
dτ + E

(e)
2 t (10)

for the second electron.

1. First electron

Explicitly, the stationary conditions upon S1 lead to the
equations

[k + A(t ′′)]2 = −2E
(g)
1 , (11)

k = − 1

t ′ − t ′′

∫ t ′

t ′′
dτA(τ ), (12)

and

[p1 + A(t ′)]2 = [k + A(t ′)]2 − 2
(
E

(g)
2 − E

(e)
2

)
. (13)

Condition (11) states the conservation law of energy for
the first electron when it reaches the continuum by tunneling.
Condition (12) constrains the intermediate momentum of the
first electron so that it returns to the site of its release and also
guarantees that the intermediate momentum k of the electron is
parallel to the laser field. Condition (13) gives the conservation
of energy upon rescattering of the first electron and states that
the final kinetic energy of the first electron is its kinetic energy
upon return minus the energy it transferred to the core in
order to excite the second electron. One should note that, if
E

(g)
2 = E

(e)
2 , the elastic rescattering condition for high-order

above-threshold ionization is recovered.
In particular, the solutions of the saddle-point equations

generally lead to complex times, as Eq. (11) admits no real
solutions. This is a consequence of the fact that tunneling is
not a classically allowed process. The imaginary part of t ′′ will
be directly related to the width of the barrier through which the
electron tunnels: the narrower the barrier, the smaller Im[t ′′]
and the larger the tunneling probability. Furthermore, for
given values of momentum, rescattering may or may not have
a classical counterpart, depending on whether the maximal
kinetic energy of the first electron upon return is larger or
smaller than the excitation energy Eexc = E

(g)
2 − E

(e)
2 . In order

to analyze this aspect, it is useful to recast Eq. (13) in terms
of the electron momentum components p1‖,p1⊥ parallel and
perpendicular to the laser-field polarization,

[p1‖ + A(t ′)]2 = [k + A(t ′)]2 − 2
(
E

(g)
2 − E

(e)
2

) − p2
1⊥.

(14)

This implies that a nonvanishing perpendicular momentum
p1⊥ shifts the energy the first electron must provide to the core
in order to excite the second electron. The maximal kinetic
energy upon return has to be larger than an effective excita-
tion energy Ẽexc = (E(g)

2 − E
(e)
2 ) + p2

1⊥/2 for the rescattering
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process to have a classical counterpart. For that reason, one
expects that the classically allowed region in momentum space
will be most extensive for vanishing perpendicular momentum
p1⊥ [22,24]. As a function of the parallel component of
momentum, the most favorable rescattering conditions are
then achieved when the first electron leaves with p1‖ = −A(t ′)
around a maximum of |A(t ′)|2, of which there are two per field
cycle, and returns near the subsequent field crossing.

In terms of momentum constraints, this translates into
the condition (p1‖,p1⊥) = ( − A(t ′),0) for the first electron
around which the partial momentum-space maps in the
(p1‖,p1⊥) plane discussed in Sec. III will be centered. For the
first electron, the solutions of the saddle-point equations will
occur in pairs. These pairs correspond to the “long” and the
“short” orbit of an electron rescattering with its parent ion [27].
Each cycle will then contain two pairs of orbits (i.e., four
orbits altogether). If a classically allowed region is present,
the rescattering times t ′ for each pair have vanishingly small
imaginary parts of opposite signs; that is, they are located either
in the lower or upper complex half plane related to t ′. The
start times t ′′ will always exhibit nonvanishing and positive
imaginary parts. As one moves away from the center of a
classically allowed region, the saddles in a pair approach each
other closely, until they almost coalesce at its boundary. If, on
the other hand, the parameter range is such that no classically
allowed region is present, Im[t ′] will no longer be vanishingly
small in any momentum region. In this case, the physically
relevant saddle will be located in the upper half plane. The
remaining saddle will lead to exponentially increasing results
and must be discarded (for a detailed discussion see [24]).
Longer pairs of orbits, in which the electron returns after
having spent over a cycle in the continuum, will contribute
much less to the yield due to the spreading of the electronic
wave packet and therefore will be ignored.

2. Second electron

The stationarity condition upon S2(p2,t) yields

[p2 + A(t)]2 = −2E
(e)
2 , (15)

which, physically, gives the energy conservation upon ion-
ization of the second electron. This final ionization process
is classically forbidden throughout, as it always involves
tunneling. If written in terms of the parallel and perpendicular
electron momentum components p2‖,p2⊥, Eq. (15) reads

[p2‖ + A(t)]2 = −2E
(e)
2 − p2

2⊥. (16)

This implies that a nonvanishing transverse momentum p2⊥
effectively widens the potential barrier through which the
second electron must tunnel. A direct consequence will be
an overall decrease in the yield with increasing transverse mo-
mentum. The electron tunnels most probably at the field peak,
and with p2⊥ = 0. Hence, the momentum-space conditions for
which ionization of the second electron is most probable read
(p2‖,p2⊥) = (0,0). For the second electron, there exists two
saddles per field cycle, which do not coalesce. For vanishing
momenta, the real parts of the corresponding ionization times
lie at subsequent maxima of the laser field, half a cycle apart
from each other. As the parallel electron momentum increases
these saddles move toward the field crossings. Since, however,

their contributions occupy the same region in momentum
space, quantum mechanically they interfere.

Equation (15) is identical to that governing direct ATI.
The second electron will therefore obey similar momentum
constraints as in this process (for which, however, causality
does not play a role). For instance, for a monochromatic
field, momentum-resolved distributions should be bounded by
|p2‖| � 2

√
Up, which corresponds to the traditional ATI cutoff

energy of 2Up [22].

C. Causality and partial transition amplitudes

The saddle-point analysis described in the previous section
provides two independent sets of orbits: one set for the
first electron, and another set for the second electron. Using
steepest-descent methods, each set on its own can be used to
calculate separate momentum yields of the form

M (1)(p1) =
∫ ∞

−∞
dt ′′

∫ ∞

t ′′
dt ′

∫
d3kV

(eg)
p1,kV

(g)
k eiS1(p1,k,t ′′,t ′) (17)

for the first electron, and

M (2)(p2) =
∫ ∞

−∞
dtV (e)

p2
eiS2(p2,t) (18)

for the second electron (and we indeed do so in the following
section). However, the total RESI transition amplitude Eq. (1)
generally does not factorize in this way,

M(p1,p2) 
= M (1)(p1)M (2)(p2). (19)

The reason is the time constraint in the original expression (1).
In this original integral, as well as in fully classical theories
with real-valued trajectories, the times t ′′, t ′, and t are all
real and can be ordered. However, the semiclassical pathways
all have complex times. Therefore, the underlying issue of
causality requires closer attention. In the remainder of this
paper, we address this issue by examining the key technical
step in the derivation of semiclassical expressions; namely, the
construction of steepest-descent contours in the complex-time
plane. In order to prepare this discussion, we set out in the
following Sec. III by providing semiclassical expressions for
the partial amplitudes (17) and (18).

III. PARTIAL MOMENTUM-SPACE MAPS

In this section we provide a detailed analysis of the
partial one-electron transition probabilities |M (1)(p1)|2 and
|M (2)(p2)|2 as functions of the momentum components
(p1,2‖,p1,2⊥). We evaluate the partial probabilities asymptoti-
cally via the steepest-descent method, which delivers expres-
sions in terms of the saddles of the rapidly fluctuating integrals
in Eqs. (17) and (18), respectively. The momentum-space maps
obtained in this way will be useful for the construction of the
correlated RESI transition amplitude (1), Secs. IV and V, in
which causality must be taken into account.

For M (2)(p2), the saddles are always well-separated in the
momentum ranges of interest. Hence, it suffices to employ the
standard saddle-point approximation, in which the saddles are
treated individually and one performs a Gaussian expansion
around each of them. For the partial transition amplitude
M (1)(p1) related to the first electron, however, the separation
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condition of saddles is not always fulfilled. In fact, at the
borders of the classically allowed region in momentum space
the saddles will approach each other closely. Hence, each
pair of saddles must be treated collectively by employing the
uniform approximation discussed in [9]. Beyond the boundary
of the classically allowed region, one of the two saddles
in a pair will lead to an exponentially increasing transition
amplitude and thus must be left out. This switching from two
saddles to one saddle near the boundary is known as a Stokes
transition [29] and occurs via a bifurcation of the steepest-
descent contour, which visits both saddles before the transition
and only one saddle after the transition. This happens when,
for two saddles a and b defining a pair, Re[S1(p1,k,t ′a,t

′′
a )] =

Re[S1(p1,k,t ′b,t
′′
b )]. If, on the other hand, no classically allowed

region exists, one must take the saddle that leads to expo-
nentially decaying contributions throughout and the standard
saddle-point approximation. (Similar Stokes transitions will
be crucial for the analysis of causality in Sec. IV.)

A. Monochromatic driving field

Figure 1 shows the resulting partial transition probabilities
|M (1)(p1)|2 and |M (2)(p2)|2 as functions of the perpendicular
and parallel momentum components of each electron, for
a monochromatic driving field. We start with the simpler
case of the second electron. For this electron, there are two
saddles, whose start times, for vanishing parallel momenta,
lie at adjacent field maxima separated by half a cycle of
the driving field. Each saddle on its own gives identical
contributions to the probability |M (2)(p2)|2. These individual
contributions are depicted in Fig. 1(c). Figure 1(d) shows
the rich interference pattern which arises from the quantum
mechanical superposition of the two adjacent saddles. The
individual contributions are maximal at (p2‖,p2⊥) = (0,0), for
which the effective potential barrier is narrowest and tunneling
most probable. These momentum components mark the center
of the momentum map. The probability density quickly drops
off with increasing momenta p2 (i.e., as one moves away from
the center of the momentum map). This is expected as the
effective potential barrier through which the electron tunnels
widens in this case [see discussion of Eq. (16)].

For the first electron, there exist two pairs of saddles. Each
pair stems from a half cycle of the field and, for the parameter
range employed in the figure, can be associated with a clas-
sically allowed region centered at (p2‖,p2⊥) = (∓2

√
Up,0)

[see discussion of Eq. (14)]. Figures 1(a) and 1(b) show the
resulting probability |M (1)(p1)|2, calculated either only using
the saddle leading to exponentially decaying contributions
outside the classical boundary [panel (a)] or the complete pair
[panel (b)]. The boundary of the classical region is visible as
an outer, bright ring, which indicates the locus of the Stokes
transition. If in panel (b) the second saddle would be dropped
abruptly beyond the transition one would obtain a cusp. We
eliminated this artifact by treating the pair collectively using
the uniform approximation [9]. The remaining fringes are
caused by the interference between the two orbits of the
pair. In practice, there is only interference between saddles
separated by half a cycle around (p1‖,p1⊥) = (0,0), as they
mostly populate different momentum regions.

FIG. 1. (Color online) Partial RESI transition probabilities for
a monochromatic driving field, as function of the momentum
components p1,2‖ parallel and p1,2⊥ perpendicular to the laser field
polarization. Panels (a) and (b) depict the transition probability
|M (1)(p1)|2 for the first electron, Eq. (17), while panels (c) and (d)
give the transition probability |M (2)(p2)|2 for the second electron,
Eq. (18). Panel (a) shows the contribution of the dominant trajectories
of the first electron (one per half cycle), while panel (b) shows its
interference with the subdominant partner trajectories in the same half
cycle, treated collectively in uniform approximation. The trajectory
pairs from the two half cycles result in identical distributions for
opposite parallel momenta; interference between these pairs of
trajectories is negligible. Panel (c) shows the contribution of an
individual orbit of the second electron, while panel (d) shows its
interference with the second orbit in the same field cycle. The
distributions have been normalized with regard to the largest value in
each panel. Parameters are for helium (E(g)

1 = 0.97 a.u., E(g)
2 = 2 a.u.,

and E
(e)
2 = 0.5 a.u.), and the driving field is monochromatic with

intensity I = 3 × 1014 W/cm2 and frequency ω = 0.057 a.u.

B. Few-cycle pulse

We will now turn to the few-cycle pulse given by Eq. (7),
with N = 5 and carrier-envelope phase φ = 0. This pulse is
shown in Fig. 2, together with the approximate ionization and
rescattering times for the first electron, and the ionization times
for the second electron [panels (a) and (b), respectively].

The first electron will leave close to an extremum of the
field and return near the subsequent field crossing [Fig. 2(a)].
The times indicated in the figure are associated with the real
parts of the solutions of the saddle-point Eqs. (11)–(15) for
p1⊥ = 0 and p1‖ = −A(t ′). Each of the five arrows is actually
associated with a pair of complex saddle points in the (t ′′,t ′)
plane. These pairs will be referred to as Pairs 1(e1) to 5(e1).
Upon recollision, the returning electron will excite a second
electron, which will then leave near the subsequent field
extremum. The orbits related to these maxima are labeled
Orbit 1(e2) to 5(e2). The remaining orbits, which are not
represented here, will play a negligible role due to the fact
that the ionization times for the first or second electron lie
too close to the trailing edges of the pulse. This implies
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FIG. 2. (Color online) Schematic representation of the electric
field E(t) and the corresponding vector potential A(t) for a few-cycle
pulse of five cycles. The arrows in panel (a) indicate the approximate
times around which the first electron leaves, in case it returns at a
crossing. The complex return and start times for the indicated pairs of
orbits will have real parts in the vicinity of such times. The rectangles
in part (b) mark the approximate ionization times for the second
electron associated with the orbits utilized in this work (Orbits 1 to
5). The fields have been normalized to E(t)/E0 and A(t)/A0, where
E0, A0 denote the field amplitudes.

that the corresponding ionization probabilities will be very
small. Below, we discuss momentum-space maps for the
above-mentioned few-cycle driving pulse.

We will start by analyzing the transition probability
|M (1)(p1)|2 for the first electron as a function of (p1‖,p1⊥),
for each of the relevant pairs of orbits indicated in Fig. 2.
As in the monochromatic case, a reasonable insight into the
relevant momentum range is provided by the orbit in each pair
whose contribution decays exponentially outside the classi-
cally allowed region. In Fig. 3, we display the contributions
of these orbits. As an overall feature, the center of such maps
is no longer located at (p1‖,p1⊥) = (±2

√
Up,0), but varies

from cycle to cycle. This is due to the fact that this estimate,
albeit valid for a monochromatic field, no longer describes a
field crossing for a few-cycle pulse. In fact, the exact position
of a field crossing will depend on the pulse envelope and on
the carrier-envelope phase. Still, the momentum maps remain
centered around vanishing transverse momenta p1⊥. This is
expected, as the effective widening of the excitation energy for
p1⊥ 
= 0 that can be inferred from Eq. (14) occurs regardless
of the shape of the external driving field.

Apart from that, the magnitudes of the partial probabilities
|M (1)(p1)|2 will vary from cycle to cycle. Whether the
contributions of a certain pair will be prominent, irrelevant,
or even vanishingly small will depend on several issues. If,
for instance, the field amplitude is large for a specific cycle,
the ionization probability for the first and second electrons
are expected to be large as well. Thus, the contributions from
orbits starting at such times are expected to prevail. Apart from
that, if, for a particular set of orbits, the kinetic energy of the

FIG. 3. (Color online) Contributions from specific sets of orbits
to the momentum-resolved RESI transition probabilities |M (1)(p1)|2
of the first electron, Eq. (17), for the few-cycle pulse of Fig. 2. Panels
(a), (b), (c), and (d) correspond to Pairs 2, 3, 4, and 5(e1), respectively
(to eliminate distorting interference effects, only the dominant orbit,
which remains physical beyond the classical boundary, has been taken
into account). The pulse has peak intensity I = 2.5 × 1014 W/cm2,
frequency ω = 0.057 a.u. and carrier-envelope phase φ = 0; the other
parameters are the same as in Fig. 1.

electron upon return is much larger than the energy required
to excite the second electron, according to Eq. (13) there will
be an extensive classically allowed momentum region. This
will also play a role in making the contributions of a particular
set of orbits prominent. In the specific case presented here,
the contributions from Pair 3(e1) and Pair 4(e1), depicted in
Figs. 3(b) and 3(c), respectively, are comparable and at least
three orders of magnitude larger than those from the other
pairs. This is expected, as the ionization times related to both
pairs are very close to the center of the pulse (see Fig. 2).
Hence, there is a high tunneling probability for the electron
at these times. Further inspection, however, shows that the
classically allowed region related to Pair 3(e1) is larger. This
is related to the kinetic energy the electron exhibits upon
return, which is highest for this pair. The contributions of
the remaining pairs are less relevant, as the ionization times
are closer to the trailing edge of the pulse. For instance,
the contributions from Pair 5(e1), displayed in Fig. 3(d), are
several orders of magnitude smaller than the other pairs. This
is due to the fact that, for this specific pair of orbits, the
first electron does not return with enough kinetic energy to
excite the second electron and still reach the detector; hence,
rescattering is forbidden throughout. We have verified that this
also happens for Pair 1(e1). For that reason, we do not include
its contributions in the present figure.

We will now analyze the partial ionization probability of the
second electron by computing |M (2)(p2)|2 for Orbits 1–4(e2)
individually. Figure 4 shows the outcome of these computa-
tions as functions of the parallel and perpendicular momenta
(p2‖,p2⊥). Similarly, to what has been observed for the first
electron, the centers of the momentum-space maps shift away
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FIG. 4. (Color online) Contributions of individual orbits to the
momentum-resolved RESI transition probabilities |M (2)(p2)|2 for the
second electron, Eq. (18), for the same few-cycle pulse and atomic
parameters as in Fig. 3. Panels (a), (b), (c), and (d) depict the
contributions from the orbits 1, 2, 3, and 4(e2), respectively (see
Fig. 2).

from the position (p2‖,p2⊥) = (0,0). This shift is due to the
lack of monochromaticity of the driving field, which introduces
an asymmetry around the field extrema and leads to a slight bias
toward either the positive or the negative parallel momentum
region. This bias is more pronounced for orbits whose
ionization times approach the trailing edge of the pulse. For
the specific pulse considered in this work, this can be observed
in the contributions from Orbits 3(e2) and 4(e2) [Figs. 4(c)
and 4(d), respectively]. Still, for all cases, the momentum-
space maps remain centered at p2⊥ = 0. This is a consequence
of the fact that, effectively, the potential barrier through which
the electron must tunnel is narrowest in this case, regardless
of the shape of the field [see discussion of Eq. (16)].

Furthermore, the closer the ionization time is to the pulse
center, the larger the contributions from the corresponding
orbit will be. For the specific pulse considered here, for
instance, the contributions from Orbit 1(e2) and Orbit 2(e2),
displayed in Figs. 4(a) and 4(b), respectively, are at least one
order of magnitude larger than those of the remaining orbits.
In the figure, we do not include the contributions from Orbit
5(e2), as these are at least four orders of magnitude smaller
than those of the remaining orbits.

As in the monochromatic-field case, the contributions of
the above-stated sets of orbits must be added coherently. This
will lead to interference maxima and minima, both in the
momentum maps and in the electron-momentum distributions.
In Fig. 5, we display the momentum maps for the first and the
second electron (left and right panels, respectively). The upper
and lower panels, respectively, exhibit the contributions of the
dominant sets of orbits [i.e., Pairs 3(e1) and 4(e1), and Orbits
1(e2) and 2(e2)] and the overall partial momentum maps, in
which all orbits have been included.

Figures 5(a) and 5(b) exhibit two circular regions for
which the partial probability density is nonvanishing. These
regions are roughly centered at (p1‖,p1⊥) = (±2

√
Up,0).

FIG. 5. (Color online) Partial transition probabilities for a few-
cycle pulse as function of the momentum components pn‖ and pn⊥.
Panels (a) and (b) depict the partial transition probability |M (1)(p1)|2
for the first electron, while panels (c) and (d) depict |M (2)(p2)|2 for
the second electron. These are obtained by coherently adding the
contributions of orbits addressed in Figs. 3 and 4 (the field and atomic
parameters are the same as in these figures). In panels (a) and (c),
this sum is restricted to the dominant orbits of pairs 3(e1) and 4(e1),
as well as 1(e2) and 2(e2), respectively. The distributions have been
normalized with regard to the maximum probability density in each
panel.

Slight displacements away from these points are again related
to the lack of monochromaticity of the field. The negative
parallel momentum region is dominated by the contributions
of Pair 4(e1). In fact, due to the large tunneling probability
associated with it, it leads to the brightest spot in these
panels. This pair interferes with Pair 2(e1), which is temporally
displaced by a full cycle of the driving field; this interference
is visible as the substructure in Fig. 5(b). The positive parallel
momentum region is dominated by Pair 3(e1). In both panels,
one may identify well-defined annular fringes, which are
caused by the interference between the long and the short
orbit of Pair 3(e1). These orbits are temporally close, and their
contributions are several orders of magnitude larger than those
of the remaining pairs 1(e1) and 5(e1).

The interference scenario is different for the second
electron. In this case, orbits located near different half cycles of
the field lead to contributions in overlapping momentum-space
regions, roughly centered at (p2‖,p2⊥) = (0,0). For instance,
in Fig. 5(c), inclusion of the dominant Orbits 1(e2) and
2(e2) already leads to a rich interference pattern. Additional
substructures appear if the remaining orbits considered in
Fig. 4 are taken into consideration, as shown in Fig. 5(d).

IV. CAUSALITY FOR COMPLEX TIMES

In this section, we describe how the fact that ionization of
the second electron must be subsequent to the rescattering of
the first electron reflects itself in the complex-time plane. This
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construction forms the basis of the calculation of correlated
RESI momentum distributions, which are presented in Sec. V.

Causality in the classical sense means that the first electron
rescatters with the core prior to the second electron being
freed. If both the rescattering time t ′ of the first electron
and the ionization time t of the second electron were real,
this condition would simply require t ′ < t . This condition is
also embodied in the integration range of the SFA expression
(1) for the transition amplitude. However, because tunneling
is not a classical process, the solutions of the saddle-point
Eqs. (11)–(15) are complex. Hence, in order to evaluate the
integrals in terms of these orbits one must determine how
causality manifests itself in the complex plane.

This can be done by reinspecting the steps that lead to the
saddle-point approximation of the RESI transition amplitude
(1). This amplitude can be rewritten as

M(p1,p2) =
∫ ∞

−∞
dt ′′

∫ ∞

t ′′
dt ′

∫
d3kV

(eg)
p1,kV

(g)
k

× eiS1(p1,k,t ′′,t ′)M (2)(p2; t ′), (20)

whereupon the time-conditioned amplitude

M (2)(p2; t ′) =
∫ ∞

t ′
dtV (e)

p2
eiS2(p2,t) (21)

of the second electron depends on the rescattering time t ′
via the lower integration limit and is part of an integrand, in
contrast to the partial amplitude M (2)(p2) = M (2)(p2; −∞),
Eq. (18), evaluated in Sec. III.

Let us assume that we have integrated out k via a
saddle-point approximation (which is exact if one neglects
the k dependence of the form factors) and denote the result-
ing effective action as S̃(p1,p2,t t

′,t) = S1(p1,k(t ′′,t ′),t ′′,t ′) +
S2(p2,t).4 We then can deform the integration manifold over
the three times t ′′, t ′ and t into the complex plane. The
integrand can be analytically continued and does not possess
any poles. Therefore, the value of the integral does not change
by this deformation. In the steepest-descent method [23], this
deformation is carried out such that the quickly oscillating
part eiS̃(p1,p2,t,t

′,t ′′) of the integrand changes into a smooth
expression with maxima around the saddle points. To this
end one associates to each saddle (t ′′a ,t ′a,ta) a sheet on which
ReS̃(p1,p2,t,t

′,t ′′) = ReS̃(p1,p2,ta,t
′
a,t

′′
a ). (In more than one

dimension, these sheets are not unique, but this does not affect
any results [28].) Different sheets can meet in zeros of the
integrand, since there the phase is not well defined. Sheets
have to be joined such that the total deformed manifold starts
and ends at the original lower and upper integration limits
of the integral, respectively. Therefore, one also needs sheets
connected to these boundaries, which are again constructed
such that the integrand decays rapidly as one moves away
from the integration limits. Following this prescription, not all

4This is the procedure adopted by most groups in the strong-field
community when applying the steepest-descent method. In practice,
this amounts to employing the saddle-point Eq. (12) to eliminate k
and, physically, corresponds to reducing the momentum width of the
electronic wave packet. For a solution of the saddle-point equations
without this assumption for HHG, see [7].

saddle sheets will be part of the total deformed manifold, which
means that only a restricted set of all saddles is contributing to
the final expression. The saddle-point approximation follows
by expanding S̃ around the maxima or integration limits, so
that one obtains simple integrals for each saddle point on the
total contour, as well as each boundary sheet. These individual
contributions are accurate approximations if the saddles and
integration limits are not too close to each other; otherwise one
needs to employ uniform approximations.

In order to apply this procedure to Eqs. (20) and (21), we
proceed in three interlinked steps.

(1) Consider the time-conditioned amplitude M (2)(p2; t ′).
The saddles in the complex t plane are the same as for the
partial amplitude (18) and therefore determined by condition
(15). However, the steepest-descent contour now depends on
the integration limit t ′, as we have to construct a continuous
contour in the complex t plane that links it to the upper inte-
gration limit (at real +∞). The contour therefore starts with a
segment of fixed Re[S2(p2,t)] = Re[S2(p2,t

′)]. This boundary
segment has then to be linked with contour segments passing
through saddles ta , for which Re[S2(p2,t)] = Re[S2(p2,ta)].
Compared to the calculation of the unconditioned amplitude
M (2)(p2), this has two effects: First, there is an additional
contribution from the boundary segment linked to t ′, which
we will neglect as it is related to the electron-impact pathway
[11]. In fact, physically, the above-stated boundary condition
implies that the times of the rescattering of the first electron
and of ionization of the second electron coincide. Second,
only a subset of saddles ta contributing to M (2)(p2) will lie
on the contour conditioned by starting at t ′. Besides this
selection criterion, the individual saddle-point contributions
do not explicitly depend on t ′. However, the number of relevant
saddles changes at Stokes transitions, which, for a given saddle
ta , occur when Re[S2(p2,t

′)] = Re[S2(p2,ta)]. (This condition
is not sufficient; whether there is indeed a Stokes transition can
be verified by constructing the explicit integration contour, as
carried out below.)

(2) Next, we apply the saddle-point approximation to the
remaining integrals over t ′′ and t ′. We will focus on situations
not too close to a Stokes transition. Within a range in t ′,
the contributions from the saddle points of M (2)(p2; t ′) will
then not depend on t ′. Therefore, this term can be treated as
approximately constant, and will not affect the saddle-point
conditions (11)–(13) for t ′′ and t ′.5

(3) This in turn means that we now can substitute the lower
integration limit in M (2)(p2; t ′), which was considered general
so far, with the values of complex saddle points t ′b.

As an upshot, we find that, for each saddle-point trajectory
(t ′′b ,t ′b) of the first electron, only a certain number of saddle
points ta of the second electron will contribute. These are the
ones that lie on the continuous steepest-descent contour in the

5However, the neglected contribution from the boundary segment
will depend on t ′, with asymptotic dependence ∝exp[iS2(p2,t

′)]. Its
saddles are therefore determined by S(p1,p2,k,t ′,t ′,t ′′). These saddles
lie far away from the real axis as the most favorable rescattering
and ionization conditions occur at different phases of the driving
cycle (field crossing and extremum, respectively). This suppresses the
boundary contributions, but does not affect the causality condition.
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FIG. 6. (Color online) Correlated RESI two-electron momentum distributions F (p1‖,p2‖) as functions of the electron momentum
components pn‖ (n = 1,2) parallel to the laser-field polarization. The atomic parameters correspond to helium (see Fig. 1). Panels (a) to
(c) have been computed for a monochromatic field of intensity I = 3 × 1014 W/cm2 and frequency ω = 0.057 a.u., while in panels (d) to (i) a
five-cycle pulse of intensity I = 2.5 × 1014 W/cm2, frequency ω = 0.057 a.u., and carrier-envelope phase φ = 0 has been used. The middle
row of panels (d)–(f) show results for the few-cycle pulse if causality is discarded (these results are therefore unphysical), while the bottom
panels (g)–(i) show the results for the few-cycle pulse including the causality restrictions. From the left to the right column of panels, we
integrated over a transverse momentum range centered around low, medium, and large transverse momenta, respectively.

complex t plane that starts at the rescattering time t ′b of the
first electron. Since the saddle-point values t ′b depend on the
momentum p1 of the first electron, but the remainder of the
complex t contour (and in particular the location of the saddles
ta) depends on the momentum p2 of the second electron,
this generalized causality requirement results in additional
correlations for the momentum distributions, which will be
quantified in the following Sec. V. In the appendix, we focus
on the explicit construction of the described steepest-descent
contours. In the following section, we quantify the conse-
quences in terms of the correlated momentum distributions of
both electrons.

V. MOMENTUM DISTRIBUTIONS

In this section we compute two-electron momentum distri-
butions as functions of the momentum components (p1‖,p2‖)
parallel to the laser field polarization, contrasting again the
case of a monochromatic field with that of a few-cycle
pulse. For both cases, we calculate the momentum distribution
for resolved parallel and restricted ranges of the transverse
momenta. If transverse momenta are fully integrated out, as it
is done in many NSDI studies, quantum-interference effects
get washed out and causality-related effects can no longer be
identified. This also holds for cusps or further artifacts that may

be present in saddle-point approximations, and which indicate
their breakdown. Hence, transverse momentum integration
would mask the very effects we intend to analyze.

We consider the distributions

F (p1‖,p2‖) =
∫ p

(max)
1⊥

p
(min)
1⊥

∫ p
(max)
2⊥

p
(min)
2⊥

d2p1⊥d2p2⊥|M(p1,p2)

+ p1 ↔ p2|2, (22)

which have been symmetrized with regard to electron ex-
change. This is necessary as the two electrons are indis-
tinguishable. In the above-stated equation, p

(min)
n⊥ and p

(max)
n⊥

(n = 1,2) denote the minimal and the maximal transverse
momenta, respectively, to be taken into account.

For a monochromatic driving field, the causality-induced
shielding of saddles does not have an observable effect on the
momentum distributions. This is so because the saddles are
repeating periodically cycle by cycle, and all have to be added
coherently. This eventually results in a closely spaced train of
delta functions which embody the Bohr resonance condition
for multiple-photon absorption [30]. Smoothing over these
delta functions, we find M(p1,p2) = M (1)(p1)M (2)(p2) as if
causality had been ignored. For a few-cycle pulse, however,
the orbits in different cycles are not equivalent, and causality
has observable consequences. This is demonstrated in Fig. 6,
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where we present the distributions F (p1‖,p2‖) for a monochro-
matic field (upper panels) and a few-cycle pulse (middle panels
ignoring causality, and lower panels respecting causality), for
increasing transverse momenta (left panels, “low momenta”
0 < p1⊥,p2⊥ < 0.2

√
Up; middle panels, “medium momenta”

0.6
√

Up < p1⊥,p2⊥ < 0.8
√

Up; right panels panels, “large
momenta”

√
Up < p1⊥,p2⊥ < 1.2

√
Up).

For the monochromatic driving field, Figs. 6(a)–6(c), all
distributions adhere to the momentum constraints defined
for RESI [24]; that is, they are cross shaped and located
along the axes pn‖ = 0 (n = 1,2). The elongation of such
distributions is determined by the saddle-point Eq. (14), which
yields the momentum-space regions filled by the rescattering
of the first electron, and the width of such distributions is
given by the maximal and minimal momenta determined
by Eq. (16). They are also symmetric upon the reflection
pn‖ → −pn‖, which is a direct consequence of the time-
reversal symmetry of the field. This means that, without
symmetrization upon electron exchange, these distributions
would be located along the horizontal axis p1‖ = 0. The
symmetrization p1 ↔ p2 leads to the vertical axis of the
crosses. The rather rich substructure present in the figure is
associated with the quantum interference between the long and
short orbit for the first electron and between orbits displaced
by half a cycle for the second electron. For a few-cycle
pulse, in contrast, the electron momentum distributions are
very much affected by causality. To isolate these effects,
we start by analyzing the situation if causality could be
neglected, displayed in Figs. 6(d)–6(f). These distributions are
again obtained by assuming M(p1,p2) = M (1)(p1)M (2)(p2).
The distributions are then asymmetric, which is a direct
consequence of the asymmetries in the momentum maps in
Fig. 5. The momentum maps are localized in the momentum
region determined by the dominant orbits, located close to
the center of the pulse. For low transverse momenta, the
contribution from Pair 4(e1) dominates in M (1)(p1), which in
Figs. 5(a) and 5(b) gives rise to the bright spot at (p1‖,p1⊥) =
(−2

√
Up,0). Hence, one expects the distribution to be located

in the region −2
√

Up � p2‖ � 2
√

Up along the negative p1‖
half axis. Symmetrization upon electron exchange leads to the
occupation of the momentum-space region around the negative
p2‖ half axis, with −2

√
Up � p1‖ � 2

√
Up.

For medium transverse momenta the contribution from
Pair 3(e1) [corresponding in Figs. 5(a) and 5(b) to the bright
ring for p1‖ > 0] becomes comparable to that of Pair 4(e1).
Consequently, the two-electron distribution in Fig. 6(e) spreads
out in the parallel momentum plane. Indeed, the contributions
around the positive half axes pn‖ > 0 (n = 1,2) are now
comparable to those along the negative half axes. For large
transverse momenta [Fig. 6(f)], Pair 3(e1) dominates over
4(e1), and the distributions moves into the half positive
axes. Apart from that, the results show that, the larger the
transverse momentum range is, the more concentrated around
pn‖ = 2

√
Up the electron momentum distributions are.

Up to the present stage, however, causality has not been
taken into account. For instance, the largest contributions to
the partial momentum maps for the first and second electron
[Pair 4(e1) and Orbit 2(e2), respectively], are not connected by
causality, and therefore their combined contribution must be

discarded. Indeed, the most favorable overall RESI pathway
arises from combining Pair 3(e1) with Orbits 2(e2) (if acces-
sible) and 3(e2). The large contribution related to Pair 4(e1) is
not sufficient to counter-act the lower tunneling probabilities
related to Orbits 4(e2) and 5(e2). Figures 6(g) to 6(i) illustrate
the consequences. Since Pair 3(e1) results in a large yield at
p1‖ > 0, the electron momentum distributions are now mostly
concentrated along the positive half axes pn‖ (n = 1,2). This
situation persists over all transverse momentum ranges.

Apart from the reshaping of the distributions, a noteworthy
feature in Fig. 6 is an overall decrease of a few orders of
magnitude in comparison with the situation in which causality
has been disregarded. Taken altogether, these results show that
causality has a drastic effect on the two-electron momentum
distributions in the RESI pathway.

VI. CONCLUSIONS

In this work we performed a detailed analysis of the
recollision with subsequent tunneling ionization (RESI) mech-
anism in laser-induced nonsequential ionization (NSDI), with
emphasis on the implications of causality. Physically, RESI
means that the first electron rescatters with the core at an
instant t ′ and excites a second electron, which tunnel ionizes
at a subsequent time t . Causality means that tunnel ionization
of the second electron can only occur after the recollision of the
first electron. Applying the saddle-point approximation to the
strong-field expressions, the rescattering and ionization times
become complex (since tunneling does not have a classical
counterpart), and the notion of causality has to be generalized
into the complex-time plane. We have shown that the concepts
of “before” and “after” translate into boundary conditions
limiting the steepest-descent contours to be taken. These
boundary conditions are given by the complex rescattering
times of the first electron. Ionization times of the second
electron are causally connected to a rescattering event if it lies
on a steepest-descent contour that connects the rescattering
time to the distant future. In practice, this often translates into
a simple rule where only the real parts of the complex times
have to be compared. Deviations have been observed, however,
for pairs of electron orbits associated with the trailing edge of
the pulse, or for momentum regions in which the RESI yield
is strongly suppressed.

We illustrated the influence of causality and quantum-
interference on momentum-resolved two-electron distribu-
tions. In order to isolate these effects, we compared dis-
tributions for a monochromatic driving field to those for a
few-cycle pulse. While causality does not affect the electron
momentum distributions obtained for monochromatic fields, it
significantly affects the results for a few-cycle pulse. For these
pulses, there exist several competing sets of orbits, whose
dominance influences the shapes of the electron momentum
distributions, which generally are highly asymmetric and
concentrated in specific momentum regions. Causality puts
constraints on the construction of two-electron trajectories,
which drastically changes the momentum regions populated
by the distributions.

Causality may have consequences even for monochromatic
driving when it is combined with additional effects, such as
bound-state depletion. Depending on the laser-field intensity
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and the binding energy of the excited state, such depletion can
be considerable and, if this is the case, the ionization time t

lying closest in the future of the rescattering time t ′ is expected
to contribute most. Such effects go beyond the present work,
but may warrant further investigation.

Finally, we regard the present studies as relevant in several
ways. From the theory perspective, it contributes to the mod-
eling of strong-field phenomena involving electron-electron
correlation and excitation. In recent years, both features have
become important in a wide range of strong-field phenomena
[17,18]. Since, in many cases, due to the complexity of
the problem, the steepest-descent method is the only viable
approach, it is essential to be able to describe causality in this
context. Furthermore, cross-shaped distributions strikingly
similar to those reported in this work have been observed in
recent NSDI experiments with few-cycle driving pulses [31].
In such experiments, the RESI pathway has been isolated from
the direct processes. This renders the present work not only of
academic importance, but also of experimental relevance.
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APPENDIX: CONSTRUCTION OF STEEPEST-DESCENT
CONTOURS

In this appendix, we provide a few examples of how
steepest-descent contours are constructed following the in-
structions in Sec. IV, for both monochromatic driving fields
and few-cycle pulses.

1. Steepest-descent contours for monochromatic driving

We will start by constructing the steepest-descent contours
for the simplest scenario (i.e., a monochromatic driving field)
by taking into account causality. Throughout, we consider
(p1‖,p1⊥) = (2

√
Up,0), which, physically, corresponds to the

center of the classically allowed region for positive momenta
p1‖ [i.e., of the upper region in the momentum map of
Fig. 1(a)]. Without loss of generality, however, the subsequent
analysis can be extended to other combinations of momenta
for the first electron. The key elements necessary to build these
contours, together with the final result, are displayed in Fig. 7.

In order to identify the starting point of the steepest-descent
contours, we need the complex rescattering times t ′ of the
first electron. These times are shown as the star symbols in
Fig. 7(a) (star symbols). Physically, Re[t ′] is associated with
the classical rescattering times of an electron, while |Im[t ′]|
is related to the process in question (i.e., rescattering) being
classically allowed or forbidden. The smaller |Im[t ′]|, the more
probable it is that a certain process occurs (see, e.g., the second
reference in [13] for details and examples). In every cycle of the
driving field, one observes that one pair of rescattering times
moves closer to the real axis as |Im[t ′]| becomes vanishingly
small, while the other pair moves away from the real axis.
This behavior implies that, for the former pair, rescattering is
classically allowed, while, for the latter pair, it is forbidden.

10 15 20 25

– 1

0

1

2

Reωt´

Im
ω

t′

5 10 15 20 25
– 2

– 1

0

1

2

Reωt

5 10 15 20 25
– 2

– 1

0

1

2

Reωt

5 10 15 20 25
– 2

– 1

0

1

2

Reωt

Im
ω

t

Im
ω

t

Im
ω

t

– 2
5

(a) (b)

(d)(c)

FIG. 7. (Color online) Construction of steepest-descent contours
for the evaluation of M (2)(p2; t ′), Eq. (21), for monochromatic driving,
with complex rescattering times t ′ corresponding to p1⊥ = 0, p1‖ =
2
√

Up. In panel (a), these rescattering times, obtained by solving the
saddle-point Eqs. (11)–(13), are indicated by the star symbols. For
orientation, the curves show the trace of times t ′ when p1‖ is varied
from −5

√
Up to +5

√
Up while p1⊥ = 0 remains fixed. In panels

(b) and (d), the circles indicate the ionization times t of the second
electron for (p2‖,p2⊥) = (0,0). These times are obtained by solving
the saddle-point Eq. (15). Panel (b) displays the steepest-descent and
steepest-ascent contours that pass through the saddles obtained for
the second electron, without taking into account causality (solid and
dashed lines, respectively). The solid circles indicate saddles that
are physically allowed (with positive ImS2), while the open circles
are unphysical saddles. Panel (c) displays the boundary curves; that
is, the steepest-descent lines passing through the rescattering times
t ′ (star symbols). These lines are all determined from the condition
ReS2 = const. Panel (d) illustrates a steepest-descent contour passing
through the relevant saddles and incorporating causality. A full
steepest-descent contour must make use of solid lines in order to
connect a lower integration limit t = t ′ (stars) to the upper integration
limit (at t = +∞). The thick lines show the full contour for one
selected starting value, indicated by the solid star. This contour only
visits a selection of all physical saddles (dark dots), and the saddles
that violate causality (light dots) are left out.

This is expected as, physically, when the field changes sign,
rescattering would lead to momenta with opposite sign; that is,
to the occupation of the lower-momentum regions in Figs. 1(a)
and 1(b), which are centered at (p1‖,p1⊥) = (−2

√
Up,0).

In Fig. 7(b), we include the steepest-descent contours for the
second electron without taking into account causality. These
contours have been computed for (p2‖,p2⊥) = (0,0), which
correspond to the center of the momentum map in Fig. 1(c).
They are determined by the condition Re[S2(p2,t)] = const.
and meet at the solutions ta of the saddle-point Eq. (15) for
the ionization time of the second electron. These solutions
are depicted as dots in the figure and occur in conjugate
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pairs [see Fig. 7(b)]. The relevant solutions are given by the
filled dots in the upper complex half plane. The remaining
solutions, in the lower half plane, will lead to exponentially
increasing contributions and are therefore unphysical. Note
that, throughout, Im[t] 
= 0. This is a consequence of the fact
that tunneling is a classically forbidden process.

In Fig. 7(c), we show the boundaries determined by the
condition Re[S2(p2,t

′)] = Re[S2(p2,ta)]. These boundaries
determine the causality in the complex plane; that is, for a
saddle not to violate causality, the steepest-descent segments
to be included must be reached from this boundary. Note that
this boundary also occurs periodically every half cycle.

Finally, in Fig. 7(d), we display a sample contour con-
structed by bringing all the above-discussed elements together.
In order to construct this contour, we employ a selected
rescattering time, indicated by the filled star. Note that this
contour only visits the saddles on the right-hand side of the
boundary, indicated by the dark dots. The saddles on the
left-hand side, indicated by the gray solid dots in the figure,
are left out.

Depending, however, on the momentum of the second
electron, it may happen that the saddle close to the boundary
must be discarded because it violates causality. This is
exemplified in Fig. 8, for which we assume p2‖ = 1.5

√
Up

and p2‖ = 3
√

Up [Figs. 8(a) and 8(b), respectively], and take
sample contours starting at the same time t ′ as before. In
Fig. 8(a), the boundary is very close to the saddle near
Re[ωt] = 20, while, in Fig. 8(b), this saddle can no longer
be reached by a contour starting at this boundary. Physically,
this implies that causality has been violated for the specific
rescattering time of the first electron denoted by the filled star
in the picture.

In this way, for any given saddle-point rescattering time t ′
we can define a clear boundary in the complex t plane that de-
termines whether a saddle-point ionization time is allowed by
causality or not. This boundary passes over saddles whenever
a Stokes transition occurs. The thick sample contours display
a Stokes transition between Figs. 8(a) and 8(b).
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FIG. 8. (Color online) Steepest descent contours incorporating
causality for the same field and momentum components of the
first electron as in Fig. 7, but for (p2‖,p2⊥) = (1.5

√
Up,0) and

(p2‖,p2⊥) = (3
√

Up,0) [panels (a) and (b), respectively]. As in the
previous figure, the thick lines show a sample contour for one selected
starting value, indicated by the solid star. Between panels (a) and (b)
a Stokes transition occurs, and one saddle is lost. The remaining
notation is the same as in the previous figure.

Inspecting these figures more generally, we see that, to a
good approximation, the causality requirement assumes the
form Ret ′ < Ret . This is the case because Stokes transitions
take place when a start time t ′ crosses over the steepest-ascent
segment of a physically allowed ionization time t . In the
figures, these lines are seen to lead almost vertically from a
physical saddle in the upper half of the complex-t plane to an
unphysical mirror saddle in the lower half plane. We verified
that this approximate causality criterion remains valid over the
range of momenta where the momentum maps in Fig. 1 are
large.

2. Steepest-descent contours for few-cycle pulse

Figure 9 shows the steepest-descent contours for the few-
cycle pulse for (p1‖,p1⊥) = (2

√
Up,0). Instead of a periodic

repetition cycle-by-cycle, the rescattering times (stars) and
ionization times (dots) are now modulated according to their
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FIG. 9. (Color online) Construction of steepest-descent contours
for the few-cycle pulse employed in Sec. III B. Labels refer to the orbit
pairs (first electron) and orbits (second electron) indicated in Fig. 2.
Panel (a) shows the effect of the finite pulse length on the rescattering
times t ′ of the first electron. The stars again denote the rescattering
times for p1⊥ = 0, p1‖ = 2

√
Up. In the tails of the pulse the driving

is weak, resulting in rescattering times that are shifted away from the
real axis. Therefore, some of these trajectories of the first electron
become negligible. Panels (b)–(d) shows the ionization times t of
the second electron, together with the steepest-descent contours in-
corporating causality, for momentum components (p2‖,p2⊥) = (0,0),
(p2‖,p2⊥) = (1.5

√
Up,0), and (p2‖,p2⊥) = (3

√
Up,0), respectively.

The solid star indicates a rescattering time in the center of the pulse,
which gives the largest semiclassical contribution for the momentum
combination (p1‖,p1⊥) chosen. The value of this time is close to that
in the monochromatic case. A Stokes transition in which the saddle
corresponding to Orbit 3(e2) is lost occurs between panels (c) and (d).
The remaining parameters and the notation employed are the same as
in Figs. 7 and 8.
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position in the pulse (see Sec. III B and Fig. 2). In the tails
of the pulse, where the intensity is small, the rescattering and
ionization times move away from the real axis [Figs. 9(a)
and 9(b)]. Compared to the monochromatic case, the steepest-
descent contours are therefore distorted, but the main features
are still strikingly similar. For instance, we also observe
that, depending on the half cycle considered, the complex
rescattering times t ′ either approach or move away from the
real axis [Fig. 9(a)]. This happens because, for the parallel
momentum chosen, rescattering is only classically allowed for
the pairs of orbits labeled by odd numbers in Fig. 2. This
is in agreement with the momentum maps in Fig. 3, which
show that, for the specific pulse in Fig. 9, Pairs 3(e1) and 5(e1)
contribute significantly to the probability density |M (1)(p1)|2
in this region.

The rescattering time t ′ leading to the dominant contri-
butions in the momentum region around p1‖ = 2

√
Up corre-

sponds to Pair 3(e1). For this reason, the solution related to this
pair will be employed as the starting point in the construction
of the contours. Without loss of generality, however, this
procedure may be applied to any rescattering time t ′. The

final contours, in which causality has been incorporated,
are displayed in Figs. 9(b)–9(d) for several values of the
momentum components (p2‖,p2⊥). In Figs. 9(b) and 9(c),
the contour includes the complex ionization times t related
to Orbits 3(e2)–5(e2), while in Figs. 9(d) this saddle must be
excluded due to causality. In particular, we observe the same
type of Stokes transitions as in the monochromatic case, and
the simplified causality criterion Ret ′ < Ret is clearly still a
good approximation. However, from these figures we can still
anticipate that the causality constraint in itself plays a much
more significant role when it comes to the calculation of actual
transition probabilities. Large contributions to the momentum
yield should stem from the saddle points close to the center
of the pulse. Because of the causality constraint, however, it is
not always possible to combine the most favorable rescattering
and ionization times. In the figure, this is illustrated by the
sample contours. The most favorable ionization time for the
second electron is that of Orbit 2(e2) (see Fig. 4), but this
orbit generally cannot be combined with Pair 3(e1) because of
causality. As a Stokes transition occurs, even Orbit 3(e2) must
be discarded, as shown in Fig. 9(d).
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C. D. Schröter, R. Moshammer, and J. Ullrich, Phys. Rev. Lett.
99, 263003 (2007).

[16] D. I. Bondar, W. K. Liu, and M. Y. Ivanov, Phys. Rev. A 79,
023417 (2009).

[17] E. Eremina, X. Liu, H. Rottke, W. Sandner, A. Dreischuh,
F. Lindner, F. Grasbon, G. G. Paulus, H. Walther,
R. Moshammer, B. Feuerstein, and J. Ullrich, J. Phys. B 36, 3269
(2003); Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel,
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