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Particle production of vector fields: Scale invariance is attractive
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In a model of an Abelian vector boson with a Maxwell kinetic term and non-negative mass-squared it is
demonstrated that, under fairly general conditions during inflation, a scale-invariant spectrum of
perturbations for the components of a vector field, massive or not, whose kinetic function (and mass)
is modulated by the inflaton field is an attractor solution. If the field is massless, or if it remains light until
the end of inflation, this attractor solution also generates anisotropic stress, which can render inflation
weakly anisotropic. The above two characteristics of the attractor solution can source (independently or
combined together) significant statistical anisotropy in the curvature perturbation, which may well be

observable in the near future.
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L. INTRODUCTION

Cosmic inflation is arguably the most compelling way to
overcome (or at least ameliorate) the so-called horizon and
flatness fine-tuning problems for the initial conditions of
the hot big bang cosmology [1]. However, this success of
inflation is guaranteed if inflation lasts long enough regard-
less of the specifics which cause the accelerated expansion
in the first place. As a result one cannot use the horizon and
flatness problems as a discriminator between different
models of inflation. To this end, much attention has been
paid to another by-product of an inflationary period,
namely, the generation of the curvature perturbation ¢ in
the Universe, which is the source of structure formation
and the observed CMB primordial temperature perturba-
tion. The characteristics of { open an observational win-
dow on the dynamics of inflation, which is no more than
ten e-folds and corresponds to the so-called cosmological
scales [2]. Using this, inflation has become a testable
theory with each model realization offering specific pre-
dictions that can be observationally falsified.

Contrast with observations has strengthened the case for
inflation. First, in the last decade, the rival theory (that of
cosmic strings) for the generation of { was observationally
rejected [3]. Second, the basic predictions of inflation
appear to be supported by observational evidence.
Indeed, inflation generically seems to produce a predomi-
nantly scale-invariant spectrum of predominantly Gaussian
curvature perturbations which are also predominantly sta-
tistically homogeneous and isotropic [2]. Simple, single-
field inflationary models are able to produce such a (.
However, in recent years the precision of cosmological
observations has increased to the point that allows us to
explore deviations from the above ““vanilla” predictions of
inflation, which has put increasing tension on inflationary
models and resulted in a shift in the thinking of model
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builders, away from the simple single-field toy models and
more towards more complex model realizations of inflation
which make better use of the rich content of realistic
theories beyond the standard model. A prominent example
is the so-called curvaton hypothesis [4], which removes the
responsibility for the generation of ¢ from the inflaton field
and assigns it to another field (the curvaton) which is
unrelated to the physics of inflation (it does not affect the
inflationary dynamics) and can be associated with physics
at much lower energy scales, e.g. TeV physics explored by
collider experiments such as the LHC.

Observations now indicate that there is a significant
deviation from scale invariance in {. Indeed, the spectral
index of the curvature perturbation is n, — 1 = —0.037 =
0.014 according to the latest WMAP data [5]. This obser-
vation reveals the existence of inflationary dynamics,
which agrees with expectations. It also means that models
of inflation that generate a blue spectrum of perturbations
are most probably rejected. In conjunction with the upper
bounds on tensor perturbations, the above result has also
falsified some red-tilted models too, such as all monomial
models of chaotic inflation higher than quadratic.
Similarly, non-Gaussian signatures appear to offer a sec-
ond test for inflationary models. Indeed, the latest WMAP
results produce a tentative observation of non-Gaussianity
in the squeezed configuration, which gives for the nonline-
arity parameter fy; = 32 = 21 [5]. If this result is con-
firmed, it will falsify all single-field models of inflation,
which predict |fy | < 1.

Along these lines deviations from the remaining vanilla
predictions of inflation should be investigated, namely,
statistical homogeneity and isotropy. Observations already
offer some tentative evidence that { may not be exactly
homogeneous and isotropic. For example, a 10% differ-
ence in power between hemispheres has been reported
which would amount to a deviation from homogeneity
[6]. Furthermore, tantalizing evidence of a preferred direc-
tion (the so-called axis of evil [7]) on the microwave sky,
amounting to an alignment of the low multipoles of the
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CMB, has been much discussed [8]. This alignment per-
sists beyond foreground removal [9] and is statistically
extremely unlikely [10]. If such a preferred direction
does exist, then this could amount to statistical anisotropy
in the curvature perturbation, which can become a power-
ful discriminator between inflationary models and mecha-
nisms for the generation of {.

Observations currently allow up to 30% statistical an-
isotropy in the power spectrum of ¢ [11]." Similarly,
statistical anisotropy in the bispectrum can be predomi-
nantly anisotropic even if statistical anisotropy in the spec-
trum is negligible. If this is the case, then non-Gaussianity
will feature an angular dependence on the microwave sky
[13,14]. The forthcoming observations of the Planck sat-
ellite may well provide conclusive evidence of nonzero
statistical anisotropy in the spectrum and/or bispectrum of
the CMB temperature perturbations. In particular, the
bound on statistical anisotropy in the spectrum will be
reduced to 2% if such anisotropy is not observed [15].
Similarly, the observational bounds on fy; are expected
to tighten by at least an order of magnitude, so statistical
anisotropy in the bispectrum may well be found if non-
Gaussianity is observed. Thus, it is imperative to inves-
tigate whether and how inflation can generate a statistically
anisotropic signal.

Traditionally, the dynamics of inflation and the genera-
tion of { have been studied using fundamental scalar fields
only. Such a setup, however, cannot produce a preferred
direction on the microwave sky. The simplest way to do so
is to involve at least one vector field, which naturally
selects a preferred direction. Using a vector field to con-
tribute to the curvature perturbation was pioneered by
Ref. [16], where it was shown that a massive Abelian
vector field can successfully play the role of the curvaton.
Since then, substantial interest was ignited for the involve-
ment of vector fields in inflation and the generation of the
curvature perturbation. The first comprehensive study of
how vector fields can contribute to { and generate statisti-
cal anisotropy can be found in Ref. [17].

Involving a vector field can give rise to statistically
anisotropic ¢ in two ways. One possibility is that the
contribution of the vector field to the density during in-
flation may result in non-negligible anisotropic stress. This
can produce statistically anisotropic perturbations of the
inflaton scalar field which can eventually give rise to
statistical anisotropy in £ [18-20]. In this case, the pertur-
bations of the vector field itself are unimportant (and can be
ignored) and the only requirement is that its contribution to

'In Ref. [11] statistical anisotropy of magnitude (29 *+ 3)% is
actually found in the spectrum of the WMAP data at 9 — o.
However, the preferred direction is suspiciously close to the
ecliptic plane so the authors acknowledge that this observation is
probably influenced by some unknown systematic (see also
Ref. [12]). Hence, this finding can only be taken as an upper
bound on the statistical anisotropy of the primordial signal.
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the energy density remains non-negligible throughout in-
flation, or at least during the period when the cosmological
scales exit the horizon. The second possibility is orthogo-
nal to the previous one, in that it assumes a negligible
anisotropic stress during inflation and it focuses instead
on the contribution to ¢ of the vector field perturbations,
which can give rise to statistical anisotropy if the particle
production process for the vector field is itself anisotropic
[17,21]. This is the generic expectation for a vector field
that undergoes particle production and obtains a super-
horizon spectrum of perturbations for some or all of its
components [17].

To undergo particle production and obtain superhorizon
spectra of perturbations for its components, the vector field
needs to have its conformal invariance appropriately bro-
ken during inflation. Mechanisms for such a breaking of
conformality were originally developed in the effort to
generate a coherent primordial magnetic field during in-
flation (e.g. see Refs. [22,23], and references therein). One
proposal suggested coupling nonminimally an Abelian
vector field to gravity through a term of the form } RA?,
where R is the scalar curvature [24]. The model was shown
to generate scale-invariant spectra for all vector field com-
ponents (introducing a small nonzero mass gives rise to a
longitudinal component) and particle production was an-
isotropic at the level of 100% [17,25]. Thus, if such a
vector field generates a subdominant contribution to £, it
can generate observable statistical anisotropy. This model,
however, may suffer from instabilities such as ghosts [26]
(see, however, Ref. [27]).

To overcome the instability issue another model was put
forward, which employs a vector field with a varying kinetic
function [21]. This possibility has been massively explored
for the generation of a primordial magnetic field [28]. In this
model, particle production of the transverse components of
the vector field can produce a scale-invariant superhorizon
spectrum of perturbations if the kinetic function of the
vector field scales as f « a~'*3 during inflation (or at least
when the cosmological scales exit the horizon), where a is
the scale factor of the Universe [21,29]. If the vector field
has a nonzero mass m, it makes sense to talk about the
longitudinal component as well. To obtain a scale-invariant
spectrum for this one, the additional requirement is m =« a
[21]. We also need the mass of the physical (in contrast
to comoving) vector field M = m/\/f to be small (i.e.
M < H, with H being the Hubble parameter) when the
cosmological scales exit the horizon. Under the above con-
ditions, if the vector field remains light until the end of
inflation, then the power spectra of the transverse and
longitudinal components, respectively, are [21]

H\2 H\2( H \2
P,=— d Pi=(—)(=—), 1
L (277) e (277) <3M) W
so that P} < P and particle production is strongly an-
isotropic. In contrast, if the vector field becomes heavy by
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the end of inflation (i.e. M = H), then the vector field
begins coherent oscillations around zero and the power
spectra of the transverse and longitudinal components ob-
tain the average value [21]

pono ) o

which means that particle production becomes isotropic.
This possibility arises only if M is growing during inflation,
which corresponds to f o« a~* (the other possibility,
namely, f = a?,resultsin M = constant). One can translate
the above spectra of vector field perturbations into a con-
tribution to { through a variety of mechanisms. In Ref. [21]
the vector curvaton mechanism of Ref. [16] was used. In
Ref. [30] the end of inflation mechanism was used instead
for the same vector field model with m = 0.

One expects the modulation of f and m to be due to a
degree of freedom which varies during inflation. The most
natural candidate for this is the inflaton field itself.
However, in this case, there is a coupling between the
vector field and the inflaton, which can backreact onto
the inflaton’s dynamics. Such backreaction was first con-
sidered in Ref. [19], where it was shown that, for a specific
functional form of the kinetic function, a model of qua-
dratic chaotic inflation renders the scaling f « a™* an
attractor solution. The role of the backreaction to vector
field particle production in quadratic chaotic inflation with
a massless, Abelian gauge field was also investigated in
Ref. [31] with the aim to explore the generation of a
primordial magnetic field. The same attractor behavior
was found. Furthermore, the backreaction on inflation
from a massless, Abelian vector field whose kinetic func-
tion is modulated by the inflaton was studied in Ref. [32],
where an attractor behavior which results in weakly aniso-
tropic inflation was also observed.

In this paper, we perform a stability analysis to obtain
the criteria under which the conditions f = a~*and m = a,
which render the vector field perturbation spectra scale-
invariant (and which at first glance may seem somewhat
artificial), become attractor solutions for a generic func-
tional form of the dependence of the kinetic function f(¢)
and the scalar potential V(¢) on the inflaton field ¢. We
find that the conditions imposed on the model parameters
are such that the above scalings for f and m become
attractor solutions for 50% of the parameter space (in the
sense that for a given model parameter the condition is one
upper or lower bound only) and can be attained for natural
values. The criterion boils down to the requirement that the
backreaction onto the inflaton field dynamics should not be
decreasing during inflation, because were it so, the vector
field could never affect the inflationary dynamics and no
attractor behavior would arise. Thus, we show that the
conditions which guarantee the generation of scale-
invariant spectra of vector field perturbations (with ampli-
tudes as shown above) can be naturally attained if the
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kinetic function and mass of the vector field are modulated
by the inflaton during inflation.

Our findings also show that the attractor solution can
generate a nonzero anisotropic stress when the vector field
is still light. This anisotropic stress can be kept small
(negligible) by choosing the model parameters appropri-
ately. In this case, the assumption of an approximately
isotropic inflationary expansion is justified, and we can
rely on the vector field perturbations to produce statistical
anisotropy as discussed in Refs. [17,21]. However, we can
choose the model parameters such that the anisotropic
stress of the attractor solution is non-negligible in which
case the inflationary expansion itself would be anisotropic.
In this case, the vector field perturbations can play a
negligible role (and can be ignored), and we can produce
the statistical anisotropy from the anisotropic expansion
itself as in Refs. [19,20]. In our paper we do not make a
choice between these two options, or indeed the third
possibility in which both the above two sources of statis-
tical anisotropy can be important. Instead we quantify the
anisotropic stress at the attractor solutions as well as dem-
onstrate that the scaling of f and m results to scale
invariance.

An interesting by-product of the vector field backreac-
tion on the inflationary dynamics is that it provides extra
resistance in the roll of the inflaton down its potential. This
can be used to maintain slow roll even if the curvature of
the scalar potential along the inflaton direction is substan-
tial. Thereby we can overcome the infamous 7 problem of
inflation which arises by Kihler corrections to the scalar
potential in supergravity theories.

The structure of our paper is as follows. In Sec. II we
outline our model and obtain the equations of motion for
all the fields involved. In Sec. III we define a set of
dimensionless quantities which we use to perform a dy-
namical analysis of our model, without specifying the
functional dependence of f(¢), m(¢), and V(). In
Sec. IV we study the case of a massless vector field, in
which only the transverse components are physical. We
obtain the standard slow-roll critical point, which is an
attractor for half of the parameter space where the vector
field backreaction does not grow during inflation. We also
find another critical point which is our vector scaling
solution, which exists for the remaining half of the parame-
ter space, when the vector field backreaction to the inflaton
does affect the inflaton’s roll, while also rendering the
standard slow-roll critical point unstable. In Sec. V we
consider a nonzero mass for the vector field and investigate
whether our vector scaling solution is spoiled or not. First,
we study the case of a light vector field (M << H) where we
find that our vector scaling solution trifurcates into three
critical points with weak flows between them. The infla-
tionary expansion at these points can be anisotropic.
Afterwards, we study the case of a heavy vector field
(M = H) which is undergoing harmonic oscillations.
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Again we find a vector scaling solution, which now corre-
sponds to zero anisotropy. In Sec. VI we display a sum-
mary of our results. In Sec. VII we apply our findings to
four different concrete examples and we numerically ver-
ify our analytic results. The first example assumes an
exponential dependence of f(¢), m(¢), and V(¢) on the
inflaton field, which could be motivated by string theory
considerations. The second example considers chaotic in-
flation and reproduces the findings of Ref. [19] in the
massless field case. The third and fourth examples are
supergravity inspired and assume that the inflaton is a flat
direction of supersymmetry, lifted only by Kéhler correc-
tions to the scalar potential. The vector field is then a
Higgsed gauge field with f being the gauge kinetic func-
tion associated with the gauge coupling as f ~ 1/g. In
these examples we clearly demonstrate how the backreac-
tion of the vector field can overcome the 7 problem of
inflation in supergravity. Finally, in Sec. VIII we discuss
our results and present our conclusions.

While this paper was being written up Ref. [33] ap-
peared, which performs a similar stability analysis for the
massless version of our model assuming an exponential
functional dependence for f(¢) and V(¢). As such it
corresponds to part of the first of our examples. However,
the authors of Ref. [33] have explored deeper the infla-
tionary dynamics and were mostly interested in the possi-
bility of anisotropic inflationary expansion, completely
ignoring the perturbations of the vector field and what
the vector scaling solution implies for them. Our results
agree with their findings where there is overlap.

In our paper we consider natural units, where ¢ = A =
kg = 1 and Newton’s gravitational constant is 87G =
m;z, with mp being the reduced Planck mass.

II. EQUATIONS OF MOTION

Consider the Lagrangian density for a massive Abelian
vector field plus a scalar field together with Einstein
gravity

mp

2
—lF FW+1 ZA AP 3

4f ny 2m 7 ’ ( )

£=="TR4 10,058~ V()

where f is the vector field kinetic function, m is the mass of
the vector field, the field strength tensor is F,, =
d,A, — d,A,,and V(¢) is the scalar potential. The above
can be the Lagrangian density of a massive Abelian gauge
field, in which case f is the gauge kinetic function.
However, we need not restrict ourselves to gauge fields
only. If no gauge symmetry is considered, the argument in
support of the above Maxwell-type kinetic term is that it is
one of the few (three) choices [34] which avoids introduc-
ing instabilities, such as ghosts [26]. Also, we note here
that a massive vector field which is not a gauge field is
renormalizable only if it is Abelian [35].
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It was shown in Ref. [16] that, as inflation homogenizes
the vector field 9;A, =0, the temporal component
Ao = 0.% Therefore, without loss of generality, the spatial
components of the vector field can be lined up in the z axis
A, =1(0,0,0,A,(z)). We can then assume a Bianchi-I
background with a residual isotropy in the plane perpen-
dicular to the vector field expectation value

ds? = di? — e**O[290(dx? + dy?) + e 470 dz2], (4)

where a = e is the isotropic scale factor and o parameter-
izes the amount of anisotropy. A constant o corresponds to
a flat Friedmann-Robertson-Walker Universe with the
Hubble rate given by H = &. One can shift the values of
« and o by a constant factor without changing the physics
of the system.

In Ref. [21] we showed that the scaling f = a~'*3 and
m « a leads to scale-invariant spectra of superhorizon
perturbations for the vector field components, assuming
approximately isotropic quasi-de Sitter inflation. Such per-
turbations can then contribute to the curvature perturbation
of the Universe £, e.g. through the vector curvaton mecha-
nism [16]. The modulation of the kinetic function f and
mass m of the vector field comes from some degree of
freedom which varies during inflation. The most natural
choice for such a degree of freedom is of course the inflaton
field itself, but other choices are also possible. In this paper,
we consider the possibility that the kinetic function and
mass of the vector field are some function of the inflaton
field ¢, i.e. f = f(¢) and m = m(¢). If this is so, then,
under certain conditions, we demonstrate that the scaling
solutions for the kinetic function and mass f « a~* and
m « a, which give rise to scale-invariant perturbation spec-
tra, are in fact dynamical attractor solutions.

The Einstein equations derived from Eq. (3) are

a2 =0 = o [ D0+ V() - e A
3m3 12 28 /%

1
—eenat] 5)
1 1 .
&30 = [ V) — Jgph - gemaz] @)
P

1 .
G+3ao = 3—[—g”fA§ +g¥m?A?],  (7)

mp
where g = —e¢~2¢(0+40() The scalar field equation of
motion is
b +3ad+Vi(p)+ B, =0, ®)

where the prime denotes derivative with respect to ¢ and
B, is a source term due to the modulation of the kinetic
function and mass of the vector field from this scalar field.

If m = 0, then we can set A, = 0 by a gauge choice.
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We define this backreaction of the vector field to the scalar
field dynamics as By = B, + B,_,,, where

BA—f = %gzzflAg and BA—m = — szm/Ag, (9)

which we call the f-term and m-term backreaction,
respectively.
The equation of motion for the vector field is
: 2
AZ+<a+4d+§)AZ+"}AZ=0, (10)
and the vector field energy density is given by p, =
Prin T Va4, where

1D

The equation describing the acceleration of the Universe
is

Pin = —3¢<fA? and  V, = —5g¥mPAL

i+ @ =20+ [P+ V()= p) (12)
a 3mp

Notice how the vector field potential term V, has no
influence on the acceleration of the Universe; therefore,
only the growth of the vector kinetic term can spoil an
inflating Universe.

It will also be useful to define the following energy
density and backreaction ratios:

R =P4 and Ry= 20 (13)
P V()
where the energy density of the homogeneous scalar field
is given by the usual expression p, = %d)z + V().

The backreaction Eq. (9) is dynamic with respect to the
vector field, as it is a function of Az, but not with respect to
the scalar field, since it is not a function of qS Thus, the
backreaction may be interpreted as to only modify the
effective slope of the potential, V., = V' + B,, seen by
the inflaton.

If we consider gauge symmetry, then f is the gauge
kinetic function where f ~ 1/g” and g is the gauge cou-
pling. Consequently, because we assume canonical nor-
malization f — 1 at the end of inflation, we require that
the kinetic function is always decreasing in time, f(r) <0,
so that the vector field remains weakly coupled. Note,
however, that the vector field does not need to be a gauge
field necessarily.

Successful particle production of vector fields during
inflation requires that the physical field is effectively mass-
less at horizon exit: m/\/f << H. However, the vector field
can become heavy at some point after horizon exit. In this
case, particle production can be isotropic [21]. A heavy
vector field oscillates and acts like a pressureless isotropic
fluid which does not cause anisotropic stress [16].
Therefore, to consider the effects of a nonzero mass for
the vector field, we also require the mass to be increasing in
time, m(z) > 0; otherwise, it will always be negligible.
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Because of the above, we notice that the backreaction
always has an opposite sign to the potential slope. This is
because the scalar field rolls down its potential, so if
V/(¢) >0, then ¢ <0 and therefore f'(¢p) >0 and
m'(¢) < 0; however, if V/(¢p) <0, then ¢ > 0 and there-
fore f'(¢p) <0 and m'(¢) > 0. This ensures that B, al-
ways has an opposite sign to the potential slope V'(¢). We
conclude that the backreaction will always reduce the
effective potential slope experienced by the inflaton and
slow down the scalar field as it rolls down its potential. The
effective potential slope as seen by the scalar field is then
given by

Vig=V' +B,=V(l+Rgp). (14)

III. DYNAMICAL ANALYSIS

The Einstein equations [Egs. (5)—(7)] together with the
scalar and vector field equations [Eqgs. (8) and (10)] form a
system of coupled nonlinear differential equations.
Analytical solutions to this system are extremely difficult
if not impossible to obtain. However we may understand
the qualitative behavior of the solutions by analyzing the
phase space of the system. Our aim is to identify attractor
solutions which may result from the effect of the vector
field backreaction on the scalar field dynamics.

Let us first define a new set of dimensionless, expansion
normalized variables

_VV(¢)

s=0 =2
=, X= , = ,
@ Vompa Y Bmp
in V
=P o VYA and u=-"1 (15)
‘\/§de \/nga a'\/?
The Friedmann constraint [Eq. (5)] then becomes
S22+ 2+ 2+ 2 =1 (16)

We can write the Einstein equations and the scalar and
vector field equations as a system of first-order coupled
nonlinear differential equations:

Z_E =—33+272 25> + (332 + 32 + 222 +5%), (17)
o
X et
— = 3x— A +T72 - Es?
da
+x(332 4322 + 222 + 57), (18)

j_y =y Y332+ 32 + 222 + %), (19)
o

d
—Z=—21—2ZE—sz—,u,s
o

+z(332 + 322 + 222 + 52), (20)
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d e
d_s: —s+252 + Esx+ uz+ 5322 +3x2 + 272+ 52),
@

21

W fE T+ (243 22 4 Dl )
a

where we have defined the dimensionless model parame-
ters, which are the only model-dependent terms in the
system above, as

Aa) = \/gmp(vv)
INa) = \/gm})(?), and

Following the arguments at the end of Sec. II, we see that A
and I" have the same sign but opposite to x and E. For
definiteness we can choose A and I' to be positive and x and
E to be negative without loss of generality.

It will also be useful to use the slow-roll parameters
defined by

(23)
H(a) = \/Emp(’:;)

2 V/\2 1
E(QS)E%(V) :§A2 and

n(@) = mi(;) = \EmPA' + 2

However because of the backreaction affecting the scalar
potential slope V/(¢), it will also be useful to define the
slow-roll parameters in the Hamilton-Jacobi formalism

(24)

i
GHE—?:—?=3E2+3)C2+222+S2 and
H I €y
__H _ 1 é 25
MM TO0HA T M 24 ey >

In the framework of our expansion normalized variables,
we find that
1 df 1 dm —

? o 2xI"  and DY=A (26)

mda_

The scaling solutions required to generate a scale-invariant
vector field spectrum of perturbations, f o« a*andm x« a,
are therefore, respectively, given by the solutions
and x = é 27)
The full system above [Eqgs. (17)—(22)] is 5-dimensional,
and the phase-space analysis becomes highly complicated.
In 2 dimensions, from an analytic point of view one can say
a lot more about a system of differential equations. For
systems of higher dimension one cannot do much more
than analyze the stationary points and their stability; see
Ref. [36]. The stationary points (or critical points) of the

*=OF
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system are defined by 5—2 = % = -+ = (), and their stabil-
ity is established by analyzing the behavior of the solutions

close to the critical points.

Stability
To investigate the stability of the critical point solutions
we will consider perturbations about the critical points

X=x,+tu, y=y.tTuv,

2=3.+w, (28)

and substituting into the system of equations we obtain the
linearized system

<

u
v v
=] (29)

- =

where the matrix M = M(x., y., 2, ...). The general
solution for the evolution of linear perturbations can be
written as

ula) = ue™® + ue™* + uze™* + - -,
v(a) = vie™® + vye™ + vze™e - (30)
w(a) = wie™® + wye™® + wye™* + -,

3]

where u;, v;, and w; are constants of integration and the
index i gives the dimension of the subsystem under
consideration.

The critical point is considered to be perturbatively
stable when the real parts of all the eigenvalues m; of the
matrix M are negative. If Im(m;) # 0, then the point is a
stable spiral; otherwise, it is a node. Generally the eigen-
values will be a mixture of positive and negative numbers;
in this case, the critical point is an unstable saddle point. If,
however, the real parts of one or more of the eigenvalues
are zero, then the point is nonhyperbolic whose stability
cannot be established using the linearization procedure
above; more sophisticated methods such as the center
manifold theorem have to be used. In this paper we only
consider hyperbolic critical points.

Now it is important to note that we may write down these
solutions to the linearized system [Eq. (30)], if and only if
the eigenvalues m;, which will generally depend on the
model parameters [Egs. (23)], are constant or slowly vary-
ing compared to the Hubble scale H. This may be achieved
if the model parameters are constant or slowly varying
themselves or if the eigenvalues depend weakly on the
model parameters. The method to establish the stability
of the critical points relies on this assumption, and there-
fore the validity of this assumption has to be verified once
we have obtained the eigenvalues of the matrix M.
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In general, we find that the local dynamics of the critical
points depend on the dimensionless model parameters A, T,
and E. When small continuous changes in these model
parameters result in dramatic changes in the dynamics, the
critical point is said to undergo a bifurcation. The values of
the parameters which result in a bifurcation at the critical
point can often be located by examining the linearized
system. The bifurcations are located at the parameter
values for which the real part of an eigenvalue is zero.
We will identify the bifurcations in our system as these
may correspond to interesting changes in the cosmological
scenarios described by the system.

IV. THE MASSLESS VECTOR FIELD CASE

There has been recent wide interest in the cosmological
implications of a massless U(1) field whose kinetic function
is modulated by the inflaton [19,20]. Authors in Ref. [19]
have shown that for a certain kinetic functional form and
potential an attractor solution exists which corresponds to a
slow-roll phase of inflation that maintains prolonged an-
isotropy. We will show, however, using dynamical analysis
that these scaling solutions can be obtained for a wide class
of scalar potentials and kinetic functions.

Consider a massless vector field s, u, 2 = 0. The full
system of equations [Egs. (17)—(22)] is then reduced to the
3-dimensional subsystem

P Y
da
+ 3332432 +201-32-x2—y)], (3D
dx —3x = Ay? + (1 = 32 = x* — y?)
da
+x332+3x2+2(1 - 32— x2—y)], (32

Z_y = Ay +y[332+32+2(1-32 =2 —y?)],  (33)
a

together with the Friedmann constraint 22 + x> + y? +
72 = 1. The critical points (x,, y., 2., .) are found by
setting 4= = 4* = & — () There are 3 critical points for

this system, as shown below.

A. The standard slow-roll solution SSR

The first critical point to be considered is

A A\2
SSR.: (xc,yc,zc,26)=(—§, 1—(5),0,0), (34)

where the eigenvalues of the matrix M for this solution are

2

2
mip = =3+% and my=—4+2MA+T). (35)

Hence the existence and stability of this solution requires
A<3 and A(XA+T)<6. (36)
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This critical point becomes the inflationary standard slow-
roll solution when A < 3 or equivalently € < 3. The
scalar field slowly rolls down its potential which dominates
the energy density of the Universe y. = 1. We find that the
vector field energy density vanishes at this critical point
z. = 0, and consequently so does the anisotropy 2, = 0.
These are completely diluted by the expansion of space and
provide an example of the cosmic no-hair theorem [37].
The slow-roll parameters [Egs. (24) and (25)] are now

en=€=1A and ny=17m—¢ 37)
and the scalar equation of state is
2x? 2 2
=1+ = =22 =Zep 38
¢ e T g ¥y 9 3 H (38)

The method to establish the stability of the system relies
on the fact that the eigenvalues are constant or slowly
varying. This may be achieved if the model parameters
are constant or slowly varying, but this may also be
achieved in the limits A < 3 and A(A + ') < 6, where
the eigenvalues depend weakly on the model parameters.
This therefore ensures the validity of our method in estab-
lishing the stability of the critical points. These limits
would also guarantee the existence and stability of this
critical point.

For slowly varying model parameters we can identify
the bifurcations. The bifurcation value A = 3 determines
the boundary between the existence and nonexistence
of the critical point. And passing through the bifurcation
value A(A + 1) =6 the stability of the critical point
changes. We will see what happens to the other critical
points at these bifurcations in the following sections.

B. The anisotropic kination solution A KS

The second critical point of this system is

A KS: (X, oo 200 20) = (x,0,0, V1 — x?). (39)

This point turns out to be a nonhyperbolic critical point as
one of the eigenvalues of the matrix M is zero. Therefore
we cannot establish its stability with the linearized sys-
tem. In any case we find that this critical point does not
correspond to a cosmology of interest. This is because the
scalar potential vanishes at the point y. = 0 and therefore
cannot correspond to an inflating Universe. We also no-
tice that for the anisotropy 3. to be small we require that
x. = 1, and therefore the Universe is dominated by the
scalar kinetic energy. Otherwise we would have a
strongly anisotropic Universe, contradicting observations.
Therefore we will not pursue the analysis of this critical
point any further.
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C. The vector scaling solution VSS
The vector scaling critical point is given by
VSES: (Xe, Yeor 2o 2e)

— (—6A,(A +T), A, A,VT2 + AT + 6,
A AN + AT — 6,2A,(A2 + AT — 6)),

where A, = 3I? +4I'A + A2+ 12)"' and

Ay = y3GT2 + 2T — A2 + 12). (40)

Calculating the eigenvalues of the matrix M for the
vector scaling solution becomes highly complicated; how-
ever, we will see that we are interested in the special case
where I' > A and I > 1. In these limits the critical point
may be approximated by

2
T 1)
r

VAL =6 2(AT" — 6))
r o3z

VES: (Xp, Yor 200 ) = (-

(41)

Plots are shown in Appendix A 1 of the functional
dependence of the real parts of the eigenvalues on the
model parameters. We can clearly see that in the limits
I'> A and T" > 1 the real parts of the eigenvalues are
approximated by

Re[m;]= -3 and Re[my;]=—3. 42)

The real parts of the eigenvalues are negative, and therefore
the critical point is stable i.e. a late-time attractor. In the
limits considered the eigenvalues depend weakly on the
model parameters. This can be seen as plateaus in the plots
of Appendix A 1. This therefore ensures the validity of our
method in establishing the stability of the critical points.
The existence and stability of this solution requires

Al > 6, I'>A and I'> |, (43)

which are sufficient but not necessary conditions. We can
see that the energy density is dominated by the scalar
potential y,. = 1 with the scalar field in slow roll; therefore,
we have an inflating Universe. We note that as I' — oo
the Universe becomes de Sitter. The energy density ratio in
Eq. (13) is given by
22 A= 6

Py < 1. (44)
The energy density of the vector field tracks that of the
scalar field if the dimensionless model parameters are
constant. Otherwise the energy density ratio is varying,
with time dependence determined by that of the dimen-
sionless model parameters. Under the limits considered,
the vector field energy density contribution is kept subdo-
minant. The backreaction from Eqgs. (13) and (14) leads to
the following effective scalar slope:

I'rz\2 6-— AT
Rp=——(2) =
’ A(y) AT

6
and V., = T V. (45)
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The existence condition AI' > 6 from Eq. (43) means that
the effective slope seen by the scalar field becomes flatter,
and so the field slows down as it evolves along its potential.
This effect is quantified by the slow-roll parameters
21 24 Nemp (N T
~—<1 and ng=— ~—— =) 46
L A ) F(AF)()
Comparing to the SSR slow-roll condition [Eq. (37)], we
find €4(VSS) =22 €,;(SSR). The slow-roll parameter is
therefore reduced in the vector scaling solution.
The anisotropy in the expansion, 2, is given by

2/AI' — 6 2 2
Eczg(?>:§Z%:§R < 1. 47)
The anisotropy is proportional to the energy density ratio
and therefore evolves in the same way. This is a general-
ization of the result obtained in Ref. [19] for any potential
and kinetic function that satisfy Eq. (43). We can see that
this vector scaling solution is a new slow-roll inflationary
stage which supports small but prolonged anisotropy which
would otherwise be completely diluted in the standard
slow-roll regime. This prolonged anisotropy may be useful
in generating statistical anisotropy in the curvature pertur-
bation as described in Refs. [19,20]. The nonvanishing
anisotropy provides a counterexample to the cosmic
no-hair conjecture [37].
We can now see how the kinetic function behaves at the
critical point. As we have obtained the attractor solution in
Eq. (27), the kinetic function scales as

fan(a) o e7*. (48)
The scalar equation of state is
2x? 8

We notice how the equation of state y, > 0, and therefore
we are not dealing with a phantom field which would
otherwise violate the strong energy condition.

We also note that in the VSS parameter space where
A > 6 and I' > A one of the eigenvalues of the SSR,
namely, mj; of Eq. (35), is positive. Therefore the SSR is
an unstable saddle point as long as the condition A < 3 is
also satisfied; otherwise, the SSR would not exist. This
really tells us that the SSR is unstable because the back-
reaction is growing and would eventually affect the dy-
namics of the system. If, however, the backreaction is
subdominant at some early time, the standard slow-roll
attractor could be reached prior to the vector scaling solu-
tion. This transient period of standard slow-roll inflation
could last for a large number of e-folds depending on how
subdominant the backreaction is. The VSS is, however,
the true late-time attractor.

For the V&S it is more difficult to identify the bifurca-
tions because the eigenvalues are so complicated. However,
we notice that the bifurcation value AA + 1) =6,
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observed at the SSR,, determines the boundary between the
existence and nonexistence of the V. SS. We also notice that
the stability of the SSR and VSS critical points is inter-
changed at the bifurcation. As we are considering the limit
> A for the VSS, then the bifurcation of interest,
through which the dynamics of the system changes dramati-
cally, is AI' = 6.

D. Time dependence of the dimensionless
model parameters

One important issue that we must deal with is the fact
that generally the model parameters (A, I', ) are time-
dependent (A(a), I'(«v), E(«)) and therefore the critical
points derived above are also time-dependent. The trivial
case corresponds of course to constant model parameters,
where the critical points are the true late-time solutions.
Otherwise they are known as the instantaneous critical
points. If the solutions approach the attractors faster than
the evolution of the critical points themselves, then it is
reasonable to assume that the attractor solutions are
reached and solutions are dragged along with the critical
point. Otherwise the late-time solutions are determined by
the asymptotic behavior of the dimensionless model pa-
rameters. In the vicinity of the stationary points the ap-
proach to the attractors is determined by the eigenvalues of
the matrix M. For the critical solutions to be reached, their
time dependence must be smaller than the eigenvalue of
smallest magnitude. We may write this as

1 dF F!
— = =\/6mp Xe <

<|m ,
 da Iy

(50

c

where F, = (x,, Y, Z¢» Se» 2)- Therefore we need to estab-
lish which variable has the largest time variation and then
which eigenvalue has the smallest magnitude.

1. The standard slow-roll solution SSR

For the SSR we see from Eq. (34) that F. = (x,, y.),
and therefore we have to establish which of these two
variables has the largest time variation. We find that

Eq. (34) leads to
b Ldy,| P A\
=\/;mplx\’| and ;d_a 'z\/%mp|)\’|<§) .
(51

The existence condition in Eq. (36) therefore tells us that
the x, variable has the largest time dependence.

Next we need to establish which eigenvalue has the small-
est magnitude. If the dimensionless model parameters are
very slowly varying, then from the existence and stability
conditions [Eq. (36)] we can see that in the regime I' << A,
and considering slow roll € < 1, that [my,| <|ms].
If we consider the regime I > A, then we find two possibil-
ities: first, if 3 < AI' < 6, then |m 5| > |ms]; otherwise, if

1 dx,
X, da

PHYSICAL REVIEW D 83, 023523 (2011)

A< %, then |m 5| < |mj3]. For the standard slow-roll solu-
tion, Eq. (50) with F. = x,. leads to the conditions

2
SSR: \/;mplx\’l = |2 — 7|

lmiol =1-3+¢€l

< (52)

lms| = |—4+2e+§/\r :

The slow-roll conditions € << 1 and |n| < 1 guarantee
that the first inequality above is satisfied. Then all we require
is that |3 A" — 4| > O(n), to satisfy the second inequality.
This can be readily satisfied as long as we are not too close to
the bifurcation value AT" # 6. In fact if |3 AT — 4] = O(1),
then both inequalities can be met even if [y| ~ 1, violating
this slow-roll condition. In other words, the SSR can also
apply to fast-roll inflation, where only one of the slow-roll
conditions € < 1 is met.

If the dimensionless model parameters are varying rap-
idly, then the validity of our method in establishing the
stability of the critical points requires the strong conditions
A <3 and Al' < 6. These conditions ensure that the
eigenvalues depend weakly on the dimensionless model
parameters. In this case the eigenvalues of smallest mag-
nitude are clearly |m,|=3. Therefore the inequalities
above can be readily satisfied even for fast-roll inflation
where |7y| ~ 1.

2. The vector scaling solution VSS

For the VSS we see from Eq. (40) that F, =
(Xe» Yer Ze» %), and therefore we have to establish which of
these four variables has the largest time variation. In the
limits I' > A and I" > 1 we find that Eq. (50) leads to

S

1d A

;d{; =ome | |

1 dz. " A AT +AlY
Lot | S 2] o

Therefore the eigenvalue of smallest magnitude, which from
Eq. (42) is [my ;| = 3 in the limits considered, has to be larger

FL(. ”ff; < O(1) (or the

strong bound < 1), for the attractor to be reached. Now if we
consider a relatively flat potential /2/3mp|N| =
|y —2€l = O(1) and because I'> 1, then clearly
mp|#| < 1. Then if

than all of the expressions above, |

A% 6 or AT = =AY, (54)

we find that all the expressions above can be reduced to a
single (strong) condition
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1"/
2

f—//—1|<< 1. (55)

fIZ

As expected, if the kinetic function is exponential
f = e“®/mrwhere ¢ is some constant, then the expression
above is exactly zero. This is because only exponential
functions will give constant dimensionless model parame-
ters. Potentials and kinetic functions obeying I" o« 1/A give
AT = — AI". These have been considered in Refs. [19,20],
where f o exp(cmp? [17d¢) and satisfies the condition in
Eq. (54).

mp

V. THE MASSIVE VECTOR FIELD

We now consider a massive vector field whose mass is
also modulated by the inflaton, hence s, u, Z # 0.
Therefore we now have to consider the full, 5-dimensional
system of equations [Egs. (17)—(22)].

As we have seen in Sec. IV C for a massless vector field,
when the f-term backreaction becomes important, the
dynamics lead to the attractor solution VSS where
fa(@) ¢ e**. Such scaling for f results in the generation
of a superhorizon spectrum of perturbations for the trans-
verse components of the vector field. However, if the vector
field is massive, we have to consider also the longitudinal
component. As shown in Ref. [21], to obtain a scale-
invariant spectrum for the latter we need to have m « a.
Thus, we are also interested in finding out whether the
attractor solution is such that m,(«) < e® simultaneously.
But of course there can only be one solution ¢(a), and
therefore there must be a connection between f(¢) and
m(¢) to obtain the desired scaling of f and m simulta-
neously. To this end we have to impose the following
connection:

/ !
E= —11“ A —4™
2 f

This condition is the price we have to pay to obtain the
desired behavior for both the mass and the kinetic function.
The question to be investigated is whether, with the con-
tribution of the mass backreaction taken into account, the

desired scaling remains an attractor solution.

For the massive vector field case there are now two terms
in the backreaction; see Eq. (9). Their relative magnitude is

(56)

given by
B, T /z7\2 2
Lo L) @
Bi-p Z\s s
where we considered the connection Eq. (56) in the last
equality.

A natural choice of initial conditions for the vector field
can be based on energy equipartition grounds. Energy
equipartition states that at some early time, for example,
at the onset of inflation, py;, = V4. In our expansion
normalized set of variables this gives us z7 =~ s?, where
the subscript indicates the early epoch at the onset of
inflation. Considering the connection Eq. (56) we find that

T332
1

PHYSICAL REVIEW D 83, 023523 (2011)

L . . . B, .
the initial backreaction ratio is B:f |; = 2. This suggests

that the m-term backreaction is important from the onset.
Therefore we have to be careful as we cannot neglect the
m-term backreaction even if we are considering a very light
vector field. Thus, assuming initial equipartition of energy,
we cannot simply extrapolate the analysis from the
previous massless case where B, _,, = 0 to a small but
nonzero massive case, because initially By _; ~ B, _,,.

Calculating the stationary points and the eigenvalues of
the linearized system becomes highly complicated when
considering a massive vector field. The problem stems
from the mass function w, whose first derivative, taken
from Eq. (22), is

dw _ [(E—Dx+ (322 +3x2+222 + s)]u.  (58)

da

Under the condition that I" has an opposite sign to both
E and x we can see that u is a monotonically increasing
function. Asymptotically this function will tend to u — oo.
The phase-space analysis is designed to investigate the
asymptotic (final) behavior of systems of differential equa-
tions. The problem is that we wish to study the qualitative
behavior of solutions for a light vector field, which, since
the effects of a nonzero mass are increasing in time,
corresponds to an intermediate phase in the evolution of
the system. Therefore, it is not clear whether we can
understand the system qualitatively in this intermediate
regime where the vector field has a small but nonzero
mass. However, as shown below, it turns out that we can
indeed obtain some useful information if we first consider a
very light field u < 1.

A. The light vector field case

In this section we assume that, if the field is light
enough, we may neglect any terms proportional to the
mass function u in the system of differential equations.
We can then establish the existence of any critical points
and their stability. If any of the stationary points are stable,
i.e. attractors, and the mass is small enough as to not affect
the dynamics, we should expect the solutions to reach these
attractors. We later confirm the validity of this assumption
numerically for different model examples (e.g. see Fig. 1).

The full system of differential equations [Eqgs. (17)—(22)]
now reduces to the 4-dimensional subsystem given below:

A% 35 402 2@ 4 SB32 432422+ 2, (59)

da

d -
e B A1 - 32— 22— 22— ) + T2 — Bs?
da

+ x(332 + 3x2 + 222 + 5?), (60)

;1_2 =[—2-23-Tx+(332+3x>+22+ %]z, (61)
a
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2xI’
10

-20

FIG. 1 (color online). This numerical plot demonstrates the
validity of our approximation in neglecting terms proportional to
m when considering a light vector field. The plot shows a
numerical solution for the evolution of the kinetic function
scaling %% = 2xI', given by Eq. (26), with respect to the
number of elapsed e-folds N, for the particular case where
the kinetic function, mass, and scalar potential are exponential.
The numerical solution (thick blue line) to the full system of
equations [Eqgs. (17)—(22)] is indistinguishable from the numeri-
cal solution (thin red line) where the terms proportional to w
have been removed until the vector field becomes heavy
(N = 20 in the plot). The plot is also an example of how the
vector scaling solution f,, « e~ ** is attained in the light and
heavy vector field cases. Note that the attractors take only a
handful of e-folds to be reached, corresponding to the oscillating
behavior for N ~ 5 (light field) and N ~ 20 (heavy field). More
examples are shown in Sec. VII.

j—s =[—1+23+BEx+ (3232 +3x*+ 222+ s)]s. (62)
a

We may obtain a qualitative feel of how the variables z
and s evolve by looking at Eqgs. (61) and (62). These
variables determine the backreaction and vector field en-
ergy density. If the energy density is dominated by the scalar
potential, i.e. y = 1, and considering the model parameter
I' > 1, then Egs. (61) and (62) may be approximated by

dz
da
ds
da

~(=2—-Tx)z and

~(—1+ Ex)s = %(—2 —I'x)s, (63)
where we used the connection Eq. (56) in the last equality.
First we notice that in this regime the z variable evolves
twice as fast as the s variable. Hence the f-term backreac-
tion evolves 2 times faster than the m-term backreaction.
Because of this difference in evolutionary rate of the back-
reaction terms, there is only a small region of parameter
space where B, ~ B,_,, at the time where the back-
reaction becomes important to the dynamics of the system.
Most of the parameter space will be taken by either one or
the other backreaction terms dominating.

Let us consider some early time where the vector field
energy density and backreaction, and consequently the

PHYSICAL REVIEW D 83, 023523 (2011)

anisotropy, are completely subdominant. Then a period
of slow-roll (or indeed fast-roll) inflation where ey < 1
leads to B, , growing 2 times faster than B, ,,.
Remember from Eq. (25) that the term in the system above
337 +3x* + 222 + 57 = — & = ey and is therefore very
small during inflation. The f-term backreaction is there-
fore very likely to completely dominate the total back-
reaction and will affect the dynamics of the system
before the m term does so. We are effectively considering
the same system as that of the massless vector field in
which only the f-term backreaction existed; see Sec. I'V.
From the approximations in Eq. (63) we can directly
see that at stationary points where z, s # O the solutions
x, = — f and/or x, = L emerge; see Eq. (27). Therefore we

observe that both scaling solutions

fla) ce ™ and m(a) * e (64)
are inherent in the equations of motions. But of course we
require the connection & = — %F to ensure that we obtain

these two solutions simultaneously.

We now make these ideas more concrete by looking for
stationary solutions to the full system. There are 5 critical
points for this system. These critical points include
the nonhyperbolic anisotropic kination solution A XS
discussed in Sec. IV B. We will not consider this point
again. The remaining stationary points for the system of
Egs. (59)-(62) are given below.

1. The standard slow-roll solution SSR

The standard slow-roll critical point is given by [cf.
Eq. 34)]

A A\2
SSfR:(xc,yc,zc,sc,Ec)Z(—g, 1—(5) ,0,0,0). (65)

The eigenvalues of the matrix M are
ml,z = -3+ %/\2,

my=—1+MA~-E), and my=-2+IMA+T).

(66)

The existence and stability of this solution therefore
requires

A <3, AMA+T)<6, and AA—E)<3. (67)

As seen in the massless vector field case, this critical point
corresponds to the standard slow-roll inflationary solution
when A < 3. In this region of parameter space the scalar
potential dominates the energy density of the Universe
y. = 1. The vector field energy density and backreaction
completely vanishes at the critical point z. = s, = 0, and
consequently so does any anisotropy 2, = 0. All the re-
sults derived from this critical point in the massless case
[Egs. (37) and (38)] apply here. The only difference with
the massless case is the stability condition. Considering the
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connection E = — %I‘, the existence and the stronger
stability condition are now
A<3 and AQ2A+T)<6. (63)

These bounds apply for constant or almost constant
dimensionless model parameters. Otherwise we require
the stronger bounds A < 3 and AI' << 6 to make certain
that the eigenvalues depend weakly on the dimensionless
model parameters. This therefore ensures the validity of
our method in establishing the stability of the critical
points. In these limits the existence and stability of this
critical point are guaranteed.

For time-dependent dimensionless model parameters,
the motion of the critical point is given by Eq. (51). In
analogy to Eq. (52), the constraint on the time dependence
of the dimensionless model parameter becomes

lmol =1-=3+el,
= | = 1
SSR:|2e — | < { ™! | 1+E+6)‘F|’ (69)
lmy| = —2+e+%AF|.

If the slow-roll conditions are met € << 1 and || < 1, and
|AT" — 6] > O(n), then the inequalities above will be sat-
isfied. This can be achieved as long as we are not too close
to the bifurcation value AI' # 6. The solutions then are
able to reach and be dragged along with the critical point.
If the dimensionless model parameters are varying more
rapidly, then the validity of our method in establishing the
stability of the critical points requires the strong conditions
A <3 and AI' < 6. These conditions ensure that the
eigenvalues depend weakly on the dimensionless model
|

my; = _AlA%,
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parameters. In this case the eigenvalue of smallest magni-
tude is clearly |ms| = 1. Therefore the inequalities above
are readily satisfied if the slow-roll conditions € << 1 and
|n] << 1 are met.

2. The vector scaling solutions VSS

When considering a massive vector field we find two
additional vector scaling solutions to the one found in the
massless field case. Different vector scaling solutions ap-
pear because there are now two terms in the backreaction
[Eq. (9)] which may affect the dynamics of the system.
These critical points arise from the effect of f-term back-
reaction only, m-term backreaction only, and a combina-
tion of the two. We will analyze these points separately as
follows.

Vector scaling solution 1 VSS, —At this critical point
the vector potential term and therefore the m-term back-
reaction vanishes due to s, = 0. This is the same critical
point as the V. SS of the massless case [cf. Eq. (40)]:

VSSI: (xc’ YerZer Ses 2c)
= (_6A1(/\ + F), AIAQVFZ + Al + 6,
A AWAZ + AT = 6,0,2A,(A2 + AT — 6)),

where A, = (3T> +4I'A + A+ 12)"!  and

Ay =BG +2AT — A2 + 12). (70)

The eigenvalues of the matrix M and thus the stability
conditions are, however, different. Considering the con-
nection § = — %I‘ in Eq. (56), the eigenvalues are given
by

my =9A,(A2 + A" — 4), and

Moy = =3I AS[A, 4 [=8(AT + (202 + 3HA2 + (1% = 3D)A — 8 — 371?)], (71)

The limits I' > A and I" > 1 ensures that we have an
inflating Universe y, = 1 with small anisotropy 2, < 1;
see Eq. (41). The critical point is approximated by

VSS]: (xcy yc, Zc’ st EC)

_ (_2 1 VAL — 6’ 0 2(AI — 6))‘ (72)
r r 312

The existence of the critical point requires AI' > 6.
Therefore we are considering the same conditions as those
of the massless case in Eq. (43). In these limits the real
parts of the eigenvalues are approximated by

Re[m;]= -3,
3Ar—12 (73

and Re[my]= ™

3
Re[my;] = — X

The real parts of eigenvalues m, ;5 in these limits are the
same as for the massless case; see Eq. (42). These are
negative and lead to solutions being attracted to this point.
Having now considered a massive vector field we obtain an
additional eigenvalue m, which is very small but positive.
We can see this through the existence condition AI' > 6
that 0 <Re[my] < 1. The critical point is therefore
technically an unstable saddle point; however, because
my is so small the critical point is said to be quasistable.
If a solution approaches this critical point, it will remain
there for a long period of time. At the vicinity of the critical
point, solutions evolve very slowly. In these limits the
eigenvalues depend weakly on the model parameters; see
Appendix A 2. This therefore ensures the validity of our
method in establishing the stability of the critical points.
All the results found in Sec. IV C for the energy density
ratio R, backreaction ratio R g, effective scalar slope V.,
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slow-roll conditions €y and 7y, anisotropic stress 2, and
scalar equation of state 7y 4 in the massless vector field case
also apply here; see Eqgs. (44)—(47) and (49), respectively.
However, as we have now considered the connection in
Eq. (56), we obtain the attractor solutions simultaneously
[see Eq. (27)]:
fanla) < e (74)

To reach this critical point the f-term backreaction must
dominate the total backreaction at the point where it be-
comes dynamically important z> > s>. As described
above, this is the most likely scenario because the f-term
backreaction grows twice as fast as the m-term backreaction
if we consider a prior period of standard slow-roll inflation.

For time-dependent model parameters, as seen in the
massless case, the motion of the critical point is given by
Eq. (53). Therefore, for solutions to be able to reach and be
dragged along with the critical point, the eigenvalue of
smallest magnitude in Eq. (73) must be larger than all of
the expressions in Eq. (53). We can see from Eq. (73) that
Re[my] < 1. However, when considering the motion of
the critical point we do not need to consider this small
eigenvalue. The reason why is discussed at the end of
Sec. VA 2. Therefore the eigenvalues of smallest magni-
tude that we need to consider are |Re[m,3]| = 3. Then, if
we consider a relatively flat scalar potential under the
constraints in Eq. (54), the conditions of Eq. (53) can be
reduced to a single condition; see Eq. (55).

Vector scaling solution 2 VSS,.—At this critical point
the vector kinetic term and therefore the f-term backreac-
tion vanish due to z. = 0. The critical point is given by

VSS2: (-xc’ Yer Zes S 2C)

= (3A5(2 — 22), A3A4y/(E* — EA 1 6),0,
A3A4V()12 - EA - 3), 2A3(E)\ - )\2 + 3)),

where A; = (352 —5EA +2A2+12)"" and

and  my(a) < e®.

A, = 3\/(52 - %‘EA + 4). (75)

The case of interest occurs in the limits |2| >> A and
|E| > 1, and this critical point may then be approximated by

VESy: (X, Yor Zer Ser 2¢)
(1 Lo V=3 - AE 6+2AE)
==, LU, = [=P) .

(76)

>
=4 = 3=

The existence of this solution in these limits requires
[AZ]| > 3. We can see that these limits ensure that the
scalar potential dominates the energy density y. = 1 and
therefore leads to an inflating Universe. However, these
limits do not guarantee stability. In Appendix A 3 plots are
shown of the functional dependence of the real parts of
the eigenvalues on the model parameters. The real parts of
the eigenvalues of the matrix M for this critical point in
these limits are (m, is obtained by the analytic expression)
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3
Re[ml] = _3, Re[m2,3] = — z,
3(0\E +4 6AI" — 48
Re[m,] = — - = ) _ - (77)

where we considered the connection Eq. (56) in the last
equality. With this connection, the critical point in Eq. (76)
is given by

VSSZ: ()Cc, ycr Zcr scr Ec)
(21,0 =T He a0y g

r- ar

These limits are now I' > A and I" > 1. We then find
that the real parts of the first three eigenvalues m, ;3 are
identical to those of VSS, above and VSS of the mass-
less case. These eigenvalues drive solutions towards the
critical point. However, as in VSS; above we find an
additional eigenvalue m, which is very small in the limits
considered. There is a window 6 <<AI'<8 where
Re[m,] < 0 and the critical point is stable. Otherwise for
Al' > 8 the critical point is quasistable. Solutions that
approach this critical point evolve very slowly and there-
fore remain at the critical point for a long period of time. In
these limits the eigenvalues depend weakly on the model
parameters, seen as plateaus in the plots of Appendix A 3.
This therefore ensures the validity of our method in estab-
lishing the stability of the critical points.

Having considered the connection Eq. (56) we find the
following result for the energy density ratio:

2(AT - 6)

R = 1, (79)
which is 2 times larger than the ratio of the massless and
VSS, case given in Eq. (44). The energy density of the
vector field tracks that of the scalar field if the dimension-
less model parameters are constant. Otherwise the energy
density ratio is varying with time dependence determined
by that of the dimensionless model parameters. Under the
limits considered the vector field energy density contribu-
tion is kept subdominant.

We notice that this critical point leads to the same back-
reaction ratio R 3, effective potential slope V/;, slow-roll
parameters €y and 7y, and equation of state y, as the
VSS, above and the VSS of the massless case; see
Egs. (45), (46), and (49), respectively.

The anisotropy in the expansion, 2, is given by

4<AF—6

2
S~ ?)_ —IR=INIKL (80

The anisotropy is proportional to the energy density ratio
and therefore evolves in the same way.

Asin the VSS 1 case above, having used the connection
in Eq. (56), we can simultaneously obtain the desired
attractor behavior for the kinetic function and mass
given in Eq. (74). To reach this critical point the m-term
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backreaction must dominate the total backreaction at the
point where it becomes dynamically important s> > z2.

For time-dependent model parameters, the motion of the
critical point is given by

L |- | B35
1d N

y_cd);vc =2Vemp |55 |

1 dz,

Zdzc: -0

s_lcilii; =2\/6mP E—;+2£—;—%% , and
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For solutions to be able to reach this critical point and
be dragged along with it, the eigenvalue of smallest
magnitude must be larger than all of the expressions
above. As in the VSS, case, the eigenvalue of smallest
magnitude which drives solutions to the vector scaling
solutions from Eq. (77) is |my;] =3. Again, we ignore
|my|. The reason why is discussed at the end of
Sec. VA 2. Then if we consider a relatively flat scalar
potential under the constraints in Eq. (54), the conditions
in Eq. (81) can be reduced to a single condition; see
Eq. (59).

Vector scaling solution 3 VSS;.—At this stationary
point the kinetic and potential terms of the vector field
energy density are comparable. Therefore the f-term and
m-term backreactions are both important to the dynamics
of the system. The critical point is given by

VSSs: (%, Yor 2o S0 Be) = (—6As, Asyf6T2 + 322" — 3

) —3E([ - 2E) + 36,

Asyf62% + (3E + 6T)A — 3E(T + 25) — 36, Asy/9A% +

where As = —[2(E —2A — D)L

Considering the connection in Eq. (56) and the limits
I'> Aand T > 1, we can approximate the critical point as

‘VSS3Z (XC, Yes Zes Ses Ec)

(_g VAT -8 JAT -4 A
re T o3r

In Appendix A 4 we show plots of the eigenvalues as
functions of the model parameters. We can clearly see
that in these limits the real parts of the eigenvalues of the
matrix M are approximated by (my is obtained by the
analytic expression)

). (83)

Re[m;] = =3,
Re[my3] = — % and
Re[my] = _p A= 3TA ~ 4 (84)

(3TA —20)I?

Three eigenvalues are found to be identical in all the
vector scaling solutions for a massless and light vector
field, namely, m,,3. These eigenvalues are negative and
therefore drive solutions towards the V. SS. In the same
way as the other two vector scaling solutions we find an
additional eigenvalue m, of very small magnitude. For this
critical point, however, we find Re[m,] < 0. Therefore the
stationary point is stable and the late-time attractor of the
system. All solutions will eventually converge to this point.
In the limits considered I" > A and I" > 1, the eigenvalues

(=62 +6INA —3I'(I" + 2E) — 36, —As(—2E + A — 1)),

(82)

[

depend weakly on the dimensionless model parameters, as
seen by plateaus in the eigenvalue plots of Appendix A 4.
This therefore ensures the validity of our method in estab-
lishing the stability of the critical points. The existence and
stability of this solution requires

Al > 8, I'>A and I'> |, (85)

which are sufficient but not necessary conditions.
The energy density ratio is now given by

_z2+s2 %)\F—S
x2+y2_ 1“2

< L (86)

The energy density of the vector field tracks that of the
scalar field if the dimensionless model parameters are
constant. Otherwise the energy density ratio is varying
with time dependence determined by that of the dimen-
sionless model parameters. Under the limits considered the
vector field energy density contribution is kept subdomi-
nant. We notice again that this critical point leads to the
same backreaction ratio R g, effective scalar slope V.,
slow-roll parameters ey and 7y, and scalar equation of
state 7y, as the VSS 1,2 above and the VSS of the mass-
less case; see Egs. (45), (46), and (49), respectively. The
anisotropic stress for the 'V SS; is, however, given by

A
DI —3—F=> 2. < 1. &7

Asinthe VSS 1.2 cases above, having used the connection
in Eq. (56), we can simultaneously obtain the desired
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attractor behavior for the kinetic function and mass given
in Eq. (74).

For time-dependent model parameters, the motion of the
VS8 critical point is given by

e | 72 |

1d 3 N

y_cd);vc =3 Vome | |

1 dz. 4N 1AT+ AT
= da | = 2Vomr ﬁ*iﬁ‘im|’

For solutions to be able to reach this critical point and be
dragged along with it, the eigenvalue of smallest magni-
tude must be larger than all of the expressions above. As in
the V&S‘m cases above, the appropriate eigenvalue of
smallest magnitude, which drives solutions to the vector
scaling solutions, from Eq. (84), is not |my| but [m, ;| = %
We discuss why this is so below. As in previous vector
scaling solutions we may approximate the conditions
above to a single condition if we consider a relatively flat
scalar potential under the constraints in Eq. (54); see
Eq. (59).

We have found that all three vector scaling solutions in
the limits I' > A and I > 1, and considering the connec-
tion in Eq. (56), exhibit the same backreaction ratio R g,
effective scalar potential slope V., slow-roll parameters
€y and my, and equation of state y,. We also find that all
three vector scaling critical points give us the attractor
behavior desired for the kinetic function and mass of the
vector field, from Eq. (27):

fatt(a) o 6740[

To which vector scaling critical point will a solution
evolve depends on the relative magnitude of the f-term and
m-term backreactions at the point where the backreaction
becomes dynamically important. If the f-term backreac-
tion dominates the total backreaction at the point where it
becomes dynamically important, then solutions will ap-
proach the V&S, critical point. In this case we may
approximate the system with z> > s%. We are then dealing
with effectively the same system as that for the massless
case [Egs. (31)—(33)] for which we know the VSS, is an
attractor.

For constant or very slowly varying dimensionless
model parameters, the small but positive eigenvalue my
of Eq. (73) corresponds to flows from the VSS, to VSS;,
where s increases and z decreases. Throughout the flow the
x. and y,. solutions are approximately conserved, and

(89)

and  my(a) < e®.
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therefore so is an inflating Universe with the desired scal-
ing solutions for the kinetic function and mass. In the limit
I' > 1 this flow is very slow, and it takes many e-folds to
deviate significantly from the critical point. For constant or
very slowly varying dimensionless model parameters the
late-time attractor solution is the VSS5 (see Fig. 2).

In the same way, if the m-term backreaction dominates
the total backreaction at the point where it becomes dy-
namically important z> < 52, then solutions will approach
the VSS, critical point. However, as for VSS,, this
critical point also has an additional positive eigenvalue
my of Eq. (77) which drives solutions very slowly towards
VSS;. Eigenvalue m, is positive if the dimensionless
model parameters do not land in the stable window as
discussed after Eq. (78); otherwise, the VSSZ is itself
stable and VSS; does not exist. Again, throughout the
flow, the x,. and y,. solutions are approximately conserved,
and therefore so is an inflating Universe with the desired

0.08

4 0.06

0.04

0.02

5 0.00
0.06

FIG. 2 (color online). This numerical plot demonstrates the
flow between the three vector scaling solutions found in the light
vector field case, for the particular example where the kinetic
function, mass, and scalar potential are exponential. The plot
shows how different initial conditions can give rise to solutions
approaching different vector scaling critical points, depending
on the relative magnitudes of z and s. The model parameters are
chosen so that the V. SSj is the late-time attractor. If a solution
does not directly fall on this critical point, the small but positive
eigenvalues my for the VSSLQ in Egs. (73) and (77), and the
small but negative eigenvalue m, for the VSS; in Eq. (84),
drive a very weak flow of solutions along the arc (shown in red)
towards the VSS3. However, throughout the flows, the solution
x = —2/T" is conserved and therefore so is the scaling solution
attractor f,, © a~*. The figure also depicts the SSR critical
point which is an unstable saddle point for the parameter space
considered.
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scaling solutions for the kinetic function and mass.
However, the anisotropy varies along the flow, and it can
change from positive to negative.

If a solution is driven near VSS 1.2, then the small but
positive eigenvalues, m, for both points, mean that the
solutions are then slowly attracted towards the VSSs,
which is the late-time attractor (see Fig. 2).

For varying dimensionless model parameters, the mo-
tion of the critical point is generally faster than the flow to
VSS;. We have argued that flows to the VSS; from
VSS 1, are characterized by the small eigenvalues my.
However, the approach to any of the V. SS critical points is
characterized by the other eigenvalues m;,3. As long as
the time dependence of the critical point is smaller than the
approach of the solutions towards the attractor, then
the solutions are able to reach and be dragged along with
the critical points for a large number of e-folds. As
described in Sec. IV D, in the vicinity of the stationary
points the approach of solutions to the attractors is given by
the eigenvalues of the matrix M. Therefore for the critical
solutions to be reached, their time dependence must be
smaller than the eigenvalue of smallest magnitude. We will
later confirm these arguments numerically for a number of
model examples.

The eigenvalues of smallest magnitude for V&S,
from Egs. (73), (77), and (84), respectively, are then
|Re[m, ;] =3 (we have discounted the eigenvalue m, as
it only corresponds to flows between the vector scaling
solutions). These eigenvalues have to be larger than all of
the expressions describing the motion of the critical points
[Egs. (53), (81), and (88)].

To directly reach the VSS; critical point with varying
dimensionless model parameters the f-term and m-term
backreactions must be comparable at the point where they
become dynamically important. This corresponds to a
small area in parameter space as discussed previously.

We notice that all three vector scaling solutions in the
limits I' > A and I' > 1 and considering the connection
Eq. (56) have the same x. and y, solutions, namely, x,. =
— % and y,. = 1. This is good news for us as no matter which
critical point a solution approaches we obtain an inflating
Universe with the desired scaling solutions for the kinetic
function and mass, i.e. the ones which result in scale-
invariant spectra for the perturbations of all the compo-
nents of the vector field.

B. The heavy vector field case

Once we consider a heavy vector field the dimension of
the problem increases because terms in the full system
[Egs. (17)—(22)] proportional to w cannot be ignored.
The dynamical analysis becomes very complicated; how-
ever, we can once again reduce the dimension of the system
of differential equations by considering a certain approxi-
mation. Once the vector field becomes heavy, it starts to
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-0.02

-0.04

FIG. 3 (color online). This numerical plot shows the evolution
of the dimensionless variables z and s as the vector field becomes
heavy. The plot demonstrates the validity of our approximation
(z%) = (s?), used when considering a heavy vector field.

oscillate rapidly and its equation of motion Eq. (10) is
approximated by

2

A+ mTAZ ~ 0, (90)
whose solution gives
2
. m
(A7) = (42, 1)

where “()” denotes average over many oscillations. This
leads to {py4,) = (V) and therefore (z%) = (s?); see Fig. 3.
As was shown in Ref. [16], when a vector field becomes
heavy it oscillates rapidly and behaves like a pressureless
isotropic fluid. This is confirmed by analyzing the
stationary solution determined by % = 0, from Eq. (17):

=33+ 2(2) — 2(s2) + (332 + 3x2 + 2(A) + (s2)) = 0.
(92)

We can clearly see that the solution with X, = 0 then
implies (z?) = (s?), which is satisfied by an oscillating
field, confirmed numerically in Figs. 3 and 4. Using this
result, the full system [Egs. (17)—(22)] reduces to the
following 3-dimensional system:

d2=_ 2 2 11_ 2,2 _ 2
= 3z+3z[z F (13— y)], (93)

1
ﬂ=—3x—)\y2+—(r—:)(l—Ez—xz—yz)
da 2
1
; 3x[22 b (-2 yz)], (94)

1
o Axy + 3y|:22 2 +H-(1 =32 X2~ yz):l.
da 2

(95)
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The Friedmann constraint is now X2+ x>+ y> +
2(z?) = 1. There are 4 critical points for this system.
These critical points include the nonhyperbolic aniso-
tropic kination solution A KS discussed in Sec. IV B.
We will therefore not consider this point again. The re-
maining stationary points (x,, y., Z., .) are given below.

1. The standard slow-roll solution SSR

The standard slow-roll critical point [cf. Eq. (65)] is
again one of the stationary solutions. It belongs to the
subset where z, s, 2 = 0. The eigenvalues of the matrix
M for the heavy field case are now

)\2 1 ot
m1,2=—3+§ and m3=—3+§A(2A+F—_). (96)

The existence and stability of this solution requires

A<3 and A2A+T —E)<0O. 97)

As previously seen, this critical point corresponds to an
inflationary solution when A < 3. The results derived
from this critical point in the massless case [Eqgs. (37) and
(38)] apply here. The only difference with the massless
case are the stability conditions. Considering the connec-
tion in Eq. (56), the existence and stability conditions
reduce to

A<3 and A<§A+F)<6. (98)

For time-dependent dimensionless model parameters,
the motion of the critical point is given by Eq. (51). In
analogy to Eq. (52), the constraint on the time dependence
of the dimensionless model parameters becomes

lmi,l =[-3+el,

SSR:|2e — | < 99)

lms| = |—3+26+%AF|.

If the slow-roll conditions are met € << 1 and |n| < 1, and
|AT" — 6] > O(n), then the inequalities above are satisfied.
This can be achieved as long as we are not too close to the
bifurcation value AI" # 6. Solutions will therefore be able
to reach and be dragged along with the critical point. If the
dimensionless model parameters are varying more rapidly,
then the validity of our method in establishing the stability
of the critical points requires the strong conditions A < 3
and AI' < 6. These conditions ensure that the eigenvalues
depend weakly on the dimensionless model parameters. In
this case the eigenvalues have approximately the same
magnitude |m,;| = 3. Therefore the inequalities above
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are readily satisfied if the slow-roll conditions € < 1 and
|nl < 1 are met, but they can also be satisfied even if
|| ~ 1, corresponding then to fast-roll inflation.

2. The vector kination solution V KS

Let us investigate this new critical point given by

VKS: (X0 Ver 200 2¢)

_ (% T - =), 0,%\/%7—5)2, 0),

whose existence is valid for [I" — E| < 3. The eigenvalues
of the matrix M are

(100)

1
m1,2= _§+—(F_E)2 and
32/\6 | (101)
— 2+ LT -B)+ (-8
ms 3 3( ) 6( )

Considering that the parameters A and I' have the same
sign and opposite to that of =, as discussed at the end of
Sec. 11, it is clear that m5 is positive. Therefore the critical
point is an unstable saddle point.

For constant or very slowly varying dimensionless
model parameters the energy density is dominated by
either the scalar kinetic term x,. or the oscillating vector
field depending on the value of |I' — Z|. However, for
varying dimensionless model parameters we require the
stronger condition |I" — E| < 3 to ensure that the eigen-
values have a small time dependence. This therefore guar-
antees the validity of our method in establishing the
stability of the critical points. In this case the critical point
gives us a vector field dominated energy density where the
scalar potential and anisotropy vanish. In any case the point
cannot correspond to an inflating Universe y, = 0 and is
therefore of no interest to us.

3. The vector scaling solution VSS

The vector scaling critical point in the heavy vector field
case is given by

VSES: (X0, Vor 2er 2¢)

= (~3Aq Agy9 + (I — E)2 + 2A(T — ),

Agy2A% + AT - E) - 9,0), (102)

where Aq¢ = 2A +T' — )~ '. We notice that when the
vector field becomes heavy and starts oscillating the an-
isotropy vanishes . = 0, as expected from Ref. [16] (see
Figs. 4 and 5). The eigenvalues of the matrix M are
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FIG. 4 (color online). This numerical plot shows an example
of the evolution of a solution for a massive vector field. As the
backreaction is initially subdominant the SSR critical point is
reached, where the anisotropy % vanishes. Solutions may remain
there for a long period of time until the backreaction becomes
important. Solutions will then move to the VSS where 3 # 0
and the attractor solution x,, = —2/T" is obtained. The vector
field may then become heavy. As it does so the anisotropy once
again vanishes but the solution x,, = —2/I" is conserved. This is
clearly demonstrated by the plots in Fig. 5.

m; = —3A¢(A+T—E) and
+ ([ = E)*(45 — 16A%) — 4A(l’ - E)’

— 632 + 324]'/2). (103)

Let us consider the particular case where we set the
connection in Eq. (56) and the limits I' > A and T" > 1.
The vector scaling solution [Eq. (102)] is then approxi-
mated by

VES: (X, Vor 2er 2e) = (—% 1,\[%7“\2_6,0). (104)

We can clearly see from Eq. (103) that in the limits and
connection considered, the real parts of the eigenvalues are
approximated by

Re[m;]=—3 and Re[my;]=—3. (105)

Therefore the critical point is stable in this asymptotic
regime. In these limits the eigenvalues depend weakly on
the dimensionless model parameters. This therefore en-
sures the validity of our method in establishing the stability
of the critical points. The sufficient but not necessary
conditions for the existence and stability are
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Al > 6, '>A and I'> 1. (106)

In these limits the energy density is dominated by the
scalar potential y,. = 1; therefore we have an inflating
Universe. We note that as I' — oo the Universe becomes
de Sitter. The energy density ratio Eq. (13) is now given by

4(A' — 6) <«
312

The energy density of the vector field tracks that of the
scalar field if the dimensionless model parameters are
constant. Otherwise the energy density ratio is varying
with time dependence determined by that of the dimen-
sionless model parameters. Under the limits considered the
vector field energy density contribution is kept subdomi-
nant. We notice that this critical point leads to the same
backreaction ratio R 3, effective potential slope V., slow-
roll parameters ey and 7y, and equation of state y 4 as all of
the vector scaling solutions of the massless and light vector
field cases; see Eqgs. (45), (46), and (49), respectively. We
have also obtained the solutions of Eq. (27), which lead to
the desired attractor behavior for the kinetic function and
mass, given in Eq. (74) for the light vector field case.
Therefore the desired attractive behavior given by

fatt(a) o g4

is conserved as the vector field evolves from being light to
heavy (see Figs. 4 and 5).

For time-dependent dimensionless model parameters,
the motion of this critical point is given by

R = L. (107)

and  mg(a) < e®  (108)

1 dx, I 4N

S| =2 | 5 |

1dy,| 4 A

Zd{; =3Vomr |72 |

z%iic o (109)

For solutions to be able to reach this critical point and be
dragged along with it, the eigenvalue of smallest magni-
tude, namely, |Re[m, ;]| = % must be larger than all of the
expressions above. Now if we consider a relatively flat
scalar potential under the constraints in Eq. (54), the con-
ditions in Eq. (109) can be reduced to a single condition;
see Eq. (59).

VI. SUMMARY OF RESULTS

In this paper we have investigated the qualitative behav-
ior of solutions to a system of coupled nonlinear differen-
tial equations. This system of equations describes an
Abelian vector field whose kinetic function and mass are
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FIG. 5 (color online).
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These plots show a projection of Fig. 4 in the x — y plane. They show in increasing detail how the attractor

solution x,, = —2/I is conserved as the solution jumps from the light to the heavy vector scaling solution.

modulated by the scalar field which is driving a period of
inflation. The only model dependence of the analysis
comes from the dimensionless model parameters A, I,
and 2. We have investigated a massless, a light, and a
heavy vector field separately. Generally we have found two
sorts of stationary points of interest in the phase space.
These are the so-called standard slow-roll SSR and vector
scaling solutions V. SS. We will summarize our results in
the following tables.

A. The standard slow-roll solutions SSR

Let us first consider the standard slow-roll critical point.
This point is observed in the massless, light, and heavy
vector field cases (see Table I), and it is given by

A A\2
—41—=1(=],00,0].
O o)

(110)

SSR (xw Yes Zes Ses EL) = <_

At this critical point the energy density and backreaction
of the vector field vanish: z. = s, = 0. We also notice that

TABLE 1. The standard slow-roll solutions.
SSR Existence Stability
Massless A <3 A<3, A(A+T)<6
Light A<3 A<3, AMA+D)<6,20(A—2)<6
Heavy A<3 A<3,A22+T -E)<9

the anisotropic stress also vanishes: X, = 0, providing an
example of the cosmic no-hair theorem [37] (see Fig. 4).
The slow-roll parameters and scalar equation of state pa-
rameter are the same for all cases considered. These are
given by

€y =

H

(111)
and 1y, = 3A% = Zey.

At the SSR critical point the energy density of the
Universe is dominated by the scalar potential y. = 1 or
equivalently 3mpH? = V(¢), if A < 3. In this case, all we
require is that AI' <6 and A|E| <3 for stability of the
critical point. Equivalently we may write these conditions
as

V/ / V/ !
ex3 mYLl <4 and m%,—|ﬁ|<1. (112)
Vf Vim

When considering varying dimensionless model parame-
ters, i.e. time-dependent critical points, an additional con-
dition arises. This condition ensures that the approach of
solutions to the critical point is faster than their evolution.
For the SSR,, the slow-roll condition || << 1 ensures this
strongly; see Egs. (52), (69), and (99) for the massless,
light, and heavy vector field cases, respectively. These
conditions may even be satisfied if the 7 slow-roll condi-
tion is violated || ~ 1. In other words, the SSR can also
apply to fast-roll inflation [38].
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B. The vector scaling solutions VSS

The vector scaling solutions VSS are, however, more
interesting. The critical points are too complicated to write
again here; cf. Egs. (41), (72), (76), (83), and (104) for the
massless, light (VSS 12.3), and heavy vector field cases,
respectively. Note that, in the case of a light vector field,
VSS; corresponds to both the mass and the kinetic
function backreacting to the inflaton variation, while
VSS, corresponds to only the mass backreaction being
important, and VSS; corresponds to only the kinetic
function backreaction being important. As such the latter
is equivalent to the 'V SS point of the massless vector field.
Throughout the results described below, we have used the
connection from Eq. (56). This connection may be written
as f'/f = —4m'/m.

When considering the limits I'>> A and I' > 1, the
energy density of the Universe is dominated by the scalar
potential for all the vector scaling solutions y.=1 or
equivalently 3mpH? =~ V(¢). These limits correspond to
inflationary solutions with small but nonvanishing anisot-
ropy 2, < 1, providing counterexamples to the cosmic
no-hair theorem [37]. The anisotropy does, however, van-
ish if the vector field becomes heavy (see Fig. 4). It turns
out that these limits also guarantee the stability of the
critical point. Table IT summarizes our results for the vector
scaling solutions.

It is important to note that the stability conditions for the
"V SS critical points in Table II correspond only to three
out of the four eigenvalues of the linearized system. The
fourth eigenvalue is tiny and its sign determines flows
between the VSS critical points (see Fig. 2). Indeed, as
explained at the end of Sec. VA 2, if AI" > 8§, the VSS;is
completely stable; i.e. all eigenvalues are negative in
Eq. (84), and therefore VSS; is the absolute late-time
attractor, whereas VSS 12 are quasistable. They have three
negative eigenvalues and one very small but positive ei-
genvalue; see Egs. (73) and (77). However, if 6 < AI' <8,
then 'V SS; does not exist, but VSS, becomes completely
stable, i.e. the late-time attractor; see Eq. (77). Therefore,
as long as AI' > 6, there is always a completely stable
V&S critical point that solutions will eventually converge
to.

The backreaction from Eqgs. (13) and (14) leads to the
same effective slope for all cases considered:

PHYSICAL REVIEW D 83, 023523 (2011)

6 — Al 4 V. = 6 v
ar M e TR
The existence conditions mean that the effective slope seen
by the scalar field becomes flatter, and so the field slows
down as it evolves along its potential. The slow-roll
parameters and scalar equation of state parameter are
also the same for all cases considered and are given by

R g =~ (113)

)
=T

20 Jemp (N TV 8 (114)
mEE (X_T)’ and Yy =

All the vector scaling solutions for the massless, light,
and heavy vector field cases, in the limits considered, have
the same solution, namely, x, = —I"/2 (see Figs. 4 and 5).
As seen from Eq. (27), this solution, together with the
connection considered in Eq. (56), leads to the desired
attractor behavior for the kinetic function and mass

fanla) = e

This particular scaling for the kinetic function enables the
generation of a scale-invariant perturbation spectrum for
the transverse component of the vector field. The addi-
tional scaling for the mass further enables the generation of
a scale-invariant perturbation spectrum for the longitudinal
component of the vector field, as shown in Ref. [21].
Therefore by imposing this connection, we obtain the
scaling of the kinetic function and mass which generates
scale-invariant spectra for the perturbations of the vector
field. In general, we have shown that the attractor behavior
is not destabilized by the mass backreaction and it can be
such that leads to scale-invariant spectra for all vector field
components.

Except for the exponential functional forms of the scalar
potential, kinetic function, and mass, where the dimension-
less model parameters are constants, we generally find time-
dependent critical points. We then require additional
conditions which ensure that the approach of solutions to
the critical point is faster than their evolution; see Egs. (53),
(81), (88), and (109) for the massless VSS and light
VSS,, light VSS, 5, and heavy VSS, respectively.
Now if we consider a relatively flat inflaton potential

V2/3mp|A| = |p — 2e|l = O(1) and if AT" 5 6 (or AI'#38

and  my(a) < e®. (115)

TABLE II. The vector scaling solutions.
VSsS Existence Stability R 3.
Massless AI'>6 '>ax ,I'>1 )‘gfﬁ %R
Light: VSS, AL > 6 > . I>»1 A6 iR
Light: VSS, Al >6 I'>aA ,I'>1 2259 -2R
Light: VSS; Al > 8 '>x ,I'>1 UL 16 -4
Heavy AL >6 '>x ,I'>1 (48 0
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for VSS;5) or A'T = — I, we find that all the conditions
can be reduced to a single (strong) condition:

1_‘/ ff//
o Il
As expected, if the kinetic function is exponential
f ecd/ ™r, where c is some constant, then the expression
above is exactly zero. This is because only exponential
functions give constant dimensionless model parameters.
Potentials and kinetic functions obeying I" « 1/ result in
MT' = —AI". These have been considered in Refs. [19,20],
where f « exp(cmp? [ d¢) and satisfy the conditions in
Eq. (54).

mp = |« 1. (116)

VII. SPECIFIC MODEL EXAMPLES

We now look at specific model examples choosing the
functional forms of the scalar potential and the vector
kinetic function and mass. We obtain constraints on the
dimensionless model parameters and their time depen-
dence for the different attractor solutions of interest,
namely, the standard slow-roll and the vector scaling solu-
tions. We carry out the analysis for the different cases
separately, i.e. massless, light, and heavy vector field cases.

A. Constant dimensionless model parameters

In string theory parameters such as the masses or kinetic
functions of vector boson fields are determined by the
compactification scheme; i.e. their values depend on so-
called moduli fields. The moduli are scalar fields which
parameterize the size and shape of extra dimensions. In
that sense they are not fundamental scalar fields but appear
so from the viewpoint of the 4-dimensional observer.
Typically the dependence of masses and couplings on
canonically normalized (i.e. with canonical kinetic terms)
moduli fields is exponential. And exponential potentials for
the moduli fields are also reasonable. One such modulus
can play the role of the inflaton field.

Let us assume the following functional forms for the
scalar potential and the vector field kinetic function:

V(p) = Vyet®/mr  and  f(p) = feHc/Db=¢d/mp,
(117)

where ¢ and ¢ are real positive constants. Our dimension-
less model parameters in Eq. (23) are given by A = MQ
and I' = 4\/7 g, and the slow-roll parameters defined in
Eq. (24) are e = in =142

When we come to consider a massive vector field we

need to give a functional form for the mass m(¢).
Considering the connection Eq. (56), the model parameter

E now becomes B = —24/3/ e Equivalently we con-
sider the function

m(d’) = mie*(c/l])(d’*%)/mp. (118)
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TABLE III. Constant dimensionless model parameters.
SSR Existence Stability
Massless qg< V6 qg<2J1-—c¢
Light g<+6 g <20 -0
Heavy g<6 q <4301 —¢)

Constant parameters A and I' are only achieved by expo-
nential functions of the form shown in Egs. (117) and (118).

The results for the standard slow-roll solution in this
model are given in Table III.

Clearly we require that ¢ <1 for the stability condi-
tions to be well defined. We also find the following
generic results for the standard slow-roll solutions, from
Eq. (111):

€y = €, mg =31 and 7y, =3e (119)

At the SSR critical point the vector field energy density
and backreaction vanish: z. = s, = 0. The energy density of
the Universe is dominated by the scalar potential y,. = 1, if
q << 6, corresponding then to a period of inflation.> In this
case the slow-roll conditions are satisfied: ey = ny <K 1.
Therefore slow-roll inflation is the late-time attractor. The
slow-roll conditions guarantee the stability of the critical
point as long as ¢ # 1. In this model, however, once the
solution reaches the attractor, inflation would never end. This
is because the slow-roll parameters are constant and the slow-
roll conditions would never be violated. One would then have
to introduce some kind of hybrid mechanism or modification
of the potential to end the phase of inflation, i.e. to destabilize
the critical point.

The results for the vector scaling solution in this model
are given in Table IV.

We also find the following generic results for the vector
scaling solutions, from Eq. (114):

1

1 2
€H=ZE, Mu=7-7m, and y,=——5¢€ (120)

2c 3c?
When ¢ > 1 the energy density of the vector field and
the backreaction grows. Therefore solutions will be driven
towards the vector scaling attractors. At the critical point
the energy density of the vector field tracks that of the
scalar field at a constant ratio R.. However, inflation is not
spoilt as the vector field energy density remains subdomi-
nant. The sufficient but not necessary stability conditions
in Table II guarantee that the energy density of the
Universe is dominated by the scalar potential y,. = 1.
The backreaction, due to the vector field, becomes pro-
portional to the scalar slope V/(¢) and a negative contri-

*Inflation with an exponential potential is power-law and it
takes place for ¢ <+2 & 7y, <2/3. One can consider that
inflation is approximately (quasi)de Sitter only if ¢ K 1 &
Y4 — 0. Power-law anisotropic inflation has been recently con-
sidered in Ref. [33].
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TABLE IV. Constant dimensionless model parameters.

VSS Existence Stability R 3.
Massless c>1 g < 2.Jc, g < 2/6¢ =g’ IR
Light: VSS, c>1 g < 2.J¢, ¢ < 2/6¢ e IR
Light: VSS, c>1 g < 2.Jc, g < 2/6¢ =q? -3iR
Light: VS8, c>3 q <K 2.Jc, g < 2./6¢ =47 —Ze
Heavy c>1 q < 2.Jc, g < 2:/6¢ S’ 0

bution. The backreaction and the effective slope seen by
the scalar field, given by Eq. (113), is then

RB:_C

- and Vi =V +B,= %V’, (121)
and hence the effective slope becomes flatter and the field
slows down when the backreaction takes effect. This effect
can also be seen from the slow-roll conditions ey = %e =
Ny = 217 1 < 1, which we observe are smaller than that of
the SSR. The VSS therefore corresponds to a new stage
of inflation with nonvanishing anisotropy X. The anisot-
ropy becomes constant at the critical point, but the stability
conditions guarantee that it remains small %, < 1. This is
key to not spoiling observational requirements. The anisot-
ropy, however, vanishes if the vector field becomes heavy.

We also notice that for ¢ > 1 the SSR is an unstable
saddle point. It is unstable because the backreaction grows
and will eventually affect the dynamics of the system.
Therefore the solution can move from the SSR to the

VS8, and in the process the scalar field would slow down
as it rolls down its potential. The dynamical evolution of
the model for a variety of initial conditions and choices of
the dimensionless model parameters is shown in Fig. 6.

B. The chaotic potential

The archetypal example for an inflationary potential is
the chaotic potential. In Ref. [19] the authors considered
this potential together with the following kinetic function:

V(g) =imi¢> and  f($) = fie¥~¢D/mi (122)

The dimensionless model parameters Eq. (23) are given by
AMp) = 2\/%(%) and I'(¢p) = ZCM(%), where m is
the mass of the scalar field and c is a real positive constant.
The slow-roll parameters defined in Eq. (24) are € = 1 =
272

When we come to consider a massive vector field we
need to give a functional form for the mass m(¢p).

2xI’ by
10 0.002
\ T
5
H 0.001 ¢ \/\ j \
5 10 15 20 A A
m \‘ A . AN\ 5 10\% 15 N
_5 vlv ~ V "\J v
-0.001 ¢
-10
s -0.002 | N
-20 -0.003 * \/
FIG. 6 (color online). These numerical plots show the evolution of the kinetic function scaling 4 % = 2xI’, given by Eq. (26), and

anisotropy 2, with respect to the number of elapsing e-folds N, for a massive vector field, for the constant dimensionless model
parameters example. The plots show numerical solutions for three different values of the dimensionless model parameters and initial
conditions. We observe that the SSR is obtained prior to the V. SS for certain initial conditions. At the SSR the kinetic function
takes on a variety of scalings given by different values of 2xI". All solutions move then to the VSS where the same attractor
2xI" = —4 is obtained, giving f,, * a”* and m,, * a, when considering the connection in Eq. (56). The plots clearly show that the
same attractor 2xI" = —4 is also obtained when the vector field becomes heavy. As expected the anisotropy 2 vanishes at the SSR but
not at the VSS if the vector field remains light. The anisotropy does, however, vanish once again when the vector field becomes heavy.
We also observe that 3, can be positive or negative depending on which "V SS the solution approaches nearest; see Table II. The plots
of 3 also show (in dashed lines) the analytic solutions obtained for the V. SS attractors; see Table IV. We can see how well they agree
with the full numerical solutions.
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Considering the connection Eq. (56), the model parameter
now becomes B = —c4/3/ Z(m%). Equivalently we consider
the function

m(p) = mye /NS>~ oD/} (123)

The results for the standard slow-roll solution in this
model are given in Table V.

Clearly we require that ¢ < 1 for the stability conditions
to be well defined. We also find the following generic

results for the standard slow-roll solutions, from
Eq. (111):
€y = € ny =0 and 1y, =3e (124)

The energy density of the Universe is dominated by the
scalar potential y. = 1, if (m%)2 > £, corresponding then
to a period of inflation. In this case, the slow-roll conditions
ey << 1 and ny = 0 are satisfied. Therefore slow-roll in-
flation is the late-time attractor. It is well known that the
above potential satisfies the slow-roll conditions in
the large field regime. The slow-roll conditions guarantee
the stability of the critical point as long as ¢ # 1. The
period of inflation ends when either the existence or stabil-
ity conditions are violated, i.e. when the slow-roll condi-
tion is violated.

As the dimensionless model parameters are varying in
this example, the critical point is therefore moving in phase
space, and so we have the additional constraints coming
from Egs. (52), (69), and (99) for the massless, light, and
heavy vector field cases, respectively. Considering the
slow-roll limit € << 1, the conditions that must be satisfied
are, respectively,

() =30
mp 2(1 —¢)
<¢)2 > 2 , and <¢)2 > 72 .
mp 1—c¢ mp 3(1 —o¢)
These constraints are clearly satisfied if the critical point is
stable. Therefore the critical point evolves at a slower rate
than the approach of the solution to the point. The attractor
solution can then be obtained and solutions are dragged
along with the motion of the critical point.
The results for the vector scaling solution in this model
are given in Table VL.

We also find the following generic results for the vector
scaling solutions, from Eq. (114):

(125)

TABLE V. Chaotic potential.

SSR Existence Stability
Massless (”%)2 >3 (mi;)z > L
Light (mi;)Z >2 (%)2 > 2
Heavy (%)2 >2 (%)2 > sits

PHYSICAL REVIEW D 83, 023523 (2011)

1 2

€y c €, me =0, and vy, 30 €. (126)

The stability conditions guarantee that the scalar poten-
tial dominates the energy density y. = 1. Inflation is not
spoilt as the vector field energy density is subdominant,
R < 1 for all cases. However, in this model R and ., are
not exactly constant but are slowly growing as the scalar
field rolls down its potential. The backreaction and the
effective slope seen by the scalar field, given by

Eq. (113), is then

c—1

1
Rg=— and  Vig = V' + B, = V. (127)

c
The backreaction becomes proportional to the scalar slope
V/(¢) and a negative contribution. Therefore the effective
slope as seen by the scalar field becomes flatter and the
field slows down. This effect can be seen from the slow-roll
conditions ey = %e = . m < 1, which are smaller than
that of the SSR. The VSS corresponds again to a new
stage of slow-roll inflation with nonvanishing anisotropy.
The anisotropy remains small in the large field regime as to
not spoil observational requirements. The anisotropy will,
however, vanish if the vector field becomes heavy. We find
that all the results in the massless vector field case are in
agreement with the findings of Ref. [19].

We also notice that in the case where ¢ > 1 the SSR is
an unstable saddle point. As in the previous model the
vector field energy density and backreaction are growing
and will eventually affect the scalar dynamics. If the solu-
tion moves from the SSR to the VSS, the scalar field
would slow down as it rolls down its potential.

As the dimensionless model parameters are varying in
this example, the critical point is therefore moving in phase
space, and so we have the additional constraints coming
from Egs. (53), (81), (88), and (109) for the massless, light
(VS8 ,3), and heavy vector field cases, respectively. All
vector scaling solutions have the same eigenvalue of small-
est magnitude, namely, |Re[m,3] = % where we have
neglected the small eigenvalues m, because these corre-
spond to flows between the scaling solutions as described
at the end of Sec. VA 2.

For this model we find AM'T" + AIY = 0, and from the
existence and stability condition described above, we find
that the dimensionless model parameters satisfy I > \/;
hence, the constraints are approximated by

(i)z > i and (i)z > i
mp 3¢ mp 3¢

The first constraint above applies to the massless, light
(VSSL3), and heavy vector field cases. The second con-
dition applies to the light (VSS,) critical point. These
constraints are easily satisfied through the stability condi-
tion I' > A. Therefore the critical point evolves at a slower

rate than the approach of the solution to the point. The
attractor solution can then be obtained and solutions are

(128)
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TABLE VI. Chaotic potential.
VSS Existence Stability R 3,
Massless c>1 (m £)2 > ‘ ) > - 1 6;_21(%)2 %’R
Light: VSS, c>1 (2)? > 1 (m 2> L Ly IR
Light: VSS, c>1 (2?2 > %, G2 > # 251 (222 —2R
Light: VSS; c >% (mi;)2 > %, (%)2 > # 9gc_8 (mp)2 _ éf
Heavy c>1 (mi;)z > 1 (mi;)2 > L 4 el (2 0

dragged along with the motion of the critical points. The
dynamical evolution of the model for a variety of initial
conditions and choices of the dimensionless model
parameters is shown in Fig. 7.

C. The supergravity inspired potential

A natural framework where our models can be realized
is in the context of supergravity theories. This is because,
in such theories the bosonic part of the action is determined
by three fundamental functions of the fields of the theory:
the superpotential W, the Kéhler potential K, and the gauge
kinetic function f. The latter is a holomorphic function of
the scalar fields of the theory. Hence, if our vector field is a
gauge field of a supergravity theory, then it is natural to
expect that f = f(¢); i.e. the gauge kinetic function is
modulated by the inflaton field.

Now, the F-term scalar potential in supergravity is given
by

2xI
20

—

-20

=30

—40

FIG. 7 (color online).
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mp

(129)

where K" is the inverse of the so-called Kihler metric
K, = (,(I,ZW, subscripts denote derivatives with respect

to the corresponding fields (i.e. W, = "q‘f’ and K, = M)

and summation over repeated indexes is assumed. The
kinetic terms of the scalar fields are given by

‘Ekin = Km*naq)jnaq)n' (130)
The scalar fields are canonically normalized if the Kéihler
potential is minimal, i.e. if it is of the form K = ®,®;.
Assuming a minimal Kidhler potential then the Kéihler
metric becomes Euclidean (K-, = 6,,,, where &, is
Kronecker’s delta), and the above scalar potential can be
written as

b

) A}
0.0002 IRV a A
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These numerical plots show the evolution of the kinetic function scaling 1 d— = 2xI', given by Eq. (26), and

anisotropy 3, with respect to the number of elapsing e-folds N, for a massive vector field, for the chaotic potential model example. The
plots show numerical solutions for three different values of the dimensionless model parameters and initial conditions. We observe that the
SSR is obtained prior to the V. SS for certain initial conditions. At the SSR the kinetic function takes on a variety of scalings given by
different values of 2xI". All solutions move then to the VSS where the same attractor 2xI" = —4 is obtained, giving f,, % a~* and
My & a, when considering the connection in Eq. (56). The plots clearly show that the same attractor 2xI" = —4 is also obtained when the
vector field becomes heavy. As expected the anisotropy 3 vanishes at the SSR but not at the "V SS if the vector field remains light. We
observe that 3, is increasing for this example because the dimensionless model parameters are time-dependent. The anisotropy does,
however, vanish once again when the vector field becomes heavy. We also observe that 3 can be positive or negative depending on which
"V SS the solution approaches nearest; see Table I1. The plots of 3 also show (in dashed lines) the analytic solutions obtained for the VSS
attractors; see Table VI. We can see how well they agree with the full numerical solutions.
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VF = BK/mi’I:Z

Wi* (K
VP K]

mp \mp
Suppose now that the inflaton field corresponds to a super-
symmetric flat direction so that W # W(®) (where ® here
denotes the corresponding superfield). In this case the only

dependence of Vi on the inflaton is through the Kéhler

potential. Considering also that for a renormalizable super-

aw |2
2D,

is the F-term scalar potential in global supersymmetry), we
can readily observe that the dependence of Vy on the
inflaton is only through the exponential prefactor eX/ ",
Since for the inflaton field we have K = ®®* = |®|2, we
can write

W |2 (AW
r‘)n | +mP2<W ri)nq)n +C.C.)

(131)

. us 2 us
potential we expect V™ > % (where V™ =¥ |
P

V(p) = Voe(l/Z)(aﬁ/mp)z, (132)

where we defined the canonically normalized real inflaton
field as ¢ = |®|/+/2. Below, we employ the above scalar
potential with two different choices for the functional form
of the gauge kinetic function. Since we are considering a
gauge field, we assume that its mass m is obtained through
the Higgs mechanism. To consider that the mass is being
modulated by the inflaton as well, we assume that there is
some connection between the inflaton field ¢ and the
Higgs field ¢ responsible for m. An example of such a
possibility is to consider a model of smooth hybrid infla-
tion, where the inflaton and the Higgs fields are related as
W « ¢! during inflation [39].

1. Model 1

In our first example we choose a power-law kinetic

function
@ =£(5)"

where c is areal positive constant. The dimensionless model
parameters in Eq. (23) are given by A(¢p) = M(%) and
I'(¢p) = 40\/%(%”). The slow-roll parameters defined in
Eq. (24) are € = %(mi;)z andn =1+ (m%)z.

When we come to consider a massive vector field we

need to give a functional form for the mass m(¢).
Considering the connection Eq. (56), the dimensionless

parameter now becomes = = —2c4/3/ 2(%).
Equivalently we consider the function

AN
(@) = ()",
\¢;
which means that the Higgs field responsible for the mass
of the vector boson is related with the inflaton as 4 « ¢~ ¢.

(133)

model

(134)
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The results for the standard slow-roll solution in this
model are given in Table VII.

Clearly we require that ¢ < 1 for the stability conditions
to be well defined. We also find the following generic

results for the standard slow-roll solutions, from
Eq. (111):
2
€y = €, mp=1+¢€ and vy,4 = ge. (135)

The energy density of the Universe is dominated by the
scalar potential y, = 1, if (m%)2 < 6, corresponding then to
a period of inflation. In the small field regime, the slow-roll
condition ey <K 1 is satisfied, but ny ~ 1, violating the
second slow-roll condition. This is expected from the form
of the scalar potential and corresponds to the well-known 7
problem of inflation model building in the context of
supergravity. Therefore we are considering a period of
fast-roll inflation. The slow-roll condition guarantees the
stability of the critical point as long as ¢ # 1.

As the dimensionless model parameters are also varying
in this example, the critical point is therefore moving in
phase space, and so we have the additional constraints
coming from Egs. (52), (69), and (99) for the massless,
light, and heavy vector field cases, respectively.
Considering the slow-roll limit € < 1, even with |n| ~ 1,
the conditions that must be satisfied are

c<%, ¢<0, and c<%. (136)

Clearly the constraint on the light vector field case
cannot be met as we have set ¢ > 0. In the limit ¢ — 0
the motion of the critical point becomes the same as the
approach of solutions to it. Therefore, in the light vector
field case it is unclear whether solutions can reach the
SSR critical point; numerical simulations are needed to
verify this (see Fig. 8).

The results for the vector scaling solution in this model
are given in Table VIII.

We also find the following generic results for the vector
scaling solutions, from Eq. (114):

2

sae (13D

1
€H = — € mp=-m and vy, =
c c
As in the previous model we can see that inflation is not
spoilt as the vector field energy density remains subdomi-
nant in the small field limit. The stability conditions guar-

antee that the scalar potential dominates the energy density.

TABLE VII. Supergravity (SUGRA) potential, model 1.
SSR Existence Stability
Massless (%)2 <6 (W%)2 <4(1 —¢)
Light (%)2 <6 (mi;)2 <2(1-¢)
Heavy (’;—i)z <6 (W%)2 <3(1—c¢)
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FIG. 8 (color online). These numerical plots show the evolution of the kinetic function scaling 1 % = 2xI', given by Eq. (26), and

anisotropy 2, with respect to the number of elapsing e-folds N, for a massive vector field, for the SUGRA inspired model 1 example.
The plots show numerical solutions for three different values of the dimensionless model parameters and initial conditions. We observe
that there is no SSR solution as the scalar potential is too steep and therefore would correspond to a period of fast-roll inflation.
Despite the wide range of initial conditions, all solutions move to the VSS where the same attractor 2xI" = —4 is obtained, giving
faw = a* and my, * a, when considering the connection in Eq. (56). The plots clearly show that the same attractor 2xI" = —4 is also
obtained when the vector field becomes heavy. As expected the anisotropy = # 0 at the VSS if the vector field remains light. We
observe that 2, is decreasing for this example because the dimensionless model parameters are time-dependent. The plots of 2. also
show (in dashed lines) the analytic solutions obtained for the V. SS attractors; see Table VIII. We can see how well they agree with the

full numerical solutions.

The backreaction due to the vector field becomes propor-
tional to the scalar slope V'(¢) and a negative contribution,
and therefore the effective slope as seen by the scalar field
becomes flatter and the field slows down: Vi, =1V’
This effect can be seen from the slow-roll conditions ey =
le < 1 and ny = 17.Inthe VSS, inflation is now pos-
sible for ny < 1if ¢ is large enough. Therefore even if the
SSR corresponds to fast-roll inflation, it is possible to
obtain a period of slow-roll inflation if the solution reaches
the 'V SS attractor. In that way one can overcome the 7
problem which plagues supergravity models of inflation.

The anisotropy remains small as long as the slow-roll
condition is met and vanishes if the vector field becomes
heavy. In this model R and |3,.| are not exactly constant
but are slowly decreasing as the scalar field rolls down its
potential. As in previous models, when ¢ > 1 the SSR is
an unstable saddle point due to the growing vector
backreaction.

As the dimensionless model parameters are also varying
in this example, the critical point is therefore moving in

phase space, and so we have the additional constraints
coming from Egs. (53), (81), (88), and (109) for the mass-
less, light (V88| 1 3), and heavy vector field cases, respec-
tively. All vector scaling solutions have the same eigenvalue
of smallest magnitude, namely, |Re[m,3]| = %, where we
have neglected the small eigenvalues m, because these
correspond to flows between the scaling solutions as de-
scribed at the end of Sec. VA 2.

For this model we also find that A'T" + AI” = 0, and
from the existence and stability condition described above,
we find that the dimensionless model parameters satisfy
I > )'; hence the constraints are approximated by

c>§ and c>%. (138)
The first constraint above applies to the massless, light
(VSs 1.3), and heavy vector field cases. The second con-
dition applies to the light (VSS,) critical point. These
constraints are readily satisfied through the existence con-
dition. Therefore the critical point evolves at a slower rate

TABLE VIII. SUGRA potential, model 1.
VSS Existence Stability R 3.
Massless c>1 (m%)2 < 4c, (m%)2 < 24¢? %(n%)z %’R
Light: VSS, c>1 (2)? < 4, (£)? < 24 (L) IR
Light: VSS, c>1 (%)2 < 4c, (”%)2 < 24¢? %(%)2 -IR
Light: VSS; >4 () < dc, (2)? < 24¢? B2y —de
Heavy c>1 (2)? < de, (2)? < 24¢? G2 0
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than the approach of the solution to the point. The attractor
solution can then be obtained and the system is dragged
along with the motion of the critical points. The dynamical
evolution of the model for a variety of initial conditions
and choices of the dimensionless model parameters is
shown in Fig. 8.

2. Model 2

We now consider an exponential kinetic function of the
form

f(p) = fe*l(@/¢0=1]
where c is areal positive constant. The dimensionless model
parameters in Eq. (23) are given by A(¢p) = 43/ 2(”%) and
I'(¢p) = 4c4/3/ 2(%). The slow-roll parameters defined in
Eq. (24) are € = z(,,%V andnp =1+ (mi;)%

When we come to consider a massive vector field we

need to give a functional form for the mass m(d).
Considering the connection Eq. (56), the model parameter

now becomes E = —2¢4/3/ 2(%). Equivalently we con-
sider the function

m(¢) = mieic[(qs/d)i)i l].

(139)

(140)

The results for the standard slow-roll solution in this
model are given in Table IX.

Clearly we require that c% <1 for the stability condi-
tions to be well defined. We also find the following generic
results for the standard slow-roll solutions, from Eq. (111):

€y = €, ng=1+¢€ and Yo = %e. (141)

As in the previous model, the energy density of the
Universe is dominated by the scalar potential if (%)2 < 6,

corresponding then to a period of inflation. This potential
satisfies the € << 1 slow-roll condition in the small field
regime, and this also guarantees the stability of the critical
point; however, we see that i ~ 1, violating this slow-roll
condition. Again, this is the well-known 7 problem of in-
flation in the context of supergravity. Thus, this turns out to be
a period of fast-roll inflation.

As the dimensionless model parameters are also varying
in this example, the critical point is therefore moving in
phase space, and so we have the additional constraints
coming from Egs. (52), (69), and (99) for the massless,
light, and heavy vector field -cases, respectively.

TABLE IX. SUGRA potential, model 2.

SSR Existence Stability

Massless (m%)2 <6 (mi;)2 <401 — c%)
Light 2)2<6 (2P <201 —cg)
Heavy 22 <6 (H?<3(1—cg)

PHYSICAL REVIEW D 83, 023523 (2011)

Considering the slow-roll limit € < 1, even with |n| ~ 1,
the conditions that must be satisfied are

c(%) < % c(%) <0, and c(%) < %

Clearly the constraint on the light vector field case

cannot be met as we have set c((%) > (. In the limit

¢(£) — 0 the motion of the critical point becomes the

(ﬁl
same as the approach of solutions to it. Therefore, in the

light vector field case it is unclear whether solutions can
reach the SSR critical point; numerical simulations are
needed to verify this (see Fig. 9).

The results for the vector scaling solution in this model
are given in Table X.

We also find the following generic results for the vector
scaling solutions, from Eq. (114):

(142)

)
e 2 o (143)
My = Z—C(E’)n and y4 = F(Ej €.

Once again we can see that inflation is not spoilt as the
stability conditions guarantee that the scalar potential
dominates the energy density. However, for this model
we also notice that R and |R g| are decreasing as the
scalar field evolves down its potential. The backreaction
due to the vector field is a negative contribution to the
scalar slope V'(¢):

Vieg=V +B,= %(%)V’ (144)
Therefore the effective slope as seen by the scalar field
becomes flatter and the field slows down. The slow-roll
condition ey < 1 is satisfied as long as the existence con-
dition is met. In the V' SS it is now possible for ny < 1 if
% > 5. As seen previously the slow-roll parameters are
smaller than that of the SSR. In that way, therefore, one
can overcome the 7 problem.

The anisotropy remains small under the stability con-
ditions but is, however, decreasing as the scalar field
evolves down its potential. The anisotropy vanishes as
the vector field becomes heavy.

This critical point is moving in phase space due to the
parameter A = A(¢). Therefore we have the additional
constraints coming from Egs. (53), (81), (88), and (109),
for the massless, light (VSS| ,3), and heavy vector field
cases, respectively. All vector scaling solutions have the
same eigenvalue of smallest magnitude, namely,
[Re[m, ;] =3, where we have neglected the small eigen-
values m, because these correspond to flows between the
scaling solutions as described at the end of Sec. VA 2. For
this model, the parameter I" is constant. Then these con-
straints are reduced to
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FIG. 9 (color online). These numerical plots show the evolution of the kinetic function scaling 1 g—ﬁ = 2xI’, given by Eq. (26), and

anisotropy 2, with respect to the number of elapsing e-folds N, for a massive vector field, for the SUGRA inspired model 2 example.
The plots show numerical solutions for three different values of the dimensionless model parameters and initial conditions. We observe
that there is no SSR solution as the scalar potential is too steep and therefore would correspond to a period of fast-roll inflation.
Despite the wide range of initial conditions, all solutions move to the VSS where the same attractor 2xI" = —4 is obtained, giving
faw © @ * and my, * a, when considering the connection in Eq. (56). The plots clearly show that the same attractor 2xI" = —4 is also
obtained when the vector field becomes heavy. As expected the anisotropy = # 0 at the V. SS if the vector field remains light. We
observe that 2, is decreasing for this example because the dimensionless model parameters are time-dependent. The plots of 2. also
show (in dashed lines) the analytic solutions obtained for the V. SS attractors; see Table X. We can see how well they agree with the
full numerical solutions.

mass m(¢) modulated by a scalar field ¢. This scalar field
is driving a period of inflation.

Except for very special cases, analytical solutions to the
system of field equations together with Einstein’s equa-
tions are either extremely difficult if not impossible to
obtain due to their nonlinear nature. However, we may
understand the qualitative behavior of solutions by phase-
space analysis. As we are considering systems of 3 or
higher dimension we cannot do much more than analyze
the stationary points and their stability. We have studied the
qualitative behavior of solutions for general scalar poten-
tials V(¢) and functional forms of the vector field kinetic
function f(¢) and mass m(¢). We parameterize the model
dependence through the so-called dimensionless model

parameters defined as A = 4/3/ 2mp(V7/), I'=4/3/ 2mP(§.’),

5 4
i >— and £>—.

i 3c ¢ 3c
The first constraint above applies to the massless and the
light (VSS5) vector field cases. The second condition
applies to the light (VSS,,) and the heavy vector field
cases. If these constraints are satisfied, the critical points
evolve at a slower rate than the approach of the solution to
the point. The attractor solution can then be obtained and
system is dragged along with the motion of the critical
points. The dynamical evolution of the model for a variety
of initial conditions and choices of the dimensionless
model parameters is shown in Fig. 9.

(145)

VII. CONCLUSIONS

In this paper we studied the dynamics of a model con-
sisting of a massive Abelian vector field, with a Maxwell-
type kinetic term and with a kinetic function f(¢) and

and B = \/Emp(%/). We have obtained the critical points
and studied their stability for three cases: massless,
light, and heavy vector field.

TABLE X. SUGRA potential, model 2.

VSS Existence Stabilit R b

y c
Mass] D>l (D) xded (B2 w24 Lled - 1)) iR

assless i n o Gy ¢ 7Ly, mp 3

Light V88,  £>1 (D <ded, (2P <24 Lled — 1122 IR
Lightt VSS, £>1 (22 <4cd, (2P <24 shled —1](L) 3R
Light: VSS;  £>5 (22 <dey, (2 <24 75[9c4 -8 —£% ¢
Heavy % >1 (mi;)2 < 4c$', (1%)2 <24 4 [c% - 1](,%’,)2 0
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Consider first the massless vector field case. This case
has already been studied by Refs. [19,20] for a particular
model. However, our method is more general and produces
their results as a special case. We have found 2 critical
points of interest in this system. The first critical point
corresponds to the standard slow-roll inflation attractor.
For the solution to be inflationary, i.e. 3mpH? =~ V(¢),
the slow-roll condition € << 1 must be satisfied. At the
critical point the energy density of the vector field and
the backreaction vanishes. The condition for this to occur is
Al < 6. We also notice how the anisotropic stress, given
by X, vanishes at the critical point X = 0, providing an
example of the cosmic no-hair theorem. Under the con-
ditions described above, the standard slow-roll critical
point is stable, i.e. a late-time attractor solution.

Only exponential potentials and kinetic functions give a
closed system of equations and therefore exact stationary
points. However, with more general forms for the potential
and the kinetic function, critical points become time-
dependent. The motion of the critical points in phase space
is given by the time dependence of the dimensionless
model parameters. If solutions approach the critical points
faster than their evolution, then we can expect the attractors
to be reached and solutions to be dragged along with them.
The (strong) condition for this to happen leads to the
second slow-roll condition |n| < 1, as long as the bifur-
cation value is not realized: AI' # 6. The condition may
even be satisfied if the 7 slow-roll condition is marginally
violated: |n| ~ 1. In other words, the standard slow-roll
attractor can also apply to fast-roll inflation.

The second critical point of interest is the so-called
vector scaling solution. This critical point arises due to
the backreaction effects of the vector field on the dynamics
of the scalar field. It therefore requires AI' > 6. This con-
dition guarantees that the backreaction, and therefore also
the vector field energy density, grows. However, before the
vector field energy density grows so much that it spoils
inflation, the backreaction on the dynamics of the scalar
field intervenes and inhibits further growth. The critical
point corresponds to an inflationary solution, if I' > A and
I' > 1. These conditions also guarantee that the critical
point is stable, i.e. a late-time attractor. The vector field
backreaction has the effect of flattening the effective po-
tential slope experienced by the inflaton: V., = 5 V'. The
evolution of the inflaton consequently slows down with
the slow-roll parameter reduced by 2% €y, compared to the
standard slow-roll case. The effect of the backreaction
generates a new stage of slow-roll inflation where the
energy density of the vector field is kept subdominant
R < 1, where R is the vector to scalar energy density
ratio. The energy density of the vector field tracks that of
the scalar field with constant R if the dimensionless model
parameters are constant; otherwise, R varies slowly de-
pending on the time dependence of the dimensionless
model parameters.

PHYSICAL REVIEW D 83, 023523 (2011)

The anisotropic stress 2, however, does not vanish at the
critical point. Indeed, there is a residual anisotropy given
by X = % R. This provides a counterexample to the cosmic
no-hair theorem and has attracted some interest. Such a
prolonged anisotropy can be used to generate statistical
anisotropy in the curvature perturbation and in gravita-
tional waves; see Refs. [19,20].

In analogy to the standard slow-roll solution, the motion
of the vector scaling critical point leads to a second “‘slow-
roll” condition given by mpl%l < 1. This result is de-
rived when considering a flat potential, i.e. | — 2¢| < 1,
and as long as the bifurcation value is not approximately
realized: A" # 6.

The vector scaling attractor gives the solution
faw & e~ *® in the limits described above. This particular
scaling for the kinetic function enables the generation of a
scale-invariant transverse component of the vector field
perturbation spectrum as seen in Refs. [21,29].

Now, suppose that the vector field has nonzero mass m.
To allow particle production to occur the mass of
the physical vector field M = m//f has to be small
(M < H) when the cosmological scales exit the horizon.
If the mass is originally negligible, in order for it to have any
effect we need to consider that its magnitude is increasing
during inflation. Thus, it is possible that the field becomes
heavy (M = H) by the end of inflation. In this case, when
considering a massive vector field, we may break the prob-
lem down into two regimes: light and heavy fields. When
considering a light vector field, as in the massless case, we
find two types of critical points which are of interest. The
standard slow-roll solution is of course still a critical point
of the system. The conditions for the vector field energy
density and backreaction to vanish are now AI' <6 and
|AE| < 3. When considering a massive vector field there
are two sources of backreaction to the scalar field dynamics.
And therefore, depending on which dominates first, there
are different vector scaling solutions. In fact we find three
distinct vector scaling solutions. However considering the
limits T,|Z|> A and T,|E|> 1, all vector scaling
solutions are inflationary with attractor solutions either
Jaw @™t or my = a.

To simultaneously attain those attractor solutions we
impose the connection f//f = —4m'/m, i.e. B = —%F.
By imposing this connection, we obtain the scaling of the
kinetic function and mass which generates a scale-invariant
vector field spectrum. If the vector field perturbations
contribute to the curvature perturbation ¢, then it can
generate statistical anisotropy in the spectrum and bispec-
trum of ¢ throughout the entire range of the cosmological
scales. The conditions to obtain an inflationary Universe
with the above scaling for the kinetic function and mass are
minimal, namely, I" > 1 and I" > A. Under these limits
we have found that there is a small flow of solutions to one
particular vector scaling solution, but the attractors for the
kinetic function and mass are not affected. In the vector
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scaling solutions the vector field contribution to the density
generates anisotropic stress, and, if it is non-negligible, it
may lead to anisotropic inflation, which can produce sta-
tistically anisotropic perturbations for the inflaton field
itself. They can also be used as a source of statistical
anisotropy in ¢ as in the massless vector field case.

Once the vector field becomes heavy, it starts to oscillate
rapidly [16]. As expected from Ref. [16], the anisotropy
vanishes once the field becomes heavy: 3 = 0. As in the
previous vector scaling solutions the conditions to obtain
an inflationary attractor are I' > A, I' > 1, and AI' > 6,
when considering the connection E = —1I' described
above.

So, in general, we find that if A" > 6, then the back-
reaction grows and solutions will flow to a vector scaling
solution where f,, « a~*.If we then impose the connection
f!'/f = —4m' /m, we also obtain the solution m,, o a. The
general conditions for these to be attractor solutions are
simply I' > A and I' > 1. The above conditions corre-
spond to the requirement that the backreaction of the vector
field onto the roll of the inflaton is not decreasing in time, so
that it can eventually affect the inflationary dynamics and
drive the system to the vector scaling solution(s). The
bounds on the dimensionless model parameters I" and A
allow half the parameter space to lead to the attractor
solution which generates scale-invariant spectra for the
perturbations of the vector field components. As demon-
strated in our examples in Sec. VII, the parameter space
includes natural values for our dimensionless model
parameters.

The next step is to realize this model in the context of
realistic theories beyond the standard model. A promising
possibility is within supergravity theories. Indeed, our
vector field could be a gauge boson of some grand unified
theory in the framework of supergravity. In this case, the
gauge kinetic function is a holomorphic function of the
scalar fields of the theory. Hence it is natural to expect that
the rolling of the inflaton would modulate the kinetic
function. Similarly, the mass will be modulated by a

A

i
100
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Higgs field, which could well be connected to the inflaton
through the supersymmetric grand unified theory group. In
supergravity, Kéhler corrections to the scalar potential
result in masses of order H during inflation [40], which
implies that the inflaton and the Higgs fields are fast-rolling
down the potential slopes, causing significant variation in
the gauge kinetic function, allowing for our vector scaling
solution to be attained. As we have shown, after the vector
scaling attractor is reached, the backreaction of the vector
field slows down the roll of the inflaton. This gives rise to a
slow-roll phase of inflation, overcoming thereby the infa-
mous 7 problem, which plagues inflationary models in
supergravity. We have clearly demonstrated this in the
last two of our examples in Sec. VII. This is an added
bonus to our setup.
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APPENDIX: EIGENVALUES

The following plots show how the real parts of the
eigenvalues of the matrix /M behave as a function of
the dimensionless model parameters A, I', and E, for
the different cases considered. In the massive vector field
cases, light and heavy, we assume the connection of
Eq. (56).

1. Massless vector field—vector scaling solution VSS

In Fig. 10 we show numerical solutions to the real parts
of the eigenvalues of matrix M. These correspond to the
VSS critical point of the massless vector field case
[Eq. (40)]. We show numerical solutions because the
analytical solutions are far too complicated to reproduce
here. However, we can clearly see from the plots that in

15 780

100

FIG. 10 (color online). These plots show the eigenvalues of matrix M for the VSS critical point in the massless vector field case.
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FIG. 11 (color online). This plot shows the eigenvalue m, of
matrix M for the VSS, critical point in the light vector field
case.

the limits I' > A and I" > 1 the real parts of the eigen-
values are approximated by [cf. Eq. (42)]

Re[m;]=~—3 and Re[my;]=~—3.

o@D

In the limits considered the eigenvalues depend weakly on
the dimensionless model parameters. This can be seen as

FIG. 12 (color online).

PHYSICAL REVIEW D 83, 023523 (2011)

plateaus in the plots. This therefore ensures the validity of
our method in establishing the stability of the critical
point.

2. Light vector field—vector scaling solution VSS;

The eigenvalues of the matrix M for the VSS; critical
point of the light vector field case [Eq. (70)] are given by
Eq. (71). It is clear from the analytical solutions that in the
limits I' > A and I' > 1 the real parts of the eigenvalues
are approximated by [cf. Eq. (73)]

Re[m;]= =3,

3\ —12 (A2

and Re[my]= e

3
Re[my;] = — X

In the limits considered the eigenvalues m;,3 clearly
depend weakly on the dimensionless model parameters.
In Fig. 11 we show a numerical solution to the real part of
the eigenvalue my, to demonstrate that it also depends
weakly on the dimensionless model parameters. This can
be seen as a plateau in the plot and therefore ensures the
validity of our method in establishing the stability of the
critical point.

These plots show the eigenvalues of matrix M for the V. SS, critical point in the light vector field case.
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Re[mq]

r
A

FIG. 13 (color online).

3. Light vector field—vector scaling solution VSS,

In Fig. 12 we show numerical solutions to the real parts of
the eigenvalues of matrix M which correspond to the
VSS, critical point of the light vector field case
[Eq. (75)]. We show numerical solutions because the ana-
lytical solutions are far too complicated to reproduce here.
However, we can clearly see from the plots that in the limits
|E| > A and |E| > 1 the real parts of the eigenvalues are
approximated by [cf. Eq. (77)] (m4 is obtained by the
analytic expression)

3
Re[ml] = _3, Re[m2,3] = — 5,

3(AE + 4) . oAl — 48
52 - 2 :

Re[m,] = — (A3)

In the limits considered the eigenvalues depend weakly on
the dimensionless model parameters. This can be seen as
plateaus in the plots. This therefore ensures the validity of
our method in establishing the stability of the critical point.

PHYSICAL REVIEW D 83, 023523 (2011)

These plots show the eigenvalues of matrix M for the "V SS; critical point in the light vector field case.

4. Light vector field—vector scaling solution VSS;

In Fig. 13 we show numerical solutions to the real
parts of the eigenvalues of matrix /M which correspond
to the V. SS; critical point of the light vector field case
[Eqg. (82)]. We show numerical solutions because the ana-
lytical solutions are far too complicated to reproduce here.
However, we can clearly see from the plots that in the
limits I' > A and I' > 1 the real parts of the eigenvalues
are approximated by [cf. Eq. (84)] (my4 is obtained by the
analytic expression)

3
Re[m,] =~ —3, Re[my3] = — > and

A =8)(T'r—4)
(3TA —20)I?

Re[my,] = —12 (A4)
In the limits considered the eigenvalues depend weakly on
the dimensionless model parameters. This can be seen as
plateaus in the plots. This therefore ensures the validity of
our method in establishing the stability of the critical point.
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