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Abstract. We show that wave excitation and propagation in an inhomogeneous

medium leads to the simultaneous appearance of a huge number of waves with

different phase velocities. This phenomenon arises in any medium with inhomogeneous

parameters, e.g. in fluid jets where the inhomogeneity appears as a result of the

boundary layer. Because of fluctuations (however small) the waves become randomised,

i.e. turbulence develops. We demonstrate that the eigenvalues depend essentially on

the frequency of the perturbation and on the distance from the initial section of a jet

or wave beam. We show how to find the continuous set of eigenvalues — complex

wave numbers — and corresponding eigenfunctions for any given frequency. The

implication of these results is that the transition to turbulence occurs, not through

the excitation of a gradually increasing number of waves, as commonly supposed, but

by the simultaneous excitation of a continuous wave spectrum.

PACS numbers: 47.27.wg, 47.27.Cn, 47.20.Ft, 47.27.ed

1. Introduction

Turbulence is a well-known phenomenon that arises in continuous media [1, 2, 3, 4] under

conditions such that they become unstable. The best-known example is of course fluid

flow with a large enough Reynolds number [5, 6, 7, 8, 9, 10]. Other instances include

kink waves [11], waves of burning [12, 13, 14, 15, 16, 17, 18], and waves in excitable

media [19, 20, 21, 22, 23, 24, 25].

Most of these works consider the propagation of plane waves in homogeneous media,

an idealization that yields the simplest equations. In reality, however, plane waves often

fail to provide a realistic description. Furthermore, the propagation medium may not be

homogeneous and the variables describing wave processes are always bounded in space.

Where the wave front has a narrow characteristic of directionality [26] propagation

occurs as a wave beam [27, 28, 26]; a submerged jet [9] can be considered as a particular

case of a wave beam.
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The excitation and propagation of waves is usually considered only for homogeneous

media. The best known examples arise in the derivation of the Korteweg-de Vries and

Ginsburg–Landau equations (see, for example, [29]). In our earlier consideration of the

transition to turbulence in slowly-diverging subsonic submerged jets [30] we considered a

medium where an inhomogeneity appears because of the dependence of the flow velocity

on coordinates. We did not appreciate, however, that such an inhomogeneity may lead

to entirely new effects. What we found was that, for large Reynolds numbers, ordinary

methods of solving even the linearized Navier-Stokes equations yield random results on

account of instability. We therefore used a WKB-like asymptotic expansion method

for approximate solution of the complex, linear, fourth-order, differential equation that

describes small deviations from the steady-state stream function. The equation contains

a large parameter proportional to the root-mean-square of the Reynolds number. This

method allowed us to find the complex eigenvalues and eigenfunctions but, in doing so,

we found that the eigenvalues depend on the point where the condition for the vanishing

solution is applied. By moving this point we obtained a continuous series of eigenvalues.

We therefore decided to establish whether the same phenomenon also arises in other

inhomogeneous wave systems. As an example, we have chosen to consider a modified

form of the Klein–Gordon equation (KGE) – an equation that is already well-known in

mathematical physics. It is very close to the standard wave equation, and differs from

it only in that it takes account of dispersion. It goes without saying that we could in

principle have considered any equation describing wave propagation but, based on the

universality of the theory of oscillations and waves [31, 32], we are confident that the

results would be essentially the same as those that we discuss below.

In what follows we investigate in detail the behavior of the wave beams generated by

this equation near the threshold of turbulence, where we can use a linear approximation.

Section 2 contains the meat of the paper. In section 2(a) we introduce the KGE in

its generalized form and discuss its properties, and in section 2(b) we seek generative

solutions of the KGE and consider the implications of the results obtained. In section

3 we summarise our findings and draw conclusions.

2. Propagation of a wave beam in a two-dimensional inhomogeneous

medium described by a generalized Klein-Gordon equation

2.1. Generalized Klein-Gordon equation

We consider a wave beam propagating in the x direction, described by

∂2w

∂t2
− U2(x, y)

∂2w

∂x2
− V 2(x)

∂2w

∂y2
+ αx

∂w

∂x
− αy

∂w

∂y
+ βw

= ϵ

(
f(w, ∂w/∂x)

)
, (1)

which we will call the generalized Klein–Gordon equation. Here U(x, y) is the wave

velocity in the x direction and V (x) is the wave velocity in the y direction, αx and
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αy are are coefficients describing the stability of the medium in the x and y directions

respectively, β is the dispersion coefficient for the medium, x is the distance from the

beam initial section, y is the distance from the beam axes, f
(
w, ∂w/∂x

)
is a nonlinear

function, and ϵ is a conditional small parameter describing the degree of nonlinearity.

Eq. 1 describes processes in an inhomogeneous medium whose parameters depend on

coordinates. In the particular case when αx = αy = 0, it describes the oscillations of an

inhomogeneous membrane lying on an elastic base.

We note that the presence of inhomogeneities neither facilitates nor impedes the

transition to turbulent behavior, but it changes the way in which the turbulence

develops. Quite generally, the onset of turbulence near the threshold [33] occurs through

the excitation of a gradually increasing number of modes to three, corresponding to a

three-dimensional torus in phase space. Further this torus either collapses or a chaotic

attractor is born on the torus [34], and turbulence subsequently develops via different

routes in different systems [33].

For definiteness we set

U(x, y) =
1− U0(x)

2

[
1− tanh

(
q
|y| − 1

δ0(x)

)]
+ U0(x), (2)

where U0(x) is the value of U(x, y) for |y| → ∞, δ0(x) is the boundary layer thickness

that is expected to increase with increasing x. We set

U0(x) =
δ00

1 + µx
, δ0(x) = δ00(1 + x), (3)

where δ00 = 0.01, µ is another small parameter characterizing the rate of change of

U(x, y) as x varies. It leads to the beam width increasing as the beam propagates.

Examples of the dependence of U on y for particular values of x are shown in Fig. 1.

The dependence of the wave velocity U(x, y) on coordinate corresponds to a type

of inhomogeneity that often arises in reality – namely, where the medium under

consideration consists of two different parts separated by an intermediate layer.

Provided that the wave dispersion in the medium is large enough, we can use

a quasi-linear approximation for derivation of an equation describing the behavior of

a bounded beam and apply a well-known perturbation technique: the van der Pol,

asymptotic, average [35, 36, 29, 37]. In what follows we also apply the asymptotic

Krylov–Bogolyubov method for spatially extended systems [29]. We therefore seek a

solution of Eq. (1) in the form of a series in ϵ:

w(x, y, t) = w0(x, y, t) + ϵw1(x, y, t) + ϵ2w2(x, y, t) + . . . , (4)

where w0(x, y, t) is a generative solution of Eq. (1), and w1(x, y, t), w2(x, y, t), . . . are

unknown functions.

2.2. Generative solution

The generative solution of Eq. (1) is described by the linear equation

∂2w0

∂t2
− U2(x, y)

∂2w0

∂x2
− V 2(x)

∂2w0

∂y2
+ αx

∂w0

∂x
− αy

∂w0

∂y
+ βw0 = 0. (5)



Initiation of turbulence and chaos 4

Figure 1. Examples of the dependences U on y for q = 2.5, U0(x) = δ00/(1 + 0.01x),

δ0(x) = δ00(1 + x), δ00 = 0.01, x = 0 (1), x = 2 (2), x = 5 (3), x = 8 (4), and x = 10

(5)

As in [30] we seek a partial solution of Eq. (5) in the form of a sum of waves‡ of frequency
ω, amplitude A(ω, y) and complex wave number Q(ω, x) = K(ω, x) + iΓ(ω, x), where

K(ω, x) = ω/vph(ω, x) is the real wave number and vph(ω, x) is the wave phase velocity.

So,

w0(t, x, y) =
1

2π

∞∫
−∞

A(ω, y) exp

i
ωt− x∫

0

Q(ω, x) dx

 dω. (6)

We rewrite (6) as

w0(t, x, y) =
1

2π

∞∫
−∞

A(ω, x, y)eiωt dω, (7)

where

A(ω, x, y) = A(ω, y) exp

−i

x∫
0

Q(ω, x) dx

 . (8)

It follows from (7) that A(ω, x, y) is the Fourier transform of function w0(t, x, y).

Taking account of (7) and (8) and imposing the condition of the wave damping in

the direction of positive y, Eq. (5) for A(ω, x, y) becomes

V 2(x)
∂2A(ω, x, y)

∂y2
+ αy sign y

∂A(ω, x, y)

∂y
+

(
ω2 + iαxQ(ω, x)

‡ Note that in [30] the frequency was expressed in terms of the Strouhal number, as is customary in

aerodynamics.
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− U2(x, y)Q2(ω, x)− β − iU2(x, y)
∂Q(ω, x)

∂x

)
A(ω, x, y) = 0. (9)

As can be seen from Fig. 1, the velocity U(x, y) changes slowly as x increases, so

that we can set
∂Q(ω, x)

∂x
∼ µ. (10)

Hence we can represent A(ω, x, y) and Q(ω, x) as series:

A(ω, x, y) = A0(ω, x, y) + µA1(ω, x, y) + . . .

Q(ω, x) = Q0(ω, x) + µQ1(ω, x) + . . . . (11)

Substituting (11) into Eq. (9) and equating the coefficients of the same power of µ, we

obtain for A0(ω, x, y), A1(ω, x, y), . . . the following equations:

L0A0(ω, x, y) = 0, (12)

L0A1(ω, x, y) =

[
iU2(x, y)

∂Q0(ω, x)

∂x
−
(
iαx + 2Q0(ω, x)U

2(x, y)
)
Q1(ω, x)

]
× A0(ω, x, y), (13)

. . . . . . . . . ,

where

L0 = V 2(x)
∂2

∂y2
+αysign y

∂

∂y
+ω2−U2(x, y)Q2

0(ω, x)+iαxQ0(ω, x)−β(14)

is a differential operator.

In view of (14), and the boundary conditions for the function A0(ω, x, y),

A0(ω, x,±∞) = 0,
∂A0(ω, x, y)

∂y

∣∣∣∣∣
y=±∞

= 0. (15)

Eq. (12) describes a not-self-adjoint boundary-value problem, whose solution allows us to

find the complex eigenvalues of Q0(ω, x) together with the corresponding eigenfunctions.

Similar boundary-value problems were solved analytically in [38] and numerically in [30].

In the derivation of the Ginsburg–Landau equation we noted [29] that a plane wave

may be taken as a generative solution, but it is valid only while the widening of wave

front remains insignificant. In contrast, because we set the boundary conditions for

A0(ω, x, y) to vanish at large values of y, our present approach is valid even for wave

beams that are significantly diverging.

We will solve our boundary-value problem by one of the same ways as in [30]. Given

(14), any solution of Eq. (12) can be represented as a linear combination of even and

odd solutions. We restrict ourselves to odd solutions.

It follows from (2), and in view of (14), that for small and large y the differential

equation (12) becomes an equation with coefficients independent of y:

V 2(x)
∂2A0

∂y2
+ αy

∂A0

∂y
sign y − k2

0(ω, x)A0 = 0, for |y| ≪ 1,

(16)

V 2(x)
∂2A0

∂y2
+ αy

∂A0

∂y
sign y − k2

1(ω, x)A0 = 0 for |y| ≫ 1,
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where

k0(ω, x) =
√
Q2

0(ω, x)− ω2 + β − iαxQ0(ω, x) ,

(17)

k1(ω, x) =
√
U2
0 (x)Q

2
0(ω, x)− ω2 + β − iαxQ0(ω, x) .

Odd partial solutions of Eqs. (16) satisfying the boundary conditions (15) are

A0(ω, x, y) =



C1exp

(
− αy|y|

2V 2(x)

)
sinh


√√√√ α2

y

4V 4(x)
+

k2
0(ω, x)

V 2(x)
y

 for |y| ≪ y0,

C2exp

−
 αy

2V 2(x)
+

√√√√ α2
y

4V 4(x)
+

k2
1(ω, x)

V 2(x)

 |y|

 for |y| ≫ y0.

(18)

In view of (14), it then follows that an odd solution of Eq. (12), for y ≤ y0 may be found

numerically for the initial conditions

A0(ω, x, 0) = 0,
∂A0(ω, x, y)

∂y

∣∣∣
y=0

=

√√√√ α2
y

4V 4(x)
+

k2
0(ω, x)

V 2(x)
. (19)

Since ∂A0(ω, x, y)/∂y
∣∣∣
y=0

is positive, this solution, which we denote as A01(ω, x, y),

grows with increasing y, at least for small y.

To satisfy the boundary conditions (15), we must find a partial solution of Eq. (12)

subject to (14) that decreases in absolute value as y increases. We can find such a

solution by solving Eq. (12) with boundary conditions

A0(ω, x, ye) = 1,
∂A0

∂y

∣∣∣∣∣
y=ye

= −

 αy

2V 2(x)
+

√√√√ α2
y

4V 4(x)
+

k2
1(ω, x)

V 2(x)

 ,(20)

where ye is some sufficiently large value of |y|. We denote this solution A02(ω, x, y).

So, the solutions of Eq. (12) satisfying the required boundary conditions are

A0(ω, x, y) =

 C1(ω, x)A01(ω, x, y) for 0 ≤ y ≤ y0,

C2(ω, x)A02(ω, x, y) for y ≥ y0,
(21)

where C1 and C2 are arbitrary functions, and y0 is some point where we sew solutions

A01(ω, x, y) and A02(ω, x, y). The sewing conditions are

C1(ω, x)A01(ω, x, y0)− C2(ω, x)A02(ω, x, y0) = 0,

C1(ω, x)
∂A01

∂y

∣∣∣∣∣
y=y0

− C2(ω, x)
∂A02

∂y

∣∣∣∣∣
y=y0

= 0. (22)

The system (22) has a nontrivial solution if its determinant is equal to zero, i.e. if

D
(
Q0(ω, x), y0

)
= A01(ω, x, y0)

∂A02(ω, x, y)

∂y

∣∣∣∣∣
y=y0

− A02(ω, x, y0)
∂A01(ω, x, y)

∂y

∣∣∣∣∣
y=y0

= 0. (23)
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The complex equation (23) allows us to calculate eigenvalues of the complex wave

number Q0(ω, x) for given ω, x and y0.

Eqs. (22) enable us to find the relationship between C1(ω, x) and C2(ω, x):

C2(ω, x)

C1(ω, x)
=

A01(ω, x, y0)

A02(ω, x, y0
. (24)

It is known [39] that in many cases the numerical solution of n equations

Fi(z1, z2, zn) = 0, i = 1 . . . n (25)

with n unknowns z1, z2, . . ., zn may be reduced to the problem of searching for a

global minimum in the modulus of some functional Φ(Fi). For our problem Q0(ω, x) =

K0(ω, x) + iΓ0(ω, x), where K0(ω, x) and Γ0(ω, x) are roots of two equations

Re
(
D
(
Q0(ω, x)

)
, y0

)
= 0, Im

(
D
(
Q0(ω, x)

)
, y0

)
= 0. (26)

Different methods have been described for numerical solution of similar equations,

for example in [40, 39]. All of these methods are based on the supposition that the

functional
∣∣∣D(Q0(ω, x), y0

)∣∣∣ changes monotonically with changes in
∣∣∣Q0(ω, x)

∣∣∣. However,
our calculations show that this is not in fact the case. We have therefore used a trial-

and-error method.

In the general case, an analytic solution of the equations

Re
(
D
(
Q0(ω, x)

)
, y0

)
= 0, Im

(
D
(
Q0(ω, x)

)
, y0

)
= 0

is impossible. We therefore solve them numerically. Setting ω, x, vph0(ω, x) and the

sewing point y0 we calculate Re
(
D
(
Q0(ω, x)

))
and Im

(
D
(
Q0(ω, x)

))
as a functions

of Γ0 and find their point intersection Γ∗
0. Further for Γ0 = Γ∗

0 we vary vph0(ω, x) until∣∣∣D(Q0(ω, x)
)∣∣∣ does not become minimal. After that we again find the point Γ∗

0, and so

on. If the values Γ0(ω, x) and vph0(ω, x) found by this manner exist, then they are the

eigenvalues we seek. Our calculations show that they exist only above a certain value of

ω which decreases as x increases. We denote this value as ωcr. The dependence of ωcr on

x is illustrated in Fig. 2: the waves under consideration are excited only for ω > ωcr(x).

We have repeated the same procedure for a wide range of ω, x and y0 values. In

doing so, we found that the values of Γ0(ω, x) and vph0(ω, x) are practically independent

of the sewing point. The dependences of the eigenvalues of the gain factor Γ0, wave phase

velocity vph0, wave number K0 and wave length λ = 2π/K0 on the wave perturbation

frequency ω for certain values of x are shown in Fig. 3. We see that the gain factor,

phase velocity and the wave length all decrease as the wave frequency increases. Note

that the phase velocity depends strongly on frequency, thus implying that these waves

are significantly dispersive. Thus, for any given position x we have found a continuous

set of eigenvalues for the frequency and phase velocity; cf. finite homogeneous media

where only a discrete set of eigenvalues is possible.

To clarify how the wave changes with increasing distance from the initial section

of the beam, we construct the dependences of the gain factor, wave phase velocity wave
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Figure 2. The dependence of ωcr on the distance x

number and wave length on this distance, as shown in Fig. 4. It can be seen that, with

increasing x, the gain factor decreases fast with increasing distance, whereas wave the

phase velocity, wave number and wave length are characterised by weaker dependences.

It is of interest to note that the gain factor Γ0 depends only weakly on the coefficient

αx responsible for the medium’s stability in the x direction. For example, at x = 4 the

value of Γ0 changes only from 0.3875 to 0.3375 when αx is halved (from 0.2 to 0.1).

To find the eigenfunctions corresponding to the eigenvalues Q0(ω, x), we must

calculate the functions A01(ω, x, y), A02(ω, x, y) for even eigenvalues of Q0(ω, x), sewing

them at the point y0. The functions

A0(ω, x, y) = C(ω, x)


A01(ω, x, y) for 0 ≤ y ≤ y0,

A01(ω, x, y0)

A02(ω, x, y0)
A02(ω, x, y) for y ≥ y0

(27)

are the eigenfunctions sought.

Knowing Q0(ω, x) and the expression C we can calculate the evolution of the wave

power spectrum in the linear approximation. To do so we must set the power spectra

at the input section. If we suppose that the spectral density of the input disturbances

are independent of frequency and equal κ0, then the spectral density κ(ω, x, y) of the

process w0(t, x, y), defined by (7), is described by expression

κ(ω, x, y) = |A0(ω, x, y|2, (28)

where A0(ω, x, y is defined by (27).

We emphasize that the results are obtained from the linear theory without taking

account of nonlinear phenomena such as the pairing of vortices. Processes of this kind,
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Figure 3. Dependences of the eigenvalues of the gain factor Γ0 (a) on phase velocity

vph0 (b), wave numberK0 (c) and wave length λ (d) on the wave perturbation frequency

ω for x = 0 (1), x = 2 (2), x = 4 (4), x = 6 (6), x = 8 (8)

Figure 4. Dependences of the eigenvalues of the gain factor Γ0 (a), wave phase velocity

vph0 (b), wave number K0 (c) and wave length λ (d) on the distance x from the beam

initial section for ω = 0.8 (1), ω = 1 (2), ω = 1.5 (3), ω = 2 (4), and ω = 3 (5)



Initiation of turbulence and chaos 10

and the formation of coherent structures, may be considered in the first approximation.

They were calculated approximately for turbulent jets in [30].

3. Conclusion

So what has been learned? The most important result is the demonstration that

the transition to turbulence and chaos in non-equilibrium inhomogeneous media arises

through the simultaneous excitation of an infinite number of waves. In a sense this is

unsurprising because it is already well known that a multitude of close oscillatory or

wave modes can generate chaotic behavior on account of the small disturbances that

are always present in any physical system [33]. But the result is of greater generality

that might appear at first sight, even though the mechanism considered can only occur

only in inhomogeneous systems: in reality, all systems are inhomogeneous to a greater

or lesser extent, so our results are actually of global significance. They allow us to

understand better the physical nature of turbulence and how it arises.
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