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Abstract—This work presents sequential Bayesian detection
and estimation methods for nonlinear dynamic stochastic sstems
using measurements affected by three sources of uncertaint
stochastic, set-theoretic and data association uncertain Fol-
lowing Mahler’'s framework for information fusion, the paper
develops the optimal Bayes filter for this problem in the form
of the Bernoulli filter for interval measurements. Two numerical
implementations of the optimal filter are developed. The firs
is the Bernoulli particle filter (PF), which turns out to require
a large number of particles in order to achieve a satisfactoy
performance. For the sake of reduction in the number of
particles, the paper also develops an implementation basedn
box particles, referred to as the Bernoulli Box-PF. A box paticle
is a random sample that occupies a small and controllable
rectangular region of non-zero volume in the target state spce.
Manipulation of boxes utilizes the methods of interval anaysis.
The two implementations are compared numerically and found
to perform remarkably well: the target is reliably detected and
the posterior probability density function of the target state
is estimated accurately. The Bernoulli Box-PF, however, wén
designed carefully, is computationally more efficient.
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|I. INTRODUCTION

The problem of study is sequential Bayesian detection
and estimation of dynamic stochastic systems using measure
ments affected by three sources of uncertainty: stochastic
set-theoretic and data association uncertainty. The atdnd
measurements used for nonlinear filtering are points, in the
measurement space, affected by additive measurementafoise
a known probability density function (pdf) [1]. The traditial
measurement noise expresses uncertainty due to randgmness
often referred to as statistical or stochastic uncertaintjnany
practical applications, however, this standard measuneme
model is not adequate. In wireless sensor networks, for exam
ple, the measurements are quantized to only a few bits irrorde
to reduce the communication bandwidth. Such measurements,
although reported as point values, in fact represent iaterv
Similarly, complex distributed surveillance systems aftero
operating under unknown synchronization biases and/or un-
known system delays. The resulting measurements areexdfect
by bounded errors of typically unknown distributions and
biases, and can be also expressed by intervals. An interval
measurement expresses a type of uncertainty which is eeferr
to as the set-theoretic uncertainty [2], [3] or imprecision
[4] due to partial knowledge or ignorance. The importance
and distinctness of this type of uncertainty have been well
recognized in the field of expert systems [5], and to some
degree in statistics [6]. The two types of uncertaintieg th
set-theoretic and stochastic, can be treated in combimatio
using various modern estimation formalisms, such as: the se
of densities [7], the robust Bayesian inference and impeeci
probabilities [8], [9], random sets [10]. In this paper we
adopt the random set formalism for the combined treatment
of imprecision and randomness.

Often, in practice, the third source of uncertainty in the
measurements is also present. Due to the imperfectionsof th
detection process, sensors typically operate with prdibabf
detection less than one and, in addition, report measursmen
which are false [11]. This translates inttata association
uncertainty, that is the uncertainty as to which (if any) od t
received measurements is due to the target.

Following Mahler’s framework for information fusion [10],
the theoretically optimal Bayes filter for the describedtem

LancasteOf joint detection and tracking using measurements aftecte
email:by stochastic, set-theoretic and association uncertaisty

the Bernoulli filter for unambiguously generated ambiguous



(UGA) measurements. Interval measurements are a spefidte set (RFS)X; which can be either empty or a singleton.
case of UGA measurements, while the most general instamdehler’s finite set statistic{FISST) provides practical tools
of an UGA measurement is a mixture of fuzzy membershipr statistical description and mathematical maniputzdiof
functions [10, Ch.5]. The aforementioned Bernoulli filtexsh finite-set random variables, including the notion of FISSIT p
no analytic solution and therefore needs to be implementadd its integral [10].
numerically. A convenient model of target state at tirhés the Bernoulli
Particle filter (PF) methods [12], [13] have recently emdrgeRFS onX'. A Bernoulli RFS has a probability of being a
as a powerful tool for solving numerically complex dynamisingleton whose only element is distributed according ® th
estimation problems involving high nonlinearities. The Ppdf s(x) defined onY and a probabilityl — ¢ of being empty.
approaches approximate the posterior state pdf by a setTdie FISST probability density of a Bernoulli RBSis defined
random samples. The efficiency and accuracy of PFs depeasd

significantly on the number of particles and on the proposal 1—gq, if X =10,
functions used for the importance sampling. A high level of f(X)=1q¢-s(x), if X={x}, (1)
uncertainty in the available measurements, as considered i 0, otherwise

this paper, may require a large number of particles, regulti

in high computational complexity which induces real-timd he objective of Bayes filtering is to sequentially estimite

implementation issues. In an attempt to overcome thesegssffom measurements collected up to tirheAssume that the

it is of interest to consider an implementation basedoos Measurement set at timieis denoted byY';. Then formally

particles A box particle occupies a small and controllabléhe goal is to estimate sequentially the posterior state pdf

rectangular region of non-zero volume in the target stateap Jxx(X|Y1:x) of a Bernoulli random finite process, where

A box-particle filter (Box-PF) has a potential to signifidgnt Y1:x = (Y1,..., ) denotes the sequence of measurement

reduce the number of required particles, without a loss §®ts Up to time:. The estimation is based on prior knowledge

the error performance. The concept of the Box-PF was fifktwo models, thearget dynamic modeind themeasurement

proposed in [14], using the interval analysis framework tgrodel

propagate weighted boxes in a sequential way. Subsequently

the Box-PF was studied and explained through the Bayesian _

perspective in [15] by interpreting each box particle as ‘A 12/9et Dynamic Model

uniform pdf. Target dynamic model is defined by the probability density
In this paper, we develop and compare the performan®e; 1x(X|X') associated with target transition from stagé

of two numerical implementations of the Bernoulli filter forat timek to X at timek+1. Since bothX’ andX are Bernoulli

detection and tracking using measurements affected bl trifrFSs, @541 (X|X’) can be defined as:

uncertainty: the particle filter and the box-particle fillased

i [ —
implementations. The comparison is carried out usingssiati 1=ps, ff X' =0X=0,
cal criteria for measuring thaclusionof the true state and the o ls(X[X) = P b (%), if X'=0,X = {x},
volumeof the posterior pdf. The paper shows that both filters"" | 1 —ps(x'), if X' ={x'},X=0,
perform comparably well when a sufficient number of parsicle ps(x) - mppe(xx’), if X' = {x}, X = {x},

is used: the presence of a target is reliably detected, while

the true target state is contained in the support of the apatihere

density funct|on_. The Bern_oglll Box-PF, howe_ver, appears t , ,, Poki1x IS the probability of targebirth during
be more cost efficient. Preliminary results of this rese&iale the time interval fromk to & -+ 1:

been reported in [16] and [17]. o byi1)x(x) is the spatial distribution of target birth during
The rest of the paper is organized as follows. The formal he time interval fromk to & + 1:

c_iescr|pt|on of the problem is given in Sec.. II. The .Bernoulll .« ps(x) abbr Pers1(x') is the probability that a target
filter for measurements affected by stochastic, set-thieaed with statex’ at time & will survive until time k + 1
association uncertainty is formulated in Sec. lll. The Besdh o T e(x]X') is the target transition density from tinie
PF implementation and the Bernoulli Box-PF implementation 5 7. 1 1.

are presented in Secs. IV and V, respectively. The filter

performance assessment criteria are described in Sec. VI,

with numerical studies presented in Sec. VII. Finally, thg. Measurement Model

conclusions are drawn in Sec. VIII. In general, target detection is imperfect. A target may not

be detected at scak, whereas a set of non-existent objects
Il. PROBLEM FORMULATION may be detected and reported (false detections or clutter).
the measurement space be denotecas R"=. If the target
exists,i.e. X, = {x}, and has been detected, the conventional
oint measurement € Z is related to the target statéa a
ﬁonlinear equation:

The state vector of the dynamic system (target) at time
(discrete-time index) is denoted byk;. It takes values from
the state spac& C R"=. The target, however, may or may no
be present in the surveillance region at a particular tipn&\Ve
therefore model the object state at discrete-tinfiyy a random z = hi(x) + v, 3)



where the functiorh;, is a known deterministic mapping fromA. Equations

the state spacé’ to the measurement spagg while vis @  Assuming thatp; is state independent, the prediction step
measurement noise vector characterized by appdf equations are given by:

In this paper, we assume that if a target exists and is

detected, the sensor does not report the conventional meeasu Gerie = o (1= i) +Ps - Guw ()

P5 - (1= Qi) brg1 i (%) n

mentz € Z. Instead, it reports a closed interva] C Z Spp(x) =
which contains the target originated point measurement (3) Ak+1|k
with some probability. The set of all such closed intervais o Ps ke S T (X[X') - s (x7) dx’

- (6)

Z, denoted byZ Z, is the interval measurement space.

Due to the imperfect detection process; > 0 interval
measurement|y 1, ..., [z]x,m, are collected at timé&. The
measurements can be represented by a finite set:

Ak+1k

The predicted birth density;, ) (x) in general is unknown

and needs to be adaptively designed using the measurenient se
Y from the previous scak. This will further be discussed

in Sec. V.

Yi={[zk1.. ., [2rm )} € FTZ), (4) Assuming thng is state independent, the update equations
of the Bernoulli filter for interval measurements are asciol

[10, Sec. 14.7]. The probability of existence is updateagisi

where F(ZZ2) is the space of finite subsets 5E. the measurement sat;,, as:
The probability of target detection is assumed to be constan 1— Mg
over the state spacd&’, and is denoted by,. The false Tet1|k+1 = 7 N " Q1K ()

detections are also assumed to be independent of the target
statd. The number of false detections per scan is modelled B{1€re
a Poisson distribution with meak The prior probability of d
) X g gk Z||X) s X) dx
false interval detections is modelled b{{z]). Apt1=pp [ 1— Z S g1 (2l s ()

Ac([z])
The measurement séff;, is characterized by three sources IS
of uncertainty. The additive noise in (3) is the source h ity A b . ) d (8) b
of stochastic uncertainty. Interval (non-point) preséataof 1€ duantityA,., can be positive or negative and can be

measurements is the source of imprecision. Finally, the elg_telrﬁretgd asl — /(;kﬂ,hWhere Apyr is th? measurement
istence of false detections and a possible absence of taljgﬁ' ood ratio under the assumptions of target existence

originated detection is the source of data association rancg" non-exi;tence. Quantigk+1([z]|_x) in (8) represents the
tainty. generalizedlikelihood function at timek + 1 for a target

originated interval measurement. Furthermoreand c([z])
have already been defined as false alarm parameters. The
generalized likelihood is further discussed in Sec. llI-B.

The target spatial pdf is updated as follows:

[1l. BERNOULLI FILTER 1 ([2]]x
l—pp+po 3 gk:{i(([[z]])\ )

Sk.‘.l‘k.‘.l(X) _ [Z]E k+1 Sk_;’_l‘k(X).

The optimal Bayes filter for the problem described above 1= Appr ©)

's the Bernoulli filter [10, Sec.14.7], [18f for interval In the special case where the detection process is perfect, i
m rements. L X| Y. n h rior pdf of . m
easurements %"“( [Y1:4) denote the posterior pdf o ppr = 1 and there are no false detections, the measurement

Bernoulli RFSX at time k. The pr ion of thi rior ; L
ermnou SX at timek. The propagation of this posterio set becomes a singletofi,; = {[z]}, containing only the

pdf over time is carried out in two steps, heediction or time- target originated measurement. Then it is easy to verify tha
update stemndthe measurement-update st&fge have seen . : .
P 5 P & Ac([z]) terms cancel out in (7) and (9). Furthermore, with

that fx(X|Y1.x) is completely defined by two posteriors:

Qs = Pr{|Xx| = 1| Y1} is® the posterior probability of ¥2 — 0, ps = 1 andgpe = 1, the Bernoulii filter for interval
target existence, whiley (x) = p(x;|Y1.:) is the posterior measurements simplifies to the single-target Bayes filter fo

spatial pdf ofX, — {x}. For this reason, the Bernoull filtermterval measurements (its update equation given in [3.159

L [10]). For the more general case pf,(x) and ps(x), the
propagates only these two quantities. Bernoulli filter equations can be found in [10, Sec.14.7].

The proposed Bernoulli filter is the optimal Bayes filter for
the considered problem. In the general case, however, it has
no analytic solution and this paper will develop two numalric
implementations.

1The assumptions about state independestand false detections can be

easily relaxed, see [10].
2The Bernoulli filter for conventional (point) measuremeisteferred to

as Joint Target Detection and Tracking (JOTT) in [10, Secr]14t represents
a generalization of the Integrated Probabilistic Data Awion filter [19], B. Generalized Likelihood

which was derived under the linear-Gaussian-Poisson gst&m The update equations (7) and (9) are different from those
3|X| denotes the cardinality of s&. in the standard Bernoulli filter in the sense that the stahdar



measurement likelihood function is replaced by teneral- ¢([z]), which features in (8), can be interpreted as a generalized

ized likelihood function. If [z] € Y, and X; = {x}, the

likelihood function of false interval detections.

expression of the generalized likelihood defined in [10,5Ch.
and derived in [20], [21] is given by:

IV. PARTICLE FILTER IMPLEMENTATION

ge([z]]x) = Pr{hc(x)+v € [2]} Particle filters have become a popular class of numerical
methods for implementation of Bayes filters [12], [13], both
= / Dv (Z - hk(x)) dz. (10) in the context of single and multiple targets [10]. Combgnin
= the Bernoulli filter with a particle filter results in a Berrlbu
Let NV(y; ., P) denote a Gaussian pdf with meanand PF that approximates the spatial pdf,,(x) by a set of N

covarianceP. Its cumulative distribution function (cdf) is weighted random samples or particles;, x })¥,, wherex;,
(u; u, P) du. Now suppose is the i-th particle andw,c is its corresponding normalized
that the measurement noiseis zero mean white Gaussianweight, such thaEZ L wy, = 1. The approximation o, ;, (x)
with covariance matrix®, that is p,(v) = N(v;0,X%). In

denoted byp(y; u, P

addition, let the lower and upper bound of the interwlbe

fy

denoted byz andz, respectively, that i§z] = [z,
according to (10) the generalized likelihood can be exmess

z]. Then

can be written as

~Y i

5k|k (14)

as: whered, (x) is the Dirac delta function concentratecaafor a
z suitably chosen importance density, the sum in (14) comserg
alali) = [ N2 de {0 spu(x) SN — oo [23].
z Starting from the posterior Bernoulli density at sdamep-
(Z; hi(x), ) — (2 h(x), ) (11)  resented by and a set of weighted particldso}, x} 1Y |,
= 1—p(hg(x);Z,%) — (1 — p(hr(x);2,%)) (12) a cycle of the Bernoulli PF for interval measurements is
= ohr(x);2,Z) — p(hp(x);Z,X). (13) summarized in Algorithm 1. The implementation is based on

the Sampling Importance Resampling (SIR) PF, meaning that

The step from (11) to (12) is based on the property of thihe transitional densityr;,;(x|x") acts as the importance

Gaussian cdfipp(a; u, P) =1 —

o(p;a,P).

density and that resampling is carried out at every cycle

Note that the generalized likelihood function is not a pdf an13]. More sophisticated particle filter implementatiorigioe
as such does not integrate 10 A theoretical justification of Bernoulli filter (e.g. interacting particle systems [24fpdeft
the generalized likelihood function of an interval measueat for future work. We also point out two key differences betwee
from a measure-theoretic point of view is given in [20]; sethe described implementation and the one presented in [25]:
also [21] and [22].
Fig. 1 illustrates the generalized likelihood (13) for onewe estimate the birth density,,(x) adaptively using the
dimensional measurement (= 1), with z = 45, Z = 60
and three values of, that is4, 1 and0.0001. When variance known).

first, the measurements we deal with are intervals; second,

received measurements (in [25] the birth density is assumed

¥ — 0, the fuzzy membership function (13) approaches the
indicator function; hence additive noise is the sources of

fuzziness in the generalized likelihood. Note that the gyan A. Prediction Step

The implementation of the prediction (or time update) step

.f i M (6) requires to draw samples from two densities. The predict
ool s birth densityb, 1, (x) is implemented as:
---3=4 ] ‘\
Zj 72;;0001 :" ‘\‘ brs1k(x) = /7Tk+1‘k(X|XI)bk(X/) dx’, (15)
! )
~ 06f ¥ b whereb(x) is the birth density at the previous tinke If the
S osf ' 1 target can appear anywhere in the state spécan obvious
o o4l ] 1 choice forb (x) is the uniform density ovek’. This, however,
osl ! | would be very inefficient as it would require a massive number
ozl N i of particles. Instead we desigh.(x) adaptively, using the
0'1 ] ' measurement set from the previous séan(y, i.e.
0 : T' ‘ ‘ ‘ — bi( Z Br(x|[2] (16)
30 35 40 45 50 55 60 65 70 GTA
h, (x)
Each densitysy(x|[z]) in the mixture (16) is constructed to
. ) ) L ) be compatible with the interval measuremént € Y, as
Figure 1. |lllustration of the generalized likelihood fuioct (13) forn., = 1:

interval measuremerjt]| =

measurement noise with different values of the variance

[45, 60] affected by additive zero-mean Gaussian “Strictly speaking particle filters approximate integrais} densities, [12],

[13].



follows. Suppose the target state vectoconsists of directly Algorithm 1 The Bernoulli particle filter for interval measure-
measured componeptand unmeasured vector component ments

that isx = [pT uT]7, whereT denotes the matrix transpose.
First we drawn, times fromUy,(z), whereUp, (a) denotes
the uniform pdf over the boia],‘to obtain a samplgz’}’°, .
Then we computgy;, , = h;,'(z7) for j =1,...,no. For the _ _ , ,
unmeasured component we assume that a prior is availabfé,Draw persistentparticles atk + 1: x;, i1 ~ Th1)k(X[Xj) for
By drawingng times from this prior we can form a sample i=1,...,N

1: Input: gy, {wi,x};}il, Y Yiyr;
Time Update
2: Computeg,41) using (5)

{u{)'7,€ 72, Finally 4: Create a weighted set aewbornparticles{wj ,,x} ,} 1, atk
1 2o from birth densityb,(x) defined by (16), withw};,k =1/Ns;
Br(x][z]) =~ - Z 5x§,k (x) 5: Draw newbornparticles atk + 1: xj, 1 ~ 1% (X% 5) for
j=1 i=1,...,Np
Wherexi_k - [(Pz{,k)T (ui’_k)T]T_ 6: Compute the weights at + 1:

The newborn particles representibg(x) of (16) are then

formed by the union of newborn particles sets corresponding “’é”@ﬂ = DPsdklk wk/qkfuk; fori=1,...,N

to individual box-measurements. The total number of plagic wprr1 = P (1= qQure)Wor/qrrrr; fOri=1,..., Ny

representingb;(x) hence isN, = my - ng. Their weights _ ) _ : : N

are wi, = 1/N, for i = 1,...,N,. Newborn particles 7- Union of weighted particles: {wi . Xk tiz1 =
representingh,(x) are constructed in the described manner CCANRIES FUY AL (TN S NT) ar where
in Step 4 of Algorithm 1. N' =N + Ny;

Weighted particle sets of two types, the “persistent” ared thyeasurement Update
“newborn” particlgs, approximate the predictedi spatidi qfd 8 For every particlex’ , , i = 1,..., N and every measurement
(6). The summation of the two terms on the right-hand side . I i
of (6) is carried out by the union of these two sets of parsicle 12 < _T’““’ compute the generalized likelihoag[z][xi....)
(Step 7 in Algorithm 1). The number of predicted particles is according to (10);
then N’ = N + N,. Their respective weights are computed9: ComputeA; according to (17);
according to (6), see Step 6 in Algorithm 1. 10: Computegy+1x+1 according to (7);

11: Compute unnormalized weight?;,ijrl according to (18) for =

1,...,N’;

B. Measurement Update Step U , , N e
) ) ) 12: Normalize weightswy’, = @51/ Y050, Wik s

The update equations of the Bernoulli PF are mplementtig ResampleN times from {w'™" x| '7—}N, 1o obtain equall

by steps 8-13 of Algorithm 1. Using the approximation™ P Wkt Xht1 |k Ji=1 quaty

Sktk(X) & YLy wh .0 (x), factor Ay, from (8)

) weighted particlew;,,; = &, Xk 41}t
. X1k 14
can be written as:

. i ) N
: OUtpUL: Gry1jky1s {Whats Xhy1 biy

N’ . .
Z1 g1 ([2]1% 1) W1
=

Appr~ps 1= Y Y(E) . sk+1r+1(x). Since the output weightssj , , in Step 14 of
ZeX i Algorithm 1 are equal, strictly speaking it is unnecessary t
input/output them.
(17)

. L ) ; . . Remark: As a consequence of imprecise measurements
The generalized likelihood functig. 1 ([z][x;, ., ;) in (17) is (which model bounded errors with unknown measurement

computed according to (10) in the general case and accordifigses) the conventional point state estimates, such @s th

to (13) if the measurement noise is additive Gaussian. TRe o 1eq or the maximum a posteriori estimates, in general
probability of existence is then updated as in (7), while th§re also biased

weights of the particles are updated following (9) as:

Z g([z]|x2,’+1w)

1—py+
Po 7 Pp Ae([z]) V. BOx PARTICLE FILTER IMPLEMENTATION

. IS ) i
Wht1 = 1—Appr Wi (18) Due to the large uncertainty in the measurements, the
posterior pdf could be characterized by an extensive stippor

The updlateq weights are then normalized to obigfffy, = Consequently, the number of (point) particles required to

@211/2?]:1 @yy,- Finally, by resamplingN' times from  cover this significant portion of the state space, can be also
{wyi1: X} 1, }ite, ONe obtains a random sampfesj,, = very large. One natural solution to reduce the number of
%,x’;;ﬂ}f\;l. In order to prevent sample impoverishment, thparticles is to use non-point particles, such as the multi-
resampling step can be followed by regularization [13]. Thdimensional rectangular or box particles [14]. The efficien
filter reports the posterior probability of existengg, .+ of box particles combined with interval analysis tools [26]

and the particle approximation of the posterior spatial pdemonstrated in [14]. Furthermore, in [15] it has been shown



that box particles can be interpreted as being supports ofeghnique is used in this paper. The main advantages of the CP
mixture of uniform pdfs, and in this respect, (14) becomes:method is its efficiency in the presence of high redundancy of
N data and equations. The CP method is also known to be simple
Sk (X) sz U[x’li](x)7 (19) and, most |mportantl)_/, to pe independent of r_10nl|neamwes _
P example of CP algorithm is presented later in the appendix.

where[x}] is a box-particle.

Starting from the posterior Bernoullh density at scan B. Time Update Step
represented byg,, and a set of weighted box particles ) ) o . )
{wi, [xi]}Y,, a cycle of the Bernoulli Box-PF for interval The |mplemen.tat|on of th.e prediction equation (6) requires
measurements is summarized in Algorithm 2. Since the ald§-Use a box particle approximation for newborn target amd pe
rithm heavily relies on the concepts and tools from interv&iStent target densities. The predicted birth denity, ()

analysis, a brief overview of interval analysis is givenex IS implemented as in (15). The birth densbfy(x), which fea-
tures in (15), is designed adaptively, using the measuresetn

from the previous scah, Y, as in (16). For everyz] € Yy,
a densitysk (x|[z]) in (16) is approximated with a mixture of

A. Elements of Interval Analysis . : . .
y uniform pdfs, compatible with the interval measuremet

A real interval, [z] = [z, 7] is defined as a closed andipat is
connected subset of the sBt of real numbers. In a vector 1 o
form, a box [x] of R"= is defined as a Cartesian product B(x|[z]) =~ n_OZU[xi,k] (%)- (22)
of n, intervals: [x] = [z1] x [z2] -+ X [z,] = x[2,[z;]. In =1

this paper, the operatdf.]| denotes the sizé[x|| of a box Equations (16) and (22) mean tlig(.) is represented by a set
[x]. The underlying concept of interval analysis is to deaf N, = my - ng box particles{[x} ,]}*,. The box particles
with intervals of real numbers instead of dealing with reapproximating density3(x|[z]) are formed in the manner
numbers. For that purpose, elementary arithmetic opergtiosomewhat similar to that explained in Sec. IV-A. For the
e.g., +,—, x,+, etc., as well as operations between sets ofeasured component of the state, we construct the inclusion
R”, such asc, >,N,U, etc., have been naturally extended téunction [p] = [h; ']([z]). For the unmeasured component
interval analysis context. of the stateu we form the inclusion box which contains
A nonlinear transformation of a bok] in general has a the support of its prior, i.efu] ~ [supportpo(u))]. Finally,
non-box shape. In order to remain in the realm of boxetie box[p] x [u] is subdivided inton, boxes. The weights
a lot of research in interval analysis has been devoted associated with the newborn box particles are made eqeal, i.
inclusion functiong26]. An inclusion function[f] of a given wé,k =1/N, fori=1,..., N,. Box particles approximating
(nonlinear) functionf is defined such that the image of ay(x) are constructed as described here in Step 4 of Algorithm
box [x] is a box [f]([x]) containing f([x]). The goal of 2.
inclusion functions is to work only with intervals, to opiire It remains to explain how the box particles are propa-
the interval enclosing the real image set and, then to dseregated from timek to k£ + 1, that is how integrals (15) and
the pessimism (uncertainty) when intervals are propagated | w1, (x|x") - s (x') dx’ in (6) are approximated. Suppose
Often constraints have to be fulfilled which require to solvthe transitional densityr; ,(x|x’) is known through an
the Constraint Satisfaction Problem@SPs). A CSP often evolution modelf;.;, (possibly nonlinear) that is
denotedH can be written:

H: (F3x) = 0,x € [x]). (20) Furthermore, if we assume that; is a bounded noisSein a
Equation (20) can be interpreted as follows: find the optimlbx [w], then according to [15] the following approximations
box enclosure of the set of vectarbelonging to a given prior are made:

Xp+1 = fop1 (X)) + Wi, (23)

domain[x] C R" satisfying a set ofn constraintsf (with £ Ny
a multivalued function, !.ef, = (f1, fa,- )T where_ the /wk+1|k(x|x’)bk(x’)dx’ X why, Z U[fkﬂ]([xgyk])ﬂwk](x) (24)
fi are real valued functions). The solution settofis defined i=1
as: N
S={xe[x]|f(x)=0}. (21) /Fk+1|k(X|X') spp(x) dx' = wj, ZU[fk,+1]([x;‘k])+[wk](x) (25)

i=1
: . o
Contracting# means replacingx] by a smaller domairx] A key issue here is to note that an image of a lfpi{x]) is not

h thatS C [x]’ C [x]. A f i . . o
such thais € [x]" € [x]. A contractorfor 71 is any operator always a box. Therefore we have approximated this ardigrari

that can be used to contrait Several methods for building . . . ) .
contractors are described in [26, Chapter 4], includings@auShaped image by the inclusion function (a bog)|([x]). This

elimination, the Gauss-Seidel algorithm, linear prograngn was carried out in Steps 3 and 5 of Algorithm 2.

etc. Each of these methods may be more sunab_le t‘_J SOMSyjithout loss of generality, noisev, is restricted to be additive and
types of CSP. Although the approaches presented in this work _ _ o ,

are not limited to any particular contractor, a general aed Wbounded. In [15], the general case is considered with n@igsepproximated
known contraction method, th@onstraints PropagatiofCP) using a mixture of uniform pdfs.



The WelghtS{wp k+1} v, and {w} k+1}l . are computed is small and can be approximated by a uniform®pdf
according to (6) in Step 6 of Algorithm 2. _ 26
Two sets of predicted weighted box particles, the “per- pe(v) 2 U (v), (26)

sistent” {w;, kv[ Lxltie1 and the “newborn” box particles where [¢] is the measurement noise support. Substitution of
{wb7k,[xb7k] -, approximate the predicted spatial pdf of (6)(26) into the definition of the generalized likelihood (10)
The summation of the two terms on the right-hand side of (@sults in:

is carried out by the union of these two sets of box particles

(Step 7 in Algorithm 2). The number of predicted box parsclegx([z]|x) = /[]

Uie)(z — hi(x)) dz = / Ule)+h,(x)(2) dz
then isN’ = N + Ny, 2

z

_ LN +ED | @
Algorithm 2 The Bernoulli box-particle filter for interval |[e]l
measurements Here |.| denotes the Lebesgue measure operator (e.g. the

volume for boxes iriR™=). From (27), it follows that
;i (he(x) + [g]) € [2]

;o i ((x)+ )Nzl =0. (28)
1, otherwise

1 Input: g, {wi, [XZ]}E\;I, Y, Yii1;
Time Update

2: Computegy.1)x using (5) gr([z]|x) ~

3: Propagate persistent box particles tok + 1: [x;,kﬂ]

[f’““]([x‘“])ﬂw’“] fori=1,...,N _ , . This expression describes fairly accurately any genemdliz
4: Create a weighted set abwbornbox particles{w;, ., [x; 1]}i21  Jikelihood function; compare it for example with Fig.1.
at k from birth densityb,(x) defined by (16) usindf',, with The update equations of the Bernoulli Box-PF are imple-

IN & =

wp = 1/Ny; mented by steps 8-13 of Algorithm 2. Using the box particle
5: Propagate newborn box particles tok + 1: [xj 4] = approximations 1 (x) ~ ZlekH\k U[xH 1(x) and the
(1] ([xh0]) + [wi] fori=1,..., N, generalized likelihood (27), the termé{— ges1([2]|x) -
6: Compute the box particle prediction weightskat- 1: 5k+1\k( x) which feature in (9) can be written as:
) ) p
Whhi1 = Ds Qklk Wi/ Dotk fori=1,....N C([;)]) “grt1([2]]%) - spqar(x) =
: = 1— : : fori=1,...,N,
Wh, k+1 p5 ( qk\k)wb,k/qk+1\k ? b P (hk+1( )+ [€k+1]) |
7 Uni ; ot g i N ) Zwk'i‘l\k [x; ]( X)-
: Union of weighted box particles{w;. ., (X 1 utie: = c([z]) llek+1]] b1k
{wi,k+17 [Xi,kﬂ]}?g’l U {w;,k+17 [X;,k+1]}£\]:11 where N’ = (29)
N + Ny, Similarly to what is theoretically derived in [15] for the s@
Measurement Update of point measurements, the supports of the terms inside the

8: Replicate the box particléx; ] to obtain N’ box particle Summation on the right-hand side of (29) can be approximated
using contraction operations briefly discussed in Sec. Vi#e

%%, ,] with weights@}_ , = (1 — pp)w :
] b Rk exact supports are the set solutions of :

9: For every box particle[x};ﬂ‘k], i = 1,...,N’ and every
measuremeniz] € L1, {x € B aplllz] N (hesr (%) + feera]) # 0} (30)
« use a contraction algorithm according to (30) to obtain a Each term inside the summation on the right-hand side
new box particlefx}, ;1 ]; of (29) is approximated by a weighted single uniform pdf
« compute the weighty, ., of [k} ] according to (32); U[%H](x) i.e.
10: ComputeA; according to (8) and (34);
11: Computeqy1x+1 according to (7);

p
C([Z]) g1 ([2][%) - spypap(x E:wk+1U (%), (31)
12: Normalize weightsi),,, = @}/ ZN (1Fmye) ~,7€+1;

13: ResampleV times from{wj, 1, [xk+1\k]}N {1 to obtain N where[x} . ;] is a box enclosure of the support (30) that can be

equally weighted box particlegwy,, = +, [Xk41]}Yy obtained by a contraction algorithm. The new weigﬁ§§+1
14: OUPUL: Gy it {whyr, [xXhia] b, are obtained from (29) as follows:
i Pp |[Xk+1]|
el = — 32
Tt = gy ke e 42

)
k+1\k]|

8In the general case,, can be approximated more precisely by a mixture
C. Measurement Update Step
of uniform pdfs and the generalized likelihood function ¢snexpressed as a
In the update step of the Bernoulli Box-PF, a different

expression for the generalized likelihood is used. Assgmnylvelghted sum of generalized likelihoods for each uniforri pdr simplicity,
that the stochastic uncertainty (due to measurement ngisewe consider here one component.



Where/-e’;'chl is chosen to be the expectation of the generalized the state component, ;41 (j) can be obtained as:

likelihood gi1([z]|x) over the box particlgx;] ,]. Factor
K}, can be written:

N
. i 4 . ~ N 2
UI%Jrl(]):Zwarl (i1 (F) = RKes1per (7)) +
i=1

i 1 - =zIN(rks1 ) +[epta ]
Rk = T i, eraal] dx. (33) N S
S up, PaOF g
The integral defining (33) is not known in a closed form but — k+1 12 :

can be approximated (for instance by using a partition of the

set[i‘c’jﬁl] as it is done in the Riemann integration theory [27])The first term on the RHS of (36) represents the spread of the
In practice, we found that a constant value for all the baxeans; the second represents the variance of the mixture of
particles, e.g.ﬁ;;H = 1 is a good approximation and wethe uniform pdfs (for thej*” coordinate of the state).

adopt this value for the rest of the paper.

Bearing in mind eq. (9), the posterior pdf.qx41(x) is
approximated usingn, + 1 sets of box particles: one set &f
box particles[x; ,, ,] with weights (1 — pp)wj |, andmy,
sets of N/ box particles with Weightsﬂg+1‘kobtained using
the m; measurements according to (31) and (32).

Next, the terms[ gi11([2]|x) sk11x(x) dx, which feature
in (8), can be written as

/gk+1([z]|x) 5k+1\k(X) dx =
z| N (hgy1(x 1 N ;
IN%

|lek+1 LS (x)dx =

wi
: k+1|k | [z] N (hgt1(x) + [ekt1]) | dx
Bk el S
N' i %
Wk Xyl s
= i Rig1- 49
; |[ek+1]] |[Xk+1|k]| =

The probability of existence is then updated as in (7). T é
N’ x (my +1) updated weights are then normalized to obtal

~i i N* =
W4y = Wy / Zj:l W1+

Finally, we resample N times from
{%H,[iZ+_1|k]}£ilx(mk+l)_ to obtain a new set of box
particle {w}, , = +.[xi,,]}X,. As explained in [14],

VI. PERFORMANCEASSESSMENT

Since the conventional point state estimates are biased, th
standard filter error performance measures, such as the-mean
square error, are not appropriate for the described Bayessfil
How then to assess their error performance?

Recall that the optimal filter for the problem described in
the paper has to satisfy two conditions:

1) The true value of the target state vectgr must be
contained in the support of the posterior spatial pdf
Sk (X);
2) The volume of the support of the posterior spatial pdf
gk (x) is minimal.
Accordingly we propose two assessment criteria: the first
is referred to asinclusion and verifies condition 1. The
second, referred to amlume measures the spread (volume)
of s4(x). Note that the failure to satisfy condition 1 indicates
filter divergence, which is considered asaastrophicevent in
rget tracking. For the proposed Bernoulli PF and Box-RF fo
interval measurements, which are numerical approximatdn
the optimal Bernoulli filter, it will be an imperative to ssiy
condition 1 and desirable to minimise the volume in conditio
2.
In order to define the two criteria, let us introduce a

instead of replicating box particles which have been seteCtcredible se{8] Cy(a) associated with the posterisg;, (x) =

more than once in the resampling step, we divide them i

x| Y 1.1.). This set is defined implicitly as the smallest set

smaller box-particles as many times as they were selectesl.() C x such that its probability is:
Several strategies of subdivision can be used (e.g. acuprdi

to the largest box face). In this paper we randomly pick
dimension to be divided for the selected box particle.

a P(Ck(oz)) = / spik(x)dx =1 —a, (37)
Ci(a)

The filter reports the posterior probability of existence

dk+1|k+
spatial pdfs;1jx11(x). A point estimate from the Bernoulli

Box-PF in general is biased. This is typically due to the fa

that the correct measurement valugx) is not in the middle
of the measurement interval. If required, however, the etque
a posteriori estimate can be obtained as the expectatiddnf (
ie.,
N
Rp1bt1 = Y Wip1Chpr, (35)
=1

wherec; ,, is the center of the-th box particle. The co-

. and the box particle approximation of the posterio\f”hereo‘ < 1. A credible set atv — 0 represents the support

of the posterior spatial pdfy|;;(x). Theinclusion criterionpy,

5 defined as:

1 if the t tat C
ka{’ if the true statex;, € Ci(a) (38)

0, otherwise.

Thevolumecriteriony, measures the volume of the credible
set Ci(a). The two assessment criteria; and v, will
be computed for all discrete-time indicéscharacterized by
qrx > T, Wherer € [0,1] is the track reporting threshold.
Furthermore, in order to establish the expected performanc

variance of (19) can be similarly derived. Then, for each, and v, will be averaged over independent Monte Carlo

coordinatej = 1,...,n, of the state, the varianoe,§+1(j)

runs.



A. Computation o, and v for the Bernoulli PF Inclusion p;, follows directly from (38) as
For the implementation of the inclusion criterign, in , {1, if x,, Uij\;[xﬂa "
. =

(38), only a random sample approximation ©f;(x), that ]
0, otherwise

is {w; = +,x}}Y,, is available. In order to establish the

inclusion of the true state vector, i.g; € Ci(«), the kernel \harey is the true target state at time instantThe volume

density estimation (KDE) method [28] can be applied. Thlg is calculated according to

(fixed) KDE method places a kernel functiah on every

particlex}, i = 1,...,N. The result is an approximation of = 5.
Vi = Z O (])7

the posterior densityy ;. (x): (45)

Jj=1

Z¢ <X Xk> . (39) wheres?(j) was given in (36).

Skik(X) = 8(x) = NW"r
where ¢(x) is the kernel which satisfieg(x) > 0 and
Jy#(x)dx = 1, and W is the kernel width parameter. For
convenience we adopt the Gaussian kernel with zero-mearThis section demonstrates the performance of the two de-
and covariance matri¥: scribed implementations of the Bernoulli filter. First, taeget
1 1o 0 and measurement characteristics will be defined, followed b
X)=———""—/—¢€xpy—-x' P "x 4 i ; i : ;
$(x) ISR, o p{ 5 } (40)  a single run of each filter. Finally a Monte Carlo simulation

based comparison using the described performance crieria
The optimal fixed bandwidth (under the assumption that theclusion and spread will be carried out.

underlying pdf is Gaussian) for the Gaussian kemet) is
[28] W* = A- N~ 77, where A = [4/(ns + 2)] w7, The
covarianceP needs to be estimated from the particles; for
particle set{w] = +,x}}, at timek we have:

VIlI. NUMERICAL EXAMPLES

A. simulation Setup
Consider the problem of tracking a target in two-

1 N dimensional plane using range, range-rate and azimuth mea-
Pur =51 Z(Xk = X)Xk = Xke)T (41) gyrements. The target state vectorsis= [z & y 3],
=l where (z,y) and (&,y) are the target position and velocity,
wherex, = + Zf;l x} is the mean of particles. respectively, in Cartesian coordinates. The target is mpvi

Using the KDE method (39), it is possible to approximataccording to the nearly constant velocity motion model with
the boundary of the credible se&f;(a). The computation transitional densityr, 1, (x[x’) = N(x; Fx', Q). Here
involved, however, would be prohibitively expensive, and w
propose a simpler approximation pf in (38) as follows: F=L [(1) ﬂ . Q=L®

A
2

Tl w (46)

1, if 8(xx) > ~min__3(x%), 2
Pk = {0 otherwise =t (42)  with being the Kronecker product;, = tx+1 — ti the sam-
’ pling interval andww the intensity of process noise [29]. The
wherex,, is the true target state at the tirhe@nds was defined target appears at scdn= 3 and disappears at scan= 54.

in (39). The value of mlnNs(Xk) in (42) effectively defines Initially (at £ = 0) the target is located at550 m, 300 m)

the boundary ofC;, at sd‘r‘hea < 1in such a manner that setand is moving with velocity(—5 m/s —8.5 m/s). The sensor

C,, includes all particles. The boundary itself, however, dod$ Static, located at the origin of the—y plane. Other values
not need to be computed. are adopted asy = 0.05, 7' =1 s, with the total observation

The volume criterion/;, approximates the volume @j,() Nterval of 60s. _ _ _ _
by the spread of particles. In practicg is approximated by ~ 1he measurement functidn, (x) is defined as:
the trace of the covariancg,;, in (41). T

hi(x) = | Va2 + y2, M, arctan(y/x)| . (47)
VET

B. Computation op,. and vy for the Bernoulli Box-PF The measurement noiseis zero mean white Gaussian with

The Bernoulli Box-PF reports, at the end of each cycle, tiee covarianceX = diago?, o2, 03], whereo, = 2.5 m,
set of equally weighted box particlési], i = 1,...,N. The o = 0.01 m/s andoy = 0.25°. For the Box-PF, we use the
computation of the credible s&t;(«) at a — 1 from box- 99% interval confidence3o,, 30 and3o, to model a uniform
particles is straightforward as it does not require the KDivise as in Equation (26). Note that mixture of Uniform pdfs
method. InsteadC) (1) is approximated simply by the unioncan be used instead (at a computation cost).

of all box particles, that is The sensors provides interval measurements, with an inter-
N val lengthA = [Ar, Ar, AG]T, whereAr = 50 m, A7 = 0.2
Ci(1) = U[Xi]' (43) M/s andAd = 4° are the lengths of intervals in range, range-

rate and azimuth, respectively.
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The sensor has a bias (systematic error) in the sense that 800
the vectorh (x) + vy is not in the middle of the measurement

interval. A measurement &t is thus defined as: 400

3 1
[Z]k: [hk(x)+vk*ZA; hk(X)+Vk+ZA] (48)
The two Bernoulli filters are ignorant of the bias. 20 [ rack
The probability of detection is, = 0.95, the mean number

of false detections per scan i = 5. The false alarm E | Sensor - "
probability ¢([z]) is assumed constant for all volumes [af, > o
across the range (mid intervals froB®m to 700m), range- Tar get
rate (mid intervals from-15 m/s to +15 m/s) and azimuth -200¢

(mid intervals from—=/2 rad to /2 rad). The reporting
thresholdr is set t00.5. The filtering algorithms have the
following prior information:p,, false alarm statistics. and
¢([z]), measurement functiohy, (x), covariance matrix and
the transitional densityr; ), (x|x’). The filters are making 0 ‘ ‘ ‘ ‘ ‘
an inference at every using measurement¥.;, and the o0 00 200 XSF?T] 40 500 600 700
following parametersp,; = 0.01, ps = 0.98, ng and N. The

number of particles or box particle€ will be varied. @

The implementation of birth density, discussed in Sec.|V-A r ‘
is based on the range and azimuth component of each mea-
surement (i.e. neglecting the range-rate), uging- [z y|7
andu = [¢ y|T. The prior fori andy is a uniform density
from —15 m/s to+15 m/s.

Parameten (see Sec. V) which is the number of newborn
particles at each time and for each measurement is alsalyarie
but only for the Bernoulli PF. We will see that the choice
of ng influences the Bernoulli PF error performance and its
computation time. In contrast, parametgyris not critical for
the Bernoulli Box-PF performance. In all numerical testg, w
setny = 1: one box particle is sufficient to cover entirely thé
region of the state space defined by a measurement and the

prior. i L , there is no more contraction after a specified threshold). In
The experiment and both Bernoulli filters were mplementqghr experiment we are using a loop of iterations (we

-400F

Prob of existence
o o o o

o N A o ® &
e

| | | | |
10 20 30 40 50 60
scan nunber

o

(b)

igure 2. Tracking scenario with results at tirhe= 51

in MATLAB. observed that more contractions do not lead to a significant
improvement).
Fig. 3.(a) shows a global view of the filter performance
B. Single runs for one single run with measurements generated from (48)

First we illustrate single runs of both Bernoulli filtersand with N = 32 box particles. All measurements f60
Fig. 2.(a) shows the output of a typical run of the Bernoulcans are plotted by rectangular regions around the sensor.
PF for the testing scenario at tinke= 51. The green regions In addition, the blue “plus” marks represent the true target
represent the measurements, the red asterisk is the tged talifajectory, while the black circles represent the estihate
location, while the gray dots are the particles (number §®jectory. The persistent box particles positions are siewn
particles N = 5000). Although the particle meaty,;, is a with rectangular regions. From this snapshot, we can see tha
biased estimate of the target state, the particles popthate 1) the update step correctly weights the relevant box pestic
volume of the state spac& where the true value residesand 2) the Box-PF is able to correctly estimate the target's
Fig. 2.(b) shows the estimate of the probability of targdtajectory.
existenceqy, over time. Target presence is established atFig. 3(b) shows the estimate of the probability of target
k = 5 with g4, remaining close td.0 after that. Occasionally, existencey,;, over time. Target presence is establishedl at
when the target detection is missing in the measurement §etith gx;, remaining close tol.0 after that. Occasionally,
Y&, qx drops below the value of.0. when the target detection is missing in the measurement set
The implementation of the Bernoulli Box-PF is based o &, gx|x drops below the value of.0.
the INTLAB [30] toolbox, which contains a number of built-in
routines for interval calculations. The constraints pggigon
algorithm [26], used here to contract each box particle at t- Monte Carlo Runs
update step, is presented in Appendix. The original algorit  The average performance of the proposed Bernoulli PF is
performs the contractions until the algorithm converges. (i evaluated via Monte Carlo simulations using the scenaréb an
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filter with N = 32. The persistent box particles over the time are shown along
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(a) Snapshot of one rué0(scans) of the box particles Bernoulli

with the estimated trajectory and the true one. (b) Estimatehe probability

of target existence are also shown for one run.
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Figure 4. Average performance ov&f = 100 Monte Carlo runs for the

Bernoulli PF usingno = 500 and N € {500, 1000, 2000, 5000} particles:
on the top the probability of existeneg,|; in the middle the inclusiomnpy;

at the bottom volume (spread),.

2000) are needed to satisfy the inclusion property.
(ii) The volume (spread of particlesy, for all
combination of N andny is rapidly converging and
stabilizing. We can observe that whegis fixed, and

N increases, the spread is also increasing but very
insignificantly. However, whem, is increasing, we
can observe a more visible spread increase.

of ng (ng > 5000) and a high value ofV (N >

parameters described in Sec. VII-A. First, the performan€dy. 7 shows the average performance of the Bernoulli Box-PF
criteria presented in Sec. VI are studied.
1) Performance Evaluation via; andvy: Figs. 4, 5 and 6 follows:

show the performance results of the Bernoulli PF using

ng = 500, ng = 1000 andny = 5000 newborn particles, re-

spectively. On the top of each figure is the average prolvabili

of target existencey,;;; in the middle is the averagaclusion

criterion pg; at the bottom is the average volume (spread)

vk, versus the scan numbér= 1,---,60. Averaging was

carried out ove/ = 100 independent Monte Carlo runs. Four

cases for the number of particl@é are displayedN = 500,
N = 1000, N = 2000 and N = 5000,
From Figs. 4, 5 and 6 one can observe:

(i) The probability of existence is reliable for all
combination of N andng.

(i) The inclusion criterion depends ony, and N.
Recall that if the average inclusion js, = 1, this
means that the true value of the target stateis

(averaged overr/ = 100 runs), which can be summarized as

(i) The probability of existence is reliable most of
the time for all values ofV,

(ii) One newborn box particle per measurement, that
is ng = 1 is sufficient to satisfy the average inclusion
criterion py provided thatN > 32. This is a useful
advantage of the Box-PF implementation compared
to the PF implementation.

(iif) The spready;, of box-particles for all combi-
nation of V is rapidly converging and stabilizing.
The spread change wheN is increasing is very
insignificant. Finally, the spread of the Box-PF im-
plementation is slightly higher than that of the PF
implementation.

2) Computational Time:Fig. 8 shows the computational

time for the Bernoulli PF using,g = 500, no = 1000 and

consistently contained by the support of the particley, = 5000. The influence ofng on the computational time
representation of; . (x). Observe that a high valueis very critical. This is to be expected since at tirhahere
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Figure 5. Average performance ov&f = 100 Monte Carlo runs for the Figure 6. Average performance ov&/ = 100 Monte Carlo runs for the
Bernoulli PF usingrg = 1000 and N € {500, 1000, 2000, 5000} particles:  Bernoulli PF usingng = 5000 and N € {500, 1000, 2000, 5000} particles:
on the top the probability of existeneg,|; in the middle the inclusiorpy;  on the top the probability of existeneg, x; in the middle the inclusiomy;

at the bottom volume (spread),. at the bottom volume (spread),.

aren, - my,—1 Newborn particles to process. Fig. 9 shows @y computations. Finally, the paper presented a comperati
computational time for the Bernoulli Box-PF using = 1. analysis of the two filters in the context of target trackirsing
Recall from Sec. VII-C1 that to satisfy the inclusion criteinterval measurements.
rion, the Bernoulli PF requires in excesswef = 5000 and g fiters perform comparably well when a sufficient
N = 2000 particles, corresponds to an average computatlorﬁﬂmber of particles is used: the presence of a target is
time of just overd0s. The Bernoulli Box-PF satisfies the inclu-gjiahy detected, while the true target state is containetie
sion using justV > 32 box-particles (withng = 1 newb_orn _support of the spatial density function. The Bernoulli Box-
box-particles), corresponds to an average cqmputatloe t"fBF, however, was demonstrated to be more cost efficient: it
of about19s. Hence, the Box-PF implementation appears . ired twice less computational time and almost hundred
be tW|c<_a faster. This is despite the fac'; that interval fur_n:t_ time smaller number of particles (that is box-particlesheT
calculations were not implemented using MATLAB built-in.e g ction in the number of particles can be important in the
fl_mc_tpns. Although the processing '.ume_per box-pgrt@e tontext of distributed networked systems, because of alemal
significantly higher than the processing time per pointipart. ) nication bandwidth requirement.
cles (involving interval analysis calculations), the wetible Future work will focus on the development of a multi-
(r)?/((jal:;rllos?)(lar:agfpngfmt?liesr Zlfg%?i);];?rtlcles Is responsibletther Bernoulli filter for multi-target tracking ?n _the presen_cé 0
' stochastic, set-theoretic and data association uncgrt#in-
other attractive direction of work is a development of a
Bernoulli Box-PF in a distributed environment to take th# fu
VIII.-ConcLusions advantage in the reduction of particles.
This paper formulated the optimal Bayesian nonlinear fil-
tering problem in the presence of three types of measurement
uncertainties: stochastic, set-theoretic and data assmti
uncertainty. Since the optimal filter for this problem hasame

alytic solution, the paper then proposed two Monte Carl@edas APPENDIX
approximations. The first is based on the standard particle
filtering framework, and referred to as the Bernoulli pdetic a) Bernoulli filter update equationsThe original update

filter. The second, referred to as the Bernoulli box-pagticequations of the Bernoulli filter for the state independent
filter is based on box-particles and relies on interval asialy are [10, p.520]:
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where\ denotes the set-minus operation ao@Y) is the pdf of
the false alarm random finite s&t. Under the assumption made in

Figure 7. Average performance ovéd = 100 Monte Carlo runs for gec || the false alarm set is a Poisson RFS, whose multebpj#f is

the Bernoulli Box-PF usingyg = 1 and N € {8, 16, 20, 32, 44, 52} box given by [10, p.366]x(Y) — o H[z]eT Ae([z]). Then it follows

particles: on the top the probability of existengg., in the middle the

that
inclusion pg, at the bottom volume (spread),.
0o \ (] 1 1)
Bernoulli PF K(Trt1) Ae([z])’
eer === n0=0500
:82888 which leads to the update equations in the form given by 8569).

50+ = '

awent ettt b) Constraints propagation algorithmThe CP algorithm
“r paemmTIT [26] that was used in the numerical example in which the mea-

-

-
am="

-

surements are intervals in the range, range-rate, azinpdhes is

presented in Algorithm 3. This algorithm performs the cadation of

—_// each box particle at the update step.
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it S1 TR S RARTe YOTY (49) REFERENCES
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Algorithm 3 Constraints propagation algorithm

L Input: [x] = [z] x [2] x [y] x [g], [2] = [r] x [] x [B]
constraint 1
2: [z] = [z] N /([r]? — [¥]?)
3 [yl = [N /([r]? = [2]?)
4: [r] =[r]n/([z]* + [y]?)
constraint 2
. _ [2][9][y] ([9]2=[7]%)y? [2][9][v]
5 [z] = [z]N GE= \/ G e
. _ [y][2][x] ([#]2=[#]?)=? [Y][#][=]
6 [yl = [N g + \/ T2~ T e[l
7: [m] _ [x] n [7]- (v [=]2+[y]%) = [y].[9]
. - [z]
Ll [7].(\/[=]2+[y]?) = [=].[#]
8 [yl =[y] N Tl
el — [ [z].[&]+[y].[9]
9: = N ===
[*] = [r] mEE
constraint 3
10: [2] = [2] N ey
11: [y] = [y] N [tan]([8]).[]
12: Bl =[B]N [arctan](%)

13:

a]

Output: [x] = [z] x [2] x [y] X [9].
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