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Abstract—This work presents sequential Bayesian detection

and estimation methods for nonlinear dynamic stochastic systems

using measurements affected by three sources of uncertainty:

stochastic, set-theoretic and data association uncertainty. Fol-

lowing Mahler’s framework for information fusion, the pape r

develops the optimal Bayes filter for this problem in the form

of the Bernoulli filter for interval measurements. Two numerical

implementations of the optimal filter are developed. The first

is the Bernoulli particle filter (PF), which turns out to requ ire

a large number of particles in order to achieve a satisfactory

performance. For the sake of reduction in the number of

particles, the paper also develops an implementation basedon

box particles, referred to as the Bernoulli Box-PF. A box particle

is a random sample that occupies a small and controllable

rectangular region of non-zero volume in the target state space.

Manipulation of boxes utilizes the methods of interval analysis.

The two implementations are compared numerically and found

to perform remarkably well: the target is reliably detected and

the posterior probability density function of the target state

is estimated accurately. The Bernoulli Box-PF, however, when

designed carefully, is computationally more efficient.

Index Terms—

Sequential Bayesian Estimation, Random Sets, Bernoulli Filter,

Particle Filters, Box Particle Filters, Interval Measurements.

Submitted to IEEE Trans. Signal Processing
December 28, 2011

∗School of Computing & Communications, Lancaster University, Info-
Lab21, Lancaster, United Kingdom, email:e.gning@lancaster.ac.uk

§Defence Science and Technology Organization, ISR Division, Bld
94, M2.30, 506 Lorimer Street, Fishermans Bend, VIC 3207, Aus-
tralia; Tel: (+61 3) 9626 8226; Fax: +61 3 9626 8341; email:
branko.ristic@dsto.defence.gov.au

∗School of Computing & Communications, Lancaster
University, InfoLab21, Lancaster, United Kingdom, email:
mila.mihaylova@lancaster.ac.uk

I. I NTRODUCTION

The problem of study is sequential Bayesian detection
and estimation of dynamic stochastic systems using measure-
ments affected by three sources of uncertainty: stochastic,
set-theoretic and data association uncertainty. The standard
measurements used for nonlinear filtering are points, in the
measurement space, affected by additive measurement noiseof
a known probability density function (pdf) [1]. The traditional
measurement noise expresses uncertainty due to randomness,
often referred to as statistical or stochastic uncertainty. In many
practical applications, however, this standard measurement
model is not adequate. In wireless sensor networks, for exam-
ple, the measurements are quantized to only a few bits in order
to reduce the communication bandwidth. Such measurements,
although reported as point values, in fact represent intervals.
Similarly, complex distributed surveillance systems are often
operating under unknown synchronization biases and/or un-
known system delays. The resulting measurements are affected
by bounded errors of typically unknown distributions and
biases, and can be also expressed by intervals. An interval
measurement expresses a type of uncertainty which is referred
to as the set-theoretic uncertainty [2], [3] or imprecision
[4] due to partial knowledge or ignorance. The importance
and distinctness of this type of uncertainty have been well
recognized in the field of expert systems [5], and to some
degree in statistics [6]. The two types of uncertainties, the
set-theoretic and stochastic, can be treated in combination
using various modern estimation formalisms, such as: the set
of densities [7], the robust Bayesian inference and imprecise
probabilities [8], [9], random sets [10]. In this paper we
adopt the random set formalism for the combined treatment
of imprecision and randomness.

Often, in practice, the third source of uncertainty in the
measurements is also present. Due to the imperfections of the
detection process, sensors typically operate with probability of
detection less than one and, in addition, report measurements
which are false [11]. This translates intodata association
uncertainty, that is the uncertainty as to which (if any) of the
received measurements is due to the target.

Following Mahler’s framework for information fusion [10],
the theoretically optimal Bayes filter for the described problem
of joint detection and tracking using measurements affected
by stochastic, set-theoretic and association uncertainty, is
the Bernoulli filter for unambiguously generated ambiguous
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(UGA) measurements. Interval measurements are a special
case of UGA measurements, while the most general instance
of an UGA measurement is a mixture of fuzzy membership
functions [10, Ch.5]. The aforementioned Bernoulli filter has
no analytic solution and therefore needs to be implemented
numerically.

Particle filter (PF) methods [12], [13] have recently emerged
as a powerful tool for solving numerically complex dynamic
estimation problems involving high nonlinearities. The PF
approaches approximate the posterior state pdf by a set of
random samples. The efficiency and accuracy of PFs depend
significantly on the number of particles and on the proposal
functions used for the importance sampling. A high level of
uncertainty in the available measurements, as considered in
this paper, may require a large number of particles, resulting
in high computational complexity which induces real-time
implementation issues. In an attempt to overcome these issues,
it is of interest to consider an implementation based onbox
particles. A box particle occupies a small and controllable
rectangular region of non-zero volume in the target state space.
A box-particle filter (Box-PF) has a potential to significantly
reduce the number of required particles, without a loss in
the error performance. The concept of the Box-PF was first
proposed in [14], using the interval analysis framework to
propagate weighted boxes in a sequential way. Subsequently,
the Box-PF was studied and explained through the Bayesian
perspective in [15] by interpreting each box particle as a
uniform pdf.

In this paper, we develop and compare the performance
of two numerical implementations of the Bernoulli filter for
detection and tracking using measurements affected by triple
uncertainty: the particle filter and the box-particle filterbased
implementations. The comparison is carried out using statisti-
cal criteria for measuring theinclusionof the true state and the
volumeof the posterior pdf. The paper shows that both filters
perform comparably well when a sufficient number of particles
is used: the presence of a target is reliably detected, while
the true target state is contained in the support of the spatial
density function. The Bernoulli Box-PF, however, appears to
be more cost efficient. Preliminary results of this researchhave
been reported in [16] and [17].

The rest of the paper is organized as follows. The formal
description of the problem is given in Sec. II. The Bernoulli
filter for measurements affected by stochastic, set-theoretic and
association uncertainty is formulated in Sec. III. The Bernoulli
PF implementation and the Bernoulli Box-PF implementation
are presented in Secs. IV and V, respectively. The filter
performance assessment criteria are described in Sec. VI,
with numerical studies presented in Sec. VII. Finally, the
conclusions are drawn in Sec. VIII.

II. PROBLEM FORMULATION

The state vector of the dynamic system (target) at timetk
(discrete-time indexk) is denoted byxk. It takes values from
the state spaceX ⊆ R

nx . The target, however, may or may not
be present in the surveillance region at a particular timetk. We
therefore model the object state at discrete-timek by a random

finite set (RFS)Xk which can be either empty or a singleton.
Mahler’s finite set statistics(FISST) provides practical tools
for statistical description and mathematical manipulations of
finite-set random variables, including the notion of FISST pdf
and its integral [10].

A convenient model of target state at timek is the Bernoulli
RFS onX . A Bernoulli RFS has a probabilityq of being a
singleton whose only element is distributed according to the
pdf s(x) defined onX and a probability1−q of being empty.
The FISST probability density of a Bernoulli RFSX is defined
as

f(X) =











1− q, if X = ∅,

q · s(x), if X = {x},

0, otherwise.

(1)

The objective of Bayes filtering is to sequentially estimateXk

from measurements collected up to timek. Assume that the
measurement set at timek is denoted byΥk. Then formally
the goal is to estimate sequentially the posterior state pdf
fk|k(X|Υ1:k) of a Bernoulli random finite process, where
Υ1:k = (Υ1, . . . ,Υk) denotes the sequence of measurement
sets up to timek. The estimation is based on prior knowledge
of two models, thetarget dynamic modeland themeasurement
model.

A. Target Dynamic Model

Target dynamic model is defined by the probability density
Φk+1|k(X|X′) associated with target transition from stateX′

at timek toX at timek+1. Since bothX′ andX are Bernoulli
RFSs,Φk+1|k(X|X′) can be defined as:

Φk+1|k(X|X′) =



















1− pB, if X′ = ∅,X = ∅,

pB · bk+1|k(x), if X′ = ∅,X = {x},

1− pS(x
′), if X′ = {x′},X = ∅,

pS(x
′) · πk+1|k(x|x

′), if X′ = {x′},X = {x},
(2)

where

• pB

abbr
= pB,k+1|k is the probability of targetbirth during

the time interval fromk to k + 1;
• bk+1|k(x) is the spatial distribution of target birth during

the time interval fromk to k + 1;
• pS(x

′)
abbr
= pS,k+1|k(x

′) is the probability that a target
with statex′ at timek will survive until time k + 1;

• πk+1|k(x|x
′) is the target transition density from timek

to k + 1.

B. Measurement Model

In general, target detection is imperfect. A target may not
be detected at scank, whereas a set of non-existent objects
may be detected and reported (false detections or clutter).Let
the measurement space be denoted asZ ⊆ R

nz . If the target
exists,i.e.Xk = {x}, and has been detected, the conventional
point measurementz ∈ Z is related to the target statevia a
nonlinear equation:

z = hk(x) + v, (3)
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where the functionhk is a known deterministic mapping from
the state spaceX to the measurement spaceZ, while v is a
measurement noise vector characterized by a pdfpv.

In this paper, we assume that if a target exists and is
detected, the sensor does not report the conventional measure-
ment z ∈ Z. Instead, it reports a closed interval[z] ⊂ Z
which contains the target originated point measurement (3)
with some probability. The set of all such closed intervals on
Z, denoted byIZ, is the interval measurement space.

Due to the imperfect detection process,mk ≥ 0 interval
measurements[z]k,1, . . . , [z]k,mk

are collected at timek. The
measurements can be represented by a finite set:

Υk = {[z]k,1, . . . , [z]k,mk
} ∈ F(IZ), (4)

whereF(IZ) is the space of finite subsets ofIZ.

The probability of target detection is assumed to be constant
over the state spaceX , and is denoted bypD. The false
detections are also assumed to be independent of the target
state1. The number of false detections per scan is modelled by
a Poisson distribution with meanλ. The prior probability of
false interval detections is modelled byc([z]).

The measurement setΥk is characterized by three sources
of uncertainty. The additive noisev in (3) is the source
of stochastic uncertainty. Interval (non-point) presentation of
measurements is the source of imprecision. Finally, the ex-
istence of false detections and a possible absence of target
originated detection is the source of data association uncer-
tainty.

III. B ERNOULLI FILTER

The optimal Bayes filter for the problem described above
is the Bernoulli filter [10, Sec.14.7], [18]2 for interval
measurements. Letfk|k(X|Υ1:k) denote the posterior pdf of
Bernoulli RFSX at timek. The propagation of this posterior
pdf over time is carried out in two steps, theprediction or time-
update stepand the measurement-update step. We have seen
that fk|k(X|Υ1:k) is completely defined by two posteriors:
qk|k = Pr{|Xk| = 1 | Υ1:k} is3 the posterior probability of
target existence, whilesk|k(x) = p(xk|Υ1:k) is the posterior
spatial pdf ofXk = {x}. For this reason, the Bernoulli filter
propagates only these two quantities.

1The assumptions about state independentpD and false detections can be

easily relaxed, see [10].
2The Bernoulli filter for conventional (point) measurementsis referred to

as Joint Target Detection and Tracking (JoTT) in [10, Sec. 14.7]. It represents

a generalization of the Integrated Probabilistic Data Association filter [19],

which was derived under the linear-Gaussian-Poisson assumption.
3|X| denotes the cardinality of setX.

A. Equations

Assuming thatpS is state independent, the prediction step
equations are given by:

qk+1|k = pB · (1− qk|k) + pS · qk|k (5)

sk+1|k(x) =
pB · (1− qk|k)bk+1|k(x)

qk+1|k
+

pS qk|k
∫

πk+1|k(x|x
′) · sk|k(x

′) dx′

qk+1|k
. (6)

The predicted birth densitybk+1|k(x) in general is unknown
and needs to be adaptively designed using the measurement set
Υk from the previous scank. This will further be discussed
in Sec. IV.

Assuming thatpD is state independent, the update equations
of the Bernoulli filter for interval measurements are as follows
[10, Sec. 14.7]. The probability of existence is updated using
the measurement setΥk+1 as:

qk+1|k+1 =
1−∆k+1

1−∆k+1 · qk+1|k
· qk+1|k, (7)

where

∆k+1 = pD



1−
∑

[z]∈Υk+1

∫

gk+1([z]|x) sk+1|k(x) dx

λ c([z])



 .

(8)
The quantity∆k+1 can be positive or negative and can be
interpreted as1 − Λk+1, where Λk+1 is the measurement
likelihood ratio under the assumptions of target existence
and non-existence. Quantitygk+1([z]|x) in (8) represents the
generalizedlikelihood function at timek + 1 for a target
originated interval measurement. Furthermoreλ and c([z])
have already been defined as false alarm parameters. The
generalized likelihood is further discussed in Sec. III-B.

The target spatial pdf is updated as follows:

sk+1|k+1(x) =

1− pD + pD

∑

[z]∈Υk+1

gk+1([z]|x)
λc([z])

1−∆k+1
sk+1|k(x).

(9)
In the special case where the detection process is perfect, i.e.
pD = 1 and there are no false detections, the measurement
set becomes a singletonΥk+1 = {[z]}, containing only the
target originated measurement. Then it is easy to verify that
λc([z]) terms cancel out in (7) and (9). Furthermore, with
pB = 0, pS = 1 andq0|0 = 1, the Bernoulli filter for interval
measurements simplifies to the single-target Bayes filter for
interval measurements (its update equation given in [p.159]
[10]). For the more general case ofpD(x) and pS(x), the
Bernoulli filter equations can be found in [10, Sec.14.7].

The proposed Bernoulli filter is the optimal Bayes filter for
the considered problem. In the general case, however, it has
no analytic solution and this paper will develop two numerical
implementations.

B. Generalized Likelihood

The update equations (7) and (9) are different from those
in the standard Bernoulli filter in the sense that the standard
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measurement likelihood function is replaced by thegeneral-
ized likelihood function. If [z] ∈ Υk and Xk = {x}, the
expression of the generalized likelihood defined in [10, Ch.5]
and derived in [20], [21] is given by:

gk([z]|x) = Pr
{

hk(x) + v ∈ [z]
}

=

∫

[z]

pv

(

z− hk(x)
)

dz. (10)

Let N (y;µ,P) denote a Gaussian pdf with meanµ and
covarianceP. Its cumulative distribution function (cdf) is
denoted byϕ(y;µ,P) =

∫ y

−∞
N (u;µ,P) du. Now suppose

that the measurement noisev is zero mean white Gaussian
with covariance matrixΣ, that is pv(v) = N (v;0,Σ). In
addition, let the lower and upper bound of the interval[z] be
denoted byz and z, respectively, that is[z] = [z, z]. Then
according to (10) the generalized likelihood can be expressed
as:

gk([z]|x) =

∫ z

z

N (z;hk(x),Σ) dz

= ϕ(z;hk(x),Σ)− ϕ(z;hk(x),Σ) (11)

= 1− ϕ(hk(x); z,Σ)− (1− ϕ(hk(x); z,Σ)) (12)

= ϕ(hk(x); z,Σ)− ϕ(hk(x); z,Σ). (13)

The step from (11) to (12) is based on the property of the
Gaussian cdf:ϕ(a;µ,P) = 1− ϕ(µ; a,P).

Note that the generalized likelihood function is not a pdf and
as such does not integrate to1. A theoretical justification of
the generalized likelihood function of an interval measurement
from a measure-theoretic point of view is given in [20]; see
also [21] and [22].

Fig. 1 illustrates the generalized likelihood (13) for one-
dimensional measurement (nz = 1), with z = 45, z = 60
and three values ofΣ, that is4, 1 and0.0001. When variance
Σ → 0, the fuzzy membership function (13) approaches the
indicator function; hence additive noisev is the sources of
fuzziness in the generalized likelihood. Note that the quantity
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Figure 1. Illustration of the generalized likelihood function (13) fornz = 1:

interval measurement[z] = [45, 60] affected by additive zero-mean Gaussian

measurement noise with different values of the varianceΣ.

c([z]), which features in (8), can be interpreted as a generalized
likelihood function of false interval detections.

IV. PARTICLE FILTER IMPLEMENTATION

Particle filters have become a popular class of numerical
methods for implementation of Bayes filters [12], [13], both
in the context of single and multiple targets [10]. Combining
the Bernoulli filter with a particle filter results in a Bernoulli
PF that approximates the spatial pdf4 sk|k(x) by a set ofN
weighted random samples or particles{wi

k,x
i
k}

N
i=1, wherexi

k

is the i-th particle andwi
k is its corresponding normalized

weight, such that
∑N

i=1 w
i
k = 1. The approximation ofsk|k(x)

can be written as

sk|k(x) ≈
N
∑

i=1

wi
k δxi

k
(x), (14)

whereδa(x) is the Dirac delta function concentrated ata. For a
suitably chosen importance density, the sum in (14) converges
to sk|k(x) asN → ∞ [23].

Starting from the posterior Bernoulli density at scank, rep-
resented byqk|k and a set of weighted particles{wi

k,x
i
k}

N
i=1,

a cycle of the Bernoulli PF for interval measurements is
summarized in Algorithm 1. The implementation is based on
the Sampling Importance Resampling (SIR) PF, meaning that
the transitional densityπk+1|k(x|x

′) acts as the importance
density and that resampling is carried out at every cycle
[13]. More sophisticated particle filter implementations of the
Bernoulli filter (e.g. interacting particle systems [24]) are left
for future work. We also point out two key differences between
the described implementation and the one presented in [25]:
first, the measurements we deal with are intervals; second,
we estimate the birth densitybk+1|k(x) adaptively using the
received measurements (in [25] the birth density is assumed
known).

A. Prediction Step

The implementation of the prediction (or time update) step
(6) requires to draw samples from two densities. The predicted
birth densitybk+1|k(x) is implemented as:

bk+1|k(x) =

∫

πk+1|k(x|x
′) bk(x

′) dx′, (15)

wherebk(x) is the birth density at the previous timek. If the
target can appear anywhere in the state spaceX , an obvious
choice forbk(x) is the uniform density overX . This, however,
would be very inefficient as it would require a massive number
of particles. Instead we designbk(x) adaptively, using the
measurement set from the previous scank, Υk, i.e.

bk(x) ≈
1

|Υk|

∑

[z]∈Υk

βk(x|[z]). (16)

Each densityβk(x|[z]) in the mixture (16) is constructed to
be compatible with the interval measurement[z] ∈ Υk as

4Strictly speaking particle filters approximate integrals,not densities, [12],

[13].
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follows. Suppose the target state vectorx consists of directly
measured componentp and unmeasured vector componentu,
that isx = [p⊺ u⊺]⊺, where⊺ denotes the matrix transpose.
First we drawn0 times fromU[z](z), whereU[a](a) denotes
the uniform pdf over the box[a], to obtain a sample{zj}n0

j=1.
Then we computepj

b,k = h−1
k (zj) for j = 1, . . . , n0. For the

unmeasured component we assume that a prior is available.
By drawingn0 times from this prior we can form a sample
{uj

b,k}
n0

j=1. Finally

βk(x|[z]) ≈
1

n0

n0
∑

j=1

δ
x
j

b,k
(x)

wherexj
b,k = [(pj

b,k)
⊺ (uj

b,k)
⊺]⊺.

The newborn particles representingbk(x) of (16) are then
formed by the union of newborn particles sets corresponding
to individual box-measurements. The total number of particles
representingbk(x) hence isNb = mk · n0. Their weights
are wi

b,k = 1/Nb for i = 1, . . . , Nb. Newborn particles
representingbk(x) are constructed in the described manner
in Step 4 of Algorithm 1.

Weighted particle sets of two types, the “persistent” and the
“newborn” particles, approximate the predicted spatial pdf of
(6). The summation of the two terms on the right-hand side
of (6) is carried out by the union of these two sets of particles
(Step 7 in Algorithm 1). The number of predicted particles is
thenN ′ = N + Nb. Their respective weights are computed
according to (6), see Step 6 in Algorithm 1.

B. Measurement Update Step

The update equations of the Bernoulli PF are implemented
by steps 8-13 of Algorithm 1. Using the approximation
sk+1|k(x) ≈

∑N ′

i=1 w
i
k+1|k δxi

k+1|k
(x), factor ∆k+1 from (8)

can be written as:

∆k+1≈pD











1−
∑

[z]∈Υk+1

N ′
∑

i=1

gk+1([z]|xi
k+1|k)w

i
k+1|k

λ c([z])











.

(17)
The generalized likelihood functiongk+1([z]|xi

k+1|k) in (17) is
computed according to (10) in the general case and according
to (13) if the measurement noise is additive Gaussian. The
probability of existence is then updated as in (7), while the
weights of the particles are updated following (9) as:

w̃i∗
k+1 =

1− pD + pD

∑

[z]∈Υk+1

g([z]|xi
k+1|k)

λ c([z])

1−∆k+1
· wi

k+1|k. (18)

The updated weights are then normalized to obtainwi∗
k+1 =

w̃i∗
k+1/

∑N ′

j=1 w̃
j∗
k+1. Finally, by resamplingN times from

{wi,∗
k+1,x

i
k+1|k}

N ′

i=1, one obtains a random sample{wi
k+1 =

1
N ,xi

k+1}
N
i=1. In order to prevent sample impoverishment, the

resampling step can be followed by regularization [13]. The
filter reports the posterior probability of existenceqk+1|k+1

and the particle approximation of the posterior spatial pdf

Algorithm 1 The Bernoulli particle filter for interval measure-

ments
1: Input : qk|k,

{

wi
k,x

i
k

}N

i=1
, Υk, Υk+1;

Time Update

2: Computeqk+1|k using (5)

3: Draw persistentparticles atk + 1: xi
p,k+1 ∼ πk+1|k(x|xi

k) for

i = 1, . . . , N

4: Create a weighted set ofnewbornparticles{wi
b,k,x

i
b,k}Nb

i=1 at k

from birth densitybk(x) defined by (16), withwi
b,k = 1/Nb;

5: Draw newbornparticles atk + 1: xi
b,k+1 ∼ πk+1|k(x|xi

b,k) for

i = 1, . . . , Nb

6: Compute the weights atk + 1:

wi
p,k+1 = pS qk|k wi

k/qk+1|k; for i = 1, . . . , N

wi
b,k+1 = pB (1− qk|k)w

i
b,k/qk+1|k; for i = 1, . . . , Nb

7: Union of weighted particles: {wi
k+1|k,x

i
k+1|k}N

′

i=1 =

{wi
b,k+1,x

i
b,k+1}Nb

i=1 ∪ {wi
p,k+1,x

i
p,k+1}Ni=1, where

N ′ = N +Nb;

Measurement Update

8: For every particlexi
k+1|k, i = 1, . . . , N ′ and every measurement

[z] ∈ Υk+1, compute the generalized likelihoodg([z]|xi
k+1)

according to (10);

9: Compute∆k+1 according to (17);

10: Computeqk+1|k+1 according to (7);

11: Compute unnormalized weights̃wi∗
k+1 according to (18) fori =

1, . . . , N ′;

12: Normalize weights:wi∗
k+1 = w̃i∗

k+1/
∑N′

j=1 w̃
j∗
k+1;

13: ResampleN times from {wi,∗
k+1,x

i
k+1|k}N

′

i=1 to obtain equally

weighted particles{wi
k+1 = 1

N
,xi

k+1}Ni=1

14: Output : qk+1|k+1,
{

wi
k+1,x

i
k+1

}N

i=1

sk+1|k+1(x). Since the output weightswi
k+1 in Step 14 of

Algorithm 1 are equal, strictly speaking it is unnecessary to
input/output them.

Remark: As a consequence of imprecise measurements
(which model bounded errors with unknown measurement
biases), the conventional point state estimates, such as the
expected or the maximum a posteriori estimates, in general
are also biased.

V. BOX PARTICLE FILTER IMPLEMENTATION

Due to the large uncertainty in the measurements, the
posterior pdf could be characterized by an extensive support.
Consequently, the number of (point) particles required to
cover this significant portion of the state space, can be also
very large. One natural solution to reduce the number of
particles is to use non-point particles, such as the multi-
dimensional rectangular or box particles [14]. The efficiency
of box particles combined with interval analysis tools [26]is
demonstrated in [14]. Furthermore, in [15] it has been shown
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that box particles can be interpreted as being supports of a
mixture of uniform pdfs, and in this respect, (14) becomes:

sk|k(x) ≈
N
∑

i=1

wi
k U[xi

k
](x), (19)

where[xi
k] is a box-particle.

Starting from the posterior Bernoulli density at scank,
represented byqk|k and a set of weighted box particles
{wi

k, [x
i
k]}

N
i=1, a cycle of the Bernoulli Box-PF for interval

measurements is summarized in Algorithm 2. Since the algo-
rithm heavily relies on the concepts and tools from interval
analysis, a brief overview of interval analysis is given next.

A. Elements of Interval Analysis

A real interval, [x] = [x, x] is defined as a closed and
connected subset of the setR of real numbers. In a vector
form, a box [x] of R

nx is defined as a Cartesian product
of nx intervals: [x] = [x1] × [x2] · · · × [xn] = ×nx

i=1[xi]. In
this paper, the operator|[.]| denotes the size|[x]| of a box
[x]. The underlying concept of interval analysis is to deal
with intervals of real numbers instead of dealing with real
numbers. For that purpose, elementary arithmetic operations,
e.g., +,−, ∗,÷, etc., as well as operations between sets of
R

n, such as⊂,⊃,∩,∪, etc., have been naturally extended to
interval analysis context.

A nonlinear transformation of a box[x] in general has a
non-box shape. In order to remain in the realm of boxes,
a lot of research in interval analysis has been devoted to
inclusion functions[26]. An inclusion function[f ] of a given
(nonlinear) functionf is defined such that the image of a
box [x] is a box [f ]([x]) containing f([x]). The goal of
inclusion functions is to work only with intervals, to optimize
the interval enclosing the real image set and, then to decrease
the pessimism (uncertainty) when intervals are propagated.

Often constraints have to be fulfilled which require to solve
the Constraint Satisfaction Problems(CSPs). A CSP often
denotedH can be written:

H : (f(x) = 0,x ∈ [x]). (20)

Equation (20) can be interpreted as follows: find the optimal
box enclosure of the set of vectorx belonging to a given prior
domain [x] ⊂ R

n satisfying a set ofm constraintsf (with f

a multivalued function, i.e.,f = (f1, f2, · · · , fm)T , where the
fi are real valued functions). The solution set ofH is defined
as:

S = {x ∈ [x] | f(x) = 0}. (21)

ContractingH means replacing[x] by a smaller domain[x]′

such thatS ⊆ [x]′ ⊆ [x]. A contractor for H is any operator
that can be used to contractH. Several methods for building
contractors are described in [26, Chapter 4], including Gauss
elimination, the Gauss-Seidel algorithm, linear programming,
etc. Each of these methods may be more suitable to some
types of CSP. Although the approaches presented in this work
are not limited to any particular contractor, a general and well
known contraction method, theConstraints Propagation(CP)

technique is used in this paper. The main advantages of the CP
method is its efficiency in the presence of high redundancy of
data and equations. The CP method is also known to be simple
and, most importantly, to be independent of nonlinearities. An
example of CP algorithm is presented later in the appendix.

B. Time Update Step

The implementation of the prediction equation (6) requires
to use a box particle approximation for newborn target and per-
sistent target densities. The predicted birth densitybk+1|k(x)
is implemented as in (15). The birth densitybk(x), which fea-
tures in (15), is designed adaptively, using the measurement set
from the previous scank, Υk as in (16). For every[z] ∈ Υk,
a densityβk(x|[z]) in (16) is approximated with a mixture of
uniform pdfs, compatible with the interval measurement[z],
that is

β(x|[z]) ≈
1

n0

n0
∑

i=1

U[xi
b,k

](x). (22)

Equations (16) and (22) mean thatbk(.) is represented by a set
of Nb = mk · n0 box particles{[xi

b,k]}
Nb

i=1. The box particles
approximating densityβ(x|[z]) are formed in the manner
somewhat similar to that explained in Sec. IV-A. For the
measured component of the state, we construct the inclusion
function [p] = [h−1

k ]([z]). For the unmeasured component
of the stateu we form the inclusion box which contains
the support of its prior, i.e.[u] ≈ [support(p0(u))]. Finally,
the box [p] × [u] is subdivided inton0 boxes. The weights
associated with the newborn box particles are made equal, i.e.
wi

b,k = 1/Nb for i = 1, . . . , Nb. Box particles approximating
bk(x) are constructed as described here in Step 4 of Algorithm
2.

It remains to explain how the box particles are propa-
gated from timek to k + 1, that is how integrals (15) and
∫

πk+1|k(x|x
′) ·sk|k(x

′) dx′ in (6) are approximated. Suppose
the transitional densityπk+1|k(x|x

′) is known through an
evolution modelfk+1 (possibly nonlinear) that is

xk+1 = fk+1(xk) +wk, (23)

Furthermore, if we assume thatwk is a bounded noise5 in a
box [wk], then according to [15] the following approximations
are made:
∫

πk+1|k(x|x
′) bk(x

′) dx′ ≈ wi
b,k

Nb
∑

i=1

U[fk+1]([xi
b,k

])+[wk](x) (24)

∫

πk+1|k(x|x
′) sk|k(x

′) dx′ ≈ wi
k

N
∑

i=1

U[fk+1]([xi
p,k

])+[wk](x) (25)

A key issue here is to note that an image of a boxfk([x]) is not
always a box. Therefore we have approximated this arbitrarily-
shaped image by the inclusion function (a box)[fk]([x]). This
was carried out in Steps 3 and 5 of Algorithm 2.

5Without loss of generality, noisewk is restricted to be additive and

bounded. In [15], the general case is considered with noisewk approximated

using a mixture of uniform pdfs.
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The weights{wi
p,k+1}

N
i=1 and {wi

b,k+1}
Nb

i=1 are computed
according to (6) in Step 6 of Algorithm 2.

Two sets of predicted weighted box particles, the “per-
sistent” {wi

p,k, [x
i
p,k]}

N
i=1 and the “newborn” box particles

{wi
b,k, [x

i
b,k]}

Nb

i=1, approximate the predicted spatial pdf of (6).
The summation of the two terms on the right-hand side of (6)
is carried out by the union of these two sets of box particles
(Step 7 in Algorithm 2). The number of predicted box particles
then isN ′ = N +Nb.

Algorithm 2 The Bernoulli box-particle filter for interval

measurements
1: Input : qk|k,

{

wi
k, [x

i
k]
}N

i=1
, Υk, Υk+1;

Time Update

2: Computeqk+1|k using (5)

3: Propagatepersistent box particles to k + 1: [xi
p,k+1] =

[fk+1]([x
i
k]) + [wk] for i = 1, . . . , N

4: Create a weighted set ofnewbornbox particles{wi
b,k, [x

i
b,k]}Nb

i=1

at k from birth densitybk(x) defined by (16) usingΥk, with

wi
b,k = 1/Nb;

5: Propagate newborn box particles to k + 1: [xi
b,k+1] =

[fk+1]([x
i
b,k]) + [wk] for i = 1, . . . , Nb

6: Compute the box particle prediction weights atk + 1:

wi
p,k+1 = pS qk|k wi

k/qk+1|k; for i = 1, . . . , N

wi
b,k+1 = pB (1− qk|k)w

i
b,k/qk+1|k; for i = 1, . . . , Nb

7: Union of weighted box particles:{wi
k+1|k, [x

i
k+1|k]}N

′

i=1 =

{wi
b,k+1, [x

i
b,k+1]}Nb

i=1 ∪ {wi
p,k+1, [x

i
p,k+1]}Ni=1, where N ′ =

N +Nb;

Measurement Update

8: Replicate the box particle[xi
k+1|k] to obtain N ′ box particle

[x̃i
k+1] with weightsw̃i

k+1 = (1− pD)wi
k+1|k

9: For every box particle[xi
k+1|k], i = 1, . . . , N ′ and every

measurement[z] ∈ Υk+1,

• use a contraction algorithm according to (30) to obtain a

new box particle[x̃i
k+1];

• compute the weight̃wi
k+1 of [x̃i

k+1] according to (32);

10: Compute∆k+1 according to (8) and (34);

11: Computeqk+1|k+1 according to (7);

12: Normalize weights:w̃i
k+1 = w̃i

k+1/
∑N′(1+mk)

j=1 w̃j

k+1;

13: ResampleN times from{w̃i
k+1, [x

i
k+1|k]}

N′(1+mk)
i=1 to obtainN

equally weighted box particles{wi
k+1 = 1

N
, [xi

k+1]}Ni=1

14: Output : qk+1|k+1,
{

wi
k+1, [x

i
k+1]

}N

i=1

C. Measurement Update Step

In the update step of the Bernoulli Box-PF, a different
expression for the generalized likelihood is used. Assuming
that the stochastic uncertainty (due to measurement noisev)

is small and can be approximated by a uniform pdf6

pv(v) ≈ U[ε](v), (26)

where [ε] is the measurement noise support. Substitution of
(26) into the definition of the generalized likelihood (10)
results in:

gk([z]|x) ≈

∫

[z]

U[ε](z − hk(x)) dz =

∫

[z]

U[ε]+hk(x)(z) dz

=
| [z] ∩ (hk(x) + [ε]) |

|[ε]|
. (27)

Here |.| denotes the Lebesgue measure operator (e.g. the
volume for boxes inRnz ). From (27), it follows that

gk([z]|x) ≈











1, if (hk(x) + [ε]) ⊆ [z]

0, if (hk(x) + [ε]) ∩ [z] = ∅

≤ 1, otherwise

. (28)

This expression describes fairly accurately any generalized
likelihood function; compare it for example with Fig.1.

The update equations of the Bernoulli Box-PF are imple-
mented by steps 8-13 of Algorithm 2. Using the box particle
approximationsk+1|k(x) ≈

∑N ′

i=1 w
i
k+1|k U[xi

k+1|k
](x) and the

generalized likelihood (27), the termspD

c([z]) · gk+1([z]|x) ·
sk+1|k(x) which feature in (9) can be written as:

pD

c([z])
· gk+1([z]|x) · sk+1|k(x) =

pD

c([z])
·

N ′
∑

i=1

wi
k+1|k

| [z] ∩ (hk+1(x) + [εk+1]) |

|[εk+1]|
U[xi

k+1|k
](x).

(29)

Similarly to what is theoretically derived in [15] for the case
of point measurements, the supports of the terms inside the
summation on the right-hand side of (29) can be approximated
using contraction operations briefly discussed in Sec. V-A.The
exact supports are the set solutions of :

{x ∈ [xi
k+1|k]|[z] ∩ (hk+1(x) + [εk+1]) 6= ∅}. (30)

Each term inside the summation on the right-hand side
of (29) is approximated by a weighted single uniform pdf
U[x̃i

k+1]
(x) i.e.

pD

c([z])
·gk+1([z]|x) · sk+1|k(x) ≃

N ′
∑

i=1

w̃i
k+1U[x̃i

k+1]
(x), (31)

where[x̃i
k+1] is a box enclosure of the support (30) that can be

obtained by a contraction algorithm. The new weightsw̃i
k+1

are obtained from (29) as follows:

w̃i
k+1 =

pD

c([z])
· wi

k+1|kκ
i
k+1

|[x̃i
k+1]|

|[xi
k+1|k]|

, (32)

6In the general case,pv can be approximated more precisely by a mixture

of uniform pdfs and the generalized likelihood function canbe expressed as a

weighted sum of generalized likelihoods for each uniform pdf. For simplicity,

we consider here one component.
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whereκi
k+1 is chosen to be the expectation of the generalized

likelihood gk+1([z]|x) over the box particle[x̃i
k+1]. Factor

κi
k+1 can be written:

κi
k+1 = 1

|[x̃i
k+1

]|

∫

[x̃i
k+1]

|[z]∩(hk+1(x)+[εk+1])|
|[εk+1]|

dx. (33)

The integral defining (33) is not known in a closed form but
can be approximated (for instance by using a partition of the
set[x̃i

k+1] as it is done in the Riemann integration theory [27]).
In practice, we found that a constant value for all the box
particles, e.g.,κi

k+1 = 1 is a good approximation and we
adopt this value for the rest of the paper.

Bearing in mind eq. (9), the posterior pdfsk+1|k+1(x) is
approximated usingmk+1 sets of box particles: one set ofN ′

box particles[x̃i
k+1|k] with weights(1 − pD)wi

k+1|k andmk

sets ofN ′ box particles with weights̃wi
k+1|kobtained using

themk measurements according to (31) and (32).
Next, the terms

∫

gk+1([z]|x) sk+1|k(x) dx, which feature
in (8), can be written as
∫

gk+1([z]|x) sk+1|k(x) dx =

∫

| [z] ∩ (hk+1(x) + [εk+1]) |

|[εk+1]|
·

N ′
∑

i=1

wi
k+1|kU[xi

k+1|k
](x)dx =

N ′
∑

i=1

wi
k+1|k

|[xi
k+1|k]| · |[εk+1]|

∫

[xi
k+1|k

]

| [z] ∩ (hk+1(x) + [εk+1]) | dx

=

N ′
∑

i=1

wi
k+1|k

|[εk+1]|

|[x̃i
k+1]|

|[xi
k+1|k]|

κi
k+1. (34)

The probability of existence is then updated as in (7). The
N ′× (mk +1) updated weights are then normalized to obtain
w̃i

k+1 = w̃i
k+1/

∑N ′

j=1 w̃
j
k+1.

Finally, we resample N times from
{w̃i

k+1, [x̃
i
k+1|k]}

N ′×(mk+1)
i=1 to obtain a new set of box

particle {wi
k+1 = 1

N , [xi
k+1]}

N
i=1. As explained in [14],

instead of replicating box particles which have been selected
more than once in the resampling step, we divide them into
smaller box-particles as many times as they were selected.
Several strategies of subdivision can be used (e.g. according
to the largest box face). In this paper we randomly pick a
dimension to be divided for the selected box particle.

The filter reports the posterior probability of existence
qk+1|k+1 and the box particle approximation of the posterior
spatial pdfsk+1|k+1(x). A point estimate from the Bernoulli
Box-PF in general is biased. This is typically due to the fact
that the correct measurement valuehk(x) is not in the middle
of the measurement interval. If required, however, the expected
a posteriori estimate can be obtained as the expectation of (19),
i.e.,

x̂k+1|k+1 =

N
∑

i=1

wi
k+1c

i
k+1, (35)

where cik+1 is the center of thei-th box particle. The co-
variance of (19) can be similarly derived. Then, for each
coordinatej = 1, . . . , nx of the state, the varianceσ2

k+1(j)

of the state component̂xk+1|k+1(j) can be obtained as:

σ2
k+1(j)=

N
∑

i=1

wi
k+1

(

cik+1(j)− x̂k+1|k+1(j)
)2

+

N
∑

i=1

wi
k+1

|[xi
k+1](j)|

2

12
. (36)

The first term on the RHS of (36) represents the spread of the
means; the second represents the variance of the mixture of
the uniform pdfs (for thejth coordinate of the state).

VI. PERFORMANCEASSESSMENT

Since the conventional point state estimates are biased, the
standard filter error performance measures, such as the mean-
square error, are not appropriate for the described Bayes filters.
How then to assess their error performance?

Recall that the optimal filter for the problem described in
the paper has to satisfy two conditions:

1) The true value of the target state vectorxk must be
contained in the support of the posterior spatial pdf
sk|k(x);

2) The volume of the support of the posterior spatial pdf
sk|k(x) is minimal.

Accordingly we propose two assessment criteria: the first
is referred to asinclusion and verifies condition 1. The
second, referred to asvolume, measures the spread (volume)
of sk|k(x). Note that the failure to satisfy condition 1 indicates
filter divergence, which is considered as acatastrophicevent in
target tracking. For the proposed Bernoulli PF and Box-PF for
interval measurements, which are numerical approximations of
the optimal Bernoulli filter, it will be an imperative to satisfy
condition 1 and desirable to minimise the volume in condition
2.

In order to define the two criteria, let us introduce a
credible set[8] Ck(α) associated with the posteriorsk|k(x) =
p(xk|Υ1:k). This set is defined implicitly as the smallest set
Ck(α) ⊆ X such that its probability is:

P
(

Ck(α)
)

=

∫

Ck(α)

sk|k(x) dx = 1− α, (37)

whereα ≪ 1. A credible set atα → 0 represents the support
of the posterior spatial pdfsk|k(x). The inclusion criterionρk
is defined as:

ρk =

{

1, if the true statexk ∈ Ck(α)

0, otherwise.
(38)

Thevolumecriterionνk measures the volume of the credible
set Ck(α). The two assessment criteria,ρk and νk, will
be computed for all discrete-time indicesk characterized by
qk|k > τ , whereτ ∈ [0, 1] is the track reporting threshold.
Furthermore, in order to establish the expected performance,
ρk and νk will be averaged over independent Monte Carlo
runs.
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A. Computation ofρk and νk for the Bernoulli PF

For the implementation of the inclusion criterionρk in
(38), only a random sample approximation ofsk|k(x), that
is {wi

k = 1
N ,xi

k}
N
i=1, is available. In order to establish the

inclusion of the true state vector, i.e.xk ∈ Ck(α), the kernel
density estimation (KDE) method [28] can be applied. The
(fixed) KDE method places a kernel functionφ on every
particlexi

k, i = 1, . . . , N . The result is an approximation of
the posterior densitysk|k(x):

sk|k(x) ≈ s̃(x) =
1

NWnx

N
∑

i=1

φ

(

x− xi
k

W

)

, (39)

where φ(x) is the kernel which satisfiesφ(x) ≥ 0 and
∫

X
φ(x) dx = 1, andW is the kernel width parameter. For

convenience we adopt the Gaussian kernel with zero-mean
and covariance matrixP:

φ(x) =
1

(2π)nx/2
√

|P|
exp

{

−
1

2
x⊺ P−1 x

}

. (40)

The optimal fixed bandwidth (under the assumption that the
underlying pdf is Gaussian) for the Gaussian kernelφ(x) is
[28] W ∗ = A · N− 1

nx+4 , whereA = [4/(nx + 2)]
1

nx+4 . The
covarianceP needs to be estimated from the particles; for a
particle set{wi

k = 1
N ,xi

k}
N
i=1 at timek we have:

Pk|k =
1

N − 1

N
∑

i=1

(xi
k − x̂k|k)(x

i
k − x̂k|k)

⊺ (41)

wherex̂k|k = 1
N

∑N
i=1 x

i
k is the mean of particles.

Using the KDE method (39), it is possible to approximate
the boundary of the credible setCk(α). The computation
involved, however, would be prohibitively expensive, and we
propose a simpler approximation ofρk in (38) as follows:

ρk =

{

1, if s̃(xk) ≥ min
i=1,...,N

s̃(xi
k),

0, otherwise,
(42)

wherexk is the true target state at the timek ands̃ was defined
in (39). The value of min

i=1,...,N
s̃(xi

k) in (42) effectively defines

the boundary ofCk at someα ≪ 1 in such a manner that set
Ck includes all particles. The boundary itself, however, does
not need to be computed.

The volume criterionνk approximates the volume ofCk(α)
by the spread of particles. In practiceνk is approximated by
the trace of the covariancePk|k in (41).

B. Computation ofρk and νk for the Bernoulli Box-PF

The Bernoulli Box-PF reports, at the end of each cycle, the
set of equally weighted box particles[xi

k], i = 1, . . . , N . The
computation of the credible setCk(α) at α → 1 from box-
particles is straightforward as it does not require the KDE
method. Instead,Ck(1) is approximated simply by the union
of all box particles, that is

Ck(1) =

N
⋃

i=1

[xi
k]. (43)

Inclusionρk follows directly from (38) as

ρk =

{

1, if xk ∈
⋃N

i=1[x
i
k],

0, otherwise,
(44)

wherexk is the true target state at time instantk. The volume
νk is calculated according to

νk =

nx
∑

j=1

σ2
k(j), (45)

whereσ2
k(j) was given in (36).

VII. N UMERICAL EXAMPLES

This section demonstrates the performance of the two de-
scribed implementations of the Bernoulli filter. First, thetarget
and measurement characteristics will be defined, followed by
a single run of each filter. Finally a Monte Carlo simulation
based comparison using the described performance criteriaof
inclusion and spread will be carried out.

A. Simulation Setup

Consider the problem of tracking a target in two-
dimensional plane using range, range-rate and azimuth mea-
surements. The target state vector isx =

[

x ẋ y ẏ
]⊺

,
where (x, y) and (ẋ, ẏ) are the target position and velocity,
respectively, in Cartesian coordinates. The target is moving
according to the nearly constant velocity motion model with
transitional densityπk+1|k(x|x

′) = N (x;Fx′,Q). Here

F = I2 ⊗

[

1 T
0 1

]

, Q = I2 ⊗

[

T 3

3
T 2

2
T 2

2 T

]

·̟ (46)

with ⊗ being the Kronecker product,T = tk+1 − tk the sam-
pling interval and̟ the intensity of process noise [29]. The
target appears at scank = 3 and disappears at scank = 54.
Initially (at k = 0) the target is located at(550 m, 300 m)
and is moving with velocity(−5 m/s,−8.5 m/s). The sensor
is static, located at the origin of thex− y plane. Other values
are adopted as̟ = 0.05, T = 1 s, with the total observation
interval of 60s.

The measurement functionhk(x) is defined as:

hk(x) =

[

√

x2 + y2,
xẋ+ yẏ
√

x2 + y2
, arctan(y/x)

]⊺

. (47)

The measurement noisev is zero mean white Gaussian with
a covarianceΣ = diag[σ2

r , σ2
ṙ , σ2

θ ], whereσr = 2.5 m,
σṙ = 0.01 m/s andσθ = 0.25◦. For the Box-PF, we use the
99% interval confidences3σr, 3σṙ and3σθ to model a uniform
noise as in Equation (26). Note that mixture of Uniform pdfs
can be used instead (at a computation cost).

The sensors provides interval measurements, with an inter-
val length∆ = [∆r, ∆ṙ, ∆θ]⊺, where∆r = 50 m,∆ṙ = 0.2
m/s and∆θ = 4◦ are the lengths of intervals in range, range-
rate and azimuth, respectively.
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The sensor has a bias (systematic error) in the sense that
the vectorhk(x)+vk is not in the middle of the measurement
interval. A measurement atk is thus defined as:

[z]k = [hk(x) + vk −
3

4
∆, hk(x) + vk +

1

4
∆]. (48)

The two Bernoulli filters are ignorant of the bias.
The probability of detection ispD = 0.95, the mean number

of false detections per scan isλ = 5. The false alarm
probability c([z]) is assumed constant for all volumes of[z],
across the range (mid intervals from30m to 700m), range-
rate (mid intervals from−15 m/s to+15 m/s) and azimuth
(mid intervals from−π/2 rad to π/2 rad). The reporting
thresholdτ is set to0.5. The filtering algorithms have the
following prior information:pD, false alarm statisticsλ and
c([z]), measurement functionhk(x), covariance matrixΣ and
the transitional densityπk+1|k(x|x

′). The filters are making
an inference at everyk using measurementsΥ1:k, and the
following parameters:pB = 0.01, pS = 0.98, n0 andN . The
number of particles or box particlesN will be varied.

The implementation of birth density, discussed in Sec.IV-A,
is based on the range and azimuth component of each mea-
surement (i.e. neglecting the range-rate), usingp = [x y]⊺

andu = [ẋ ẏ]⊺. The prior for ẋ and ẏ is a uniform density
from −15 m/s to+15 m/s.

Parametern0 (see Sec. IV) which is the number of newborn
particles at each time and for each measurement is also varied,
but only for the Bernoulli PF. We will see that the choice
of n0 influences the Bernoulli PF error performance and its
computation time. In contrast, parametern0 is not critical for
the Bernoulli Box-PF performance. In all numerical tests, we
setn0 = 1: one box particle is sufficient to cover entirely the
region of the state space defined by a measurement and the
prior.

The experiment and both Bernoulli filters were implemented
in MATLAB.

B. Single runs

First we illustrate single runs of both Bernoulli filters.
Fig. 2.(a) shows the output of a typical run of the Bernoulli
PF for the testing scenario at timek = 51. The green regions
represent the measurements, the red asterisk is the true target
location, while the gray dots are the particles (number of
particlesN = 5000). Although the particle mean̂xk|k is a
biased estimate of the target state, the particles populatethe
volume of the state spaceX where the true value resides.
Fig. 2.(b) shows the estimate of the probability of target
existenceqk|k over time. Target presence is established at
k = 5 with qk|k remaining close to1.0 after that. Occasionally,
when the target detection is missing in the measurement set
Υk, qk|k drops below the value of1.0.

The implementation of the Bernoulli Box-PF is based on
the INTLAB [30] toolbox, which contains a number of built-in
routines for interval calculations. The constraints propagation
algorithm [26], used here to contract each box particle at the
update step, is presented in Appendix. The original algorithm
performs the contractions until the algorithm converges (i.e.
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Figure 2. Tracking scenario with results at timek = 51

there is no more contraction after a specified threshold). In
our experiment we are using a loop of3 iterations (we
observed that more contractions do not lead to a significant
improvement).

Fig. 3.(a) shows a global view of the filter performance
for one single run with measurements generated from (48)
and with N = 32 box particles. All measurements for60
scans are plotted by rectangular regions around the sensor.
In addition, the blue “plus” marks represent the true target
trajectory, while the black circles represent the estimated
trajectory. The persistent box particles positions are also shown
with rectangular regions. From this snapshot, we can see that:
1) the update step correctly weights the relevant box particles
and 2) the Box-PF is able to correctly estimate the target’s
trajectory.

Fig. 3(b) shows the estimate of the probability of target
existenceqk|k over time. Target presence is established atk =
6 with qk|k remaining close to1.0 after that. Occasionally,
when the target detection is missing in the measurement set
Υk, qk|k drops below the value of1.0.

C. Monte Carlo Runs

The average performance of the proposed Bernoulli PF is
evaluated via Monte Carlo simulations using the scenario and
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Figure 3. (a) Snapshot of one run (60 scans) of the box particles Bernoulli

filter with N = 32. The persistent box particles over the time are shown along

with the estimated trajectory and the true one. (b) Estimates of the probability

of target existence are also shown for one run.

parameters described in Sec. VII-A. First, the performance
criteria presented in Sec. VI are studied.

1) Performance Evaluation viaρk andνk: Figs. 4, 5 and 6
show the performance results of the Bernoulli PF using
n0 = 500, n0 = 1000 andn0 = 5000 newborn particles, re-
spectively. On the top of each figure is the average probability
of target existenceqk|k; in the middle is the averageinclusion
criterion ρk; at the bottom is the average volume (spread)
νk, versus the scan numberk = 1, · · · , 60. Averaging was
carried out overM = 100 independent Monte Carlo runs. Four
cases for the number of particlesN are displayed:N = 500,
N = 1000, N = 2000 andN = 5000,

From Figs. 4, 5 and 6 one can observe:

(i) The probability of existence is reliable for all
combination ofN andn0.
(ii) The inclusion criterion depends onn0 and N .
Recall that if the average inclusion isρk = 1, this
means that the true value of the target statexk is
consistently contained by the support of the particle
representation ofsk|k(x). Observe that a high value
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Figure 4. Average performance overM = 100 Monte Carlo runs for the

Bernoulli PF usingn0 = 500 andN ∈ {500, 1000, 2000, 5000} particles:

on the top the probability of existenceqk|k; in the middle the inclusionρk;

at the bottom volume (spread)νk.

of n0 (n0 ≥ 5000) and a high value ofN (N ≥
2000) are needed to satisfy the inclusion property.
(iii) The volume (spread of particles)νk for all
combination ofN andn0 is rapidly converging and
stabilizing. We can observe that whenn0 is fixed, and
N increases, the spread is also increasing but very
insignificantly. However, whenn0 is increasing, we
can observe a more visible spread increase.

Fig. 7 shows the average performance of the Bernoulli Box-PF
(averaged overM = 100 runs), which can be summarized as
follows:

(i) The probability of existence is reliable most of
the time for all values ofN ,
(ii) One newborn box particle per measurement, that
is n0 = 1 is sufficient to satisfy the average inclusion
criterion ρk provided thatN ≥ 32. This is a useful
advantage of the Box-PF implementation compared
to the PF implementation.
(iii) The spreadνk of box-particles for all combi-
nation of N is rapidly converging and stabilizing.
The spread change whenN is increasing is very
insignificant. Finally, the spread of the Box-PF im-
plementation is slightly higher than that of the PF
implementation.

2) Computational Time:Fig. 8 shows the computational
time for the Bernoulli PF usingn0 = 500, n0 = 1000 and
n0 = 5000. The influence ofn0 on the computational time
is very critical. This is to be expected since at timek there
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Figure 5. Average performance overM = 100 Monte Carlo runs for the

Bernoulli PF usingn0 = 1000 andN ∈ {500, 1000, 2000, 5000} particles:

on the top the probability of existenceqk|k; in the middle the inclusionρk ;

at the bottom volume (spread)νk.

aren0 ·mk−1 newborn particles to process. Fig. 9 shows the
computational time for the Bernoulli Box-PF usingn0 = 1.

Recall from Sec. VII-C1 that to satisfy the inclusion crite-
rion, the Bernoulli PF requires in excess ofn0 = 5000 and
N = 2000 particles, corresponds to an average computational
time of just over40s. The Bernoulli Box-PF satisfies the inclu-
sion using justN ≥ 32 box-particles (withn0 = 1 newborn
box-particles), corresponds to an average computation time
of about19s. Hence, the Box-PF implementation appears to
be twice faster. This is despite the fact that interval function
calculations were not implemented using MATLAB built-in
functions. Although the processing time per box-particle is
significantly higher than the processing time per point parti-
cles (involving interval analysis calculations), the noticeable
reduction in the number of box-particles is responsible forthe
overall speed-up of this algorithm.

VIII. C ONCLUSIONS

This paper formulated the optimal Bayesian nonlinear fil-
tering problem in the presence of three types of measurement
uncertainties: stochastic, set-theoretic and data association
uncertainty. Since the optimal filter for this problem has noan-
alytic solution, the paper then proposed two Monte Carlo based
approximations. The first is based on the standard particle
filtering framework, and referred to as the Bernoulli particle
filter. The second, referred to as the Bernoulli box-particle
filter is based on box-particles and relies on interval analysis
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Figure 6. Average performance overM = 100 Monte Carlo runs for the

Bernoulli PF usingn0 = 5000 andN ∈ {500, 1000, 2000, 5000} particles:

on the top the probability of existenceqk|k; in the middle the inclusionρk;

at the bottom volume (spread)νk.

for computations. Finally, the paper presented a comparative
analysis of the two filters in the context of target tracking using
interval measurements.

Both filters perform comparably well when a sufficient
number of particles is used: the presence of a target is
reliably detected, while the true target state is containedin the
support of the spatial density function. The Bernoulli Box-
PF, however, was demonstrated to be more cost efficient: it
required twice less computational time and almost hundred
time smaller number of particles (that is box-particles). The
reduction in the number of particles can be important in the
context of distributed networked systems, because of a smaller
communication bandwidth requirement.

Future work will focus on the development of a multi-
Bernoulli filter for multi-target tracking in the presence of
stochastic, set-theoretic and data association uncertainty. An-
other attractive direction of work is a development of a
Bernoulli Box-PF in a distributed environment to take the full
advantage in the reduction of particles.

APPENDIX

a) Bernoulli filter update equations.:The original update
equations of the Bernoulli filter for the state independentpD
are [10, p.520]:
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qk+1|k+1 =

1−pD+pD
∑

[z]∈Υk+1

∫
gk+1([z]|x) sk+1|k(x) dx

κ(Υk+1\{[z]})

κ(Υk+1)

q
−1
k+1|k

−pD+pD
∑

[z]∈Υk+1

∫
gk+1([z]|x) sk+1|k(x) dx

κ(Υk+1\{[z]})

κ(Υk+1)

(49)

sk+1|k+1(x) =

1−pD+pD
∑

[z]∈Υk+1gk+1([z]|x)
κ(Υk+1\{[z]})

κ(Υk+1)

1−pD+pD
∑

[z]∈Υk+1

∫
gk+1([z]|x) sk+1|k(x) dx

κ(Υk+1\{[z]})

κ(Υk+1)

sk+1|k(x) (50)
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Figure 9. Computational time overM = 100 runs for the Bernoulli Box-PF

an a function of the number of particlesN and usingn0 = 1.

where \ denotes the set-minus operation andκ(Υ) is the pdf of

the false alarm random finite setΥ. Under the assumption made in

Sec.II the false alarm set is a Poisson RFS, whose multi-object pdf is

given by [10, p.366]:κ(Υ) = e−λ
∏

[z]∈Υ λ c([z]). Then it follows

that

κ(Υk+1 \ {[z]})
κ(Υk+1)

=
1

λ c([z])
, (51)

which leads to the update equations in the form given by eqs.(7)-(9).

b) Constraints propagation algorithm.:The CP algorithm

[26] that was used in the numerical example in which the mea-

surements are intervals in the range, range-rate, azimuth space, is

presented in Algorithm 3. This algorithm performs the contraction of

each box particle at the update step.
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+

√
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[x]
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